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Chapter Two
System Modeling

... I asked Fermi whether he was not impressed by the agreement between our calculated
numbers and his measured numbers. He replied, “Howmany arbitrary parameters did you use
for your calculations?” I thought for a moment about our cut-off procedures and said, “Four.”
He said, “I remember my friend Johnny von Neumann used to say, with four parameters I can
fit an elephant, and with five I can make him wiggle his trunk.”

Freeman Dyson on describing the predictions of his model for meson-proton scattering to
Enrico Fermi in 1953 [67].

A model is a precise representation of a system’s dynamics used to answer ques-
tions via analysis and simulation. The model we choose depends on the questions
we wish to answer, and so there may be multiple models for a single dynamical sys-
tem, with different levels of fidelity depending on the phenomena of interest. In this
chapter we provide an introduction to the concept of modeling and present some
basic material on two specific methods commonly used in feedback and control
systems: differential equations and difference equations.

2.1 Modeling Concepts

A model is a mathematical representation of a physical, biological or information
system. Models allow us to reason about a system and make predictions about
how a system will behave. In this text, we will mainly be interested in models of
dynamical systems describing the input/output behavior of systems, and we will
often work in “state space” form.

Roughly speaking, a dynamical system is one in which the effects of actions
do not occur immediately. For example, the velocity of a car does not change
immediately when the gas pedal is pushed nor does the temperature in a room rise
instantaneously when a heater is switched on. Similarly, a headache does not vanish
right after an aspirin is taken, requiring time for it to take effect. In business systems,
increased funding for a development project does not increase revenues in the short
term, although it may do so in the long term (if it was a good investment). All
of these are examples of dynamical systems, in which the behavior of the system
evolves with time.

In the remainder of this section we provide an overview of some of the key
concepts in modeling. The mathematical details introduced here are explored more
fully in the remainder of the chapter.
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Figure 2.1: Spring–mass system with nonlinear damping. The position of the mass is denoted
by q , with q = 0 corresponding to the rest position of the spring. The forces on the mass are
generated by a linear spring with spring constant k and a damper with force dependent on the
velocity q̇ .

The Heritage of Mechanics

The study of dynamics originated in attempts to describe planetary motion. The
basis was detailed observations of the planets by Tycho Brahe and the results of
Kepler, who found empirically that the orbits of the planets could be well described
by ellipses. Newton embarked on an ambitious program to try to explain why the
planets move in ellipses, and he found that the motion could be explained by his
law of gravitation and the formula stating that force equals mass times acceleration.
In the process he also invented calculus and differential equations.

One of the triumphs of Newton’s mechanics was the observation that the motion
of the planets could be predicted based on the current positions and velocities of
all planets. It was not necessary to know the past motion. The state of a dynamical
system is a collection of variables that completely characterizes the motion of a
system for the purpose of predicting future motion. For a system of planets the
state is simply the positions and the velocities of the planets. We call the set of all
possible states the state space.

A common class of mathematical models for dynamical systems is ordinary
differential equations (ODEs). In mechanics, one of the simplest such differential
equations is that of a spring–mass system with damping:

mq̈ + c(q̇)+ kq = 0. (2.1)

This system is illustrated in Figure 2.1. The variable q ∈ R represents the position
of the mass m with respect to its rest position. We use the notation q̇ to denote the
derivative of q with respect to time (i.e., the velocity of the mass) and q̈ to represent
the second derivative (acceleration). The spring is assumed to satisfy Hooke’s law,
which says that the force is proportional to the displacement. The friction element
(damper) is taken as a nonlinear function c(q̇), which can model effects such as
stiction and viscous drag. The position q and velocity q̇ represent the instantaneous
state of the system. We say that this system is a second-order system since the
dynamics depend on the first two derivatives of q.

The evolution of the position and velocity can be described using either a time
plot or a phase portrait, both of which are shown in Figure 2.2. The time plot, on
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Figure 2.2: Illustration of a state model. A state model gives the rate of change of the state
as a function of the state. The plot on the left shows the evolution of the state as a function of
time. The plot on the right shows the evolution of the states relative to each other, with the
velocity of the state denoted by arrows.

the left, shows the values of the individual states as a function of time. The phase
portrait, on the right, shows the vector field for the system, which gives the state
velocity (represented as an arrow) at every point in the state space. In addition,
we have superimposed the traces of some of the states from different conditions.
The phase portrait gives a strong intuitive representation of the equation as a vector
field or a flow. While systems of second order (two states) can be represented in
this way, unfortunately it is difficult to visualize equations of higher order using
this approach.

The differential equation (2.1) is called an autonomous system because there
are no external influences. Such a model is natural for use in celestial mechanics
because it is difficult to influence the motion of the planets. In many examples, it
is useful to model the effects of external disturbances or controlled forces on the
system. One way to capture this is to replace equation (2.1) by

mq̈ + c(q̇)+ kq = u, (2.2)

where u represents the effect of external inputs. The model (2.2) is called a forced
or controlled differential equation.It implies that the rate of change of the state can
be influenced by the input u(t). Adding the input makes the model richer and allows
new questions to be posed. For example, we can examine what influence external
disturbances have on the trajectories of a system. Or, in the case where the input
variable is something that can be modulated in a controlled way, we can analyze
whether it is possible to “steer” the system from one point in the state space to
another through proper choice of the input.

The Heritage of Electrical Engineering

A different view of dynamics emerged from electrical engineering, where the design
of electronic amplifiers led to a focus on input/output behavior. A system was
considered a device that transforms inputs to outputs, as illustrated in Figure 2.3.
Conceptually an input/output model can be viewed as a giant table of inputs and
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Figure 2.3: Illustration of the input/output view of a dynamical system. The figure on the
left shows a detailed circuit diagram for an electronic amplifier; the one on the right is its
representation as a block diagram.

outputs. Given an input signal u(t) over some interval of time, the model should
produce the resulting output y(t).

The input/output framework is used in many engineering disciplines since it
allows us to decompose a system into individual components connected through
their inputs and outputs. Thus, we can take a complicated system such as a radio
or a television and break it down into manageable pieces such as the receiver,
demodulator, amplifier and speakers. Each of these pieces has a set of inputs and
outputs and, through proper design, these components can be interconnected to
form the entire system.

The input/output view is particularly useful for the special class of linear time-
invariant systems. This term will be defined more carefully later in this chapter, but
roughly speaking a system is linear if the superposition (addition) of two inputs
yields an output that is the sum of the outputs that would correspond to individual
inputs being applied separately. A system is time-invariant if the output response
for a given input does not depend on when that input is applied.

Many electrical engineering systems can be modeled by linear time-invariant
systems, and hence a large number of tools have been developed to analyze them.
One such tool is the step response, which describes the relationship between an
input that changes from zero to a constant value abruptly (a step input) and the
corresponding output. As we shall see later in the text, the step response is very
useful in characterizing the performance of a dynamical system, and it is often used
to specify the desired dynamics. A sample step response is shown in Figure 2.4a.

Another way to describe a linear time-invariant system is to represent it by its
response to sinusoidal input signals. This is called the frequency response, and a
rich, powerful theory with many concepts and strong, useful results has emerged.
The results are based on the theory of complex variables and Laplace transforms.
The basic idea behind frequency response is that we can completely characterize
the behavior of a system by its steady-state response to sinusoidal inputs. Roughly
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Figure 2.4: Input/output response of a linear system. The step response (a) shows the output
of the system due to an input that changes from 0 to 1 at time t = 5 s. The frequency
response (b) shows the amplitude gain and phase change due to a sinusoidal input at different
frequencies.

speaking, this is done by decomposing any arbitrary signal into a linear combi-
nation of sinusoids (e.g., by using the Fourier transform) and then using linearity
to compute the output by combining the response to the individual frequencies. A
sample frequency response is shown in Figure 2.4b.

The input/output view lends itself naturally to experimental determination of
system dynamics, where a system is characterized by recording its response to
particular inputs, e.g., a step or a set of sinusoids over a range of frequencies.

The Control View

When control theory emerged as a discipline in the 1940s, the approach to dy-
namics was strongly influenced by the electrical engineering (input/output) view.
A second wave of developments in control, starting in the late 1950s, was inspired
by mechanics, where the state space perspective was used. The emergence of space
flight is a typical example, where precise control of the orbit of a spacecraft is
essential. These two points of view gradually merged into what is today the state
space representation of input/output systems.

The development of state space models involved modifying the models from
mechanics to include external actuators and sensors and utilizing more general
forms of equations. In control, the model given by equation (2.2) was replaced by

dx

dt
= f (x, u), y = h(x, u), (2.3)

where x is a vector of state variables, u is a vector of control signals and y is a
vector of measurements. The term dx/dt represents the derivative of x with respect
to time, now considered a vector, and f and h are (possibly nonlinear) mappings of
their arguments to vectors of the appropriate dimension. For mechanical systems,
the state consists of the position and velocity of the system, so that x = (q, q̇) in the
case of a damped spring–mass system. Note that in the control formulation we model
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dynamics as first-order differential equations, but we will see that this can capture
the dynamics of higher-order differential equations by appropriate definition of the
state and the maps f and h.

Adding inputs and outputs has increased the richness of the classical problems
and led to many new concepts. For example, it is natural to ask if possible states x
can be reached with the proper choice of u (reachability) and if the measurement y
contains enough information to reconstruct the state (observability). These topics
will be addressed in greater detail in Chapters 6 and 7.

A final development in building the control point of view was the emergence of
disturbances and model uncertainty as critical elements in the theory. The simple
way of modeling disturbances as deterministic signals like steps and sinusoids has
the drawback that such signals can be predicted precisely. A more realistic approach
is to model disturbances as random signals. This viewpoint gives a natural connec-
tion between prediction and control. The dual views of input/output representations
and state space representations are particularly useful when modeling uncertainty
since state models are convenient to describe a nominal model but uncertainties
are easier to describe using input/output models (often via a frequency response
description). Uncertainty will be a constant theme throughout the text and will be
studied in particular detail in Chapter 12.

An interesting observation in the design of control systems is that feedback
systems can often be analyzed and designed based on comparatively simple models.
The reason for this is the inherent robustness of feedback systems. However, other
uses of models may require more complexity and more accuracy. One example is
feedforward control strategies, where one uses a model to precompute the inputs
that cause the system to respond in a certain way. Another area is system validation,
where one wishes to verify that the detailed response of the system performs as it
was designed. Because of these different uses of models, it is common to use a
hierarchy of models having different complexity and fidelity.

Multidomain Modeling
�

Modeling is an essential element of many disciplines, but traditions and methods
from individual disciplines can differ from each other, as illustrated by the previous
discussion of mechanical and electrical engineering. A difficulty in systems engi-
neering is that it is frequently necessary to deal with heterogeneous systems from
many different domains, including chemical, electrical, mechanical and informa-
tion systems.

To model such multidomain systems, we start by partitioning a system into
smaller subsystems. Each subsystem is represented by balance equations for mass,
energy and momentum, or by appropriate descriptions of information processing
in the subsystem. The behavior at the interfaces is captured by describing how the
variables of the subsystem behave when the subsystems are interconnected. These
interfaces act by constraining variables within the individual subsystems to be equal
(such as mass, energy or momentum fluxes). The complete model is then obtained
by combining the descriptions of the subsystems and the interfaces.
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Using this methodology it is possible to build up libraries of subsystems that
correspond to physical, chemical and informational components. The procedure
mimics the engineering approach where systems are built from subsystems that are
themselves built from smaller components. As experience is gained, the components
and their interfaces can be standardized and collected in model libraries. In practice,
it takes several iterations to obtain a good library that can be reused for many
applications.

State models or ordinary differential equations are not suitable for component-
based modeling of this form because states may disappear when components are
connected. This implies that the internal description of a component may change
when it is connected to other components. As an illustration we consider two ca-
pacitors in an electrical circuit. Each capacitor has a state corresponding to the
voltage across the capacitors, but one of the states will disappear if the capacitors
are connected in parallel. A similar situation happens with two rotating inertias,
each of which is individually modeled using the angle of rotation and the angular
velocity. Two states will disappear when the inertias are joined by a rigid shaft.

This difficulty can be avoided by replacing differential equations by differential
algebraic equations, which have the form

F(z, ż) = 0,

where z ∈ R
n . A simple special case is

ẋ = f (x, y), g(x, y) = 0, (2.4)

where z = (x, y) and F = (ẋ − f (x, y), g(x, y)). The key property is that the
derivative ż is not given explicitly and there may be pure algebraic relations between
the components of the vector z.

The model (2.4) captures the examples of the parallel capacitors and the linked
rotating inertias. For example, when two capacitors are connected, we simply add
the algebraic equation expressing that the voltages across the capacitors are the
same.

Modelica is a language that has been developed to support component-based
modeling. Differential algebraic equations are used as the basic description, and
object-oriented programming is used to structure the models. Modelica is used to
model the dynamics of technical systems in domains such as mechanical, electri-
cal, thermal, hydraulic, thermofluid and control subsystems. Modelica is intended
to serve as a standard format so that models arising in different domains can be
exchanged between tools and users. A large set of free and commercial Modelica
component libraries are available and are used by a growing number of people
in industry, research and academia. For further information about Modelica, see
http://www.modelica.org or Tiller [192].
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2.2 State Space Models

In this section we introduce the two primary forms of models that we use in this
text: differential equations and difference equations. Both make use of the notions
of state, inputs, outputs and dynamics to describe the behavior of a system.

Ordinary Differential Equations

The state of a system is a collection of variables that summarize the past of a
system for the purpose of predicting the future. For a physical system the state is
composed of the variables required to account for storage of mass, momentum and
energy. A key issue in modeling is to decide how accurately this storage has to be
represented. The state variables are gathered in a vector x ∈ R

n called the state
vector. The control variables are represented by another vector u ∈ R

p, and the
measured signal by the vector y ∈ R

q . A system can then be represented by the
differential equation

dx

dt
= f (x, u), y = h(x, u), (2.5)

where f : R
n × R

p → R
n and h : R

n × R
p → R

q are smooth mappings. We call
a model of this form a state space model.

The dimension of the state vector is called the order of the system. The sys-
tem (2.5) is called time-invariant because the functions f and h do not depend
explicitly on time t ; there are more general time-varying systems where the func-
tions do depend on time. The model consists of two functions: the function f gives
the rate of change of the state vector as a function of state x and control u, and the
function h gives the measured values as functions of state x and control u.

A system is called a linear state space system if the functions f and h are linear
in x and u. A linear state space system can thus be represented by

dx

dt
= Ax + Bu, y = Cx + Du, (2.6)

where A, B, C and D are constant matrices. Such a system is said to be linear and
time-invariant, or LTI for short. The matrix A is called the dynamics matrix, the
matrix B is called the control matrix, the matrix C is called the sensor matrix and
the matrix D is called the direct term. Frequently systems will not have a direct
term, indicating that the control signal does not influence the output directly.

A different form of linear differential equations, generalizing the second-order
dynamics from mechanics, is an equation of the form

dn y

dtn
+ a1

dn−1y

dtn−1
+ · · · + an y = u, (2.7)

where t is the independent (time) variable, y(t) is the dependent (output) variable
and u(t) is the input. The notation dk y/dtk is used to denote the kth derivative
of y with respect to t , sometimes also written as y(k). The controlled differential
equation (2.7) is said to be an nth-order system. This system can be converted into
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state space form by defining

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2
...

xn−1

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dn−1y/dtn−1

dn−2y/dtn−2

...
dy/dt
y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

and the state space equations become

d

dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2
...

xn−1

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1x1 − · · · − anxn
x1
...

xn−2

xn−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
0
...
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, y = xn.

With the appropriate definitions of A, B, C and D, this equation is in linear state
space form.

An even more general system is obtained by letting the output be a linear com-
bination of the states of the system, i.e.,

y = b1x1 + b2x2 + · · · + bnxn + du.

This system can be modeled in state space as

d

dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

x3
...
xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a1 −a2 . . . −an−1 −an
1 0 . . . 0 0
0 1 0 0
...

. . .
...

0 0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
0
0
...
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
u,

y =
⎧⎩b1 b2 . . . bn

⎫⎭ x + du.

(2.8)

This particular form of a linear state space system is called reachable canonical
form and will be studied in more detail in later chapters.

Example 2.1 Balance systems
An example of a type of system that can be modeled using ordinary differential
equations is the class of balance systems. A balance system is a mechanical system
in which the center of mass is balanced above a pivot point. Some common examples
of balance systems are shown in Figure 2.5. The Segway® Personal Transporter
(Figure 2.5a) uses a motorized platform to stabilize a person standing on top of
it. When the rider leans forward, the transportation device propels itself along the
ground but maintains its upright position. Another example is a rocket (Figure 2.5b),
in which a gimbaled nozzle at the bottom of the rocket is used to stabilize the body
of the rocket above it. Other examples of balance systems include humans or other
animals standing upright or a person balancing a stick on their hand.
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(a) Segway (b) Saturn rocket
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Figure 2.5: Balance systems. (a) Segway Personal Transporter, (b) Saturn rocket and (c)
inverted pendulum on a cart. Each of these examples uses forces at the bottom of the system
to keep it upright.

Balance systems are a generalization of the spring–mass system we saw earlier.
We can write the dynamics for a mechanical system in the general form

M(q)q̈ + C(q, q̇)+ K (q) = B(q)u,

where M(q) is the inertia matrix for the system, C(q, q̇) represents the Coriolis
forces as well as the damping, K (q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into the dynamics. The
specific form of the equations can be derived using Newtonian mechanics. Note
that each of the terms depends on the configuration of the system q and that these
terms are often nonlinear in the configuration variables.

Figure 2.5c shows a simplified diagram for a balance system consisting of an
inverted pendulum on a cart. To model this system, we choose state variables that
represent the position and velocity of the base of the system, p and ṗ, and the angle
and angular rate of the structure above the base, θ and θ̇ . We let F represent the
force applied at the base of the system, assumed to be in the horizontal direction
(aligned with p), and choose the position and angle of the system as outputs. With
this set of definitions, the dynamics of the system can be computed using Newtonian
mechanics and have the form⎧⎪⎪⎩ (M + m) −ml cos θ

−ml cos θ (J + ml2)

⎫⎪⎪⎭⎧⎪⎪⎩ p̈
θ̈

⎫⎪⎪⎭ +
⎧⎪⎪⎩c ṗ + ml sin θ θ̇2

γ θ̇ − mgl sin θ

⎫⎪⎪⎭ =
⎧⎪⎪⎩F0

⎫⎪⎪⎭ , (2.9)

where M is the mass of the base,m and J are the mass and moment of inertia of the
system to be balanced, l is the distance from the base to the center of mass of the
balanced body, c and γ are coefficients of viscous friction and g is the acceleration
due to gravity.

We can rewrite the dynamics of the system in state space form by defining the
state as x = (p, θ, ṗ, θ̇ ), the input as u = F and the output as y = (p, θ). If we
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define the total mass and total inertia as

Mt = M + m, Jt = J + ml2,

the equations of motion then become

d

dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
p
θ
ṗ
θ̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ
θ̇

−mlsθ θ̇2 + mg(ml2/Jt)sθcθ − c ṗ − γ lmcθ θ̇ + u

Mt − m(ml2/Jt)c2
θ

−ml2sθcθ θ̇2 + Mtglsθ − clcθ ṗ − γ (Mt/m)θ̇ + lcθu

Jt(Mt/m)− m(lcθ )2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

y =
⎧⎪⎪⎩p
θ

⎫⎪⎪⎭ ,
where we have used the shorthand cθ = cos θ and sθ = sin θ .

In many cases, the angle θ will be very close to 0, and hence we can use the
approximations sin θ ≈ θ and cos θ ≈ 1. Furthermore, if θ̇ is small, we can
ignore quadratic and higher terms in θ̇ . Substituting these approximations into our
equations, we see that we are left with a linear state space equation

d

dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
p
θ
ṗ
θ̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 1 0
0 0 0 1

0 m2l2g/μ −cJt/μ −γ Jtlm/μ
0 Mtmgl/μ −clm/μ −γMt/μ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
p
θ
ṗ
θ̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0
0

Jt/μ

lm/μ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭u,
y =

⎧⎪⎪⎩1 0 0 0
0 1 0 0

⎫⎪⎪⎭ x,

where μ = Mt Jt − m2l2. ∇
Example 2.2 Inverted pendulum
A variation of the previous example is one in which the location of the base p does
not need to be controlled. This happens, for example, if we are interested only in
stabilizing a rocket’s upright orientation without worrying about the location of
base of the rocket. The dynamics of this simplified system are given by

d

dt

⎧⎪⎪⎩θ
θ̇

⎫⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩ θ̇
mgl

Jt
sin θ − γ

Jt
θ̇ + l

Jt
cos θ u

⎫⎪⎪⎪⎪⎪⎭ , y = θ, (2.10)

where γ is the coefficient of rotational friction, Jt = J + ml2 and u is the force
applied at the base. This system is referred to as an inverted pendulum. ∇

Difference Equations

In some circumstances, it is more natural to describe the evolution of a system at
discrete instants of time rather than continuously in time. If we refer to each of
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these times by an integer k = 0, 1, 2, . . . , then we can ask how the state of the
system changes for each k. Just as in the case of differential equations, we define
the state to be those sets of variables that summarize the past of the system for the
purpose of predicting its future. Systems described in this manner are referred to
as discrete-time systems.

The evolution of a discrete-time system can be written in the form

x[k + 1] = f (x[k], u[k]), y[k] = h(x[k], u[k]), (2.11)

where x[k] ∈ R
n is the state of the system at time k (an integer), u[k] ∈ R

p is
the input and y[k] ∈ R

q is the output. As before, f and h are smooth mappings of
the appropriate dimension. We call equation (2.11) a difference equation since it
tells us how x[k + 1] differs from x[k]. The state x[k] can be either a scalar- or a
vector-valued quantity; in the case of the latter we write x j [k] for the value of the
j th state at time k.

Just as in the case of differential equations, it is often the case that the equations
are linear in the state and input, in which case we can describe the system by

x[k + 1] = Ax[k] + Bu[k], y[k] = Cx[k] + Du[k].

As before, we refer to the matrices A, B,C and D as the dynamics matrix, the control
matrix, the sensor matrix and the direct term. The solution of a linear difference
equation with initial condition x[0] and input u[0], . . . , u[T ] is given by

x[k] = Akx0 +
k−1∑
j=0

Ak− j−1Bu[ j],

y[k] = CAkx0 +
k−1∑
j=0

CAk− j−1Bu[ j] + Du[k],

k > 0. (2.12)

Difference equations are also useful as an approximation of differential equa-
tions, as we will show later.

Example 2.3 Predator–prey
As an example of a discrete-time system, consider a simple model for a predator–
prey system. The predator–prey problem refers to an ecological system in which
we have two species, one of which feeds on the other. This type of system has
been studied for decades and is known to exhibit interesting dynamics. Figure 2.6
shows a historical record taken over 90 years for a population of lynxes versus a
population of hares [142]. As can been seen from the graph, the annual records of
the populations of each species are oscillatory in nature.

A simple model for this situation can be constructed using a discrete-time model
by keeping track of the rate of births and deaths of each species. Letting H represent
the population of hares and L represent the population of lynxes, we can describe
the state in terms of the populations at discrete periods of time. Letting k be the
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Figure 2.6: Predator versus prey. The photograph on the left shows a Canadian lynx and
a snowshoe hare, the lynx’s primary prey. The graph on the right shows the populations of
hares and lynxes between 1845 and 1935 in a section of the Canadian Rockies [142]. The
data were collected on an annual basis over a period of 90 years. (Photograph copyright Tom
and Pat Leeson.)

discrete-time index (e.g., the month number), we can write

H [k + 1] = H [k] + br (u)H [k] − aL[k]H [k],

L[k + 1] = L[k] + cL[k]H [k] − d f L[k],
(2.13)

where br (u) is the hare birth rate per unit period and as a function of the food
supply u, d f is the lynx mortality rate and a and c are the interaction coefficients.
The interaction term aL[k]H [k] models the rate of predation, which is assumed
to be proportional to the rate at which predators and prey meet and is hence given
by the product of the population sizes. The interaction term cL[k]H [k] in the
lynx dynamics has a similar form and represents the rate of growth of the lynx
population. This model makes many simplifying assumptions—such as the fact
that hares decrease in number only through predation by lynxes—but it often is
sufficient to answer basic questions about the system.

To illustrate the use of this system, we can compute the number of lynxes and
hares at each time point from some initial population. This is done by starting with
x[0] = (H0, L0) and then using equation (2.13) to compute the populations in
the following period. By iterating this procedure, we can generate the population
over time. The output of this process for a specific choice of parameters and initial
conditions is shown in Figure 2.7. While the details of the simulation are different
from the experimental data (to be expected given the simplicity of our assumptions),
we see qualitatively similar trends and hence we can use the model to help explore
the dynamics of the system. ∇
Example 2.4 E-mail server
The IBM Lotus server is an collaborative software system that administers users’
e-mail, documents and notes. Client machines interact with end users to provide
access to data and applications. The server also handles other administrative tasks.
In the early development of the system it was observed that the performance was
poor when the central processing unit (CPU) was overloaded because of too many
service requests, and mechanisms to control the load were therefore introduced.

The interaction between the client and the server is in the form of remote pro-
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Figure 2.7:Discrete-time simulation of the predator–prey model (2.13). Using the parameters
a = c = 0.014, br (u) = 0.6 and d = 0.7 in equation (2.13), the period and magnitude of the
lynx and hare population cycles approximately match the data in Figure 2.6.

cedure calls (RPCs). The server maintains a log of statistics of completed requests.
The total number of requests being served, called RIS (RPCs in server), is also
measured. The load on the server is controlled by a parameter called MaxUsers,
which sets the total number of client connections to the server. This parameter is
controlled by the system administrator. The server can be regarded as a dynami-
cal system with MaxUsers as the input and RIS as the output. The relationship
between input and output was first investigated by exploring the steady-state per-
formance and was found to be linear.

In [97] a dynamic model in the form of a first-order difference equation is
used to capture the dynamic behavior of this system. Using system identification
techniques, they construct a model of the form

y[k + 1] = ay[k] + bu[k],

where u = MaxUsers − MaxUsers and y = RIS − RIS. The parameters
a = 0.43 and b = 0.47 are parameters that describe the dynamics of the system
around the operating point, and MaxUsers = 165 and RIS = 135 represent the
nominal operating point of the system. The number of requests was averaged over
a sampling period of 60 s. ∇

Simulation and Analysis

State space models can be used to answer many questions. One of the most common,
as we have seen in the previous examples, involves predicting the evolution of the
system state from a given initial condition. While for simple models this can be
done in closed form, more often it is accomplished through computer simulation.
One can also use state space models to analyze the overall behavior of the system
without making direct use of simulation.

Consider again the damped spring–mass system from Section 2.1, but this time
with an external force applied, as shown in Figure 2.8. We wish to predict the
motion of the system for a periodic forcing function, with a given initial condition,
and determine the amplitude, frequency and decay rate of the resulting motion.
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Figure 2.8: A driven spring–mass system with damping. Here we use a linear damping
element with coefficient of viscous friction c. The mass is driven with a sinusoidal force of
amplitude A.

We choose to model the system with a linear ordinary differential equation.
Using Hooke’s law to model the spring and assuming that the damper exerts a force
that is proportional to the velocity of the system, we have

mq̈ + cq̇ + kq = u, (2.14)

where m is the mass, q is the displacement of the mass, c is the coefficient of
viscous friction, k is the spring constant and u is the applied force. In state space
form, using x = (q, q̇) as the state and choosing y = q as the output, we have

dx

dt
=
⎧⎪⎪⎪⎪⎪⎪⎩

x2

− c

m
x2 − k

m
x1 + u

m

⎫⎪⎪⎪⎪⎪⎪⎭ , y = x1.

We see that this is a linear second-order differential equation with one input u and
one output y.

We now wish to compute the response of the system to an input of the form
u = A sinωt . Although it is possible to solve for the response analytically, we
instead make use of a computational approach that does not rely on the specific
form of this system. Consider the general state space system

dx

dt
= f (x, u).

Given the state x at time t , we can approximate the value of the state at a short
time h > 0 later by assuming that the rate of change of f (x, u) is constant over the
interval t to t + h. This gives

x(t + h) = x(t)+ h f (x(t), u(t)). (2.15)

Iterating this equation, we can thus solve for x as a function of time. This approxi-
mation is known as Euler integration and is in fact a difference equation if we let h
represent the time increment and write x[k] = x(kh). Although modern simulation
tools such as MATLAB and Mathematica use more accurate methods than Euler
integration, they still have some of the same basic trade-offs.

Returning to our specific example, Figure 2.9 shows the results of computing
x(t) using equation (2.15), along with the analytical computation. We see that as
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Figure 2.9: Simulation of the forced spring–mass system with different simulation time
constants. The dashed line represents the analytical solution. The solid lines represent the
approximate solution via the method of Euler integration, using decreasing step sizes.

h gets smaller, the computed solution converges to the exact solution. The form
of the solution is also worth noticing: after an initial transient, the system settles
into a periodic motion. The portion of the response after the transient is called the
steady-state response to the input.

In addition to generating simulations, models can also be used to answer other
types of questions. Two that are central to the methods described in this text concern
the stability of an equilibrium point and the input/output frequency response. We
illustrate these two computations through the examples below and return to the
general computations in later chapters.

Returning to the damped spring–mass system, the equations of motion with no
input forcing are given by

dx

dt
=
⎧⎪⎪⎪⎪⎩ x2

− c

m
x2 − k

m
x1

⎫⎪⎪⎪⎪⎭ , (2.16)

where x1 is the position of the mass (relative to the rest position) and x2 is its
velocity. We wish to show that if the initial state of the system is away from the
rest position, the system will return to the rest position eventually (we will later
define this situation to mean that the rest position is asymptotically stable). While
we could heuristically show this by simulating many, many initial conditions, we
seek instead to prove that this is true for any initial condition.

To do so, we construct a function V : R
n → R that maps the system state to a

positive real number. For mechanical systems, a convenient choice is the energy of
the system,

V (x) = 1

2
kx2

1 + 1

2
mx2

2 . (2.17)

If we look at the time derivative of the energy function, we see that

dV

dt
= kx1 ẋ1 + mx2 ẋ2 = kx1x2 + mx2(− c

m
x2 − k

m
x1) = −cx2

2 ,

which is always either negative or zero. Hence V (x(t)) is never increasing and,
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using a bit of analysis that we will see formally later, the individual states must
remain bounded.

If we wish to show that the states eventually return to the origin, we must use
a slightly more detailed analysis. Intuitively, we can reason as follows: suppose
that for some period of time, V (x(t)) stops decreasing. Then it must be true that
V̇ (x(t)) = 0, which in turn implies that x2(t) = 0 for that same period. In that
case, ẋ2(t) = 0, and we can substitute into the second line of equation (2.16) to
obtain

0 = ẋ2 = − c

m
x2 − k

m
x1 = k

m
x1.

Thus we must have that x1 also equals zero, and so the only time that V (x(t)) can
stop decreasing is if the state is at the origin (and hence this system is at its rest
position). Since we know that V (x(t)) is never increasing (because V̇ ≤ 0), we
therefore conclude that the origin is stable (for any initial condition).

This type of analysis, called Lyapunov stability analysis, is considered in detail
in Chapter 4. It shows some of the power of using models for the analysis of system
properties.

Another type of analysis that we can perform with models is to compute the
output of a system to a sinusoidal input. We again consider the spring–mass system,
but this time keeping the input and leaving the system in its original form:

mq̈ + cq̇ + kq = u. (2.18)

We wish to understand how the system responds to a sinusoidal input of the form

u(t) = A sinωt.

We will see how to do this analytically in Chapter 6, but for now we make use of
simulations to compute the answer.

We first begin with the observation that if q(t) is the solution to equation (2.18)
with input u(t), then applying an input 2u(t)will give a solution 2q(t) (this is easily
verified by substitution). Hence it suffices to look at an input with unit magnitude,
A = 1. A second observation, which we will prove in Chapter 5, is that the long-
term response of the system to a sinusoidal input is itself a sinusoid at the same
frequency, and so the output has the form

q(t) = g(ω) sin(ωt + ϕ(ω)),

where g(ω) is called the gain of the system and ϕ(ω) is called the phase (or phase
offset).

To compute the frequency response numerically, we can simulate the system
at a set of frequencies ω1, . . . , ωN and plot the gain and phase at each of these
frequencies. An example of this type of computation is shown in Figure 2.10.
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Figure 2.10: A frequency response (gain only) computed by measuring the response of
individual sinusoids. The figure on the left shows the response of the system as a function of
time to a number of different unit magnitude inputs (at different frequencies). The figure on
the right shows this same data in a different way, with the magnitude of the response plotted
as a function of the input frequency. The filled circles correspond to the particular frequencies
shown in the time responses.

2.3 Modeling Methodology

To deal with large, complex systems, it is useful to have different representations
of the system that capture the essential features and hide irrelevant details. In all
branches of science and engineering it is common practice to use some graphical
description of systems, called schematic diagrams. They can range from stylistic
pictures to drastically simplified standard symbols. These pictures make it possible
to get an overall view of the system and to identify the individual components.
Examples of such diagrams are shown in Figure 2.11. Schematic diagrams are useful
because they give an overall picture of a system, showing different subprocesses and
their interconnection and indicating variables that can be manipulated and signals
that can be measured.

Block Diagrams

A special graphical representation called a block diagram has been developed in
control engineering. The purpose of a block diagram is to emphasize the information
flow and to hide details of the system. In a block diagram, different process elements
are shown as boxes, and each box has inputs denoted by lines with arrows pointing
toward the box and outputs denoted by lines with arrows going out of the box.
The inputs denote the variables that influence a process, and the outputs denote
the signals that we are interested in or signals that influence other subsystems.
Block diagrams can also be organized in hierarchies, where individual blocks may
themselves contain more detailed block diagrams.

Figure 2.12 shows some of the notation that we use for block diagrams. Signals
are represented as lines, with arrows to indicate inputs and outputs. Thefirst diagram
is the representation for a summation of two signals. An input/output response is
represented as a rectangle with the system name (or mathematical description) in
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Figure 2.11: Schematic diagrams for different disciplines. Each diagram is used to illustrate
the dynamics of a feedback system: (a) electrical schematics for a power system [132], (b)
a biological circuit diagram for a synthetic clock circuit [21], (c) a process diagram for a
distillation column [178] and (d) a Petri net description of a communication protocol.
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Figure 2.12: Standard block diagram elements. The arrows indicate the the inputs and outputs
of each element, with the mathematical operation corresponding to the blocked labeled at the
output. The system block (f) represents the full input/output response of a dynamical system.
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Figure 2.13: A block diagram representation of the flight control system for an insect flying
against the wind. The mechanical portion of the model consists of the rigid-body dynamics
of the fly, the drag due to flying through the air and the forces generated by the wings. The
motion of the body causes the visual environment of the fly to change, and this information
is then used to control the motion of the wings (through the sensory motor system), closing
the loop.

the block. Two special cases are a proportional gain, which scales the input by
a multiplicative factor, and an integrator, which outputs the integral of the input
signal.

Figure 2.13 illustrates the use of a block diagram, in this case for modeling the
flight response of a fly. The flight dynamics of an insect are incredibly intricate,
involving careful coordination of the muscles within the fly to maintain stable flight
in response to external stimuli. One known characteristic of flies is their ability to
fly upwind by making use of the optical flow in their compound eyes as a feedback
mechanism. Roughly speaking, the fly controls its orientation so that the point of
contraction of the visual field is centered in its visual field.

To understand this complex behavior, we can decompose the overall dynamics
of the system into a series of interconnected subsystems (or blocks). Referring to
Figure 2.13, we can model the insect navigation system through an interconnection
of five blocks. The sensory motor system (a) takes the information from the visual
system (e) and generates muscle commands that attempt to steer the fly so that the
point of contraction is centered. These muscle commands are converted into forces
through the flapping of the wings (b) and the resulting aerodynamic forces that are
produced. The forces from the wings are combined with the drag on the fly (d) to
produce a net force on the body of the fly. The wind velocity enters through the
drag aerodynamics. Finally, the body dynamics (c) describe how the fly translates
and rotates as a function of the net forces that are applied to it. The insect position,
speed and orientation are fed back to the drag aerodynamics and vision system
blocks as inputs.

Each of the blocks in the diagram can itself be a complicated subsystem. For
example, the visual system of a fruit fly consists of two complicated compound eyes
(with about 700 elements per eye), and the sensory motor system has about 200,000
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neurons that are used to process information. A more detailed block diagram of
the insect flight control system would show the interconnections between these
elements, but here we have used one block to represent how the motion of the fly
affects the output of the visual system, and a second block to represent how the visual
field is processed by the fly’s brain to generate muscle commands. The choice of the
level of detail of the blocks and what elements to separate into different blocks often
depends on experience and the questions that one wants to answer using the model.
One of the powerful features of block diagrams is their ability to hide information
about the details of a system that may not be needed to gain an understanding of
the essential dynamics of the system.

Modeling from Experiments

Since control systems are provided with sensors and actuators, it is also possible to
obtain models of system dynamics from experiments on the process. The models
are restricted to input/output models since only these signals are accessible to
experiments, but modeling from experiments can also be combined with modeling
from physics through the use of feedback and interconnection.

A simple way to determine a system’s dynamics is to observe the response to a
step change in the control signal. Such an experiment begins by setting the control
signal to a constant value; then when steady state is established, the control signal is
changed quickly to a new level and the output is observed. The experiment gives the
step response of the system, and the shape of the response gives useful information
about the dynamics. It immediately gives an indication of the response time, and it
tells if the system is oscillatory or if the response is monotone.

Example 2.5 Spring–mass system
Consider the spring–mass system from Section 2.1, whose dynamics are given by

mq̈ + cq̇ + kq = u. (2.19)

We wish to determine the constants m, c and k by measuring the response of the
system to a step input of magnitude F0.

We will show in Chapter 6 that when c2 < 4km, the step response for this
system from the rest configuration is given by

q(t) = F0

k

(
1 − exp

(− ct

2m

)
sin(ωd t + ϕ)

)
,

ωd =
√

4km − c2

2m
,

ϕ = tan−1
(√

4km − c2
)
.

From the form of the solution, we see that the form of the response is determined
by the parameters of the system. Hence, by measuring certain features of the step
response we can determine the parameter values.

Figure 2.14 shows the response of the system to a step of magnitude F0 = 20
N, along with some measurements. We start by noting that the steady-state position
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Figure 2.14: Step response for a spring–mass system. The magnitude of the step input is
F0 = 20 N. The period of oscillation T is determined by looking at the time between two
subsequent local maxima in the response. The period combined with the steady-state value
q(∞) and the relative decrease between local maxima can be used to estimate the parameters
in a model of the system.

of the mass (after the oscillations die down) is a function of the spring constant k:

q(∞) = F0

k
, (2.20)

where F0 is the magnitude of the applied force (F0 = 1 for a unit step input). The
parameter 1/k is called the gain of the system. The period of the oscillation can be
measured between two peaks and must satisfy

2π

T
=

√
4km − c2

2m
. (2.21)

Finally, the rate of decay of the oscillations is given by the exponential factor in the
solution. Measuring the amount of decay between two peaks, we have

log
(
q(t1)− F0

k

)
− log

(
q(t2)− F0

k

)
= c

2m
(t2 − t1). (2.22)

Using this set of three equations, we can solve for the parameters and determine
that for the step response in Figure 2.14 we have m ≈ 250 kg, c ≈ 60 N s/m and
k ≈ 40 N/m. ∇

Modeling from experiments can also be done using many other signals. Si-
nusoidal signals are commonly used (particularly for systems with fast dynamics)
and precise measurements can be obtained by exploiting correlation techniques. An
indication of nonlinearities can be obtained by repeating experiments with input
signals having different amplitudes.

Normalization and Scaling

Having obtained a model, it is often useful to scale the variables by introducing
dimension-free variables. Such a procedure can often simplify the equations for a
system by reducing the number of parameters and reveal interesting properties of
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the model. Scaling can also improve the numerical conditioning of the model to
allow faster and more accurate simulations.

The procedure of scaling is straightforward: choose units for each indepen-
dent variable and introduce new variables by dividing the variables by the chosen
normalization unit. We illustrate the procedure with two examples.

Example 2.6 Spring–mass system
Consider again the spring–mass system introduced earlier. Neglecting the damping,
the system is described by

mq̈ + kq = u.

The model has two parameters m and k. To normalize the model we introduce
dimension-free variables x = q/ l and τ = ω0t , where ω0 = √

k/m and l is the
chosen length scale. We scale force by mlω2

0 and introduce v = u/(mlω2
0). The

scaled equation then becomes

d2x

dτ 2
= d2q/ l

d(ω0t)2
= 1

mlω2
0

(−kq + u) = −x + v,

which is the normalized undamped spring–mass system. Notice that the normalized
model has no parameters, while the original model had two parameters m and k.
Introducing the scaled, dimension-free state variables z1 = x = q/ l and z2 =
dx/dτ = q̇/(lω0), the model can be written as

d

dt

⎧⎪⎪⎩z1

z2

⎫⎪⎪⎭ =
⎧⎪⎪⎩ 0 1

−1 0

⎫⎪⎪⎭⎧⎪⎪⎩z1

z2

⎫⎪⎪⎭ +
⎧⎪⎪⎩0
v

⎫⎪⎪⎭ .
This simple linear equation describes the dynamics of any spring–mass system,
independent of the particular parameters, and hence gives us insight into the fun-
damental dynamics of this oscillatory system. To recover the physical frequency of
oscillation or its magnitude, we must invert the scaling we have applied. ∇
Example 2.7 Balance system
Consider the balance system described in Section 2.1. Neglecting damping by
putting c = 0 and γ = 0 in equation (2.9), the model can be written as

(M + m)
d2q

dt2
− ml cos θ

d2θ

dt2
+ ml sin θ

(dq
dt

)2 = F,

−ml cos θ
d2q

dt2
+ (J + ml2)

d2θ

dt2
− mgl sin θ = 0.

Letω0 = √
mgl/(J + ml2), choose the length scale as l, let the time scale be 1/ω0,

choose the force scale as (M +m)lω2
0 and introduce the scaled variables τ = ω0t ,

x = q/ l and u = F/((M + m)lω2
0). The equations then become

d2x

dτ 2
− α cos θ

d2θ

dτ 2
+ α sin θ

(dθ
dτ

)2 = u, −β cos θ
d2x

dτ 2
+ d2θ

dτ 2
− sin θ = 0,

where α = m/(M+m) and β = ml2/(J+ml2). Notice that the original model has
five parametersm, M , J , l and g but the normalized model has only two parameters
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Figure 2.15: Characterization of model uncertainty. Uncertainty of a static system is illus-
trated in (a), where the solid line indicates the nominal input/output relationship and the
dashed lines indicate the range of possible uncertainty. The uncertainty lemon [83] in (b)
is one way to capture uncertainty in dynamical systems emphasizing that a model is valid
only in some amplitude and frequency ranges. In (c) a model is represented by a nominal
model M and another model � representing the uncertainty analogous to the representation
of parameter uncertainty.

α and β. If M � m and ml2 � J , we get α ≈ 0 and β ≈ 1 and the model can be
approximated by

d2x

dτ 2
= u,

d2θ

dτ 2
− sin θ = u cos θ.

The model can be interpreted as a mass combined with an inverted pendulum driven
by the same input. ∇

Model Uncertainty

Reducing uncertainty is one of the main reasons for using feedback, and it is there-
fore important to characterize uncertainty. When making measurements, there is a
good tradition to assign both a nominal value and a measure of uncertainty. It is
useful to apply the same principle to modeling, but unfortunately it is often difficult
to express the uncertainty of a model quantitatively.

For a static system whose input/output relation can be characterized by a func-
tion, uncertainty can be expressed by an uncertainty band as illustrated in Fig-
ure 2.15a. At low signal levels there are uncertainties due to sensor resolution,
friction and quantization. Some models for queuing systems or cells are based on
averages that exhibit significant variations for small populations. At large signal
levels there are saturations or even system failures. The signal ranges where a model
is reasonably accurate vary dramatically between applications, but it is rare to find
models that are accurate for signal ranges larger than 104.

Characterization of the uncertainty of a dynamic model is much more difficult.
We can try to capture uncertainties by assigning uncertainties to parameters of
the model, but this is often not sufficient. There may be errors due to phenomena
that have been neglected, e.g., small time delays. In control the ultimate test is
how well a control system based on the model performs, and time delays can be
important. There is also a frequency aspect. There are slow phenomena, such as
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aging, that can cause changes or drift in the systems. There are also high-frequency
effects: a resistor will no longer be a pure resistance at very high frequencies, and
a beam has stiffness and will exhibit additional dynamics when subject to high-
frequency excitation. The uncertainty lemon [83] shown in Figure 2.15b is one way
to conceptualize the uncertainty of a system. It illustrates that a model is valid only
in certain amplitude and frequency ranges.

We will introduce some formal tools for representing uncertainty in Chapter 12
using figures such as Figure 2.15c. These tools make use of the concept of a transfer
function, which describes the frequency response of an input/output system. For
now, we simply note that one should always be careful to recognize the limits of
a model and not to make use of models outside their range of applicability. For
example, one can describe the uncertainty lemon and then check to make sure that
signals remain in this region. In early analog computing, a system was simulated
using operational amplifiers, and it was customary to give alarms when certain
signal levels were exceeded. Similar features can be included in digital simulation.

2.4 Modeling Examples

In this section we introduce additional examples that illustrate some of the different
types of systems for which one can develop differential equation and difference
equation models. These examples are specifically chosen from a range of different
fields to highlight the broad variety of systems to which feedback and control
concepts can be applied. A more detailed set of applications that serve as running
examples throughout the text are given in the next chapter.

Motion Control Systems

Motion control systems involve the use of computation and feedback to control the
movement of a mechanical system. Motion control systems range from nanopo-
sitioning systems (atomic force microscopes, adaptive optics), to control systems
for the read/write heads in a disk drive of a CD player, to manufacturing systems
(transfer machines and industrial robots), to automotive control systems (antilock
brakes, suspension control, traction control), to air and space flight control systems
(airplanes, satellites, rockets and planetary rovers).

Example 2.8 Vehicle steering—the bicycle model
A common problem in motion control is to control the trajectory of a vehicle
through an actuator that causes a change in the orientation. A steering wheel on an
automobile and the front wheel of a bicycle are two examples, but similar dynamics
occur in the steering of ships or control of the pitch dynamics of an aircraft. In many
cases, we can understand the basic behavior of these systems through the use of a
simple model that captures the basic kinematics of the system.

Consider a vehicle with two wheels as shown in Figure 2.16. For the purpose of
steering we are interested in a model that describes how the velocity of the vehicle
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Figure 2.16: Vehicle steering dynamics. The left figure shows an overhead view of a vehicle
with four wheels. The wheel base is b and the center of mass at a distance a forward of the
rear wheels. By approximating the motion of the front and rear pairs of wheels by a single
front wheel and a single rear wheel, we obtain an abstraction called the bicycle model, shown
on the right. The steering angle is δ and the velocity at the center of mass has the angle α
relative the length axis of the vehicle. The position of the vehicle is given by (x, y) and the
orientation (heading) by θ .

depends on the steering angle δ. To be specific, consider the velocity v at the center
of mass, a distance a from the rear wheel, and let b be the wheel base, as shown
in Figure 2.16. Let x and y be the coordinates of the center of mass, θ the heading
angle andα the angle between the velocity vector v and the centerline of the vehicle.
Since b = ra tan δ and a = ra tan α, it follows that tan α = (a/b) tan δ and we get
the following relation between α and the steering angle δ:

α(δ) = arctan
(a tan δ

b

)
. (2.23)

Assume that the wheels are rolling without slip and that the velocity of the rear
wheel is v0. The vehicle speed at its center of mass is v = v0/ cosα, and we find
that the motion of this point is given by

dx

dt
= v cos (α + θ) = v0

cos (α + θ)

cosα
,

dy

dt
= v sin (α + θ) = v0

sin (α + θ)

cosα
.

(2.24)

To see how the angle θ is influenced by the steering angle, we observe from Fig-
ure 2.16 that the vehicle rotates with the angular velocity v0/ra around the point
O . Hence

dθ

dt
= v0

ra
= v0

b
tan δ. (2.25)

Equations (2.23)–(2.25) can be used to model an automobile under the assump-
tions that there is no slip between the wheels and the road and that the two front
wheels can be approximated by a single wheel at the center of the car. The as-
sumption of no slip can be relaxed by adding an extra state variable, giving a more
realistic model. Such a model also describes the steering dynamics of ships as well
as the pitch dynamics of aircraft and missiles. It is also possible to choose coor-
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Figure 2.17: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a) redirects its
engine thrust downward so that it can “hover” above the ground. Some air from the engine
is diverted to the wing tips to be used for maneuvering. As shown in (b), the net thrust on
the aircraft can be decomposed into a horizontal force F1 and a vertical force F2 acting at a
distance r from the center of mass.

dinates so that the reference point is at the rear wheels (corresponding to setting
α = 0), a model often referred to as the Dubins car [66].

Figure 2.16 represents the situation when the vehicle moves forward and has
front-wheel steering. The case when the vehicle reverses is obtained by changing
the sign of the velocity, which is equivalent to a vehicle with rear-wheel steering.

∇
Example 2.9 Vectored thrust aircraft
Consider the motion of vectored thrust aircraft, such as the Harrier “jump jet”
shown Figure 2.17a. The Harrier is capable of vertical takeoff by redirecting its
thrust downward and through the use of smaller maneuvering thrusters located on
its wings. A simplified model of the Harrier is shown in Figure 2.17b, where we
focus on the motion of the vehicle in a vertical plane through the wings of the
aircraft. We resolve the forces generated by the main downward thruster and the
maneuvering thrusters as a pair of forces F1 and F2 acting at a distance r below the
aircraft (determined by the geometry of the thrusters).

Let (x, y, θ) denote the position and orientation of the center of mass of the
aircraft. Letm be the mass of the vehicle, J the moment of inertia, g the gravitational
constant and c the damping coefficient. Then the equations of motion for the vehicle
are given by

mẍ = F1 cos θ − F2 sin θ − cẋ,

mÿ = F1 sin θ + F2 cos θ − mg − cẏ,

J θ̈ = r F1.

(2.26)

It is convenient to redefine the inputs so that the origin is an equilibrium point of the
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Figure 2.18: Schematic diagram of a queuing system. Messages arrive at rate λ and are stored
in a queue. Messages are processed and removed from the queue at rate μ. The average size
of the queue is given by x ∈ R.

system with zero input. Letting u1 = F1 and u2 = F2 −mg, the equations become

mẍ = −mg sin θ − cẋ + u1 cos θ − u2 sin θ,

mÿ = mg(cos θ − 1)− cẏ + u1 sin θ + u2 cos θ,

J θ̈ = ru1.

(2.27)

These equations describe the motion of the vehicle as a set of three coupled second-
order differential equations. ∇

Information Systems

Information systems range from communication systems like the Internet to soft-
ware systems that manipulate data or manage enterprisewide resources. Feedback
is present in all these systems, and designing strategies for routing, flow control and
buffer management is a typical problem. Many results in queuing theory emerged
from design of telecommunication systems and later from development of the Inter-
net and computer communication systems [32, 127, 177]. Management of queues
to avoid congestion is a central problem and we will therefore start by discussing
the modeling of queuing systems.

Example 2.10 Queuing systems
A schematic picture of a simple queue is shown in Figure 2.18. Requests arrive
and are then queued and processed. There can be large variations in arrival rates
and service rates, and the queue length builds up when the arrival rate is larger
than the service rate. When the queue becomes too large, service is denied using
an admission control policy.

The system can be modeled in many different ways. One way is to model each
incoming request, which leads to an event-based model where the state is an integer
that represents the queue length. The queue changes when a request arrives or a
request is serviced. The statistics of arrival and servicing are typically modeled as
random processes. In many cases it is possible to determine statistics of quantities
like queue length and service time, but the computations can be quite complicated.

A significant simplification can be obtained by using a flow model. Instead
of keeping track of each request we instead view service and requests as flows,
similar to what is done when replacing molecules by a continuum when analyzing
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Figure 2.19: Queuing dynamics. (a) The steady-state queue length as a function of λ/μmax.
(b) The behavior of the queue length when there is a temporary overload in the system. The
solid line shows a realization of an event-based simulation, and the dashed line shows the
behavior of the flow model (2.29).

fluids. Assuming that the average queue length x is a continuous variable and that
arrivals and services are flows with rates λ and μ, the system can be modeled by
the first-order differential equation

dx

dt
= λ− μ = λ− μmax f (x), x ≥ 0, (2.28)

where μmax is the maximum service rate and f (x) is a number between 0 and 1
that describes the effective service rate as a function of the queue length.

It is natural to assume that the effective service rate depends on the queue length
because larger queues require more resources. In steady state we have f (x) =
λ/μmax, and we assume that the queue length goes to zero when λ/μmax goes to zero
and that it goes to infinity when λ/μmax goes to 1. This implies that f (0) = 0 and
that f (∞) = 1. In addition, if we assume that the effective service rate deteriorates
monotonically with queue length, then the function f (x) is monotone and concave.
A simple function that satisfies the basic requirements is f (x) = x/(1 + x), which
gives the model

dx

dt
= λ− μmax

x

x + 1
. (2.29)

This model was proposed by Agnew [5]. It can be shown that if arrival and ser-
vice processes are Poisson processes, the average queue length is given by equa-
tion (2.29) and that equation (2.29) is a good approximation even for short queue
lengths; see Tipper [193].

To explore the properties of the model (2.29) we will first investigate the equi-
librium value of the queue length when the arrival rate λ is constant. Setting the
derivative dx/dt to zero in equation (2.29) and solving for x , we find that the queue
length x approaches the steady-state value

xe = λ

μmax − λ
. (2.30)

Figure 2.19a shows the steady-state queue length as a function of λ/μmax, the
effective service rate excess. Notice that the queue length increases rapidly as λ
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Figure 2.20: Illustration of feedback in the virtual memory system of the IBM/370. (a)
The effect of feedback on execution times in a simulation, following [43]. Results with no
feedback are shown with o, and results with feedback with x. Notice the dramatic decrease
in execution time for the system with feedback. (b) How the three states are obtained based
on process measurements.

approaches μmax. To have a queue length less than 20 requires λ/μmax < 0.95. The
average time to service a request is Ts = (x+1)/μmax, and it increases dramatically
as λ approaches μmax.

Figure 2.19b illustrates the behavior of the server in a typical overload situation.
The maximum service rate is μmax = 1, and the arrival rate starts at λ = 0.5. The
arrival rate is increased to λ = 4 at time 20, and it returns to λ = 0.5 at time 25.
The figure shows that the queue builds up quickly and clears very slowly. Since the
response time is proportional to queue length, it means that the quality of service
is poor for a long period after an overload. This behavior is called the rush-hour
effect and has been observed in web servers and many other queuing systems such
as automobile traffic.

The dashed line in Figure 2.19b shows the behavior of the flow model, which
describes the average queue length. The simple model captures behavior qualita-
tively, but there are variations from sample to sample when the queue length is
short. ∇

Many complex systems use discrete control actions. Such systems can be mod-
eled by characterizing the situations that correspond to each control action, as
illustrated in the following example.

Example 2.11 Virtual memory paging control
An early example of the use of feedback in computer systems was applied in the
operating system OS/VS for the IBM 370 [43, 55]. The system used virtual memory,
which allows programs to address more memory than is physically available as fast
memory. Data in current fast memory (random access memory, RAM) is accessed
directly, but data that resides in slower memory (disk) is automatically loaded
into fast memory. The system is implemented in such a way that it appears to
the programmer as a single large section of memory. The system performed very
well in many situations, but very long execution times were encountered in overload
situations, as shown by the open circles in Figure 2.20a. The difficulty was resolved
with a simple discrete feedback system. The load of the central processing unit



Modeling.tex, v1.169 2008/01/22 02:35:38 (murray)

2.4. MODELING EXAMPLES 57

4

5 2 31

(a) Sensor network

0 10 20 30 40
10

20

30

40

Iteration

A
ge

nt
 s

ta
te

s 
x i

(b) Consensus convergence

Figure 2.21: Consensus protocols for sensor networks. (a) A simple sensor network with
five nodes. In this network, node 1 communicates with node 2 and node 2 communicates
with nodes 1, 3, 4, 5, etc. (b) A simulation demonstrating the convergence of the consensus
protocol (2.31) to the average value of the initial conditions.

(CPU) was measured together with the number of page swaps between fast memory
and slow memory. The operating region was classified as being in one of three
states: normal, underload or overload. The normal state is characterized by high
CPU activity, the underload state is characterized by low CPU activity and few
page replacements, the overload state has moderate to low CPU load but many
page replacements; see Figure 2.20b. The boundaries between the regions and the
time for measuring the load were determined from simulations using typical loads.
The control strategy was to do nothing in the normal load condition, to exclude a
process from memory in the overload condition and to allow a new process or a
previously excluded process in the underload condition. The crosses in Figure 2.20a
show the effectiveness of the simple feedback system in simulated loads. Similar
principles are used in many other situations, e.g., in fast, on-chip cache memory.

∇
Example 2.12 Consensus protocols in sensor networks
Sensor networks are used in a variety of applications where we want to collect
and aggregate information over a region of space using multiple sensors that are
connected together via a communications network. Examples include monitoring
environmental conditions in a geographical area (or inside a building), monitoring
the movement of animals or vehicles and monitoring the resource loading across
a group of computers. In many sensor networks the computational resources are
distributed along with the sensors, and it can be important for the set of distributed
agents to reach a consensus about a certain property, such as the average temperature
in a region or the average computational load among a set of computers.

We model the connectivity of the sensor network using a graph, with nodes
corresponding to the sensors and edges corresponding to the existence of a direct
communications link between two nodes. We use the notation N i to represent the
set of neighbors of a node i . For example, in the network shown in Figure 2.21a
N2 = {1, 3, 4, 5} and N3 = {2, 4}.

To solve the consensus problem, let xi be the state of the i th sensor, correspond-
ing to that sensor’s estimate of the average value that we are trying to compute. We
initialize the state to the value of the quantity measured by the individual sensor.
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The consensus protocol (algorithm) can now be realized as a local update law

xi [k + 1] = xi [k] + γ
∑
j∈Ni

(x j [k] − xi [k]). (2.31)

This protocol attempts to compute the average by updating the local state of each
agent based on the value of its neighbors. The combined dynamics of all agents can
be written in the form

x[k + 1] = x[k] − γ (D − A)x[k], (2.32)

where A is the adjacency matrix and D is a diagonal matrix with entries corre-
sponding to the number of neighbors of each node. The constant γ describes the
rate at which the estimate of the average is updated based on information from
neighboring nodes. The matrix L := D − A is called the Laplacian of the graph.

The equilibrium points of equation (2.32) are the set of states such that xe[k +
1] = xe[k]. It can be shown that xe = (α, α, . . . , α) is an equilibrium state for the
system, corresponding to each sensor having an identical estimateα for the average.
Furthermore, we can show that α is indeed the average value of the initial states.
Since there can be cycles in the graph, it is possible that the state of the system
could enter into an infinite loop and never converge to the desired consensus state.
A formal analysis requires tools that will be introduced later in the text, but it can
be shown that for any connected graph we can always find a γ such that the states
of the individual agents converge to the average. A simulation demonstrating this
property is shown in Figure 2.21b. ∇

Biological Systems

Biological systems provide perhaps the richest source of feedback and control ex-
amples. The basic problem of homeostasis, in which a quantity such as temperature
or blood sugar level is regulated to afixed value, is but one of the many types of com-
plex feedback interactions that can occur in molecular machines, cells, organisms
and ecosystems.

Example 2.13 Transcriptional regulation
Transcription is the process by which messenger RNA (mRNA) is generated from a
segment of DNA. The promoter region of a gene allows transcription to be controlled
by the presence of other proteins, which bind to the promoter region and either
repress or activate RNA polymerase, the enzyme that produces an mRNA transcript
from DNA. The mRNA is then translated into a protein according to its nucleotide
sequence. This process is illustrated in Figure 2.22.

A simple model of the transcriptional regulation process is through the use of a
Hill function [56, 154]. Consider the regulation of a protein A with a concentration
given by pa and a corresponding mRNA concentration ma . Let B be a second
protein with concentration pb that represses the production of protein A through
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Figure 2.22: Biological circuitry. The cell on the left is a bovine pulmonary cell, stained so
that the nucleus, actin and chromatin are visible. The figure on the right gives an overview
of the process by which proteins in the cell are made. RNA is transcribed from DNA by an
RNA polymerase enzyme. The RNA is then translated into a protein by an organelle called
a ribosome.

transcriptional regulation. The resulting dynamics of pa and ma can be written as

dma

dt
= αab

1 + kab p
nab
b

+ αa0 − γama,
dpa
dt

= βama − δa pa, (2.33)

where αab+αa0 is the unregulated transcription rate, γa represents the rate of degra-
dation of mRNA, αab, kab and nab are parameters that describe how B represses A,
βa represents the rate of production of the protein from its corresponding mRNA
and δa represents the rate of degradation of the protein A. The parameter αa0 de-
scribes the “leakiness” of the promoter, and nab is called the Hill coefficient and
relates to the cooperativity of the promoter.

A similar model can be used when a protein activates the production of another
protein rather than repressing it. In this case, the equations have the form

dma

dt
= αabkab p

nab
b

1 + kab p
nab
b

+ αa0 − γama,
dpa
dt

= βama − δa pa, (2.34)

where the variables are the same as described previously. Note that in the case of
the activator, if pb is zero, then the production rate is αa0 (versus αab + αa0 for the
repressor). As pb gets large, the first term in the expression for ṁa approaches 1
and the transcription rate becomes αab + αa0 (versus αa0 for the repressor). Thus
we see that the activator and repressor act in opposite fashion from each other.

As an example of how these models can be used, we consider the model of a
“repressilator,” originally due to Elowitz and Leibler [71]. The repressilator is a
synthetic circuit in which three proteins each repress another in a cycle. This is
shown schematically in Figure 2.23a, where the three proteins are TetR, λcI and
LacI. The basic idea of the repressilator is that if TetR is present, then it represses
the production of λcI. If λcI is absent, then LacI is produced (at the unregulated
transcription rate), which in turn represses TetR. Once TetR is repressed, then λcI is
no longer repressed, and so on. If the dynamics of the circuit are designed properly,
the resulting protein concentrations will oscillate.

We can model this system using three copies of equation (2.33), with A and
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Figure 2.23: The repressilator genetic regulatory network. (a) A schematic diagram of the
repressilator, showing the layout of the genes in the plasmid that holds the circuit as well as
the circuit diagram (center). (b) A simulation of a simple model for the repressilator, showing
the oscillation of the individual protein concentrations. (Figure courtesy M. Elowitz.)

B replaced by the appropriate combination of TetR, cI and LacI. The state of the
system is then given by x = (mTetR, pTetR,mcI, pcI,mLacI, pLacI). Figure 2.23b
shows the traces of the three protein concentrations for parameters n = 2, α = 0.5,
k = 6.25 × 10−4, α0 = 5 × 10−4, γ = 5.8 × 10−3, β = 0.12 and δ = 1.2 × 10−3

with initial conditions x(0) = (1, 0, 0, 200, 0, 0) (following [71]). ∇
Example 2.14 Wave propagation in neuronal networks
The dynamics of the membrane potential in a cell are a fundamental mechanism
in understanding signaling in cells, particularly in neurons and muscle cells. The
Hodgkin–Huxley equations give a simple model for studying propagation waves in
networks of neurons. The model for a single neuron has the form

C
dV

dt
= −INa − IK − Ileak + Iinput,

where V is the membrane potential,C is the capacitance, INa and IK are the current
caused by the transport of sodium and potassium across the cell membrane, Ileak

is a leakage current and Iinput is the external stimulation of the cell. Each current
obeys Ohm’s law, i.e.,

I = g(V − E),

where g is the conductance and E is the equilibrium voltage. The equilibrium
voltage is given by Nernst’s law,

E = RT

nF
log

ce
ci
,

where R is Boltzmann’s constant, T is the absolute temperature, F is Faraday’s con-
stant, n is the charge (or valence) of the ion and ci and ce are the ion concentrations
inside the cell and in the external fluid. At 20 ◦C we have RT/F = 20 mV.

The Hodgkin–Huxley model was originally developed as a means to predict the
quantitative behavior of the squid giant axon [100]. Hodgkin and Huxley shared



Modeling.tex, v1.169 2008/01/22 02:35:38 (murray)

2.5. FURTHER READING 61

the 1963 Nobel Prize in Physiology (along with J. C. Eccles) for analysis of the
electrical and chemical events in nerve cell discharges. The voltage clamp described
in Section 1.3 was a key element in Hodgkin and Huxley’s experiments. ∇

2.5 Further Reading

Modeling is ubiquitous in engineering and science and has a long history in applied
mathematics. For example, the Fourier series was introduced by Fourier when he
modeled heat conduction in solids [76]. Models of dynamics have been developed
in many different fields, including mechanics [12, 86], heat conduction [50], flu-
ids [37], vehicles [1, 38, 69], robotics [156, 183], circuits [92], power systems [132],
acoustics [30] and micromechanical systems [179]. Control theory requires mod-
eling from many different domains, and most control theory texts contain several
chapters on modeling using ordinary differential equations and difference equations
(see, for example, [79]). A classic book on the modeling of physical systems, espe-
cially mechanical, electrical and thermofluid systems, is Cannon [49]. The book by
Aris [11] is highly original and has a detailed discussion of the use of dimension-
free variables. Two of the authors’ favorite books on modeling of biological systems
are J. D. Murray [154] and Wilson [203].

Exercises

2.1 (Chain of integrators form) Consider the linear ordinary differential equa-
tion (2.7). Show that by choosing a state space representation with x1 = y, the
dynamics can be written as

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0

0
. . .

. . . 0
0 · · · 0 1

−an −an−1 −a1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0
0
...
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , C =
⎧⎩1 . . . 0 0

⎫⎭ .
This canonical form is called the chain of integrators form.

2.2 (Inverted pendulum) Use the equations of motion for a balance system to derive
a dynamic model for the inverted pendulum described in Example 2.2 and verify
that for small θ the dynamics are approximated by equation (2.10).

2.3 (Disrete-time dynamics) Consider the following discrete-time system

x[k + 1] = Ax[k] + Bu[k], y[k] = Cx[k],

where

x =
⎧⎪⎪⎩x1

x2

⎫⎪⎪⎭ , A =
⎧⎪⎪⎩a11 a12

0 a22

⎫⎪⎪⎭ , B =
⎧⎪⎪⎩0

1

⎫⎪⎪⎭ , C =
⎧⎩1 0

⎫⎭ .
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In this problem, we will explore some of the properties of this discrete-time system
as a function of the parameters, the initial conditions and the inputs.

(a) For the case when a12 = 0 and u = 0, give a closed form expression for the
output of the system.

(b) A discrete system is in equilibrium when x[k + 1] = x[k] for all k. Let u = r
be a constant input and compute the resulting equilibrium point for the system.
Show that if |aii | < 1 for all i , all initial conditions give solutions that converge to
the equilibrium point.

(c) Write a computer program to plot the output of the system in response to a unit
step input, u[k] = 1, k ≥ 0. Plot the response of your system with x[0] = 0 and A
given by a11 = 0.5, a12 = 1 and a22 = 0.25.

2.4 (Keynesian economics) Keynes’ simple model for an economy is given by

Y [k] = C[k] + I [k] + G[k],

where Y , C , I and G are gross national product (GNP), consumption, investment
and government expenditure for year k. Consumption and investment are modeled
by difference equations of the form

C[k + 1] = aY [k], I [k + 1] = b(C[k + 1] − C[k]),

where a and b are parameters. The first equation implies that consumption increases
with GNP but that the effect is delayed. The second equation implies that investment
is proportional to the rate of change of consumption.

Show that the equilibrium value of the GNP is given by

Ye = 1

1 − a
(Ie + Ge),

where the parameter 1/(1 − a) is the Keynes multiplier (the gain from I or G to
Y ). With a = 0.25 an increase of government expenditure will result in a fourfold
increase of GNP. Also show that the model can be written as the following discrete-
time state model:⎧⎪⎪⎩C[k + 1]

I [k + 1]

⎫⎪⎪⎭ =
⎧⎪⎪⎩ a a
ab − a ab

⎫⎪⎪⎭⎧⎪⎪⎩C[k]
I [k]

⎫⎪⎪⎭ +
⎧⎪⎪⎩ a
ab

⎫⎪⎪⎭G[k],

Y [k] = C[k] + I [k] + G[k].

2.5 (Least squares system identification) Consider a nonlinear differential equation�
that can be written in the form

dx

dt
=

M∑
i=1

αi fi (x),

where fi (x) are known nonlinear functions and αi are unknown, but constant,
parameters. Suppose that we have measurements (or estimates) of the full state x
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at time instants t1, t2, . . . , tN , with N > M . Show that the parameters αi can be
determined by finding the least squares solution to a linear equation of the form

Hα = b,

where α ∈ R
M is the vector of all parameters and H ∈ R

N×M and b ∈ R
N are

appropriately defined.

2.6 (Normalized oscillator dynamics) Consider a damped spring–mass system with
dynamics

mq̈ + cq̇ + kq = F.

Let ω0 = √
k/m be the natural frequency and ζ = c/(2

√
km) be the damping

ratio.

(a) Show that by rescaling the equations, we can write the dynamics in the form

q̈ + 2ζω0q̇ + ω2
0q = ω2

0u, (2.35)

where u = F/k. This form of the dynamics is that of a linear oscillator with natural
frequency ω0 and damping ratio ζ .

(b) Show that the system can be further normalized and written in the form

dz1

dτ
= z2,

dz2

dτ
= −z1 − 2ζ z2 + v. (2.36)

The essential dynamics of the system are governed by a single damping parameter
ζ . The Q-value defined as Q = 1/2ζ is sometimes used instead of ζ .

2.7 (Electric generator) An electric generator connected to a strong power grid can
be modeled by a momentum balance for the rotor of the generator:

J
d2ϕ

dt2
= Pm − Pe = Pm − EV

X
sin ϕ,

where J is the effective moment of inertia of the generator, ϕ the angle of rotation,
Pm the mechanical power that drives the generator, Pe is the active electrical power,
E the generator voltage,V the grid voltage and X the reactance of the line. Assuming
that the line dynamics are much faster than the rotor dynamics, Pe = V I =
(EV/X) sin ϕ, where I is the current component in phase with the voltage E and
ϕ is the phase angle between voltages E and V . Show that the dynamics of the
electric generator have a normalized form that is similar to the inverted pendulum
in Example 2.2 with no damping.

2.8 (Admission control for a queue) The long delays created by temporary overloads
can be reduced by rejecting requests when the queue gets large. This allows requests
that are accepted to be serviced quickly and requests that cannot be accommodated
to receive a rejection quickly so that they can try another server. Consider a simple
proportional control with saturation, described by

u = sat(0,1)(k(r − x)), (2.37)
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where sat(a,b) is defined in equation (3.9) and r is the desired (reference) queue
length. Use a simulation to show that this controller reduces the rush-hour effect
and explain how the choice of r affects the system dynamics.

2.9 (Biological switch) A genetic switch can be formed by connecting two repres-
sors together in a cycle as shown below.

u1

A

B

u2
B

u2

u1

A

Using the models from Example 2.13—assuming that the parameters are the same
for both genes and that the mRNA concentrations reach steady state quickly—show
that the dynamics can be written in normalized coordinates as

dz1

dτ
= μ

1 + zn2
− z1 − v1,

dz2

dτ
= μ

1 + zn1
− z2 − v2, (2.38)

where z1 and z2 are scaled versions of the protein concentrations and the time scale
has also been changed. Show that μ ≈ 200 using the parameters in Example 2.13,
and use simulations to demonstrate the switch-like behavior of the system.

2.10 (Motor drive) Consider a system consisting of a motor driving two masses that
are connected by a torsional spring, as shown in the diagram below.

Motor
I

J1

1

1

J2

ω

ϕ 2ϕ

2ω

This system can represent a motor with a flexible shaft that drives a load. Assuming
that the motor delivers a torque that is proportional to the current, the dynamics of
the system can be described by the equations

J1
d2ϕ1

dt2
+ c

(dϕ1

dt
− dϕ2

dt

)
+ k(ϕ1 − ϕ2) = kI I,

J2
d2ϕ2

dt2
+ c

(dϕ2

dt
− dϕ1

dt

)
+ k(ϕ2 − ϕ1) = Td .

(2.39)

Similar equations are obtained for a robot with flexible arms and for the arms of
DVD and optical disk drives.

Derive a state space model for the system by introducing the (normalized)
state variables x1 = ϕ1, x2 = ϕ2, x3 = ω1/ω0, and x4 = ω2/ω0, where ω0 =√
k(J1 + J2)/(J1 J2) is the undamped natural frequency of the system when the

control signal is zero.




