FUNDAMENTALS
OF AIR POLLUTION
ENGINEERING
FUNDAMENTALS
OF AIR POLLUTION
ENGINEERING

Richard C. Flagan
John H. Seinfeld
California Institute of Technology

PRENTICE HALL
Englewood Cliffs, New Jersey 07632
Contents

Preface

| xi |

Chapter 1 AIR POLLUTION ENGINEERING |

| 1.1 Air Pollutants |
1.1.1 Oxides of Nitrogen	2
1.1.2 Sulfur Oxides	3
1.1.3 Organic Compounds	3
1.1.4 Particulate Matter	8
1.2 Air Pollution Legislation in the United States	11
1.3 Atmospheric Concentration Units	15
1.4 The Appendices to this Chapter	
A Chemical Kinetics	
A.1 Reaction Rates	22
A.2 The Pseudo-Steady-State Approximation	24
A.3 Hydrocarbon Pyrolysis Kinetics	26
B Mass and Heat Transfer	
B.1 Basic Equations of Convective Diffusion	30
B.2 Steady-State Mass Transfer to or from a Sphere in an Infinite Fluid	31
B.3 Heat Transfer	33
B.4 Characteristic Times	35
C Elements of Probability Theory	
C.1 The Concept of a Random Variable	36
C.2 Properties of Random Variables	39
C.3 Common Probability Distributions	42
Chapter 2 COMBUSTION FUNDAMENTALS 59

2.1 Fuels 59
2.2 Combustion Stoichiometry 63
2.3 Combustion Thermodynamics 67
 2.3.1 First Law of Thermodynamics 68
 2.3.2 Adiabatic Flame Temperature 78
 2.3.3 Chemical Equilibrium 80
 2.3.4 Combustion Equilibria 98
2.4 Combustion Kinetics 101
 2.4.1 Detailed Combustion Kinetics 101
 2.4.2 Simplified Combustion Kinetics 108
2.5 Flame Propagation and Structure 113
 2.5.1 Laminar Premixed Flames 116
 2.5.2 Turbulent Premixed Flames 120
 2.5.3 Laminar Diffusion Flames 126
 2.5.4 Turbulent Diffusion Flames 127
2.6 Turbulent Mixing 133
2.7 Combustion of Liquid Fuels 135
2.8 Combustion of Solid Fuels 145
 2.8.1 Devolatilization 146
 2.8.2 Char Oxidation 149
Problems 159
References 163

Chapter 3 POLLUTANT FORMATION AND CONTROL IN COMBUSTION 167

3.1 Nitrogen Oxides 167
 3.1.1 Thermal Fixation of Atmospheric Nitrogen 168
 3.1.2 Prompt NO 174
 3.1.3 Thermal-NOx Formation and Control in Combustors 176
 3.1.4 Fuel-NOx 180
 3.1.5 Fuel-NOx Control 191
Chapter 6 PARTICLE FORMATION IN COMBUSTION

6.1 Ash
6.1.1 Ash Formation from Coal
6.1.2 Residual Ash Size Distribution
6.1.3 Ash Vaporization
6.1.4 Dynamics of the Submicron Ash Aerosol

6.2 Char and Coke

6.3 Soot
6.3.1 Soot Formation
6.3.2 Soot Oxidation
6.3.3 Control of Soot Formation

6.4 Motor Vehicle Exhaust Aerosols
Contents

Problems 387
References 388

Chapter 7 REMOVAL OF PARTICLES FROM GAS STREAMS 391

7.1 Collection Efficiency 393
7.2 Settling Chambers 394
 7.2.1 Laminar Flow Settling Chamber 396
 7.2.2 Plug Flow Settling Chamber 398
 7.2.3 Turbulent Flow Settling Chamber 399
7.3 Cyclone Separators 402
 7.3.1 Laminar Flow Cyclone Separators 404
 7.3.2 Turbulent Flow Cyclone Separators 406
 7.3.3 Cyclone Dimensions 408
 7.3.4 Practical Equation for Cyclone Efficiency 408
7.4 Electrostatic Precipitation 411
 7.4.1 Overall Design Equation for the Electrostatic Precipitator 413
 7.4.2 Generation of the Corona 415
 7.4.3 Particle Charging 417
 7.4.4 Field Charging 418
 7.4.5 Diffusion Charging 420
 7.4.6 The Electric Field 425
7.5 Filtration of Particles from Gas Streams 433
 7.5.1 Collection Efficiency of a Fibrous Filter Bed 433
 7.5.2 Mechanics of Collection by a Single Fiber 435
 7.5.3 Flow Field around a Cylinder 436
 7.5.4 Deposition of Particles on a Cylindrical Collector by Brownian Diffusion 438
 7.5.5 Deposition of Particles on a Cylindrical Collector by Interception 440
 7.5.6 Deposition of Particles on a Cylindrical Collector by Inertial Impaction and Interception 441
 7.5.7 Collection Efficiency of a Cylindrical Collector 449
 7.5.8 Industrial Fabric Filters 452
 7.5.9 Filtration of Particles by Granular Beds 455
7.6 Wet Collectors 456
 7.6.1 Spray Chamber 459
 7.6.2 Deposition of Particles on a Spherical Collector 463
 7.6.3 Venturi Scrubbers 467
Chapter 8

REMOVAL OF GASEOUS POLLUTANTS FROM EFFLUENT STREAMS

8.1 Interfacial Mass Transfer
8.2 Absorption of Gases by Liquids
 8.2.1 Gas Absorption without Chemical Reaction
 8.2.2 Gas Absorption with Chemical Reaction
8.3 Adsorption of Gases on Solids
8.4 Removal of SO₂ from Effluent Streams
 8.4.1 Throwaway Processes: Lime and Limestone Scrubbing
 8.4.2 Regenerative Processes
8.5 Removal of NOₓ from Effluent Streams
 8.5.1 Shell Flue Gas Treating System
 8.5.2 Wet Simultaneous NOₓ/SOₓ Processes
 8.5.3 Selective Noncatalytic Reduction
 8.5.4 Selective Catalytic Reduction
 8.5.5 NOₓ and SOₓ Removal by Electron Beam

Problems
References

Chapter 9

OPTIMAL AIR POLLUTION CONTROL STRATEGIES

9.1 Long-Term Air Pollution Control
9.2 A Simple Example of Determining a Least-Cost Air Pollution Control Strategy
9.3 General Statement of the Least-Cost Air Pollution Control Problem
9.4 A Least-Cost Control Problem for Total Emissions

Problems
References

Index
Analysis and abatement of air pollution involve a variety of technical disciplines. Formation of the most prevalent pollutants occurs during the combustion process, a tightly coupled system involving fluid flow, mass and energy transport, and chemical kinetics. Its complexity is exemplified by the fact that, in many respects, the simplest hydrocarbon combustion, the methane–oxygen flame, has been quantitatively modeled only within the last several years. Nonetheless, the development of combustion modifications aimed at minimizing the formation of the unwanted by-products of burning fuels requires an understanding of the combustion process. Fuel may be available in solid, liquid, or gaseous form; it may be mixed with the air ahead of time or only within the combustion chamber; the chamber itself may vary from the piston and cylinder arrangement in an automobile engine to a 10-story-high boiler in the largest power plant; the unwanted by-products may remain as gases, or they may, upon cooling, form small particles.

The only effective way to control air pollution is to prevent the release of pollutants at the source. Where pollutants are generated in combustion, modifications to the combustion process itself, for example in the manner in which the fuel and air are mixed, can be quite effective in reducing their formation. Most situations, whether a combustion or an industrial process, however, require some degree of treatment of the exhaust gases before they are released to the atmosphere. Such treatment can involve intimately contacting the effluent gases with liquids or solids capable of selectively removing gaseous pollutants or, in the case of particulate pollutants, directing the effluent flow through a device in which the particles are captured on surfaces.

The study of the generation and control of air pollutants can be termed air pollution engineering and is the subject of this book. Our goal here is to present a rigorous and fundamental analysis of the production of air pollutants and their control. The book is
intended for use at the senior or first-year graduate level in chemical, civil, environmental, and mechanical engineering curricula. We assume that the student has had basic first courses in thermodynamics, fluid mechanics, and heat transfer. The material treated in the book can serve as the subject of either a full-year or a one-term course, depending on the choice of topics covered.

In the first chapter we introduce the concept of air pollution engineering and summarize those species classified as air pollutants. Chapter 1 also contains four appendices that present certain basic material that will be called upon later in the book. This material includes chemical kinetics, the basic equations of heat and mass transfer, and some elementary ideas from probability and turbulence.

Chapter 2 is a basic treatment of combustion, including its chemistry and the role of mixing processes and flame structure. Building on the foundation laid in Chapter 2, we present in Chapter 3 a comprehensive analysis of the formation of gaseous pollutants in combustion. Continuing in this vein, Chapter 4 contains a thorough treatment of the internal combustion engine, including its principles of operation and the mechanisms of formation of pollutants therein. Control methods based on combustion modification are discussed in both Chapters 3 and 4.

Particulate matter (aerosols) constitutes the second major category of air pollutants when classified on the basis of physical state. Chapter 5 is devoted to an introduction to aerosols and principles of aerosol behavior, including the mechanics of particles in flowing fluids, the migration of particles in external force fields, Brownian motion of small particles, size distributions, coagulation, and formation of new particles from the vapor by homogeneous nucleation. Chapter 6 then treats the formation of particles in combustion processes.

Chapters 7 and 8 present the basic theories of the removal of particulate and gaseous pollutants, respectively, from effluent streams. We cover all the major air pollution control operations, such as gravitational and centrifugal deposition, electrostatic precipitation, filtration, wet scrubbing, gas absorption and adsorption, and chemical reaction methods. Our goal in these two chapters, above all, is to carefully derive the basic equations governing the design of the control methods. Limited attention is given to actual equipment specification, although with the material in Chapters 7 and 8 serving as a basis, one will be able to proceed to design handbooks for such specifications.

Chapters 2 through 8 treat air pollution engineering from a process-by-process point of view. Chapter 9 views the air pollution control problem for an entire region or airshed. To comply with national ambient air quality standards that prescribe, on the basis of health effects, the maximum atmospheric concentration level to be attained in a region, it is necessary for the relevant governmental authority to specify the degree to which the emissions from each of the sources in the region must be controlled. Thus it is generally necessary to choose among many alternatives that may lead to the same total quantity of emission over the region. Chapter 9 establishes a framework by which an optimal air pollution control plan for an airshed may be determined. In short, we seek the least-cost combination of abatement measures that meets the necessary constraint that the total emissions not exceed those required to meet an ambient air quality standard.

Once pollutants are released into the atmosphere, they are acted on by a variety of
chemical and physical phenomena. The atmospheric chemistry and physics of air pollution is indeed a rich arena, encompassing the disciplines of chemistry, meteorology, fluid mechanics, and aerosol science. As noted above, the subject matter of the present book ends at the stack (or the tailpipe); those readers desiring a treatment of the atmospheric behavior of air pollutants are referred to J. H. Seinfeld, *Atmospheric Chemistry and Physics of Air Pollution* (Wiley-Interscience, New York, 1986).

We wish to gratefully acknowledge David Huang, Carol Jones, Sonya Kreidenweis, Ranajit Sahu, and Ken Wolfenbarger for their assistance with calculations in the book.

Finally, to Christina Conti, our secretary and copy editor, who, more than anyone else, kept safe the beauty and precision of language as an effective means of communication, we owe an enormous debt of gratitude. She nurtured this book as her own; through those times when the task seemed unending, she was always there to make the road a little smoother.

R. C. Flagan
J. H. Seinfeld