CaltechAUTHORS
  A Caltech Library Service

Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy

Sigal, Alex and Kim, Jocelyn T. and Balazs, Alejandro B. and Dekel, Erez and Mayo, Avi and Milo, Ron and Baltimore, David (2011) Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature, 477 (7362). pp. 95-98. ISSN 0028-0836. http://resolver.caltech.edu/CaltechAUTHORS:20110922-140553274

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20110922-140553274

Abstract

Latency and ongoing replication have both been proposed to explain the drug-insensitive human immunodeficiency virus (HIV) reservoir maintained during antiretroviral therapy. Here we explore a novel mechanism for ongoing HIV replication in the face of antiretroviral drugs. We propose a model whereby multiple infections per cell lead to reduced sensitivity to drugs without requiring drug-resistant mutations, and experimentally validate the model using multiple infections per cell by cell-free HIV in the presence of the drug tenofovir. We then examine the drug sensitivity of cell-to-cell spread of HIV, a mode of HIV transmission that can lead to multiple infection events per target cell. Infections originating from cell-free virus decrease strongly in the presence of antiretrovirals tenofovir and efavirenz whereas infections involving cell-to-cell spread are markedly less sensitive to the drugs. The reduction in sensitivity is sufficient to keep multiple rounds of infection from terminating in the presence of drugs. We examine replication from cell-to-cell spread in the presence of clinical drug concentrations using a stochastic infection model and find that replication is intermittent, without substantial accumulation of mutations. If cell-to-cell spread has the same properties in vivo, it may have adverse consequences for the immune system, lead to therapy failure in individuals with risk factors, and potentially contribute to viral persistence and hence be a barrier to curing HIV infection.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1038/nature10347 DOIUNSPECIFIED
http://www.nature.com/nature/journal/v477/n7362/full/nature10347.htmlPublisherUNSPECIFIED
Additional Information:© 2011 Macmillan Publishers Limited. Received 30 November 2010; accepted 1 July 2011. Published online 17 August 2011. We thank B. K. Chen, A. Del Portillo, J. T. Schiffer, L. Corey, and G. Lustig for discussions. A.S. was supported by the Human Frontier Science Program Long Term Fellowship LT00946. J.T.K. was supported by the UCLA STAR fellowship and T32 AI089398. A.B.B. was supported by the amfAR Postdoctoral Research Fellowship 107756-47-RFVA. This work was supported by the Bill & Melinda Gates Foundation and by the National Institutes of Health (HHSN266200500035C) and a contract from the National Institute of Allergy and Infectious Diseases. We acknowledge the support of the UCLA CFAR Virology Core Lab (P01-AI-28697) and the UCSF-GIVI CFAR (P30-AI-27763). Author Contributions: A.S. and D.B. conceived the study. A.S. designed the research; A.S. and J.T.K. performed the experiments with support from A.B.B.; A.S. formulated the basic mathematical model and performed the numerical simulations; R.M., A.M. and E.D. added analytical insights and expanded the model to treat virus number as a random variable; A.S. and D.B. wrote the paper.
Funders:
Funding AgencyGrant Number
Human Frontier Science ProgramLT00946
UCLA STAR fellowshipT32 AI089398
amfAR Postdoctoral Reseach Fellowship107756-47-RFVA
Bill and Melinda Gates FoundationUNSPECIFIED
NIHHHSN266200500035C
National Institute of Allergy and Infectious DiseasesUNSPECIFIED
UCLA CFAR Virology Core LabP01-AI-28697
USCF-GIVI CFARP30-AI-27763
Subject Keywords:Virology; Computing science; Cell biology
Record Number:CaltechAUTHORS:20110922-140553274
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20110922-140553274
Official Citation:Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy Alex Sigal, Jocelyn T. Kim, Alejandro B. Balazs, Erez Dekel, Avi Mayo + et al
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:25408
Collection:CaltechAUTHORS
Deposited By: Ruth Sustaita
Deposited On:22 Sep 2011 21:39
Last Modified:22 Sep 2011 21:39

Repository Staff Only: item control page