Phosphido Pincer Complexes of Platinum: Synthesis, Structure and Reactivity

Mina Mazzeoa*, Maria Strianesea, Olaf Kühlb and Jonas C. Petersc*

a Department of Chemistry and Biology, University of Salerno, I-84084 Via Ponte don Melillo, Fisciano, Salerno, Italy; b Bioinorganic Research Group, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany; c Division of Chemistry and Chemical Engineering, Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125

Supporting Information

X-ray Crystallography...S-3

Experimental and Spatial refinement details...S-3

Figure S1. ORTEP diagram of complex 1 ..S-4

Table S1. Crystal data and structure refinement for 1 ..S-5

Table S2. Atomic coordinates and displacement parameters for 1 ..S-6

Table S3. Bond lengths and angles for 1 ...S-8

Table S4. Crystal data and structure refinement for 1 ..S-20

Table S5. Atomic coordinates and displacement parameters for 1 ..S-22

Figure S2. ORTEP diagram of complex 3 ..S-24

Table S6. Crystal data and structure refinement for 3 ..S-25
Table S7. Atomic coordinates and displacement parameters for 3…………………………………..S-26

Table S8. Bond lengths and angles for 3………………………………………………………………S-28

Table S9. Anisotropic displacement parameters (Å²x 10³) for 3 ……………………………………S-37

Table S10. Hydrogen coordinates and isotropic displacement parameters for 3………………...S-39

Figure S3. Fluorescence time traces of 1 in the SO₂ free and SO₂ bound form…………………S-41

Figure S4. Fluorescence time traces of 1 in the NO free and NO bound form…………………..S-42

Figure S5. ³¹P-NMR of 1 in the NO free and NO bound form……………………………………S-43
I. Experimental details for crystal structure determination

Spatial refinement details.

Refinement of F_2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F_2, conventional R-factors (R) are based on F, with F set to zero for negative F_2. The threshold expression of $F_2 > 2 \sqrt{ \langle F_2 \rangle}$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F_2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles, and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Crystals for X-ray analysis of complex 1 were obtained via vapor diffusion of petroleum ether into a THF solution. Single crystals of 3 were obtained via slow evaporation of a petroleum ether solution of the complex. X-ray diffraction studies were carried out in the Beckman Institute Crystallographic Facility on a Bruker Smart 1000 CCD diffractometer.
Figure S1. ORTEP diagram of complex 1 [iPr-PPP]PtCl with thermal ellipsoids drawn at 30% probability level. The crystal structure of 1 contains two independent molecules in the asymmetric unit. Hydrogen atoms are omitted for clarity.
Table S1. Crystal data and structure refinement for 1 [iPr-PPP]-Pt(Cl).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>mm02a</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C24 H36 Cl P3 Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>647.98</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>P 1 21/c 1 (14)</td>
</tr>
<tr>
<td>Space group</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a = 11.612(2) Å</td>
<td>α = 90°</td>
</tr>
<tr>
<td>b = 14.046(2) Å</td>
<td>β = 92.196(17)°</td>
</tr>
<tr>
<td>c = 30.941(5) Å</td>
<td>γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>5042.7(14) Å</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.707 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>5.871 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>2560</td>
</tr>
<tr>
<td>Crystal size</td>
<td>? x ? x ? mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.59 to 36.17°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-19<=h<=18, -20<=k<=22, -41<=l<=46</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>89412</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>21280 [R(int) = 0.0712]</td>
</tr>
<tr>
<td>Completeness to theta = 36.17°</td>
<td>87.9 %</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>21280 / 0 / 539</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.504</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0551, wR2 = 0.0881</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0792, wR2 = 0.0925</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>3.982 and -6.829 e.Å⁻³</td>
</tr>
</tbody>
</table>
Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for 1 [Pr-PPP]-Pt(Cl). U(eq) is defined as one third of the trace of the orthogonalized U_ij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)</td>
<td>5574(1)</td>
<td>3234(1)</td>
<td>1011(1)</td>
<td>11(1)</td>
</tr>
<tr>
<td>P(1)</td>
<td>4752(1)</td>
<td>4485(1)</td>
<td>1339(1)</td>
<td>11(1)</td>
</tr>
<tr>
<td>P(2)</td>
<td>7067(1)</td>
<td>4282(1)</td>
<td>899(1)</td>
<td>11(1)</td>
</tr>
<tr>
<td>P(3)</td>
<td>4094(1)</td>
<td>2354(1)</td>
<td>1268(1)</td>
<td>12(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>6338(1)</td>
<td>1886(1)</td>
<td>645(1)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>5984(3)</td>
<td>5131(3)</td>
<td>1586(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>5965(4)</td>
<td>5710(3)</td>
<td>1950(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>6880(4)</td>
<td>6309(3)</td>
<td>2062(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>7825(4)</td>
<td>6368(3)</td>
<td>1805(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>7884(3)</td>
<td>5782(3)</td>
<td>1449(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>6981(3)</td>
<td>5145(3)</td>
<td>1337(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>8550(3)</td>
<td>3823(3)</td>
<td>958(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>8702(4)</td>
<td>3266(4)</td>
<td>1381(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>8886(4)</td>
<td>3224(3)</td>
<td>565(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>7008(3)</td>
<td>4965(3)</td>
<td>390(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>8076(4)</td>
<td>5566(3)</td>
<td>310(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>5935(4)</td>
<td>5602(3)</td>
<td>371(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>3854(3)</td>
<td>3977(3)</td>
<td>1757(1)</td>
<td>12(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>3349(3)</td>
<td>4547(3)</td>
<td>2076(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>2468(4)</td>
<td>4183(3)</td>
<td>2321(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>2017(4)</td>
<td>3275(3)</td>
<td>2238(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>2488(4)</td>
<td>2721(3)</td>
<td>1921(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>3429(3)</td>
<td>3052(3)</td>
<td>1689(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>4609(4)</td>
<td>1226(3)</td>
<td>1514(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>5426(4)</td>
<td>1456(3)</td>
<td>1899(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>3672(4)</td>
<td>522(3)</td>
<td>1647(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>2902(4)</td>
<td>2056(3)</td>
<td>884(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>2357(4)</td>
<td>2967(4)</td>
<td>711(2)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>3318(4)</td>
<td>1416(4)</td>
<td>523(2)</td>
<td>32(1)</td>
</tr>
<tr>
<td>Pt(2)</td>
<td>126(1)</td>
<td>8226(1)</td>
<td>1096(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>P(4)</td>
<td>402(1)</td>
<td>8451(1)</td>
<td>1812(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>P(5)</td>
<td>1849(1)</td>
<td>7431(1)</td>
<td>1130(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>P(6)</td>
<td>-1240(1)</td>
<td>9407(1)</td>
<td>1126(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>-241(1)</td>
<td>7815(1)</td>
<td>351(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(25)</td>
<td>1966(3)</td>
<td>8348(3)</td>
<td>1925(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(26)</td>
<td>2506(3)</td>
<td>8615(3)</td>
<td>2315(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(27)</td>
<td>3667(3)</td>
<td>8413(3)</td>
<td>2405(1)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(28)</td>
<td>4286(3)</td>
<td>7902(3)</td>
<td>2112(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(29)</td>
<td>3759(3)</td>
<td>7584(3)</td>
<td>1733(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(30)</td>
<td>2602(3)</td>
<td>7820(3)</td>
<td>1627(1)</td>
<td>14(1)</td>
</tr>
<tr>
<td>C(31)</td>
<td>1830(4)</td>
<td>6130(3)</td>
<td>1168(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(32)</td>
<td>1179(4)</td>
<td>5824(3)</td>
<td>1561(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(33)</td>
<td>1281(4)</td>
<td>5695(3)</td>
<td>753(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(34)</td>
<td>2727(3)</td>
<td>7733(3)</td>
<td>664(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(35)</td>
<td>3788(4)</td>
<td>7109(3)</td>
<td>594(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(36)</td>
<td>3061(4)</td>
<td>8786(3)</td>
<td>673(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(37)</td>
<td>-61(3)</td>
<td>9683(3)</td>
<td>1914(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(38)</td>
<td>274(4)</td>
<td>10246(3)</td>
<td>2273(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(39)</td>
<td>-282(4)</td>
<td>11100(3)</td>
<td>2358(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(40)</td>
<td>-1214(4)</td>
<td>11388(3)</td>
<td>2103(1)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(41)</td>
<td>-1540(3)</td>
<td>10857(3)</td>
<td>1740(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(42)</td>
<td>-958(3)</td>
<td>10029(3)</td>
<td>1638(1)</td>
<td>12(1)</td>
</tr>
<tr>
<td>C(43)</td>
<td>-2801(3)</td>
<td>9158(3)</td>
<td>1082(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(44)</td>
<td>-3047(4)</td>
<td>8364(4)</td>
<td>751(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(45)</td>
<td>-3303(4)</td>
<td>8889(3)</td>
<td>1514(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(46)</td>
<td>-1017(3)</td>
<td>10399(3)</td>
<td>744(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(47)</td>
<td>-1444(4)</td>
<td>10188(3)</td>
<td>283(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(48)</td>
<td>242(3)</td>
<td>10706(3)</td>
<td>764(2)</td>
<td>17(1)</td>
</tr>
</tbody>
</table>
Table S3. Bond lengths [Å] and angles [°] for 1 [Pr-PPP]-Pt(Cl).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)-P(1)</td>
<td>2.2573(11)</td>
</tr>
<tr>
<td>Pt(1)-P(3)</td>
<td>2.2842(11)</td>
</tr>
<tr>
<td>Pt(1)-P(2)</td>
<td>2.3107(10)</td>
</tr>
<tr>
<td>Pt(1)-Cl(1)</td>
<td>2.3963(10)</td>
</tr>
<tr>
<td>P(1)-C(1)</td>
<td>1.837(4)</td>
</tr>
<tr>
<td>P(1)-C(13)</td>
<td>1.837(4)</td>
</tr>
<tr>
<td>P(2)-C(6)</td>
<td>1.824(4)</td>
</tr>
<tr>
<td>P(2)-C(7)</td>
<td>1.842(4)</td>
</tr>
<tr>
<td>P(2)-C(10)</td>
<td>1.843(4)</td>
</tr>
<tr>
<td>P(3)-C(18)</td>
<td>1.825(4)</td>
</tr>
<tr>
<td>P(3)-C(22)</td>
<td>1.837(4)</td>
</tr>
<tr>
<td>P(3)-C(19)</td>
<td>1.847(4)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.389(6)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.415(6)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.389(6)</td>
</tr>
<tr>
<td>C(2)-H(2)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.384(7)</td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.379(6)</td>
</tr>
<tr>
<td>C(4)-H(4)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.410(5)</td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.531(6)</td>
</tr>
<tr>
<td>C(7)-C(9)</td>
<td>1.539(6)</td>
</tr>
<tr>
<td>C(7)-H(7)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(8)-H(8A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(8)-H(8B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(8)-H(8C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(9)-H(9A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(9)-H(9B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(9)-H(9C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.528(6)</td>
</tr>
<tr>
<td>C(10)-C(12)</td>
<td>1.533(6)</td>
</tr>
<tr>
<td>C(10)-H(10)</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
C(11)-H(11A) 0.9800
C(11)-H(11B) 0.9800
C(11)-H(11C) 0.9800
C(12)-H(12A) 0.9800
C(12)-H(12B) 0.9800
C(12)-H(12C) 0.9800
C(13)-C(18) 1.404(6)
C(13)-C(14) 1.414(6)
C(14)-C(15) 1.393(6)
C(14)-H(14) 0.9500
C(15)-C(16) 1.399(6)
C(15)-H(15) 0.9500
C(16)-C(17) 1.382(6)
C(16)-H(16) 0.9500
C(17)-C(18) 1.410(6)
C(17)-H(17) 0.9500
C(19)-C(20) 1.528(6)
C(19)-C(21) 1.537(6)
C(19)-H(19) 1.0000
C(20)-H(20A) 0.9800
C(20)-H(20B) 0.9800
C(20)-H(20C) 0.9800
C(21)-H(21A) 0.9800
C(21)-H(21B) 0.9800
C(21)-H(21C) 0.9800
C(22)-C(23) 1.517(6)
C(22)-C(24) 1.528(7)
C(22)-H(22) 1.0000
C(23)-H(23A) 0.9800
C(23)-H(23B) 0.9800
C(23)-H(23C) 0.9800
C(24)-H(24A) 0.9800
C(24)-H(24B) 0.9800
C(24)-H(24C) 0.9800
Pt(2)-P(4) 2.2485(11)
Pt(2)-P(5) 2.2906(10)
Pt(2)-P(6) 2.2993(10)
P(2)-Cl(2) 2.3987(11)
P(4)-C(25) 1.842(4)
P(4)-C(37) 1.843(4)
P(5)-C(30) 1.823(4)
P(5)-C(31) 1.832(4)
P(6)-C(42) 1.826(4)
P(6)-C(43) 1.846(4)
P(6)-C(46) 1.852(4)
C(25)-C(26) 1.391(6)
C(25)-C(30) 1.413(6)
C(26)-C(27) 1.395(6)
C(26)-H(26) 0.9500
C(27)-C(28) 1.380(6)
C(27)-H(27) 0.9500
C(28)-C(29) 1.376(6)
C(28)-H(28) 0.9500
C(29)-C(30) 1.411(5)
C(29)-H(29) 0.9500
C(31)-C(32) 1.518(6)
C(31)-C(33) 1.539(6)
C(31)-H(31) 1.0000
C(32)-H(32A) 0.9800
C(32)-H(32B) 0.9800
C(32)-H(32C) 0.9800
C(33)-H(33A) 0.9800
C(33)-H(33B) 0.9800
C(33)-H(33C) 0.9800
C(34)-C(36) 1.530(6)
C(34)-C(35) 1.533(6)
C(34)-H(34) 1.0000
C(35)-H(35A) 0.9800
C(35)-H(35B) 0.9800
C(35)-H(35C) 0.9800
C(36)-H(36A) 0.9800
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(36)-H(36B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(36)-H(36C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(37)-C(38)</td>
<td>1.407(6)</td>
</tr>
<tr>
<td>C(37)-C(42)</td>
<td>1.408(5)</td>
</tr>
<tr>
<td>C(38)-C(39)</td>
<td>1.392(6)</td>
</tr>
<tr>
<td>C(38)-H(38)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(39)-C(40)</td>
<td>1.377(6)</td>
</tr>
<tr>
<td>C(39)-H(39)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(40)-C(41)</td>
<td>1.389(6)</td>
</tr>
<tr>
<td>C(40)-H(40)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(41)-C(42)</td>
<td>1.387(6)</td>
</tr>
<tr>
<td>C(41)-H(41)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(43)-C(45)</td>
<td>1.526(6)</td>
</tr>
<tr>
<td>C(43)-C(44)</td>
<td>1.535(6)</td>
</tr>
<tr>
<td>C(43)-H(43)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(44)-H(44A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(44)-H(44B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(44)-H(44C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(45)-H(45A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(45)-H(45B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(45)-H(45C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(46)-C(47)</td>
<td>1.521(6)</td>
</tr>
<tr>
<td>C(46)-C(48)</td>
<td>1.523(5)</td>
</tr>
<tr>
<td>C(46)-H(46)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(47)-H(47A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(47)-H(47B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(47)-H(47C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(48)-H(48A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(48)-H(48B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(48)-H(48C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>P(1)-Pt(1)-P(3)</td>
<td>85.92(4)</td>
</tr>
<tr>
<td>P(1)-Pt(1)-P(2)</td>
<td>84.52(4)</td>
</tr>
<tr>
<td>P(3)-Pt(1)-P(2)</td>
<td>167.42(4)</td>
</tr>
<tr>
<td>P(1)-Pt(1)-Cl(1)</td>
<td>176.64(4)</td>
</tr>
<tr>
<td>P(3)-Pt(1)-Cl(1)</td>
<td>91.92(4)</td>
</tr>
<tr>
<td>P(2)-Pt(1)-Cl(1)</td>
<td>97.97(4)</td>
</tr>
</tbody>
</table>
C(1)-P(1)-C(13) 110.59(19)
C(1)-P(1)-Pt(1) 103.61(13)
C(13)-P(1)-Pt(1) 106.00(13)
C(6)-P(2)-C(7) 103.71(19)
C(6)-P(2)-C(10) 106.73(19)
C(7)-P(2)-C(10) 105.7(2)
C(6)-P(2)-Pt(1) 104.42(14)
C(7)-P(2)-Pt(1) 117.80(14)
C(10)-P(2)-Pt(1) 117.17(13)
C(18)-P(3)-C(22) 104.7(2)
C(18)-P(3)-C(19) 107.80(19)
C(22)-P(3)-C(19) 107.20(19)
C(18)-P(3)-Pt(1) 107.54(14)
C(22)-P(3)-Pt(1) 117.19(15)
C(19)-P(3)-Pt(1) 111.84(14)
C(2)-C(1)-C(6) 118.1(3)
C(2)-C(1)-P(1) 126.2(3)
C(6)-C(1)-P(1) 114.9(3)
C(1)-C(2)-C(3) 121.5(4)
C(1)-C(2)-H(2) 119.3
C(3)-C(2)-H(2) 119.3
C(4)-C(3)-C(2) 120.5(4)
C(4)-C(3)-H(3) 119.7
C(2)-C(3)-H(3) 119.7
C(5)-C(4)-C(3) 119.2(4)
C(5)-C(4)-H(4) 120.4
C(3)-C(4)-H(4) 120.4
C(4)-C(5)-C(6) 121.1(4)
C(4)-C(5)-H(5) 119.5
C(6)-C(5)-H(5) 119.5
C(5)-C(6)-C(1) 119.4(4)
C(5)-C(6)-P(2) 122.8(3)
C(1)-C(6)-P(2) 117.6(3)
C(8)-C(7)-C(9) 111.8(4)
C(8)-C(7)-P(2) 109.9(3)
C(9)-C(7)-P(2) 112.2(3)
C(8)-C(7)-H(7) 107.6
C(9)-C(7)-H(7) 107.6
P(2)-C(7)-H(7) 107.6
C(7)-C(8)-H(8A) 109.5
C(7)-C(8)-H(8B) 109.5
H(8A)-C(8)-H(8B) 109.5
C(7)-C(8)-H(8C) 109.5
H(8A)-C(8)-H(8C) 109.5
H(8B)-C(8)-H(8C) 109.5
C(7)-C(9)-H(9A) 109.5
C(7)-C(9)-H(9B) 109.5
H(9A)-C(9)-H(9B) 109.5
C(7)-C(9)-H(9C) 109.5
H(9A)-C(9)-H(9C) 109.5
H(9B)-C(9)-H(9C) 109.5
C(11)-C(10)-C(12) 109.5(4)
C(11)-C(10)-P(2) 115.0(3)
C(12)-C(10)-P(2) 109.9(3)
C(11)-C(10)-H(10) 107.4
C(12)-C(10)-H(10) 107.4
P(2)-C(10)-H(10) 107.4
C(10)-C(11)-H(11A) 109.5
C(10)-C(11)-H(11B) 109.5
H(11A)-C(11)-H(11B) 109.5
C(10)-C(11)-H(11C) 109.5
H(11A)-C(11)-H(11C) 109.5
H(11B)-C(11)-H(11C) 109.5
C(10)-C(12)-H(12A) 109.5
C(10)-C(12)-H(12B) 109.5
H(12A)-C(12)-H(12B) 109.5
C(10)-C(12)-H(12C) 109.5
H(12A)-C(12)-H(12C) 109.5
H(12B)-C(12)-H(12C) 109.5
C(18)-C(13)-C(14) 118.4(4)
C(18)-C(13)-P(1) 117.3(3)
C(14)-C(13)-P(1) 122.3(3)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(15)-C(14)-C(13)</td>
<td>120.3(4)</td>
</tr>
<tr>
<td>C(15)-C(14)-H(14)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(13)-C(14)-H(14)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(14)-C(15)-C(16)</td>
<td>120.8(4)</td>
</tr>
<tr>
<td>C(14)-C(15)-H(15)</td>
<td>119.6</td>
</tr>
<tr>
<td>C(16)-C(15)-H(15)</td>
<td>119.6</td>
</tr>
<tr>
<td>C(17)-C(16)-C(15)</td>
<td>119.2(4)</td>
</tr>
<tr>
<td>C(17)-C(16)-H(16)</td>
<td>120.4</td>
</tr>
<tr>
<td>C(15)-C(16)-H(16)</td>
<td>120.4</td>
</tr>
<tr>
<td>C(16)-C(17)-C(18)</td>
<td>120.8(4)</td>
</tr>
<tr>
<td>C(16)-C(17)-H(17)</td>
<td>119.6</td>
</tr>
<tr>
<td>C(18)-C(17)-H(17)</td>
<td>119.6</td>
</tr>
<tr>
<td>C(13)-C(18)-C(17)</td>
<td>120.2(4)</td>
</tr>
<tr>
<td>C(13)-C(18)-P(3)</td>
<td>116.7(3)</td>
</tr>
<tr>
<td>C(17)-C(18)-P(3)</td>
<td>122.9(3)</td>
</tr>
<tr>
<td>C(20)-C(19)-C(21)</td>
<td>110.7(4)</td>
</tr>
<tr>
<td>C(20)-C(19)-P(3)</td>
<td>108.8(3)</td>
</tr>
<tr>
<td>C(21)-C(19)-P(3)</td>
<td>116.1(3)</td>
</tr>
<tr>
<td>C(20)-C(19)-H(19)</td>
<td>106.9</td>
</tr>
<tr>
<td>C(21)-C(19)-H(19)</td>
<td>106.9</td>
</tr>
<tr>
<td>P(3)-C(19)-H(19)</td>
<td>106.9</td>
</tr>
<tr>
<td>C(19)-C(20)-H(20A)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(19)-C(20)-H(20B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(20A)-C(20)-H(20B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(19)-C(20)-H(20C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(20A)-C(20)-H(20C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(20B)-C(20)-H(20C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(19)-C(21)-H(21A)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(19)-C(21)-H(21B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(21A)-C(21)-H(21B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(19)-C(21)-H(21C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(21A)-C(21)-H(21C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(21B)-C(21)-H(21C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(23)-C(22)-C(24)</td>
<td>112.1(4)</td>
</tr>
<tr>
<td>C(23)-C(22)-P(3)</td>
<td>109.3(3)</td>
</tr>
<tr>
<td>C(24)-C(22)-P(3)</td>
<td>110.8(3)</td>
</tr>
</tbody>
</table>
C(23)-C(22)-H(22) 108.2
C(24)-C(22)-H(22) 108.2
P(3)-C(22)-H(22) 108.2
C(22)-C(23)-H(23A) 109.5
C(22)-C(23)-H(23B) 109.5
H(23A)-C(23)-H(23B) 109.5
C(22)-C(23)-H(23C) 109.5
H(23A)-C(23)-H(23C) 109.5
H(23B)-C(23)-H(23C) 109.5
C(22)-C(24)-H(24A) 109.5
C(22)-C(24)-H(24B) 109.5
H(24A)-C(24)-H(24B) 109.5
C(22)-C(24)-H(24C) 109.5
H(24A)-C(24)-H(24C) 109.5
H(24B)-C(24)-H(24C) 109.5
P(4)-Pt(2)-P(5) 86.07(4)
P(4)-Pt(2)-P(6) 86.02(4)
P(5)-Pt(2)-P(6) 162.27(4)
P(4)-Pt(2)-Cl(2) 173.72(4)
P(5)-Pt(2)-Cl(2) 92.84(4)
P(6)-Pt(2)-Cl(2) 96.68(4)
C(25)-P(4)-C(37) 109.42(18)
C(25)-P(4)-Pt(2) 106.17(14)
C(37)-P(4)-Pt(2) 105.60(13)
C(30)-P(5)-C(31) 104.53(19)
C(30)-P(5)-C(34) 109.17(19)
C(31)-P(5)-C(34) 106.7(2)
C(30)-P(5)-Pt(2) 106.43(13)
C(31)-P(5)-Pt(2) 118.45(14)
C(34)-P(5)-Pt(2) 111.09(13)
C(42)-P(6)-C(43) 107.29(18)
C(42)-P(6)-C(46) 99.77(18)
C(43)-P(6)-C(46) 104.84(18)
C(42)-P(6)-Pt(2) 106.25(13)
C(43)-P(6)-Pt(2) 122.49(14)
C(46)-P(6)-Pt(2) 113.73(13)
C(26)-C(25)-C(30) 118.6(3)
C(26)-C(25)-P(4) 123.5(3)
C(30)-C(25)-P(4) 116.9(3)
C(25)-C(26)-C(27) 121.3(4)
C(25)-C(26)-H(26) 119.4
C(27)-C(26)-H(26) 119.4
C(28)-C(27)-C(26) 119.8(4)
C(28)-C(27)-H(27) 120.1
C(26)-C(27)-H(27) 120.1
C(29)-C(28)-C(27) 120.3(4)
C(29)-C(28)-H(28) 119.9
C(27)-C(28)-H(28) 119.9
C(28)-C(29)-C(30) 120.7(4)
C(28)-C(29)-H(29) 119.7
C(30)-C(29)-H(29) 119.7
C(29)-C(30)-C(25) 119.2(4)
C(29)-C(30)-P(5) 123.2(3)
C(25)-C(30)-P(5) 117.5(3)
C(32)-C(31)-C(33) 110.8(4)
C(32)-C(31)-P(5) 110.0(3)
C(33)-C(31)-P(5) 110.3(3)
C(32)-C(31)-H(31) 108.6
C(33)-C(31)-H(31) 108.6
P(5)-C(31)-H(31) 108.6
C(31)-C(32)-H(32A) 109.5
C(31)-C(32)-H(32B) 109.5
H(32A)-C(32)-H(32B) 109.5
C(31)-C(32)-H(32C) 109.5
H(32A)-C(32)-H(32C) 109.5
H(32B)-C(32)-H(32C) 109.5
C(31)-C(33)-H(33A) 109.5
C(31)-C(33)-H(33B) 109.5
H(33A)-C(33)-H(33B) 109.5
C(31)-C(33)-H(33C) 109.5
H(33A)-C(33)-H(33C) 109.5
H(33B)-C(33)-H(33C) 109.5
C(36)-C(34)-C(35) 110.5(3)
C(36)-C(34)-P(5) 110.8(3)
C(35)-C(34)-P(5) 116.8(3)
C(36)-C(34)-H(34) 106.0
C(35)-C(34)-H(34) 106.0
P(5)-C(34)-H(34) 106.0
C(34)-C(35)-H(35A) 109.5
C(34)-C(35)-H(35B) 109.5
H(35A)-C(35)-H(35B) 109.5
C(34)-C(35)-H(35C) 109.5
H(35A)-C(35)-H(35C) 109.5
H(35B)-C(35)-H(35C) 109.5
C(34)-C(36)-H(36A) 109.5
C(34)-C(36)-H(36B) 109.5
H(36A)-C(36)-H(36B) 109.5
C(34)-C(36)-H(36C) 109.5
H(36A)-C(36)-H(36C) 109.5
H(36B)-C(36)-H(36C) 109.5
C(38)-C(37)-C(42) 117.4(4)
C(38)-C(37)-P(4) 126.1(3)
C(42)-C(37)-P(4) 115.7(3)
C(39)-C(38)-C(37) 121.2(4)
C(39)-C(38)-H(38) 119.4
C(37)-C(38)-H(38) 119.4
C(40)-C(39)-C(38) 120.3(4)
C(40)-C(39)-H(39) 119.9
C(38)-C(39)-H(39) 119.9
C(39)-C(40)-C(41) 119.4(4)
C(39)-C(40)-H(40) 120.3
C(41)-C(40)-H(40) 120.3
C(42)-C(41)-C(40) 120.9(4)
C(42)-C(41)-H(41) 119.5
C(40)-C(41)-H(41) 119.5
C(41)-C(42)-C(37) 120.5(4)
C(41)-C(42)-P(6) 121.7(3)
C(37)-C(42)-P(6) 117.7(3)
C(45)-C(43)-C(44) 109.8(4)
C(45)-C(43)-P(6) 112.9(3)
C(44)-C(43)-P(6) 110.1(3)
C(45)-C(43)-H(43) 108.0
C(44)-C(43)-H(43) 108.0
P(6)-C(43)-H(43) 108.0
C(43)-C(44)-H(44A) 109.5
C(43)-C(44)-H(44B) 109.5
H(44A)-C(44)-H(44B) 109.5
C(43)-C(44)-H(44C) 109.5
H(44A)-C(44)-H(44C) 109.5
H(44B)-C(44)-H(44C) 109.5
C(43)-C(45)-H(45A) 109.5
C(43)-C(45)-H(45B) 109.5
H(45A)-C(45)-H(45B) 109.5
C(43)-C(45)-H(45C) 109.5
H(45A)-C(45)-H(45C) 109.5
H(45B)-C(45)-H(45C) 109.5
C(47)-C(46)-C(48) 111.8(3)
C(47)-C(46)-P(6) 113.9(3)
C(48)-C(46)-P(6) 110.1(3)
C(47)-C(46)-H(46) 106.9
C(48)-C(46)-H(46) 106.9
P(6)-C(46)-H(46) 106.9
C(46)-C(47)-H(47A) 109.5
C(46)-C(47)-H(47B) 109.5
H(47A)-C(47)-H(47B) 109.5
C(46)-C(47)-H(47C) 109.5
H(47A)-C(47)-H(47C) 109.5
H(47B)-C(47)-H(47C) 109.5
C(46)-C(48)-H(48A) 109.5
C(46)-C(48)-H(48B) 109.5
H(48A)-C(48)-H(48B) 109.5
C(46)-C(48)-H(48C) 109.5
H(48A)-C(48)-H(48C) 109.5
H(48B)-C(48)-H(48C) 109.5
Symmetry transformations used to generate equivalent atoms:
Table S4. Anisotropic displacement parameters (Å² x 10³) for 1 [Pr-PPP]-Pt(Cl). The anisotropic displacement factor exponent takes the form: -2π²[h^2 U11 + ... + 2 h k a^* b^* U12]

<table>
<thead>
<tr>
<th></th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₂₃</th>
<th>U₁₃</th>
<th>U₁₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)</td>
<td>11(1)</td>
<td>10(1)</td>
<td>11(1)</td>
<td>-2(1)</td>
<td>2(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>P(1)</td>
<td>11(1)</td>
<td>11(1)</td>
<td>12(1)</td>
<td>-1(1)</td>
<td>2(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>P(2)</td>
<td>11(1)</td>
<td>12(1)</td>
<td>12(1)</td>
<td>-2(1)</td>
<td>2(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>P(3)</td>
<td>13(1)</td>
<td>12(1)</td>
<td>11(1)</td>
<td>1(1)</td>
<td>1(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>22(1)</td>
<td>15(1)</td>
<td>28(1)</td>
<td>-9(1)</td>
<td>7(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>14(2)</td>
<td>12(2)</td>
<td>14(2)</td>
<td>-1(1)</td>
<td>2(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>19(2)</td>
<td>14(2)</td>
<td>19(2)</td>
<td>-5(2)</td>
<td>4(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>25(2)</td>
<td>17(2)</td>
<td>15(2)</td>
<td>-6(2)</td>
<td>-2(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>19(2)</td>
<td>17(2)</td>
<td>21(3)</td>
<td>-6(2)</td>
<td>-7(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>14(2)</td>
<td>17(2)</td>
<td>22(2)</td>
<td>-4(2)</td>
<td>0(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>16(2)</td>
<td>16(2)</td>
<td>12(2)</td>
<td>-1(1)</td>
<td>-1(2)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>9(2)</td>
<td>17(2)</td>
<td>24(2)</td>
<td>-3(2)</td>
<td>3(2)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>23(2)</td>
<td>31(3)</td>
<td>30(3)</td>
<td>10(2)</td>
<td>-1(2)</td>
<td>7(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>20(2)</td>
<td>24(2)</td>
<td>33(3)</td>
<td>-3(2)</td>
<td>10(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>18(2)</td>
<td>18(2)</td>
<td>11(2)</td>
<td>0(2)</td>
<td>1(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>23(2)</td>
<td>23(2)</td>
<td>23(3)</td>
<td>8(2)</td>
<td>3(2)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>22(2)</td>
<td>27(2)</td>
<td>21(3)</td>
<td>9(2)</td>
<td>-1(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>13(2)</td>
<td>13(2)</td>
<td>10(2)</td>
<td>0(1)</td>
<td>0(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>14(2)</td>
<td>19(2)</td>
<td>17(2)</td>
<td>-4(2)</td>
<td>3(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(15)</td>
<td>21(2)</td>
<td>24(2)</td>
<td>17(2)</td>
<td>0(2)</td>
<td>2(2)</td>
<td>8(2)</td>
</tr>
<tr>
<td>C(16)</td>
<td>17(2)</td>
<td>26(2)</td>
<td>19(2)</td>
<td>11(2)</td>
<td>7(2)</td>
<td>6(2)</td>
</tr>
<tr>
<td>C(17)</td>
<td>21(2)</td>
<td>14(2)</td>
<td>19(2)</td>
<td>7(2)</td>
<td>6(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(18)</td>
<td>16(2)</td>
<td>16(2)</td>
<td>13(2)</td>
<td>3(1)</td>
<td>3(2)</td>
<td>5(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>21(2)</td>
<td>10(2)</td>
<td>13(2)</td>
<td>-2(1)</td>
<td>2(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(20)</td>
<td>24(2)</td>
<td>21(2)</td>
<td>17(2)</td>
<td>-1(2)</td>
<td>-2(2)</td>
<td>5(2)</td>
</tr>
<tr>
<td>C(21)</td>
<td>30(2)</td>
<td>14(2)</td>
<td>24(3)</td>
<td>4(2)</td>
<td>4(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(22)</td>
<td>18(2)</td>
<td>25(2)</td>
<td>17(2)</td>
<td>6(2)</td>
<td>-3(2)</td>
<td>-12(2)</td>
</tr>
<tr>
<td>C(23)</td>
<td>22(2)</td>
<td>42(3)</td>
<td>31(3)</td>
<td>17(2)</td>
<td>-10(2)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(24)</td>
<td>32(2)</td>
<td>50(3)</td>
<td>14(3)</td>
<td>-6(2)</td>
<td>-2(2)</td>
<td>-20(2)</td>
</tr>
<tr>
<td>Pt(2)</td>
<td>11(1)</td>
<td>12(1)</td>
<td>9(1)</td>
<td>-1(1)</td>
<td>0(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>P(4)</td>
<td>12(1)</td>
<td>15(1)</td>
<td>10(1)</td>
<td>-1(1)</td>
<td>0(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td></td>
<td>P(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>P(6)</td>
<td>13(1)</td>
<td>14(1)</td>
<td>11(1)</td>
<td>-1(1)</td>
<td>1(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>19(1)</td>
<td>18(1)</td>
<td>11(1)</td>
<td>-4(1)</td>
<td>0(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(25)</td>
<td>12(2)</td>
<td>15(2)</td>
<td>11(2)</td>
<td>3(1)</td>
<td>1(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(26)</td>
<td>16(2)</td>
<td>18(2)</td>
<td>13(2)</td>
<td>0(2)</td>
<td>-1(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(27)</td>
<td>19(2)</td>
<td>14(2)</td>
<td>16(2)</td>
<td>4(2)</td>
<td>-6(2)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(28)</td>
<td>15(2)</td>
<td>23(2)</td>
<td>17(2)</td>
<td>8(2)</td>
<td>-3(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(29)</td>
<td>13(2)</td>
<td>24(2)</td>
<td>18(2)</td>
<td>5(2)</td>
<td>0(2)</td>
<td>5(2)</td>
</tr>
<tr>
<td>C(30)</td>
<td>13(2)</td>
<td>16(2)</td>
<td>14(2)</td>
<td>2(2)</td>
<td>-1(2)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(31)</td>
<td>15(2)</td>
<td>19(2)</td>
<td>25(3)</td>
<td>-1(2)</td>
<td>1(2)</td>
<td>5(2)</td>
</tr>
<tr>
<td>C(32)</td>
<td>20(2)</td>
<td>22(2)</td>
<td>24(3)</td>
<td>8(2)</td>
<td>2(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(33)</td>
<td>25(2)</td>
<td>16(2)</td>
<td>25(3)</td>
<td>-3(2)</td>
<td>0(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(34)</td>
<td>13(2)</td>
<td>22(2)</td>
<td>12(2)</td>
<td>-1(2)</td>
<td>3(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(35)</td>
<td>19(2)</td>
<td>22(2)</td>
<td>25(3)</td>
<td>-1(2)</td>
<td>8(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(36)</td>
<td>20(2)</td>
<td>19(2)</td>
<td>20(2)</td>
<td>2(2)</td>
<td>1(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(37)</td>
<td>13(2)</td>
<td>16(2)</td>
<td>11(2)</td>
<td>-1(1)</td>
<td>4(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(38)</td>
<td>19(2)</td>
<td>23(2)</td>
<td>12(2)</td>
<td>-4(2)</td>
<td>-2(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(39)</td>
<td>23(2)</td>
<td>17(2)</td>
<td>14(2)</td>
<td>-6(2)</td>
<td>1(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(40)</td>
<td>24(2)</td>
<td>15(2)</td>
<td>11(2)</td>
<td>-2(2)</td>
<td>4(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(41)</td>
<td>20(2)</td>
<td>15(2)</td>
<td>11(2)</td>
<td>0(1)</td>
<td>4(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(42)</td>
<td>20(2)</td>
<td>15(2)</td>
<td>11(2)</td>
<td>0(1)</td>
<td>4(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(43)</td>
<td>20(2)</td>
<td>15(2)</td>
<td>11(2)</td>
<td>0(1)</td>
<td>4(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(44)</td>
<td>19(2)</td>
<td>32(3)</td>
<td>30(3)</td>
<td>-11(2)</td>
<td>3(2)</td>
<td>-7(2)</td>
</tr>
<tr>
<td>C(45)</td>
<td>20(2)</td>
<td>29(3)</td>
<td>22(3)</td>
<td>2(2)</td>
<td>7(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(46)</td>
<td>14(2)</td>
<td>13(2)</td>
<td>12(2)</td>
<td>1(1)</td>
<td>2(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(47)</td>
<td>22(2)</td>
<td>21(2)</td>
<td>10(2)</td>
<td>3(2)</td>
<td>-1(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(48)</td>
<td>17(2)</td>
<td>18(2)</td>
<td>17(2)</td>
<td>2(2)</td>
<td>4(2)</td>
<td>-3(2)</td>
</tr>
</tbody>
</table>
Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters ($\text{Å}^2 \times 10^3$) for \[\text{[Pr-PPP]}\text{-Pt(Cl).}

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(2)</td>
<td>5312</td>
<td>5695</td>
<td>2125</td>
<td>21</td>
</tr>
<tr>
<td>H(3)</td>
<td>6856</td>
<td>6681</td>
<td>2318</td>
<td>23</td>
</tr>
<tr>
<td>H(4)</td>
<td>8427</td>
<td>6808</td>
<td>1872</td>
<td>23</td>
</tr>
<tr>
<td>H(5)</td>
<td>8542</td>
<td>5807</td>
<td>1276</td>
<td>21</td>
</tr>
<tr>
<td>H(7)</td>
<td>9081</td>
<td>4383</td>
<td>977</td>
<td>20</td>
</tr>
<tr>
<td>H(8A)</td>
<td>8150</td>
<td>2738</td>
<td>1382</td>
<td>42</td>
</tr>
<tr>
<td>H(8B)</td>
<td>8566</td>
<td>3690</td>
<td>1626</td>
<td>42</td>
</tr>
<tr>
<td>H(8C)</td>
<td>9489</td>
<td>3013</td>
<td>1408</td>
<td>42</td>
</tr>
<tr>
<td>H(9A)</td>
<td>9691</td>
<td>3021</td>
<td>603</td>
<td>38</td>
</tr>
<tr>
<td>H(9B)</td>
<td>8794</td>
<td>3608</td>
<td>302</td>
<td>38</td>
</tr>
<tr>
<td>H(9C)</td>
<td>8387</td>
<td>2663</td>
<td>541</td>
<td>38</td>
</tr>
<tr>
<td>H(10)</td>
<td>6924</td>
<td>4497</td>
<td>148</td>
<td>19</td>
</tr>
<tr>
<td>H(11A)</td>
<td>8009</td>
<td>5845</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>H(11B)</td>
<td>8764</td>
<td>5163</td>
<td>334</td>
<td>34</td>
</tr>
<tr>
<td>H(11C)</td>
<td>8139</td>
<td>6077</td>
<td>526</td>
<td>34</td>
</tr>
<tr>
<td>H(12A)</td>
<td>5995</td>
<td>6076</td>
<td>603</td>
<td>35</td>
</tr>
<tr>
<td>H(12B)</td>
<td>5247</td>
<td>5211</td>
<td>407</td>
<td>35</td>
</tr>
<tr>
<td>H(12C)</td>
<td>5878</td>
<td>5926</td>
<td>91</td>
<td>35</td>
</tr>
<tr>
<td>H(14)</td>
<td>3612</td>
<td>5180</td>
<td>2123</td>
<td>20</td>
</tr>
<tr>
<td>H(15)</td>
<td>2170</td>
<td>4557</td>
<td>2547</td>
<td>25</td>
</tr>
<tr>
<td>H(16)</td>
<td>1395</td>
<td>3042</td>
<td>2398</td>
<td>25</td>
</tr>
<tr>
<td>H(17)</td>
<td>2174</td>
<td>2109</td>
<td>1859</td>
<td>21</td>
</tr>
<tr>
<td>H(19)</td>
<td>5076</td>
<td>897</td>
<td>1295</td>
<td>18</td>
</tr>
<tr>
<td>H(20A)</td>
<td>4995</td>
<td>1762</td>
<td>2127</td>
<td>31</td>
</tr>
<tr>
<td>H(20B)</td>
<td>6033</td>
<td>1887</td>
<td>1806</td>
<td>31</td>
</tr>
<tr>
<td>H(20C)</td>
<td>5776</td>
<td>866</td>
<td>2011</td>
<td>31</td>
</tr>
<tr>
<td>H(21A)</td>
<td>4025</td>
<td>-95</td>
<td>1716</td>
<td>34</td>
</tr>
<tr>
<td>H(21B)</td>
<td>3103</td>
<td>445</td>
<td>1407</td>
<td>34</td>
</tr>
<tr>
<td>H(21C)</td>
<td>3291</td>
<td>768</td>
<td>1901</td>
<td>34</td>
</tr>
<tr>
<td>H(22)</td>
<td>2307</td>
<td>1699</td>
<td>1045</td>
<td>24</td>
</tr>
<tr>
<td>H(23A)</td>
<td>2949</td>
<td>3365</td>
<td>584</td>
<td>48</td>
</tr>
<tr>
<td>H(23B)</td>
<td>2008</td>
<td>3314</td>
<td>947</td>
<td>48</td>
</tr>
<tr>
<td>H(23C)</td>
<td>1762</td>
<td>2811</td>
<td>489</td>
<td>48</td>
</tr>
<tr>
<td>H(24A)</td>
<td>2654</td>
<td>1198</td>
<td>344</td>
<td>48</td>
</tr>
<tr>
<td>H(24B)</td>
<td>3722</td>
<td>864</td>
<td>649</td>
<td>48</td>
</tr>
<tr>
<td>H(24C)</td>
<td>3843</td>
<td>1775</td>
<td>343</td>
<td>48</td>
</tr>
<tr>
<td>H(26)</td>
<td>2076</td>
<td>8940</td>
<td>2525</td>
<td>19</td>
</tr>
<tr>
<td>H(27)</td>
<td>4030</td>
<td>8626</td>
<td>2668</td>
<td>20</td>
</tr>
<tr>
<td>H(28)</td>
<td>5078</td>
<td>7770</td>
<td>2172</td>
<td>22</td>
</tr>
<tr>
<td>H(29)</td>
<td>4180</td>
<td>7202</td>
<td>1541</td>
<td>22</td>
</tr>
<tr>
<td>H(31)</td>
<td>2642</td>
<td>5898</td>
<td>1203</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>H(32A)</td>
<td>393</td>
<td>6077</td>
<td>1539</td>
<td>33</td>
</tr>
<tr>
<td>H(32B)</td>
<td>1573</td>
<td>6070</td>
<td>1824</td>
<td>33</td>
</tr>
<tr>
<td>H(32C)</td>
<td>1151</td>
<td>5127</td>
<td>1574</td>
<td>33</td>
</tr>
<tr>
<td>H(33A)</td>
<td>1219</td>
<td>5004</td>
<td>787</td>
<td>33</td>
</tr>
<tr>
<td>H(33B)</td>
<td>1764</td>
<td>5839</td>
<td>508</td>
<td>33</td>
</tr>
<tr>
<td>H(33C)</td>
<td>512</td>
<td>5966</td>
<td>699</td>
<td>33</td>
</tr>
<tr>
<td>H(34)</td>
<td>2211</td>
<td>7647</td>
<td>401</td>
<td>19</td>
</tr>
<tr>
<td>H(35A)</td>
<td>4387</td>
<td>7256</td>
<td>815</td>
<td>33</td>
</tr>
<tr>
<td>H(35B)</td>
<td>4081</td>
<td>7237</td>
<td>307</td>
<td>33</td>
</tr>
<tr>
<td>H(35C)</td>
<td>3573</td>
<td>6436</td>
<td>614</td>
<td>33</td>
</tr>
<tr>
<td>H(36A)</td>
<td>3630</td>
<td>8899</td>
<td>910</td>
<td>30</td>
</tr>
<tr>
<td>H(36B)</td>
<td>2375</td>
<td>9174</td>
<td>718</td>
<td>30</td>
</tr>
<tr>
<td>H(36C)</td>
<td>3394</td>
<td>8961</td>
<td>398</td>
<td>30</td>
</tr>
<tr>
<td>H(38)</td>
<td>890</td>
<td>10039</td>
<td>2461</td>
<td>21</td>
</tr>
<tr>
<td>H(39)</td>
<td>-16</td>
<td>11486</td>
<td>2594</td>
<td>22</td>
</tr>
<tr>
<td>H(40)</td>
<td>-1630</td>
<td>11945</td>
<td>2174</td>
<td>20</td>
</tr>
<tr>
<td>H(41)</td>
<td>-2171</td>
<td>11063</td>
<td>1559</td>
<td>18</td>
</tr>
<tr>
<td>H(43)</td>
<td>-3200</td>
<td>9748</td>
<td>975</td>
<td>15</td>
</tr>
<tr>
<td>H(44A)</td>
<td>-2734</td>
<td>7761</td>
<td>863</td>
<td>40</td>
</tr>
<tr>
<td>H(44B)</td>
<td>-2682</td>
<td>8522</td>
<td>479</td>
<td>40</td>
</tr>
<tr>
<td>H(44C)</td>
<td>-3881</td>
<td>8302</td>
<td>698</td>
<td>40</td>
</tr>
<tr>
<td>H(45A)</td>
<td>-4127</td>
<td>8752</td>
<td>1472</td>
<td>35</td>
</tr>
<tr>
<td>H(45B)</td>
<td>-3198</td>
<td>9419</td>
<td>1718</td>
<td>35</td>
</tr>
<tr>
<td>H(45C)</td>
<td>-2906</td>
<td>8324</td>
<td>1631</td>
<td>35</td>
</tr>
<tr>
<td>H(46)</td>
<td>-1477</td>
<td>10950</td>
<td>847</td>
<td>15</td>
</tr>
<tr>
<td>H(47A)</td>
<td>-1286</td>
<td>10735</td>
<td>98</td>
<td>27</td>
</tr>
<tr>
<td>H(47B)</td>
<td>-2275</td>
<td>10067</td>
<td>278</td>
<td>27</td>
</tr>
<tr>
<td>H(47C)</td>
<td>-1045</td>
<td>9625</td>
<td>175</td>
<td>27</td>
</tr>
<tr>
<td>H(48A)</td>
<td>731</td>
<td>10161</td>
<td>697</td>
<td>26</td>
</tr>
<tr>
<td>H(48B)</td>
<td>448</td>
<td>10940</td>
<td>1055</td>
<td>26</td>
</tr>
<tr>
<td>H(48C)</td>
<td>356</td>
<td>11214</td>
<td>553</td>
<td>26</td>
</tr>
</tbody>
</table>
Figure S2. ORTEP diagram of complex 3 [{Pr-PPP}PtCH₃ with thermal ellipsoids drawn at 30% probability level. The crystal structure of 3 contains two independent molecules in the asymmetric unit. Hydrogen atoms are omitted for clarity.
Table S6. Crystal data and structure refinement for 3 \(^{1} \text{Pr-PPP}\)-Pt(CH\(_3\))

<table>
<thead>
<tr>
<th>Identification code</th>
<th>mm05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C({25}) H({39}) P(_{3}) Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>627.56</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)/c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>(a = 11.7084(6) , \text{Å} \quad \alpha = 90^\circ.)</td>
</tr>
<tr>
<td></td>
<td>(b = 13.9668(7) , \text{Å} \quad \beta = 91.280(2)^\circ.)</td>
</tr>
<tr>
<td></td>
<td>(c = 31.1141(16) , \text{Å} \quad \gamma = 90^\circ.)</td>
</tr>
<tr>
<td>Volume</td>
<td>5086.8(4) Å(^3)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.639 Mg/m(^3)</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>5.715 mm(^{-1})</td>
</tr>
<tr>
<td>F(000)</td>
<td>2496</td>
</tr>
<tr>
<td>Crystal size</td>
<td>(? \times ? \times ? , \text{mm}^3)</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.60 to 42.99°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>(-14 \leq h \leq 20, -17 \leq k \leq 21, -41 \leq l \leq 59)</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>56422</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>20231 [R(int) = 0.1043]</td>
</tr>
<tr>
<td>Completeness to theta = 42.99°</td>
<td>53.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F(^2)</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>20231 / 0 / 541</td>
</tr>
<tr>
<td>Goodness-of-fit on F(^2)</td>
<td>0.872</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0529, wR2 = 0.1013</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.1247, wR2 = 0.1199</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>3.568 and -3.246 e.Å(^{-3})</td>
</tr>
</tbody>
</table>

S-25
Table S7. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for [bPr-PPP]-Pt(CH₃) (3). U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)</td>
<td>103(1)</td>
<td>6882(1)</td>
<td>6111(1)</td>
<td>11(1)</td>
</tr>
<tr>
<td>Pt(2)</td>
<td>5556(1)</td>
<td>1815(1)</td>
<td>5987(1)</td>
<td>11(1)</td>
</tr>
<tr>
<td>P(1)</td>
<td>384(1)</td>
<td>6637(1)</td>
<td>6840(1)</td>
<td>11(1)</td>
</tr>
<tr>
<td>P(2)</td>
<td>-1232(1)</td>
<td>5698(1)</td>
<td>6154(1)</td>
<td>12(1)</td>
</tr>
<tr>
<td>P(3)</td>
<td>1798(1)</td>
<td>6111(1)</td>
<td>6150(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>P(4)</td>
<td>4731(1)</td>
<td>544(1)</td>
<td>6339(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>P(5)</td>
<td>4100(1)</td>
<td>2695(1)</td>
<td>6248(1)</td>
<td>12(1)</td>
</tr>
<tr>
<td>P(6)</td>
<td>384(1)</td>
<td>6637(1)</td>
<td>6840(1)</td>
<td>11(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>-71(5)</td>
<td>5402(4)</td>
<td>6930(2)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>-951(5)</td>
<td>5054(4)</td>
<td>6661(2)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>-1542(5)</td>
<td>4224(4)</td>
<td>6755(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>-1212(6)</td>
<td>3659(4)</td>
<td>7108(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>-283(6)</td>
<td>3955(5)</td>
<td>7358(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>262(5)</td>
<td>4811(4)</td>
<td>7281(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>1937(5)</td>
<td>7548(4)</td>
<td>6741(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2546(5)</td>
<td>7295(4)</td>
<td>6643(2)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>3677(5)</td>
<td>7548(4)</td>
<td>6741(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>4229(5)</td>
<td>7226(4)</td>
<td>7110(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>3629(5)</td>
<td>6676(4)</td>
<td>7396(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>2502(5)</td>
<td>6442(4)</td>
<td>7317(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>-2791(5)</td>
<td>5918(4)</td>
<td>6123(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>-3273(6)</td>
<td>6205(5)</td>
<td>6554(2)</td>
<td>25(2)</td>
</tr>
<tr>
<td>C(15)</td>
<td>-3080(6)</td>
<td>6691(5)</td>
<td>5787(2)</td>
<td>29(2)</td>
</tr>
<tr>
<td>C(16)</td>
<td>-1018(5)</td>
<td>4688(4)</td>
<td>5776(2)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>221(5)</td>
<td>4395(4)</td>
<td>5777(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>-1494(5)</td>
<td>4871(4)</td>
<td>5325(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>1787(5)</td>
<td>9007(4)</td>
<td>6180(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>1128(5)</td>
<td>9321(4)</td>
<td>6574(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>1303(6)</td>
<td>9446(4)</td>
<td>5774(2)</td>
<td>23(2)</td>
</tr>
<tr>
<td>C(22)</td>
<td>2708(5)</td>
<td>7393(4)</td>
<td>5690(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>3783(5)</td>
<td>7985(4)</td>
<td>5632(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>3004(6)</td>
<td>6319(4)</td>
<td>5690(2)</td>
<td>24(2)</td>
</tr>
<tr>
<td>C(25)</td>
<td>-176(5)</td>
<td>7188(4)</td>
<td>5437(2)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(26)</td>
<td>3822(5)</td>
<td>1068(4)</td>
<td>6753(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(27)</td>
<td>3416(5)</td>
<td>2014(4)</td>
<td>6672(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(28)</td>
<td>2479(5)</td>
<td>2353(4)</td>
<td>6896(2)</td>
<td>22(2)</td>
</tr>
<tr>
<td>C(29)</td>
<td>1999(6)</td>
<td>1806(5)</td>
<td>7221(2)</td>
<td>24(2)</td>
</tr>
<tr>
<td>C(30)</td>
<td>2442(6)</td>
<td>915(5)</td>
<td>7316(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(31)</td>
<td>3316(5)</td>
<td>555(5)</td>
<td>7081(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(32)</td>
<td>5949(5)</td>
<td>-84(4)</td>
<td>6586(2)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(33)</td>
<td>6949(5)</td>
<td>-93(4)</td>
<td>6340(2)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(34)</td>
<td>7858(5)</td>
<td>-700(4)</td>
<td>6453(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(35)</td>
<td>7805(6)</td>
<td>-1267(4)</td>
<td>6816(2)</td>
<td>21(2)</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(36)</td>
<td>6867(6)</td>
<td>-1217(4)</td>
<td>7076(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>(37)</td>
<td>5952(5)</td>
<td>-649(4)</td>
<td>6955(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>(38)</td>
<td>4598(5)</td>
<td>3832(4)</td>
<td>6499(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>(39)</td>
<td>5424(6)</td>
<td>3575(5)</td>
<td>6875(2)</td>
<td>23(2)</td>
</tr>
<tr>
<td>(40)</td>
<td>3687(6)</td>
<td>4539(4)</td>
<td>6644(2)</td>
<td>25(2)</td>
</tr>
<tr>
<td>(41)</td>
<td>2911(5)</td>
<td>3015(4)</td>
<td>5886(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>(42)</td>
<td>2342(6)</td>
<td>2096(5)</td>
<td>5709(2)</td>
<td>33(2)</td>
</tr>
<tr>
<td>(43)</td>
<td>3281(6)</td>
<td>3658(5)</td>
<td>5517(2)</td>
<td>29(2)</td>
</tr>
<tr>
<td>(44)</td>
<td>8520(5)</td>
<td>1209(4)</td>
<td>5954(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>(45)</td>
<td>8668(6)</td>
<td>1767(5)</td>
<td>6375(2)</td>
<td>26(2)</td>
</tr>
<tr>
<td>(46)</td>
<td>8886(6)</td>
<td>1813(5)</td>
<td>5567(2)</td>
<td>31(2)</td>
</tr>
<tr>
<td>(47)</td>
<td>7023(5)</td>
<td>58(4)</td>
<td>5390(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>(48)</td>
<td>8088(6)</td>
<td>-556(5)</td>
<td>5320(2)</td>
<td>24(2)</td>
</tr>
<tr>
<td>(49)</td>
<td>5934(5)</td>
<td>-566(5)</td>
<td>5380(2)</td>
<td>25(2)</td>
</tr>
<tr>
<td>(50)</td>
<td>6268(5)</td>
<td>3002(4)</td>
<td>5646(2)</td>
<td>18(1)</td>
</tr>
</tbody>
</table>
Table S8. Bond lengths [Å] and angles [°] for 3 \[^3\text{Pr-PPP}]\text{-Pt}(\text{CH}_3).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)-C(25)</td>
<td>2.156(5)</td>
</tr>
<tr>
<td>Pt(1)-P(3)</td>
<td>2.2780(15)</td>
</tr>
<tr>
<td>Pt(1)-P(2)</td>
<td>2.2822(15)</td>
</tr>
<tr>
<td>Pt(1)-P(1)</td>
<td>2.3088(15)</td>
</tr>
<tr>
<td>Pt(2)-C(50)</td>
<td>2.145(6)</td>
</tr>
<tr>
<td>Pt(2)-P(5)</td>
<td>2.2679(16)</td>
</tr>
<tr>
<td>Pt(2)-P(6)</td>
<td>2.2945(15)</td>
</tr>
<tr>
<td>Pt(2)-P(4)</td>
<td>2.3090(15)</td>
</tr>
<tr>
<td>P(1)-C(1)</td>
<td>1.829(6)</td>
</tr>
<tr>
<td>P(1)-C(7)</td>
<td>1.843(6)</td>
</tr>
<tr>
<td>P(2)-C(2)</td>
<td>1.839(6)</td>
</tr>
<tr>
<td>P(2)-C(13)</td>
<td>1.851(6)</td>
</tr>
<tr>
<td>P(2)-C(16)</td>
<td>1.855(6)</td>
</tr>
<tr>
<td>P(3)-C(8)</td>
<td>1.831(6)</td>
</tr>
<tr>
<td>P(3)-C(22)</td>
<td>1.848(6)</td>
</tr>
<tr>
<td>P(3)-C(19)</td>
<td>1.854(6)</td>
</tr>
<tr>
<td>P(4)-C(32)</td>
<td>1.829(6)</td>
</tr>
<tr>
<td>P(4)-C(26)</td>
<td>1.840(6)</td>
</tr>
<tr>
<td>P(5)-C(41)</td>
<td>1.826(6)</td>
</tr>
<tr>
<td>P(5)-C(27)</td>
<td>1.825(6)</td>
</tr>
<tr>
<td>P(5)-C(38)</td>
<td>1.858(6)</td>
</tr>
<tr>
<td>P(6)-C(33)</td>
<td>1.832(6)</td>
</tr>
<tr>
<td>P(6)-C(44)</td>
<td>1.844(6)</td>
</tr>
<tr>
<td>P(6)-C(47)</td>
<td>1.864(6)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.402(8)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.415(8)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.384(8)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.400(8)</td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.385(8)</td>
</tr>
<tr>
<td>C(4)-H(4)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.380(9)</td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(6)-H(6)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(7)-C(12)</td>
<td>1.400(8)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.409(8)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.398(8)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.381(8)</td>
</tr>
<tr>
<td>C(9)-H(9)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.375(9)</td>
</tr>
<tr>
<td>C(10)-H(10)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.387(8)</td>
</tr>
<tr>
<td>C(11)-H(11)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(12)-H(12)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.518(9)</td>
</tr>
<tr>
<td>C(13)-C(15)</td>
<td>1.536(8)</td>
</tr>
<tr>
<td>C(13)-H(13)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(14)-H(14A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(14)-H(14B)</td>
<td>0.9800</td>
</tr>
</tbody>
</table>
C(14)-H(14C) 0.9800
C(15)-H(15A) 0.9800
C(15)-H(15B) 0.9800
C(15)-H(15C) 0.9800
C(16)-C(17) 1.508(8)
C(16)-H(16) 1.0000
C(17)-H(17A) 0.9800
C(17)-H(17B) 0.9800
C(17)-H(17C) 0.9800
C(18)-H(18A) 0.9800
C(18)-H(18B) 0.9800
C(18)-H(18C) 0.9800
C(19)-C(21) 1.504(8)
C(19)-C(20) 1.528(9)
C(19)-H(19) 1.0000
C(20)-H(20A) 0.9800
C(20)-H(20B) 0.9800
C(20)-H(20C) 0.9800
C(21)-H(21A) 0.9800
C(21)-H(21B) 0.9800
C(21)-H(21C) 0.9800
C(22)-C(23) 1.520(8)
C(22)-C(24) 1.538(8)
C(22)-H(22) 1.0000
C(23)-H(23A) 0.9800
C(23)-H(23B) 0.9800
C(23)-H(23C) 0.9800
C(24)-H(24A) 0.9800
C(24)-H(24B) 0.9800
C(24)-H(24C) 0.9800
C(25)-H(25A) 0.9800
C(25)-H(25B) 0.9800
C(25)-H(25C) 0.9800
C(26)-C(31) 1.391(9)
C(26)-C(27) 1.425(8)
C(27)-C(28) 1.395(8)
C(28)-C(29) 1.396(9)
C(28)-H(28) 0.9500
C(29)-C(30) 1.377(9)
C(29)-H(29) 0.9500
C(30)-C(31) 1.368(9)
C(30)-H(30) 0.9500
C(31)-H(31) 0.9500
C(32)-C(37) 1.394(8)
C(32)-C(33) 1.412(8)
C(33)-C(34) 1.400(8)
C(34)-C(35) 1.382(8)
C(34)-H(34) 0.9500
C(35)-C(36) 1.379(9)
C(35)-H(35) 0.9500
C(36)-C(37) 1.378(8)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(36)-H(36)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(37)-H(37)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(38)-C(40)</td>
<td>1.530(9)</td>
</tr>
<tr>
<td>C(38)-C(39)</td>
<td>1.542(8)</td>
</tr>
<tr>
<td>C(38)-H(38)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(39)-H(39A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(39)-H(39B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(39)-H(39C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(40)-H(40A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(40)-H(40B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(40)-H(40C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(41)-C(43)</td>
<td>1.530(9)</td>
</tr>
<tr>
<td>C(41)-C(42)</td>
<td>1.541(8)</td>
</tr>
<tr>
<td>C(41)-H(41)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(42)-H(42A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(42)-H(42B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(42)-H(42C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(43)-H(43A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(43)-H(43B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(43)-H(43C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(44)-C(45)</td>
<td>1.531(8)</td>
</tr>
<tr>
<td>C(44)-C(46)</td>
<td>1.539(9)</td>
</tr>
<tr>
<td>C(44)-H(44)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(45)-H(45A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(45)-H(45B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(45)-H(45C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(46)-H(46A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(46)-H(46B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(46)-H(46C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(47)-C(48)</td>
<td>1.533(8)</td>
</tr>
<tr>
<td>C(47)-C(49)</td>
<td>1.544(8)</td>
</tr>
<tr>
<td>C(47)-H(47)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(48)-H(48A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(48)-H(48B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(48)-H(48C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(49)-H(49A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(49)-H(49B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(49)-H(49C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(50)-H(50A)</td>
<td>0.9801</td>
</tr>
<tr>
<td>C(50)-H(50B)</td>
<td>0.9801</td>
</tr>
<tr>
<td>C(50)-H(50C)</td>
<td>0.9801</td>
</tr>
<tr>
<td>C(25)-Pt(1)-P(3)</td>
<td>93.86(15)</td>
</tr>
<tr>
<td>C(25)-Pt(1)-P(2)</td>
<td>96.38(15)</td>
</tr>
<tr>
<td>P(3)-Pt(1)-P(2)</td>
<td>161.66(5)</td>
</tr>
<tr>
<td>C(25)-Pt(1)-P(1)</td>
<td>177.04(15)</td>
</tr>
<tr>
<td>P(3)-Pt(1)-P(1)</td>
<td>85.17(5)</td>
</tr>
<tr>
<td>P(2)-Pt(1)-P(1)</td>
<td>85.30(5)</td>
</tr>
<tr>
<td>C(50)-Pt(2)-P(5)</td>
<td>93.56(17)</td>
</tr>
<tr>
<td>C(50)-Pt(2)-P(6)</td>
<td>97.44(17)</td>
</tr>
<tr>
<td>P(5)-Pt(2)-P(6)</td>
<td>165.23(5)</td>
</tr>
<tr>
<td>C(50)-Pt(2)-P(4)</td>
<td>177.98(17)</td>
</tr>
<tr>
<td>P(5)-Pt(2)-P(4)</td>
<td>85.42(5)</td>
</tr>
<tr>
<td>Bond Description</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>P(6)-Pt(2)-P(4)</td>
<td>83.87(5)</td>
</tr>
<tr>
<td>C(1)-P(1)-C(7)</td>
<td>109.7(3)</td>
</tr>
<tr>
<td>C(1)-P(1)-Pt(1)</td>
<td>104.84(19)</td>
</tr>
<tr>
<td>C(7)-P(1)-Pt(1)</td>
<td>105.72(19)</td>
</tr>
<tr>
<td>C(2)-P(2)-C(13)</td>
<td>106.4(3)</td>
</tr>
<tr>
<td>C(2)-P(2)-C(16)</td>
<td>98.5(3)</td>
</tr>
<tr>
<td>C(13)-P(2)-Pt(1)</td>
<td>123.5(2)</td>
</tr>
<tr>
<td>C(16)-P(2)-Pt(1)</td>
<td>104.84(19)</td>
</tr>
<tr>
<td>C(8)-P(3)-C(22)</td>
<td>108.2(3)</td>
</tr>
<tr>
<td>C(8)-P(3)-C(19)</td>
<td>104.8(3)</td>
</tr>
<tr>
<td>C(22)-P(3)-C(19)</td>
<td>105.2(3)</td>
</tr>
<tr>
<td>C(19)-P(3)-Pt(1)</td>
<td>111.65(19)</td>
</tr>
<tr>
<td>C(19)-P(3)-Pt(1)</td>
<td>119.0(2)</td>
</tr>
<tr>
<td>C(32)-P(4)-C(26)</td>
<td>110.8(3)</td>
</tr>
<tr>
<td>C(32)-P(4)-Pt(2)</td>
<td>103.73(19)</td>
</tr>
<tr>
<td>C(26)-P(4)-Pt(2)</td>
<td>106.3(2)</td>
</tr>
<tr>
<td>C(41)-P(5)-C(27)</td>
<td>103.5(3)</td>
</tr>
<tr>
<td>C(41)-P(5)-C(38)</td>
<td>106.1(3)</td>
</tr>
<tr>
<td>C(27)-P(5)-C(38)</td>
<td>106.3(3)</td>
</tr>
<tr>
<td>C(41)-P(5)-Pt(2)</td>
<td>118.7(2)</td>
</tr>
<tr>
<td>C(27)-P(5)-Pt(2)</td>
<td>108.81(19)</td>
</tr>
<tr>
<td>C(38)-P(5)-Pt(2)</td>
<td>112.5(2)</td>
</tr>
<tr>
<td>C(33)-P(6)-C(44)</td>
<td>102.7(3)</td>
</tr>
<tr>
<td>C(33)-P(6)-C(47)</td>
<td>106.8(3)</td>
</tr>
<tr>
<td>C(44)-P(6)-C(47)</td>
<td>104.6(3)</td>
</tr>
<tr>
<td>C(33)-P(6)-Pt(2)</td>
<td>105.7(2)</td>
</tr>
<tr>
<td>C(44)-P(6)-Pt(2)</td>
<td>119.18(19)</td>
</tr>
<tr>
<td>C(47)-P(6)-Pt(2)</td>
<td>116.5(2)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(6)</td>
<td>116.4(5)</td>
</tr>
<tr>
<td>C(2)-C(1)-P(1)</td>
<td>116.6(4)</td>
</tr>
<tr>
<td>C(6)-C(1)-P(1)</td>
<td>126.4(4)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>121.9(5)</td>
</tr>
<tr>
<td>C(3)-C(2)-P(2)</td>
<td>120.7(4)</td>
</tr>
<tr>
<td>C(1)-C(2)-P(2)</td>
<td>117.3(4)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>120.6(6)</td>
</tr>
<tr>
<td>C(2)-C(3)-H(3)</td>
<td>119.7</td>
</tr>
<tr>
<td>C(4)-C(3)-H(3)</td>
<td>119.7</td>
</tr>
<tr>
<td>C(5)-C(4)-C(3)</td>
<td>118.1(6)</td>
</tr>
<tr>
<td>C(5)-C(4)-H(4)</td>
<td>120.9</td>
</tr>
<tr>
<td>C(3)-C(4)-H(4)</td>
<td>121.0</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)</td>
<td>121.5(6)</td>
</tr>
<tr>
<td>C(4)-C(5)-H(5)</td>
<td>119.3</td>
</tr>
<tr>
<td>C(6)-C(5)-H(5)</td>
<td>119.3</td>
</tr>
<tr>
<td>C(5)-C(6)-C(1)</td>
<td>121.3(6)</td>
</tr>
<tr>
<td>C(5)-C(6)-H(6)</td>
<td>119.4</td>
</tr>
<tr>
<td>C(1)-C(6)-H(6)</td>
<td>119.4</td>
</tr>
<tr>
<td>C(12)-C(7)-C(8)</td>
<td>118.4(5)</td>
</tr>
<tr>
<td>C(12)-C(7)-P(1)</td>
<td>124.3(5)</td>
</tr>
<tr>
<td>C(8)-C(7)-P(1)</td>
<td>116.5(4)</td>
</tr>
</tbody>
</table>
C(9)-C(8)-C(7) 119.2(5)
C(9)-C(8)-P(3) 122.7(5)
C(7)-C(8)-P(3) 118.0(4)
C(10)-C(9)-C(8) 121.5(6)
C(10)-C(9)-H(9) 119.3
C(8)-C(9)-H(9) 119.2
C(9)-C(10)-C(11) 119.2(6)
C(9)-C(10)-H(10) 120.2
C(11)-C(10)-H(10) 120.6
C(10)-C(11)-C(12) 120.6(6)
C(10)-C(11)-H(11) 119.5
C(12)-C(11)-H(11) 119.9
C(11)-C(12)-C(7) 120.9(6)
C(11)-C(12)-H(12) 119.3
C(7)-C(12)-H(12) 119.8
C(14)-C(13)-C(15) 109.6(5)
C(14)-C(13)-P(2) 112.6(4)
C(15)-C(13)-P(2) 110.7(4)
C(14)-C(13)-H(13) 107.8
C(15)-C(13)-H(13) 108.0
P(2)-C(13)-H(13) 107.9
C(13)-C(14)-H(14A) 109.5
C(13)-C(14)-H(14B) 109.3
H(14A)-C(14)-H(14B) 109.5
C(13)-C(14)-H(14C) 109.6
H(14A)-C(14)-H(14C) 109.5
H(14B)-C(14)-H(14C) 109.5
C(13)-C(15)-H(15A) 109.5
C(13)-C(15)-H(15B) 109.2
H(15A)-C(15)-H(15B) 109.5
C(13)-C(15)-H(15C) 109.7
H(15A)-C(15)-H(15C) 109.5
H(15B)-C(15)-H(15C) 109.5
C(17)-C(16)-C(18) 112.3(5)
C(17)-C(16)-P(2) 110.4(4)
C(18)-C(16)-P(2) 113.9(4)
C(17)-C(16)-H(16) 106.5
C(18)-C(16)-H(16) 106.6
P(2)-C(16)-H(16) 106.7
C(16)-C(17)-H(17A) 109.5
C(16)-C(17)-H(17B) 109.8
H(17A)-C(17)-H(17B) 109.5
C(16)-C(17)-H(17C) 109.1
H(17A)-C(17)-H(17C) 109.5
H(17B)-C(17)-H(17C) 109.5
C(16)-C(18)-H(18A) 109.3
C(16)-C(18)-H(18B) 109.6
H(18A)-C(18)-H(18B) 109.5
C(16)-C(18)-H(18C) 109.5
H(18A)-C(18)-H(18C) 109.5
H(18B)-C(18)-H(18C) 109.5
C(21)-C(19)-C(20) 111.7(5)
C(21)-C(19)-P(3) 111.6(4)
C(20)-C(19)-P(3) 109.4(4)
C(21)-C(19)-H(19) 107.9
C(20)-C(19)-H(19) 108.1
P(3)-C(19)-H(19) 108.0
C(19)-C(20)-H(20A) 109.5
C(19)-C(20)-H(20B) 109.4
H(20A)-C(20)-H(20B) 109.5
C(19)-C(20)-H(20C) 109.6
H(20A)-C(20)-H(20C) 109.5
C(19)-C(21)-H(21A) 109.3
C(19)-C(21)-H(21B) 109.6
H(21A)-C(21)-H(21B) 109.5
C(19)-C(21)-H(21C) 109.5
H(21A)-C(21)-H(21C) 109.5
H(21B)-C(21)-H(21C) 109.5
C(23)-C(22)-C(24) 110.1(5)
C(23)-C(22)-P(3) 117.8(4)
C(24)-C(22)-P(3) 110.2(4)
C(23)-C(22)-H(22) 106.1
C(24)-C(22)-H(22) 105.9
P(3)-C(22)-H(22) 105.9
C(22)-C(23)-H(23A) 109.8
C(22)-C(23)-H(23B) 109.3
H(23A)-C(23)-H(23B) 109.5
C(22)-C(23)-H(23C) 109.2
H(23A)-C(23)-H(23C) 109.5
H(23B)-C(23)-H(23C) 109.5
C(22)-C(24)-H(24A) 109.5
C(22)-C(24)-H(24B) 109.3
H(24A)-C(24)-H(24B) 109.5
C(22)-C(24)-H(24C) 109.6
H(24A)-C(24)-H(24C) 109.5
H(24B)-C(24)-H(24C) 109.5
Pt(1)-C(25)-H(25A) 109.5
Pt(1)-C(25)-H(25B) 109.4
H(25A)-C(25)-H(25B) 109.5
Pt(1)-C(25)-H(25C) 109.6
H(25A)-C(25)-H(25C) 109.5
H(25B)-C(25)-H(25C) 109.5
C(31)-C(26)-C(27) 117.5(6)
C(31)-C(26)-P(4) 124.8(5)
C(27)-C(26)-P(4) 116.2(5)
C(28)-C(27)-C(26) 119.4(6)
C(28)-C(27)-P(5) 123.1(5)
C(26)-C(27)-P(5) 117.4(5)
C(29)-C(28)-C(27) 120.6(6)
C(29)-C(28)-H(28) 119.6
C(27)-C(28)-H(28) 119.8
C(30)-C(29)-C(28) 119.6(6)
C(30)-C(29)-H(29) 120.2
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(28)-C(29)-H(29)</td>
<td>120.2</td>
</tr>
<tr>
<td>C(31)-C(30)-C(29)</td>
<td>120.1(6)</td>
</tr>
<tr>
<td>C(31)-C(30)-H(30)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(29)-C(30)-H(30)</td>
<td>120.1</td>
</tr>
<tr>
<td>C(30)-C(31)-C(26)</td>
<td>122.5(6)</td>
</tr>
<tr>
<td>C(30)-C(31)-H(31)</td>
<td>118.9</td>
</tr>
<tr>
<td>C(26)-C(31)-H(31)</td>
<td>118.6</td>
</tr>
<tr>
<td>C(37)-C(32)-C(33)</td>
<td>117.0(5)</td>
</tr>
<tr>
<td>C(37)-C(32)-P(4)</td>
<td>127.3(5)</td>
</tr>
<tr>
<td>C(33)-C(32)-P(4)</td>
<td>115.2(4)</td>
</tr>
<tr>
<td>C(34)-C(33)-C(32)</td>
<td>120.3(5)</td>
</tr>
<tr>
<td>C(34)-C(33)-P(6)</td>
<td>121.9(5)</td>
</tr>
<tr>
<td>C(32)-C(33)-P(6)</td>
<td>117.6(4)</td>
</tr>
<tr>
<td>C(35)-C(34)-C(33)</td>
<td>120.3(6)</td>
</tr>
<tr>
<td>C(35)-C(34)-H(34)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(33)-C(34)-H(34)</td>
<td>119.9</td>
</tr>
<tr>
<td>C(36)-C(35)-C(34)</td>
<td>120.1(5)</td>
</tr>
<tr>
<td>C(36)-C(35)-H(35)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(34)-C(35)-H(35)</td>
<td>120.1</td>
</tr>
<tr>
<td>C(35)-C(36)-C(37)</td>
<td>119.6(6)</td>
</tr>
<tr>
<td>C(35)-C(36)-H(36)</td>
<td>120.3</td>
</tr>
<tr>
<td>C(37)-C(36)-H(36)</td>
<td>120.1</td>
</tr>
<tr>
<td>C(36)-C(37)-C(32)</td>
<td>122.6(6)</td>
</tr>
<tr>
<td>C(36)-C(37)-H(37)</td>
<td>118.7</td>
</tr>
<tr>
<td>C(32)-C(37)-H(37)</td>
<td>118.8</td>
</tr>
<tr>
<td>C(40)-C(38)-C(39)</td>
<td>110.9(5)</td>
</tr>
<tr>
<td>C(40)-C(38)-P(5)</td>
<td>117.5(4)</td>
</tr>
<tr>
<td>C(39)-C(38)-P(5)</td>
<td>107.8(4)</td>
</tr>
<tr>
<td>C(40)-C(38)-H(38)</td>
<td>106.7</td>
</tr>
<tr>
<td>C(39)-C(38)-H(38)</td>
<td>106.8</td>
</tr>
<tr>
<td>P(5)-C(38)-H(38)</td>
<td>106.7</td>
</tr>
<tr>
<td>C(38)-C(39)-H(39A)</td>
<td>109.6</td>
</tr>
<tr>
<td>C(38)-C(39)-H(39B)</td>
<td>109.4</td>
</tr>
<tr>
<td>H(39A)-C(39)-H(39B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(38)-C(39)-H(39C)</td>
<td>109.4</td>
</tr>
<tr>
<td>H(39A)-C(39)-H(39C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(39B)-C(39)-H(39C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(38)-C(40)-H(40A)</td>
<td>109.4</td>
</tr>
<tr>
<td>C(38)-C(40)-H(40B)</td>
<td>109.4</td>
</tr>
<tr>
<td>H(40A)-C(40)-H(40B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(38)-C(40)-H(40C)</td>
<td>109.6</td>
</tr>
<tr>
<td>H(40A)-C(40)-H(40C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(40B)-C(40)-H(40C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(43)-C(41)-C(42)</td>
<td>110.4(6)</td>
</tr>
<tr>
<td>C(43)-C(41)-P(5)</td>
<td>112.5(4)</td>
</tr>
<tr>
<td>C(42)-C(41)-P(5)</td>
<td>109.5(4)</td>
</tr>
<tr>
<td>C(43)-C(41)-H(41)</td>
<td>108.2</td>
</tr>
<tr>
<td>C(42)-C(41)-H(41)</td>
<td>108.0</td>
</tr>
<tr>
<td>P(5)-C(41)-H(41)</td>
<td>108.1</td>
</tr>
<tr>
<td>C(41)-C(42)-H(42A)</td>
<td>109.3</td>
</tr>
<tr>
<td>C(41)-C(42)-H(42B)</td>
<td>109.6</td>
</tr>
<tr>
<td>H(42A)-C(42)-H(42B)</td>
<td>109.5</td>
</tr>
</tbody>
</table>
C(41)-C(42)-H(42C) 109.4
H(42A)-C(42)-H(42C) 109.5
H(42B)-C(42)-H(42C) 109.5
C(41)-C(43)-H(43A) 109.5
C(41)-C(43)-H(43B) 109.8
H(43A)-C(43)-H(43B) 109.5
C(41)-C(43)-H(43C) 109.1
H(43A)-C(43)-H(43C) 109.5
H(43B)-C(43)-H(43C) 109.5
C(45)-C(44)-C(46) 111.3(5)
C(45)-C(44)-P(6) 109.9(4)
C(46)-C(44)-P(6) 112.7(4)
C(45)-C(44)-H(44) 107.7
C(46)-C(44)-H(44) 107.5
P(6)-C(44)-H(44) 107.5
C(44)-C(45)-H(45A) 109.5
C(44)-C(45)-H(45B) 109.4
H(45A)-C(45)-H(45B) 109.5
C(44)-C(45)-H(45C) 109.5
H(45A)-C(45)-H(45C) 109.5
H(45B)-C(45)-H(45C) 109.5
C(44)-C(46)-H(46A) 109.4
C(44)-C(46)-H(46B) 109.7
H(46A)-C(46)-H(46B) 109.5
C(44)-C(46)-H(46C) 109.3
H(46A)-C(46)-H(46C) 109.5
H(46B)-C(46)-H(46C) 109.5
C(48)-C(47)-C(49) 110.8(5)
C(48)-C(47)-P(6) 115.1(4)
C(49)-C(47)-P(6) 108.1(4)
C(48)-C(47)-H(47) 107.6
C(49)-C(47)-H(47) 107.5
P(6)-C(47)-H(47) 107.5
C(47)-C(48)-H(48A) 109.6
C(47)-C(48)-H(48B) 109.4
H(48A)-C(48)-H(48B) 109.5
C(47)-C(48)-H(48C) 109.3
H(48A)-C(48)-H(48C) 109.5
H(48B)-C(48)-H(48C) 109.5
C(47)-C(49)-H(49A) 109.4
C(47)-C(49)-H(49B) 109.5
H(49A)-C(49)-H(49B) 109.5
C(47)-C(49)-H(49C) 109.5
H(49A)-C(49)-H(49C) 109.5
H(49B)-C(49)-H(49C) 109.5
Pt(2)-C(50)-H(50A) 109.4
Pt(2)-C(50)-H(50B) 109.5
H(50A)-C(50)-H(50B) 109.5
Pt(2)-C(50)-H(50C) 109.5
H(50A)-C(50)-H(50C) 109.5
H(50B)-C(50)-H(50C) 109.5
Symmetry transformations used to generate equivalent atoms:
Table S9. Anisotropic displacement parameters (Å² x 10³) for 3[Pr-PPP]-Pt(CH₃). The anisotropic displacement factor exponent takes the form: -2π² [h² a*²U₁₁ + ... + 2 h k a* b* U₁₂]

<table>
<thead>
<tr>
<th></th>
<th>U¹¹</th>
<th>U²²</th>
<th>U³³</th>
<th>U²³</th>
<th>U¹³</th>
<th>U¹²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)</td>
<td>12(1)</td>
<td>9(1)</td>
<td>11(1)</td>
<td>1(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>Pt(2)</td>
<td>11(1)</td>
<td>10(1)</td>
<td>13(1)</td>
<td>2(1)</td>
<td>1(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>P(1)</td>
<td>12(1)</td>
<td>11(1)</td>
<td>11(1)</td>
<td>-1(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>P(2)</td>
<td>10(1)</td>
<td>11(1)</td>
<td>14(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>P(3)</td>
<td>12(1)</td>
<td>12(1)</td>
<td>14(1)</td>
<td>-1(1)</td>
<td>0(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>P(4)</td>
<td>12(1)</td>
<td>11(1)</td>
<td>15(1)</td>
<td>0(1)</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>P(5)</td>
<td>14(1)</td>
<td>8(1)</td>
<td>14(1)</td>
<td>-1(1)</td>
<td>-2(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>P(6)</td>
<td>13(1)</td>
<td>10(1)</td>
<td>16(1)</td>
<td>1(1)</td>
<td>-1(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>13(3)</td>
<td>8(3)</td>
<td>19(3)</td>
<td>-1(2)</td>
<td>7(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>17(3)</td>
<td>11(3)</td>
<td>15(3)</td>
<td>1(2)</td>
<td>0(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>19(3)</td>
<td>16(3)</td>
<td>17(3)</td>
<td>-5(2)</td>
<td>2(3)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>27(4)</td>
<td>15(3)</td>
<td>18(3)</td>
<td>2(2)</td>
<td>3(3)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>C(5)</td>
<td>29(4)</td>
<td>19(3)</td>
<td>20(3)</td>
<td>3(3)</td>
<td>-2(3)</td>
<td>1(3)</td>
</tr>
<tr>
<td>C(6)</td>
<td>14(3)</td>
<td>23(3)</td>
<td>16(3)</td>
<td>1(2)</td>
<td>-2(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>15(3)</td>
<td>13(3)</td>
<td>14(3)</td>
<td>-6(2)</td>
<td>-4(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>14(3)</td>
<td>13(3)</td>
<td>17(3)</td>
<td>-5(2)</td>
<td>-4(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>21(3)</td>
<td>23(3)</td>
<td>15(3)</td>
<td>-3(2)</td>
<td>3(3)</td>
<td>-9(3)</td>
</tr>
<tr>
<td>C(10)</td>
<td>17(3)</td>
<td>22(3)</td>
<td>22(3)</td>
<td>-9(3)</td>
<td>-6(3)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>20(3)</td>
<td>14(3)</td>
<td>21(3)</td>
<td>-4(2)</td>
<td>-7(3)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>17(3)</td>
<td>13(3)</td>
<td>17(3)</td>
<td>-2(2)</td>
<td>-4(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>11(3)</td>
<td>18(3)</td>
<td>19(3)</td>
<td>0(2)</td>
<td>1(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>23(4)</td>
<td>22(3)</td>
<td>30(4)</td>
<td>3(3)</td>
<td>-3(3)</td>
<td>4(3)</td>
</tr>
<tr>
<td>C(15)</td>
<td>16(3)</td>
<td>34(4)</td>
<td>37(4)</td>
<td>14(3)</td>
<td>4(3)</td>
<td>7(3)</td>
</tr>
<tr>
<td>C(16)</td>
<td>18(3)</td>
<td>9(3)</td>
<td>17(3)</td>
<td>-1(2)</td>
<td>-3(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(17)</td>
<td>14(3)</td>
<td>15(3)</td>
<td>29(3)</td>
<td>-4(3)</td>
<td>-2(3)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(18)</td>
<td>22(4)</td>
<td>22(3)</td>
<td>20(3)</td>
<td>-3(3)</td>
<td>-6(3)</td>
<td>-5(3)</td>
</tr>
<tr>
<td>C(19)</td>
<td>17(3)</td>
<td>7(3)</td>
<td>26(3)</td>
<td>-2(2)</td>
<td>0(3)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(20)</td>
<td>20(3)</td>
<td>15(3)</td>
<td>34(4)</td>
<td>-8(3)</td>
<td>-1(3)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(21)</td>
<td>32(4)</td>
<td>9(3)</td>
<td>28(4)</td>
<td>4(3)</td>
<td>19(3)</td>
<td>-2(3)</td>
</tr>
<tr>
<td>C(22)</td>
<td>20(3)</td>
<td>16(3)</td>
<td>12(3)</td>
<td>1(2)</td>
<td>2(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(23)</td>
<td>23(4)</td>
<td>17(3)</td>
<td>25(3)</td>
<td>-5(3)</td>
<td>7(3)</td>
<td>-1(3)</td>
</tr>
<tr>
<td>C(24)</td>
<td>29(4)</td>
<td>17(3)</td>
<td>25(4)</td>
<td>-1(3)</td>
<td>-1(3)</td>
<td>-1(3)</td>
</tr>
<tr>
<td>C(25)</td>
<td>12(3)</td>
<td>8(2)</td>
<td>18(3)</td>
<td>-3(2)</td>
<td>-4(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(26)</td>
<td>10(3)</td>
<td>20(3)</td>
<td>17(3)</td>
<td>-8(2)</td>
<td>0(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(27)</td>
<td>10(3)</td>
<td>13(3)</td>
<td>24(3)</td>
<td>-3(2)</td>
<td>-2(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(28)</td>
<td>22(4)</td>
<td>10(3)</td>
<td>35(4)</td>
<td>-10(3)</td>
<td>1(3)</td>
<td>6(2)</td>
</tr>
<tr>
<td>C(29)</td>
<td>22(4)</td>
<td>26(4)</td>
<td>24(3)</td>
<td>-8(3)</td>
<td>8(3)</td>
<td>-9(3)</td>
</tr>
<tr>
<td>C(30)</td>
<td>25(4)</td>
<td>23(3)</td>
<td>20(3)</td>
<td>4(3)</td>
<td>6(3)</td>
<td>-4(3)</td>
</tr>
<tr>
<td>C(31)</td>
<td>28(4)</td>
<td>21(3)</td>
<td>21(3)</td>
<td>5(3)</td>
<td>-5(3)</td>
<td>1(3)</td>
</tr>
<tr>
<td>C(32)</td>
<td>9(3)</td>
<td>11(3)</td>
<td>18(3)</td>
<td>2(2)</td>
<td>-2(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(33)</td>
<td>22(3)</td>
<td>12(3)</td>
<td>9(3)</td>
<td>0(2)</td>
<td>-4(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(34)</td>
<td>14(3)</td>
<td>20(3)</td>
<td>21(3)</td>
<td>2(2)</td>
<td>0(2)</td>
<td>5(2)</td>
</tr>
<tr>
<td>C(35)</td>
<td>27(4)</td>
<td>11(3)</td>
<td>25(3)</td>
<td>3(2)</td>
<td>-9(3)</td>
<td>6(2)</td>
</tr>
<tr>
<td>C(36)</td>
<td>31(4)</td>
<td>14(3)</td>
<td>18(3)</td>
<td>6(2)</td>
<td>-6(3)</td>
<td>1(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>C(37)</td>
<td>17(3)</td>
<td>14(3)</td>
<td>29(4)</td>
<td>0(3)</td>
<td>2(3)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(38)</td>
<td>22(4)</td>
<td>12(3)</td>
<td>17(3)</td>
<td>2(2)</td>
<td>0(3)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(39)</td>
<td>22(4)</td>
<td>25(3)</td>
<td>22(3)</td>
<td>0(3)</td>
<td>-9(3)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>C(40)</td>
<td>32(4)</td>
<td>15(3)</td>
<td>28(4)</td>
<td>-6(3)</td>
<td>-1(3)</td>
<td>2(3)</td>
</tr>
<tr>
<td>C(41)</td>
<td>19(3)</td>
<td>16(3)</td>
<td>24(3)</td>
<td>-7(2)</td>
<td>-1(3)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(42)</td>
<td>26(4)</td>
<td>36(4)</td>
<td>37(4)</td>
<td>-16(3)</td>
<td>-12(3)</td>
<td>5(3)</td>
</tr>
<tr>
<td>C(43)</td>
<td>29(4)</td>
<td>37(4)</td>
<td>21(3)</td>
<td>7(3)</td>
<td>-6(3)</td>
<td>10(3)</td>
</tr>
<tr>
<td>C(44)</td>
<td>10(3)</td>
<td>14(3)</td>
<td>24(3)</td>
<td>-4(2)</td>
<td>3(3)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(45)</td>
<td>21(4)</td>
<td>29(4)</td>
<td>27(4)</td>
<td>-9(3)</td>
<td>-6(3)</td>
<td>0(3)</td>
</tr>
<tr>
<td>C(46)</td>
<td>21(4)</td>
<td>25(4)</td>
<td>46(4)</td>
<td>-1(3)</td>
<td>4(3)</td>
<td>-3(3)</td>
</tr>
<tr>
<td>C(47)</td>
<td>24(4)</td>
<td>17(3)</td>
<td>13(3)</td>
<td>-2(2)</td>
<td>-3(3)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(48)</td>
<td>25(4)</td>
<td>20(3)</td>
<td>28(4)</td>
<td>-5(3)</td>
<td>-5(3)</td>
<td>7(3)</td>
</tr>
<tr>
<td>C(49)</td>
<td>23(4)</td>
<td>21(3)</td>
<td>31(4)</td>
<td>-6(3)</td>
<td>-8(3)</td>
<td>-2(3)</td>
</tr>
<tr>
<td>C(50)</td>
<td>18(3)</td>
<td>8(3)</td>
<td>29(3)</td>
<td>2(2)</td>
<td>1(3)</td>
<td>-1(2)</td>
</tr>
</tbody>
</table>
Table S10. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å2 x 10^3) for 3 ([Pr-PPP]-Pt(CH$_3$)).

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(3)</td>
<td>-2176</td>
<td>4037</td>
<td>6579</td>
<td>21</td>
</tr>
<tr>
<td>H(4)</td>
<td>-1613</td>
<td>3088</td>
<td>7174</td>
<td>24</td>
</tr>
<tr>
<td>H(5)</td>
<td>-16</td>
<td>3559</td>
<td>7587</td>
<td>27</td>
</tr>
<tr>
<td>H(6)</td>
<td>872</td>
<td>5009</td>
<td>7467</td>
<td>21</td>
</tr>
<tr>
<td>H(9)</td>
<td>4075</td>
<td>7950</td>
<td>6549</td>
<td>24</td>
</tr>
<tr>
<td>H(10)</td>
<td>5008</td>
<td>7383</td>
<td>7165</td>
<td>25</td>
</tr>
<tr>
<td>H(11)</td>
<td>4013</td>
<td>6453</td>
<td>7651</td>
<td>22</td>
</tr>
<tr>
<td>H(12)</td>
<td>2101</td>
<td>6076</td>
<td>7522</td>
<td>19</td>
</tr>
<tr>
<td>H(13)</td>
<td>-3173</td>
<td>5310</td>
<td>6030</td>
<td>19</td>
</tr>
<tr>
<td>H(14A)</td>
<td>-2889</td>
<td>6785</td>
<td>6658</td>
<td>38</td>
</tr>
<tr>
<td>H(14B)</td>
<td>-3149</td>
<td>5685</td>
<td>6761</td>
<td>38</td>
</tr>
<tr>
<td>H(14C)</td>
<td>-4094</td>
<td>6328</td>
<td>6519</td>
<td>38</td>
</tr>
<tr>
<td>H(15A)</td>
<td>-3911</td>
<td>6759</td>
<td>5758</td>
<td>44</td>
</tr>
<tr>
<td>H(15B)</td>
<td>-2770</td>
<td>6504</td>
<td>5509</td>
<td>44</td>
</tr>
<tr>
<td>H(15C)</td>
<td>-2744</td>
<td>7302</td>
<td>5878</td>
<td>44</td>
</tr>
<tr>
<td>H(16)</td>
<td>-1452</td>
<td>4132</td>
<td>5892</td>
<td>18</td>
</tr>
<tr>
<td>H(17A)</td>
<td>305</td>
<td>3808</td>
<td>5608</td>
<td>29</td>
</tr>
<tr>
<td>H(17B)</td>
<td>489</td>
<td>4278</td>
<td>6073</td>
<td>29</td>
</tr>
<tr>
<td>H(17C)</td>
<td>677</td>
<td>4907</td>
<td>5651</td>
<td>29</td>
</tr>
<tr>
<td>H(18A)</td>
<td>-1135</td>
<td>5444</td>
<td>5206</td>
<td>32</td>
</tr>
<tr>
<td>H(18B)</td>
<td>-2322</td>
<td>4967</td>
<td>5335</td>
<td>32</td>
</tr>
<tr>
<td>H(18C)</td>
<td>-1331</td>
<td>4319</td>
<td>5141</td>
<td>32</td>
</tr>
<tr>
<td>H(19)</td>
<td>2594</td>
<td>9230</td>
<td>6218</td>
<td>21</td>
</tr>
<tr>
<td>H(20A)</td>
<td>1197</td>
<td>10016</td>
<td>6610</td>
<td>34</td>
</tr>
<tr>
<td>H(20B)</td>
<td>1444</td>
<td>9000</td>
<td>6830</td>
<td>34</td>
</tr>
<tr>
<td>H(20C)</td>
<td>321</td>
<td>9149</td>
<td>6535</td>
<td>34</td>
</tr>
<tr>
<td>H(21A)</td>
<td>512</td>
<td>9234</td>
<td>5729</td>
<td>34</td>
</tr>
<tr>
<td>H(21B)</td>
<td>1760</td>
<td>9245</td>
<td>5529</td>
<td>34</td>
</tr>
<tr>
<td>H(21C)</td>
<td>1323</td>
<td>10145</td>
<td>5798</td>
<td>34</td>
</tr>
<tr>
<td>H(22)</td>
<td>2223</td>
<td>7504</td>
<td>5426</td>
<td>19</td>
</tr>
<tr>
<td>H(23A)</td>
<td>4352</td>
<td>7810</td>
<td>5854</td>
<td>33</td>
</tr>
<tr>
<td>H(23B)</td>
<td>3597</td>
<td>8667</td>
<td>5658</td>
<td>33</td>
</tr>
<tr>
<td>H(23C)</td>
<td>4092</td>
<td>7860</td>
<td>5348</td>
<td>33</td>
</tr>
<tr>
<td>H(24A)</td>
<td>3406</td>
<td>6160</td>
<td>5427</td>
<td>35</td>
</tr>
<tr>
<td>H(24B)</td>
<td>2299</td>
<td>5943</td>
<td>5703</td>
<td>35</td>
</tr>
<tr>
<td>H(24C)</td>
<td>3494</td>
<td>6172</td>
<td>5941</td>
<td>35</td>
</tr>
<tr>
<td>H(25A)</td>
<td>80</td>
<td>7841</td>
<td>5376</td>
<td>19</td>
</tr>
<tr>
<td>H(25B)</td>
<td>-991</td>
<td>7129</td>
<td>5365</td>
<td>19</td>
</tr>
<tr>
<td>H(25C)</td>
<td>258</td>
<td>6733</td>
<td>5265</td>
<td>19</td>
</tr>
<tr>
<td>H(28)</td>
<td>2165</td>
<td>2963</td>
<td>6827</td>
<td>26</td>
</tr>
<tr>
<td>H(29)</td>
<td>1370</td>
<td>2046</td>
<td>7376</td>
<td>29</td>
</tr>
<tr>
<td>H(30)</td>
<td>2139</td>
<td>550</td>
<td>7544</td>
<td>27</td>
</tr>
<tr>
<td>H(31)</td>
<td>3588</td>
<td>-73</td>
<td>7144</td>
<td>28</td>
</tr>
<tr>
<td>H(34)</td>
<td>8515</td>
<td>-723</td>
<td>6280</td>
<td>22</td>
</tr>
<tr>
<td>H(35)</td>
<td>8414</td>
<td>-1691</td>
<td>6887</td>
<td>26</td>
</tr>
<tr>
<td>H(36)</td>
<td>6852</td>
<td>-1571</td>
<td>7336</td>
<td>25</td>
</tr>
<tr>
<td>H(37)</td>
<td>5298</td>
<td>-643</td>
<td>7130</td>
<td>24</td>
</tr>
<tr>
<td>H(38)</td>
<td>5061</td>
<td>4171</td>
<td>6280</td>
<td>20</td>
</tr>
<tr>
<td>H(39A)</td>
<td>5771</td>
<td>4162</td>
<td>6991</td>
<td>35</td>
</tr>
<tr>
<td>H(39B)</td>
<td>6025</td>
<td>3150</td>
<td>6771</td>
<td>35</td>
</tr>
<tr>
<td>H(39C)</td>
<td>5002</td>
<td>3251</td>
<td>7101</td>
<td>35</td>
</tr>
<tr>
<td>H(40A)</td>
<td>3327</td>
<td>4295</td>
<td>6903</td>
<td>38</td>
</tr>
<tr>
<td>H(40B)</td>
<td>3106</td>
<td>4617</td>
<td>6415</td>
<td>38</td>
</tr>
<tr>
<td>H(40C)</td>
<td>4043</td>
<td>5160</td>
<td>6707</td>
<td>38</td>
</tr>
<tr>
<td>H(41)</td>
<td>2334</td>
<td>3371</td>
<td>6056</td>
<td>24</td>
</tr>
<tr>
<td>H(42A)</td>
<td>1809</td>
<td>2262</td>
<td>5474</td>
<td>50</td>
</tr>
<tr>
<td>H(42B)</td>
<td>1926</td>
<td>1780</td>
<td>5939</td>
<td>50</td>
</tr>
<tr>
<td>H(42C)</td>
<td>2930</td>
<td>1663</td>
<td>5603</td>
<td>50</td>
</tr>
<tr>
<td>H(43A)</td>
<td>3769</td>
<td>3294</td>
<td>5324</td>
<td>43</td>
</tr>
<tr>
<td>H(43B)</td>
<td>3708</td>
<td>4208</td>
<td>5633</td>
<td>43</td>
</tr>
<tr>
<td>H(43C)</td>
<td>2604</td>
<td>3886</td>
<td>5356</td>
<td>43</td>
</tr>
<tr>
<td>H(44)</td>
<td>9035</td>
<td>639</td>
<td>5972</td>
<td>19</td>
</tr>
<tr>
<td>H(45A)</td>
<td>9462</td>
<td>1982</td>
<td>6408</td>
<td>39</td>
</tr>
<tr>
<td>H(45B)</td>
<td>8478</td>
<td>1352</td>
<td>6617</td>
<td>39</td>
</tr>
<tr>
<td>H(45C)</td>
<td>8159</td>
<td>2324</td>
<td>6370</td>
<td>39</td>
</tr>
<tr>
<td>H(46A)</td>
<td>8420</td>
<td>2396</td>
<td>5550</td>
<td>46</td>
</tr>
<tr>
<td>H(46B)</td>
<td>8776</td>
<td>1441</td>
<td>5302</td>
<td>46</td>
</tr>
<tr>
<td>H(46C)</td>
<td>9693</td>
<td>1987</td>
<td>5602</td>
<td>46</td>
</tr>
<tr>
<td>H(47)</td>
<td>6959</td>
<td>521</td>
<td>5145</td>
<td>22</td>
</tr>
<tr>
<td>H(48A)</td>
<td>8161</td>
<td>-1032</td>
<td>5551</td>
<td>36</td>
</tr>
<tr>
<td>H(48B)</td>
<td>8767</td>
<td>-145</td>
<td>5323</td>
<td>36</td>
</tr>
<tr>
<td>H(48C)</td>
<td>8017</td>
<td>-883</td>
<td>5042</td>
<td>36</td>
</tr>
<tr>
<td>H(49A)</td>
<td>5857</td>
<td>-883</td>
<td>5100</td>
<td>38</td>
</tr>
<tr>
<td>H(49B)</td>
<td>5265</td>
<td>-160</td>
<td>5426</td>
<td>38</td>
</tr>
<tr>
<td>H(49C)</td>
<td>5990</td>
<td>-1050</td>
<td>5608</td>
<td>38</td>
</tr>
<tr>
<td>H(50A)</td>
<td>5666</td>
<td>3471</td>
<td>5581</td>
<td>27</td>
</tr>
<tr>
<td>H(50B)</td>
<td>6595</td>
<td>2774</td>
<td>5378</td>
<td>27</td>
</tr>
<tr>
<td>H(50C)</td>
<td>6868</td>
<td>3303</td>
<td>5825</td>
<td>27</td>
</tr>
</tbody>
</table>
Figure S3. Emission spectrum of 1 in the SO$_2$ free form (black trace) and in the SO$_2$ bound form (grey trace). 1 concentration = 1 µM; [SO$_2$] = 90 mM. All time traces were measured at room temperature and in benzene.
Figure S4. Emission spectrum of 1 in the NO free form (black trace) and in the NO bound form (grey trace). 1 concentration = 1 µM; [NO] = 230 µM. All time traces were measured at room temperature and in benzene.
Figure S5. 31P-NMR of 1 in the NO free form (lower spectrum) and in the NO bound form. The spectra were measured at room temperature, C$_6$D$_6$. [NO] = 300 µM.