Search for a heavy bottom-like quark in pp collisions at $\sqrt{s} = 7$ TeV

CMS Collaboration *

CERN, Switzerland

A R T I C L E I N F O

Article history:
Received 23 February 2011
Received in revised form 27 May 2011
Accepted 30 May 2011
Available online 6 June 2011
Editor: M. Doser

Keywords:
CMS
Physics
Exotica

A B S T R A C T

A search for pair-produced bottom-like quarks in pp collisions at $\sqrt{s} = 7$ TeV is conducted with the CMS experiment at the LHC. The decay $b' \rightarrow tW$ is considered in this search. The $b' \rightarrow tW^+W^-$ process can be identified by the distinctive signature of trileptons and same-sign dileptons. With a data sample corresponding to an integrated luminosity of 34 pb$^{-1}$, no excess above the standard model background predictions is observed and a b' quark with a mass between 255 and 361 GeV/c2 is excluded at the 95% confidence level.

© 2011 CERN. Published by Elsevier B.V. All rights reserved.

The standard model with three generations of quarks describes remarkably well almost all particle physics phenomena observed to date. Although adding a fourth generation of massive fermions is an obvious extension of the model, it became less popular when limits were obtained on the number of light neutrino flavours [1–5]. In addition, precise measurements of the electroweak parameters disfavour such a possibility [6,7]. Recently, however, there has been renewed interest in the fourth generation [8–12], since indirect bounds on the Higgs boson mass can be relaxed [13,14], and an additional generation of quarks may possess enough intrinsic matter and anti-matter asymmetry to be relevant for the baryon asymmetry of the Universe [15].

A search for a heavy bottom-like quark (b') is presented in pp collisions at a centre-of-mass energy of 7 TeV with the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). The decay chain $b'b' \rightarrow tW^-W^+ \rightarrow bW^+W^-W^+$ is expected to be dominant if the mass of the b' quark ($M_{b'}$) is larger than the sum of top-quark and W-boson masses and the coupling between b' and top preponderates over other quarks [16]. A b' mass below this threshold is disfavoured by results from several previous experiments [17]. As each W boson can decay leptonically into $e\nu$ or $\mu\nu$ in 22% of the cases, the full decay chain may lead to distinctive signatures with two isolated leptons with the same electric charge (same-sign dileptons) or three isolated leptons in the final state. These signatures cover 7.3% of the total decays and are expected to happen very rarely in the standard model. A similar search in these decay channels has been carried out by the CDF experiment [17], setting a lower limit of 338 GeV/c2 at the 95% confidence level (CL) on the mass of b' quark.1

The central feature of the CMS detector is a large-solid-angle magnetic spectrometer, with an axial magnetic field of 3.8 T provided by a superconducting solenoid. Charged particle trajectories are measured by a silicon pixel detector and strip tracker. A lead tungstate crystal electromagnetic calorimeter (ECAL), with a lead/scintillator hadron calorimeter (HCAL) are placed outside of the tracker, which together provide high resolution measurements for electrons, photons and hadronic jets. The hermetic design of the detector allows good measurement of missing transverse energy. Muons are detected by the tracker and a gas-ionization detector embedded in the steel magnetic field return yoke. A detailed description of the CMS detector can be found in Ref. [19].

This analysis is based on a data sample corresponding to an integrated luminosity of 34 pb$^{-1}$ recorded during the 2010 run. A two-level trigger system [20] selects events for further analysis. The events in this search are selected by requiring the presence of at least two electrons or at least one muon in the trigger. Given the trigger efficiencies measured in data for single-trigger objects, the trigger efficiency for the final state in the kinematic region of the off-line analysis has been determined to be more than 99% from simulation studies.

Candidate muons are reconstructed with a global fit of trajectories using hits in the tracker and the muon system. Muons are required to have transverse momenta $p_T > 20$ GeV/c and $|\eta| < 2.4$.

1 A new analysis from CDF, in the lepton plus multijet channel, sets the b' quark mass limit at 372 GeV/c2 [18].
where η is the pseudorapidity, defined as $\eta = -\ln(\tan \theta/2)$ and θ is the polar angle relative to the counterclockwise proton beam direction as measured from the nominal interaction vertex. As discussed in Ref. [21], the muon candidate must be associated with hits in the silicon strip and the pixel detector, have segments in the muon chambers, and have a high-quality global fit to the track trajectory. The efficiency for these muon selection criteria is 99% or higher. In addition, the muon track is required to be consistent with originating from the primary interaction vertex.

Reconstruction of electron candidates starts from clusters of energy deposits in the ECAL, which are then matched to hits in the silicon tracker. Electron candidates are required to have $p_T > 20$ GeV/c. Candidates are required to be reconstructed in the fiducial volume of the barrel ($|\eta| < 1.478$) or in the end-caps ($1.55 < |\eta| < 2.4$). The electron candidate track is required to be consistent with originating from the interaction vertex. Electrons are identified using variables which include the ratio between the energy deposited in the HCAL and the ECAL, the shower width in η, and the distance between the calorimeter shower and the particle trajectory in the tracker, measured in both η and azimuthal angle (ϕ). The selection criteria are optimized [22] to reject the background from hadronic jets while maintaining an efficiency of 85% for the electrons from W or Z decays.

Events with fewer than four (two) jets are rejected for the three leptons (two of which must be oppositely charged) are selected. Hadronic jets are clustered from the particles reconstructed in the fiducial volume of the barrel or in the end-caps. The electron candidate track is required to be consistent with originating from the interaction vertex. Electrons are identified using variables which include the ratio between the energy deposited in the HCAL and the ECAL, the shower width in η, and the distance between the calorimeter shower and the particle trajectory in the tracker, measured in both η and azimuthal angle (ϕ). The selection criteria are optimized [22] to reject the background from hadronic jets while maintaining an efficiency of 85% for the electrons from W or Z decays.

Electrons from W → ℓν ($\ell = e, \mu$) decays are expected to be isolated from other particles in the detector. A cone of $\Delta R < 0.3$, where $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$, is constructed around the lepton candidate direction. The scalar sum of the transverse momenta and calorimeter energy deposits inside the cone projected onto the transverse plane is calculated, excluding contributions from the lepton candidate. A barrel (end-cap) electron candidate is rejected if this scalar sum exceeds 9% (6%) of the candidate p_T, while the scalar sum for a muon candidate is not allowed to exceed 20%. Electron candidates are further required to be separated from the selected muon candidates; any electron candidate within a $\Delta R < 0.1$ cone of a muon candidate is rejected to remove misidentified electrons due to muon bremsstrahlung. Electron candidates which are identified as coming from photon conversions are also rejected.

Hadronic jets are clustered from the particles reconstructed with a use of all CMS sub-detectors by the particle-flow global event reconstruction described in Refs. [23–26], with an anti-k_T jet algorithm [27]. The energy calibration [28] is performed separately for each particle type; the resulting jet energies require only a small correction accounting for thresholds and residual inefficiencies. Jet candidates are required to have a minimum p_T of 25 GeV/c and $|\eta| < 2.4$. Neutrinos from W boson decays escape the detector and thus produce a significant energy imbalance in the detector. An important quantity is the missing transverse energy, E_T, which describes the imbalance of detected energy perpendicular to the beam direction. It is defined as the negative of the vectorial sum of the transverse momenta of all particles reconstructed by the particle-flow algorithm [25,29].

Events are required to have at least one well reconstructed interaction vertex [30]. Events with two same-sign leptons or with three leptons (two of which must be oppositely charged) are selected. Events with fewer than four (two) jets are rejected for the same-sign dilepton (trilepton) channel. In addition, events with an oppositely-charged muon or electron pair with $|M_{t+\ell^-} - M_{t^-\ell^+}| < 10$ GeV/c2 are rejected in order to suppress the background from Z decays. The background due to charge misidentification is substantially larger for electrons than muons; thus events with a same-sign electron pair with $|M_{e+\ell^-} - M_{\mu+\ell^-}| < 10$ GeV/c2 are also discarded. For each event, the scalar quantity $S_T = \sum p_T(\text{leptons}) + \sum p_T(\text{jets})$ is determined and a minimum S_T of 350 GeV is required.

Selection efficiencies for signal events are estimated using samples simulated with the MadGraph/MadEvent generator [31] with up to two additional partons in the hard interactions. Two additional quarks are implemented as a straightforward extension to the standard model configuration of the generator. The events are subsequently processed with PYTHIA (v6.420) [32] to provide parton showering and hadronization of the particles with the MLM matching prescription [33], and then passed through a simulation of the CMS detector based on GEANT4 [34]. The signal efficiency varies from 3.1 to 4.6% for $b\bar{b}$ masses between 300 and 500 GeV/c2. These efficiencies include the W decay branching fractions. The jet multiplicities for the trilepton and same-sign dilepton channels are shown in Fig. 1. The distributions of dilepton invariant mass $M_{\ell\ell}$ and S_T are shown in Fig. 2. The expected distributions of the $b\bar{b}$ signal are normalized with the production cross section calculated at the next-to-leading order (NLO) in α_s [35], for a $b\bar{b}$ with 400 GeV/c2 mass.

The search is performed in the following sequence. Background sources are examined with simulated samples. Methods based on data in control samples are used to estimate the contributions of relevant background sources. These background estimation methods are validated on simulated samples. Finally, the observed yield in data, the background derived from data, signal efficiencies, and the integrated luminosity are converted to a limit on the pp → $b\bar{b}$ production cross section.

The expected yields and efficiencies for signal and background from simulations are summarized in Table 1. The background contributions from $pp \rightarrow t\bar{t} +$ jets and $W/Z +$ jets are normalized to the CMS measured inclusive $pp \rightarrow t\bar{t}$, W, and Z cross sections [36,37]. The simulated samples for $pp \rightarrow t\bar{t} +$ jets and $W/Z +$ jets processes include internal state b and c quarks in the hard interactions. Production of dibosons is estimated with NLO cross sections given by mcfm [38]. The $t\bar{t} + W/Z$ and same-sign WW + jj processes are calculated using the MadGRAPH generator at leading order (LO) in α_s. The total background yield based solely on simulation is estimated to be 0.33 events. The dominant background contribution comes from $pp \rightarrow t\bar{t} +$ jets events; contributions from other processes are very small.

For the same-sign dilepton channel, there are two types of $t\bar{t}$ background: single-lepton $t\bar{t}$ events with an extra misidentified or non-isolated lepton, or dilepton $t\bar{t}$ events with a charge-mismatched electron. Background yields are re-estimated from data as follows.

Leptons chosen with relaxed selection criteria are denoted as “loose” muons and “loose” electrons. Leptons chosen with the full selection criteria defined above are denoted as “tight” muons and “tight” electrons. The background events with a misidentified or non-isolated lepton are estimated using a control sample with one tight lepton and one loose lepton, with the rest of the selection criteria exactly the same as for signal. The background contribution is calculated from the yields observed in the control samples multiplied by the ratios of the number of electrons or muons passing tight and loose cuts. These ratios are determined from data by taking the ratios between the number of events in the control sample with two loose leptons, and the control sample with one loose plus one tight lepton. The background contribution from electron charge misidentification is determined from control samples with oppositely-charged electron pairs or from $e^-\mu$ events. The charge misidentification rate (0.6 ± 0.1%) is determined by measuring the Z boson events reconstructed using two electron candidates with the same electric charge, and is normalized to the yield of $Z \rightarrow e^-\mu^+$ events.

For the trilepton channel, the background yield in the signal region is estimated using a control sample with the same criteria as for the signal, but requiring only two leptons with opposite
Fig. 1. Jet multiplicity distributions for the same-sign dilepton channel (top), and the trilepton channel (bottom). The star in the bottom plot represents the single measured event, which fails to satisfy the requirement on jet multiplicity. The open histogram is the signal contribution expected from a b' with $M_{b'} = 400$ GeV/c^2. The light blue and dark green filled histograms show the contributions from $t\bar{t}+$ jets and $t\bar{t}+W(Z)+$ jets respectively. The shaded histogram represents electroweak processes ($W(Z)+$ jets, dibosons). All selections are applied except the one corresponding to the plotted variable. The histograms are normalized to the predictions from simulation. The vertical dotted lines indicate the minimum numbers of jets required in events selected for each of the channels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 2. The invariant mass distribution (top) of two muons with opposite charges or electrons of any charge, $M(\ell\ell)$, and the S_T distribution (bottom) including same-sign dilepton and trilepton channels. The star in the bottom plot represents the measured event, which fails to satisfy the requirement on S_T. The open histogram is the signal contribution expected from a b' with $M_{b'} = 400$ GeV/c^2. The light blue and dark green filled histograms show the contributions from $t\bar{t}+$ jets and $t\bar{t}+W(Z)+$ jets respectively. The shaded histogram represents electroweak processes ($W(Z)+$ jets, dibosons). All selections are applied except the one corresponding to the plotted variable. Events with an electron pair or an opposite sign muon pair, with $M(\ell\ell)$ falling in the region defined by the vertical dotted lines on the top plot, are rejected in order to suppress the background from Z events. The histograms are normalized to the predictions from simulation. The vertical dotted line in the bottom plot indicates the lower S_T threshold used in the analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

charges. The normalization between the background in the signal region and the background in the control sample is determined from simulations.

The background yield in the signal region, including both trilepton and same-sign dilepton channels, is estimated from the data-based technique to be 0.32 events. In order to validate the procedure, and to assign a systematic uncertainty, the study in the same-sign dilepton channel is repeated on a weighted mixture of fully simulated samples representing the potential background. The weight for each physics process in the simulated events is derived from the cross sections, as listed in Table 1. Applying this
sets given by CTEQ6[40] are used to determine the uncertainties on the efficiencies and background estimation, respectively. Uncertainty on the muons and electrons result in uncertainties of 13% and 1.5% in signal dilepton final states in the appropriate proportions of selected events. These uncertainties are included by varying the normalization on the relevant processes as described in [37] and considered as a systematic uncertainty of 29% on background estimation. The contribution is calculated to be smaller than 0.09 events per bin.

The magnitude of the difference between the signal and background yields is conservatively estimated to be 0.21 events. This is compared to the expected signal yield of 0.09 events obtained in the signal region. The QCD yield in the signal region is estimated using a control sample with two (three) loose leptons for each

<table>
<thead>
<tr>
<th>Process</th>
<th>Cross section</th>
<th>(\epsilon) [%]</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b'b', M_\ell = 300 \text{ GeV/c}^2)</td>
<td>7.29 pb (NLO)</td>
<td>3.08</td>
<td>7.7</td>
</tr>
<tr>
<td>(b'b', M_\ell = 350 \text{ GeV/c}^2)</td>
<td>2.94 pb (NLO)</td>
<td>3.75</td>
<td>3.8</td>
</tr>
<tr>
<td>(b'b', M_\ell = 400 \text{ GeV/c}^2)</td>
<td>1.30 pb (NLO)</td>
<td>3.99</td>
<td>1.8</td>
</tr>
<tr>
<td>(b'b', M_\ell = 450 \text{ GeV/c}^2)</td>
<td>0.617 pb (NLO)</td>
<td>4.34</td>
<td>0.91</td>
</tr>
<tr>
<td>(b'b', M_\ell = 500 \text{ GeV/c}^2)</td>
<td>0.310 pb (NLO)</td>
<td>4.58</td>
<td>0.49</td>
</tr>
<tr>
<td>(\bar{t}t + \text{jets})</td>
<td>(1.9 \times 10^3 \text{ pb (CMS)})</td>
<td>(4.1 \times 10^{-3})</td>
<td>0.27</td>
</tr>
<tr>
<td>(\bar{t}t + W + \text{jets})</td>
<td>0.144 pb (LO)</td>
<td>0.67</td>
<td>0.033</td>
</tr>
<tr>
<td>(\bar{t}t + Z + \text{jets})</td>
<td>0.094 pb (LO)</td>
<td>0.50</td>
<td>0.016</td>
</tr>
<tr>
<td>(W + \text{jets})</td>
<td>(3.0 \times 10^3 \text{ pb (CMS)})</td>
<td>(4.0 \times 10^{-3})</td>
<td>0.11</td>
</tr>
<tr>
<td>(Z + \text{jets})</td>
<td>(2.9 \times 10^3 \text{ pb (CMS)})</td>
<td>(9.2 \times 10^{-3})</td>
<td>0.09</td>
</tr>
<tr>
<td>(WW)</td>
<td>43 pb (NLO)</td>
<td>(8.2 \times 10^{-4})</td>
<td>0.012</td>
</tr>
<tr>
<td>(WZ)</td>
<td>18 pb (NLO)</td>
<td>(8.1 \times 10^{-4})</td>
<td>0.005</td>
</tr>
<tr>
<td>(ZZ)</td>
<td>5.9 pb (NLO)</td>
<td>(3.0 \times 10^{-4})</td>
<td>0.006</td>
</tr>
<tr>
<td>(\text{Same-sign WW + jj})</td>
<td>0.15 pb (LO)</td>
<td>3.9 \times 10^{-2}</td>
<td>0.002</td>
</tr>
<tr>
<td>Background sum</td>
<td>–</td>
<td>–</td>
<td>0.33</td>
</tr>
<tr>
<td>Data-driven background yield</td>
<td>–</td>
<td>–</td>
<td>0.32</td>
</tr>
<tr>
<td>Observed yield in data</td>
<td>–</td>
<td>–</td>
<td>0</td>
</tr>
</tbody>
</table>

The 68% confidence level limit on the cross section for the signal process is calculated to be 168 pb, using the maximum likelihood method with the same assumptions as for the mass hypothesis, cross sections, selection efficiencies, and background estimations. The ranges represent the dependence on the input b' mass.

Table 2
Summary of relative systematic uncertainties for signal selection efficiencies \((\Delta \epsilon / \epsilon) \) and for background estimations \((\Delta B/B) \). The ranges represent the dependence on the input b' mass.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\Delta \epsilon / \epsilon) [%]</th>
<th>(\Delta B/B) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy of control-sample method</td>
<td>–</td>
<td>56</td>
</tr>
<tr>
<td>Norm: QCD multijet</td>
<td>–</td>
<td>29</td>
</tr>
<tr>
<td>Norm: (\bar{t}t + \text{jets})</td>
<td>–</td>
<td>0.5</td>
</tr>
<tr>
<td>Norm: W(Z) + jets</td>
<td>–</td>
<td>1.0</td>
</tr>
<tr>
<td>Norm: dibosons</td>
<td>–</td>
<td>0.9</td>
</tr>
<tr>
<td>Norm: other processes</td>
<td>–</td>
<td>5.5</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>1.1-2.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>0.1-0.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Missing energy resolution</td>
<td>0.1-1.2</td>
<td>5.6</td>
</tr>
<tr>
<td>Lepton selection</td>
<td>13</td>
<td>1.5</td>
</tr>
<tr>
<td>Pile-up</td>
<td>1.0-1.2</td>
<td><0.1</td>
</tr>
<tr>
<td>PDF</td>
<td>0.5-1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Control sample statistics</td>
<td>–</td>
<td>13</td>
</tr>
<tr>
<td>Simulated sample statistics</td>
<td>2.4-3.0</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>65</td>
</tr>
</tbody>
</table>

The background yield in the signal region is 0.32 events with a total relative uncertainty of 65%. No events are observed in the data, which is consistent with the background expectation. An event is found below the 5\(\sigma \) threshold in the same-sign dilepton channel (Fig. 2), and another event is rejected by the jet multiplicity requirement in the trilepton channel (Fig. 1). These two events are consistent with the expected total background yield of 0.69, if the requirements on \(\Delta \epsilon / \epsilon \) and jet multiplicity in trilepton channel are relaxed to 200 GeV/c^2 and 1, respectively.

For each b' mass hypothesis, cross sections, selection efficiencies and associated uncertainties are estimated (Table 1). From the statistical analysis of the simulated events, the signal yield is estimated to be: 0.09 events.

The systematic uncertainties on the measured yields in the control samples. The statistical uncertainties on the yields in the control samples are included in the uncertainty on the backgrounds. The QCD multijet contribution is estimated using a control sample with two (three) loose leptons for each same-sign dilepton (trilepton) candidate, where the rest of the criteria are the same as for signal. The QCD yield in the signal region is obtained from the yields observed in the control sample, multiplied by the ratios of the number of leptons passing tight and loose cuts. The contribution is calculated to be smaller than 0.09 events and considered as a systematic uncertainty of 29% on background estimation. The uncertainties on the background cross sections are included by varying the normalization on the relevant processes as follows: ±3% for \(\bar{t}t + \text{jets} \) [36], ±3% (±4%) for W (Z) [37], ±(27 to 42)% for dibosons, and ±50% for other processes. Lepton selection efficiencies are measured using inclusive Z samples; the resulting uncertainties on the yields in the control samples are smaller than 2%. An additional systematic uncertainty was assigned with a magnitude of 50% on the efficiency difference between simulated Z and b' samples due to the effects of different event topologies. This results in 5.8% and 5.4% uncertainties for the electrons and muons, respectively. Weighted averages including trilepton and same-sign dilepton final states in the appropriate proportions of selected muons and electrons result uncertainties of 13% and 1.5% in signal efficiency and background estimation, respectively. Uncertainty sets given by CTEQ6 [40] are used to determine the uncertainties from parton distribution functions (PDFs). Weights for each simulated event are recalculated, and the variations are summed in quadrature. The systematic effects of the jet energy scale uncertainty, jet resolution, \(\Delta \epsilon / \epsilon \) resolution, and jets from pile-up are found to be small [28,29]. The total uncertainties on the signal selection efficiency and on the background estimation are evaluated to be 13% and 65%, respectively, and are summarized in Table 2.
Fig. 3. The exclusion limits at the 95% CL on the pp $\rightarrow b\bar{b}'$ production cross section. The solid line represents the observed limits, while the dotted line represents the limit expected with the available sample size, assuming the presence of standard model processes alone. Comparing with NLO production cross sections, b' mass less than 361 GeV/c² is excluded with an assumption of 100% b' $\rightarrow tW$ decay branching fraction.

these, and from the estimated background yield and zero selected events, upper limits on b' b' cross sections at the 95% CL are derived using a Bayesian method with a log-normal prior for integration over the nuisance parameters [41]. The resulting upper limits on the b' b' cross section are 3.0, 2.46, 2.31, 2.13, and 2.01 pb for mass hypotheses of 300, 350, 400, 450, and 500 GeV/c², respectively. These limits are plotted as the solid line in Fig. 3, while the dotted line represents the limit expected with the available sample size, assuming the presence of standard model processes alone. By comparing to the NLO production cross section for pp $\rightarrow b\bar{b}'$, a lower limit of 361 GeV/c² is extracted for the mass of the b' quark at the 95% CL.

In summary, a search for a heavy bottom-like quark produced in proton–proton collisions at $\sqrt{s} = 7$ TeV has been presented. The production of pp $\rightarrow b\bar{b}' \rightarrow tW^+W^-$ has been studied in a data set corresponding to an integrated luminosity of 34 pb$^{-1}$ collected by the CMS detector during 2010. Final states with the signatures of trileptons or same-sign dileptons are very rare in standard model processes alone. By comparing to the NLO production cross section for pp $\rightarrow b\bar{b}'$, a lower limit of 361 GeV/c² is extracted for the mass of the b' quark at the 95% CL.

Acknowledgements

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMISR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and COLCIENCIAS (Georgia); CNRS, CEAP, CNES, and CEA (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINEVESTIV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); CPT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAFI (Russia); MSTD (Serbia); MICINN and CAFEP (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

CMS Collaboration

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

Institut für Höchenergiephysik der OeAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

National Centre for Particle and High Energy Physics, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, G.H. Hammad, T. Hreus, P.E. Marage, L. Thomas, C. Vander Velde, P. Vanlaer

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

N. Belyi, T. Caeborgs, E. Daubie

Université de Mons, Mons, Belgium

G.A. Alves, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

B. Bylsma, L.S. Durkin, J. Gu, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, G. Williams

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

P. Jindal, N. Parashar

Purdue University Calumet, Hammond, USA

Rice University, Houston, USA

University of Rochester, Rochester, USA

A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian, M. Yan

The Rockefeller University, New York, USA

Rutgers, the State University of New Jersey, Piscataway, USA

G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

N. Akchurin, J. Damgov, C. Jeong, K. Kovitanggoon, S.W. Lee, Y. Roh, A. Sill, I. Volobouev, R. Wigmans, E. Yazgan

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

M.W. Arenton, M. Balazs, S. Boutle, M. Buehler, B. Cox, B. Francis, R. Hirosky, A. Ledovsky, C. Lin, C. Neu, R. Yohay

University of Virginia, Charlottesville, USA

S. Gollapinni, R. Harr, P.E. Karchin, P. Lamichhane, M. Mattson, C. Milstêne, A. Sakharov

Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA

* Corresponding author.
E-mail address: Roberto.Tenchini@cern.ch (R. Tenchini).
1 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
2 Also at Universidade Federal do ABC, Santo Andre, Brazil.
3 Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3–CNRS, Palaiseau, France.
4 Also at British University, Cairo, Egypt.
5 Also at Fayoum University, El-Fayoum, Egypt.
6 Also at Soltan Institute for Nuclear Studies, Warsaw, Poland.
7 Also at Massachusetts Institute of Technology, Cambridge, USA.
8 Also at Université de Haute-Alsace, Mulhouse, France.
9 Also at Brandenburg University of Technology, Cottbus, Germany.
10 Also at Moscow State University, Moscow, Russia.
11 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
12 Also at Eötvös Loránd University, Budapest, Hungary.
13 Also at Tata Institute of Fundamental Research – HECR, Mumbai, India.
14 Also at University of Visva-Bharati, Santiniketan, India.
15 Also at Facoltà Ingegneria Università di Roma “La Sapienza”, Roma, Italy.
16 Also at Università della Basilicata, Potenza, Italy.
17 Also at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy.
18 Also at Università degli studi di Siena, Siena, Italy.
19 Also at California Institute of Technology, Pasadena, USA.
20 Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia.
21 Also at University of California, Los Angeles, Los Angeles, USA.
22 Also at University of Florida, Gainesville, USA.
23 Also at Università de Genève, Geneva, Switzerland.
24 Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
25 Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy.
26 Also at University of Athens, Athens, Greece.
27 Also at The University of Kansas, Lawrence, USA.
28 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
29 Also at Paul Scherrer Institut, Villigen, Switzerland.
30 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
31 Also at Gaziosmanpasa University, Tokat, Turkey.
32 Also at Adiyaman University, Adiyaman, Turkey.
33 Also at Mersin University, Mersin, Turkey.
34 Also at Izmir Institute of Technology, Izmir, Turkey.
35 Also at Kafkas University, Kars, Turkey.
36 Also at Suleyman Demirel University, Isparta, Turkey.
37 Also at Ege University, Izmir, Turkey.
38 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
39 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
40 Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy.
41 Also at Institute for Nuclear Research, Moscow, Russia.
42 Also at Los Alamos National Laboratory, Los Alamos, USA.
† Deceased.