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Abstract 

The high priority assigned by the Federal government to the early 
development and commercial deployment of the Liquid Metal Fast Breeder 
Reactor (LMFBR) is attributed by some to the supposition that, without 
the breeder, a supply-price squeeze on uranium will soon material ize. 
The present paper examines this supposition by considering the technol-
ogy and economics of uranium utilization in nonbreeder reactors, in the 
context of available information about uranium resources at various 
prices and projections of the growth of nuclear power through 2020. 
Reactor characteristics, cost sensitivities, and estimates of uranium 
resources used here are based largely on publications of the U.S. Atomic 
Energy Commission. The results show that existing reactor technologies -­
light-water reactors (LWRs), high temperature gas reactors (HTGRs), or a 
mix of these -- could meet even the most enthusiastic projections of the 
expansion of nuclear generation through 2020 from presently known domestic 
uranium supplies, exploitable at $50 per pound of U308 or less. The incre­
ment in electricity costs that arises from increasing uranium prices in 
the absence of commercial breeder reactors is about 1 mill/kwhe in 2000 
and about 2 mills/kwhe in 2020 in the worst case (very high growth, no 
HTGRs), and signficantly less in more plausible cases. In the prospective 
of the probable costs of the alternatives, these increments are modest; 
for example, the breeder1s greater insensitivity to the cost of uranium 
ore could easily be cancelled out if capital costs for the LMFBR prove 
higher than early estimates. 

Briefer attention is given here to potential difficulties with 
rapid expansion of uranium mining operations, with enrichment capacity, 
and with environmental impact of mining low grade ores. Timely action 
in the first two areas would be required to meet high growth projections, 
but no fundamental obstacles are apparent. The environmental issue needs 
more study, but on present evidence does not constitute a persuasive case 
for an early commitment to the LMFBR. It is concluded that the urgency 
often ascribed to early deployment of LMFBRs on grounds of uranium avail­
ability is, in fact, illusory. 



Introduction 

The program to develop and loy liquid-metal fast breeder reactors 

(lMFBRs) for the commercial generation of electricity evidently is regarded 

by policy makers as the most urgent and deserving target of Federal spending 

on energy research and development. Of $772 million originally requested by 

the President for research and development related to energy technology in 

FY 1974, $323 mill ion was earmarked for the LMFBR.l The lMFBR absorbed 

$272 mill ion from a total of $642 million appropriated for Federal energy 

R&D in FY 1973, and $237 million from a total of $537 million in FY 1972. 1,2 

It remains the largest single item in the $11 bill ion energy R&D budget pro­

posed for fiscal years 1975-79, although its fractional share has dropped to 

about 25 percent of the total. 3 

Critics of the LMFBR have raised a number of major objections to the 

program. It has been asserted that the cost-benefit analysis perfomed by 

the U.S. Atomic Energy Commission (AEC) to justify the program was biased;4 

that the LMFBR is likely to be less safe against catastrophic accidents than 

existing water-cooled and gas-cooled reactors;4,S that protecting the large 

amounts of plutonium produced by LMFBRs against inadvertent dispersal or 

clandestine diversion for use as a nuclear explosive may prove too difficult 

to accomplish reliably;6 and that some of the funds being devoted to LMFBR 

10pment would better be spent elsewhere -- for example, on the unresolved 

generic problems of fission reactors (such as management of radioactive 

wastes and fissionable materials), on the safety of the water-cooled reactors 

already being deployed, on alternative forms of breeder reactors, or on 

technologies promise to be environmentally more benign than fission. 
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Some of these assertions are arguable, of course, and mayor may not 

ultimately prove to be true. In any case, however, the points raised by 

the critics of the LMFBR are too substantial to be dismissed casually. In 

the face of the genuine uncertainties and substantial differences of compe­

tent opinion regarding the LMFBR, and in view of the considerable economic 

and environmental stakes, it seems prudent to ask whether the crash program 

to develop and deploy this technology is warranted. To question the urgency 

of the LMFBR program, of course p is not necessarily to dispute that the 

nation may eventually need the LMFBR, or to oppose continued research on 

LMFBR technology; it Is rather to ask whether the need for commercial LMFBRs 

in the power grid by the mid 1980's is really as pressing as the AEC has 

imp lied. 7 

Examination of the literature of this subject leaves 1 ittle doubt that 

the principal rationale for an early commitment to the LMFBR has been the 

prospect of a supply-price squeeze on uranium. More specifically, the AEC 

hypothesis is that the forecasted rapid growth of nuclear power would, in 

the absence of some form of breeder reactor, deplete the domestic suppl ies 

of low-cost uranium in the space of the next few decades. Thereafter, it is 

implied, the cost of electricity generated in water-cooled or gas-cooled non­

breeder reactors would become prohibitive (or at least noncompetitive with 

fossil fuels), owing to rapidly climbing uranium prices as the industry 

resorted to the remaining poorer quality ores. Breeder reactors, t economy 

of which is very insensitive to the cost of raw uranium, can avert this 

premature demise of nuclear fission as a major energy source. The LMFBR, 
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now the furthest along technologically of the various approaches to breeding, 

Is the method of choice. 

Although some observers may argue that the foregoing is an overslmpl i­

fied view of the rationale for early deployment of lMFBRs, the testimony of 

those closest to the program indicates otherwise. A recent article coauthored 

by the deputy director of the Oak Ridge National laboratory and by the manager 

of Oak Ridgels lMFBR program states: 

As we shall see, however, fission as now carried out in 

commercial nuclear reactors, which are all of a type known 

as converters, would soon use up the available nuclear 

fuel resources. Only if breeder reactors are perfected 

can we expect to utilize the essentially inexhaustible 

supply of energy that exists in reasonably assured, 

economical quantities. 8 

Further on in the same article, one finds: 

Note that, in a power economy based strictly on 1 ight 

water reactors (lWRs), for which CR (converstion ratio) 

is about 0.6, exorbitantly high-cost ore would be needed 

shortly after the turn of the century, and the sit~ation 

would continue to worsen with no relief in sight. High­

temperature gas-cooled reactors (HTGRs) for which CR is 

about 0.8, would give a slightly improved but essentially 

similar result. 9 
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The situation is described even more bluntly by the manager of the LMFBR 

program at Westinghouse, the primary contractor for the LMFBR demonstration 

plant to be installed In the Tennessee Valley Authority grid. After noting 

that LMFBRs will present prospective uti1 ity buyers with uncertainties 

regarding reliability and 1 icensabil tty compared to more proven reactor 

designs, he and his coauthor wrote: 

No utility executive will therefore be willing to take 

licensing risks on the LMFBR unless he is confronted with 

a squeeze on fuel resources, 10 

It is the objective of this paper to examine the time scale and dimen­

sions with which such a squeeze in uranium resources actually is likely to 

materialize, and, accordingly, to assess the validity of the hypothesis that 

the uranium situation justifies an early commitment to deployment of LMFBRs. 

No position is taken here on other aspects of LMFBR technology, safety, or 

environmental impact -- which certainly bear on the ultimate necessity or 

desirability of this technology -- except to note that only a strong conclu­

sion in favor of impending serious uranium shortage would seem to justify a 

crash program toward lMFBR deployment in the face of existing un~nswered 

questions about these other aspects. 

The analysis begins with a brief summary of the physics, technology 

and economics of uranium utilization in light water reactors, high-temperature 

gas-cooled reactors, and LMFBRs. (LWRs completely dominate today1s commercial 

reactor market in the U.S., and only HTGRs threaten seriously to intrude upon 
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that dominance prior to the advent of breeder reactors,11 There is no 

need t in the context of the issue being examined here, to complicate the 

discussion by including reactor types other than LWRs, HTGRs, and LMFBRs.) 

AEC estimates of uranium availability as a function of price are then re­

viewed, along with various forecasts of the growth of nuclear generation 

of electricity. These results are combined with AEC figures for the effect 

of uranium cost on the costs of electricity generated in LWRs and HTGRs, to 

determine the impact on uranium supply and electricity costs of achieving 

the forecasted levels of generation without the LMFBR or other forms of 

breeder. The issues of enrichment capacity and of environmental impact of 

mining low-grade uranium ores, which are associated with the prospect of 

expanded use of unclear energy in the absence of breeder reactors, are also 

briefly addressed. 

Some Elements of Reactor Technology 

Fissile isotopes are those that are capable of a self-sustaining 

fission chain reaction: the important ones are uranlum-235, uranlum-233, 

and plutonium-239. All fission reactors require one or more of these three 

as fuel. Only uranium-235 occurs naturally in significant quantlties,12 

compr.ising 0.7 percent of natural uranium. Uranlum-233 and plutonium-239 

can be by bombarding the fertile isotopes, thorium-232 and uranlum-

, with neutrons. 13 fertile isotopes are much more abundant in 

nature Is uranium-235: uranium-238 comprises 99.3 percent of natural 

uranium 9 and natural thorium» which Is about three times as abundant in the 
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earth1s crust as uranium, is virtually all thorium-232. The energy yield 

from the fissioning of any of the fissile isotopes can for practical purposes 

be considered to be 195 MeV per fission,14 or about 22,000 kilowatt-hours­

thermal (kwht) per gram of material fissioned. 

Since the splitting of the fissile isotopes produces between 2.5 and 

2.9 neutrons per fission, and since in principle only one neutron per fission 

is needed to maintain the chain reaction, it is possible to use some of the 

excess neutrons in a reactor to produce new fissile nuclei from fertile ones. 

In practice, not all of the neutrons can be used productively: some escape 

from the reactor core; some are absorbed by the fuel nonproductively (without 

inducing fission or transformation of fertile material); others are absorbed 

by the control rods, the moderator, fission products, and structural materials 

in the core. The number of fertile-fissile transformations actually occurring 

per fissile nucleus consumed is called the conversion ratio. 

In the light water reactors that dominate U.S. commercial reactor tech­

nology at the present time, the conversion ratio is between 0.4 and 0.6. In 

these lWRs, the initial fissile material is U-235, the fertile material is 

U-238, and the fissile material produced is Pu-239. (SubseQ4ent neutron 

absorptions by Pu-239 produce Pu-240, Pu-241, and Pu-242, of which only Pu-241 

is fissile.) Some of the fissile plutonium created is consumed inevitably 

in the reactor, contributing to energy generation and supp1ying neutrons for 

further fertile-fissile conversions, or absorbing neutrons nonproductively; 

the remaining plutonium is recovered from the spent fuel at a fuel reprocessing 
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plant. In an lWR, then, a conversion ratio of 0.5 means that for each 

two nuclei of uranium-235 or fissile plutonium destroyed, one new nucleus 

of fissile plutonium is produced. 

Now it is easy to show that, in theory, a reactor with conversion 

ratio ~<1 can ultimately produce 1/1 (1-r) fissile nuclei for each fissile 

nucleus initially supplied to it, assuming that all fissile material is 

continuously recycled and that there are no losses in the recycling pro­

cess. 15 This result might seem to suggest that the energy theoretically 

extractable from natural uranium a reactor with conversion ratio r is 

1/1 (l_~) times the energy obtainable from fissioning just the U-235 content 

(i.e., 7 grams U-235 per kg uranium). If this were true, one would expect 

ultimately to fission 7/(1-0.5) = 14 9 per kg of natural uranium supplied 

to a reactor with a conversion ratio of 0.5. In reality, reactors do not 

do this well, for three reasons. First, not all fissile nuclei produced 

are consumed In the reactor; there are unavoidable losses in the recycling 

process, amounting at present to about 2 percent of the fissile material 

per cycle. 16 Second, not all fissile nuclei consumed in the reactor are 

flssioned; nonproductive absorption of neutrons accounts for the consumption 

of about one U-235 nucleus in seven and one Pu-239 nucleus in four in a 

lWR.17 Third, not all the U-235 in raw uranium reaches the reactor at all; 

in addition to small losses in fuel preparation (on the order to a percent 

of the U-235 content), there Is a very substantial loss of U-235 associated 



with the use of enriched uranium as fuel,* In the case of present LWRs, 

which use fuel with U-235 content enriched to 2 to 3.3 percent, the loss 

of U-235 in the enrichment process is on the order of 20 percent of the 

original U-235 content of natural uranium,18 

Compensating for a small part of the losses of fissile nuclei just 

described is the fission of U-238 by particularly energetic neutrons,19 

This process is incapable of sustaining a chain reaction on Its own, but 

it can add about 5 percent to the energy release in a chain reaction based 

primarily on fissile U-235 and plutonium. 

Detailed analyses by the AEC of the fuel cycles of LWRs of contem-

porary design, taking into account the full details of the processes and 

losses sketched only superficially here, reveal that the overall uranium 

utilization of such reactors should be between 9,7 and 12.4 grams fissloned 

per kg of uranium mined, assuming that the plutonium produced is recycled. 20 

These results are based on an operating lifetime of 30 years with average 

load factors between 80 and 85 percent, and they correspond to conversion 

ratios in the range 0.53 - 0.55. A figure of 10 g fissioned per kg of 

uranium mined means, of course, an absolute uranium utilization efficiency 

of 1 percent, measured against the (theoretically unattainable) situation 

in which every uranium nucleus is ultimately fissloned. A fuel-cycle flow 

diagram for LWRs is shown in Figure 1. 

*Enrichment of the U-235 content of uranium above its natural value of 0.7 
percent is necessary to make reactors moderated with ordinary water -- and 
unmoderated (fast neutron) reactors -- practical at all. Reactors moderated 
by heavy water or graphite can operate on natural uranium, but for a variety 
of reasons may also be designed for enriched fuel. 
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It should be noted that, historically, the plutonium produced in 

lWRs in the United States has not been recycled. Instead it has been 

purchased by the government for use in nuclear weapons or stockpiled for 

eventual use in the initial inventories of breeder reactors. The latter 

course has been motivated by the ready availability of enough enriched 

uranium at low cost to meet the needs of lWRs up to the present time, and 

by the fact that Pu-239 is somewhat superior to U-235 as lMFBR fuel and 

sl ightly inferior to it as lWR fuel. There is, however, no significant 

technical obstacle to the recycling of plutonium In LWRs, and this Is now 

being done in the Big Rock (Michigan) commercial lWR. 21 In comparing the 

long-term impact of alternative reactor technologies on uranium supplies, 

therefore, there Is every reason to credit the lWR with its ability to recycle 

plutonium. (To fail to do so would be Illogical, but it will be noticed that 

the associated change in computed uranium utilization in lWRs from about 

10 9 fissioned per kg of uranium with recycling to about 7 9 per kg without 

it would not substantially change the outcome of this study.) 

The high-temperature gas-cooled reactor of U.S, design differs from 

the in its uranium utilization properties in two principal respects: 

the IS conversion ratio of about 0.8 is substantially higher, and the 

fertile-fissile conversion employed Is Th-232 to U-233 instead of U-238 to 

Pu-239. initial fuel loading consists of fully enriched uranium (93.8 

percent U-235) plus natural thorium, and in subsequent batches some of the 

is replaced recycled U-233. (Note that if the initial uranium 
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supplied were not fully enriched in U-235, the additional U-238 present 

would lead to unwanted plutonium production at the expense of that of 

U-233.) 

It is the availability of U-235 rather than that of Th-232 that 

limits the fuel supply of the HTGR and, as shown below, governs its fuel 

cost by a large margin. Thus it makes sense to compute the fuel uti1 i­

zation of the HTGR in terms of total grams fissioned per kg of uranium 

mined, just as for the LWR, despite the fact that some of the material 

fissioning in the HTGR actually originated as thorium. On this basis, the 

AECls computations for the actual uranium util ization of HTGRs with recycling 

of U-233 yield 14.2 to 18.8 grams fissioned per kg of uranium mined. 22 (Part 

of the advantage of the higher conversion ratio of the HTGR in comparison to 

the LWR is cancelled by a greater loss of U-235 occasioned by the higher 

degree of enrichment 28 percent of the initial U-235 content of the 

uranium remains in the IItails" of enrichment to 94 percent.) Figure 2 shows 

a flow diagram of the HTGR fuel cycle. 

The definition of a breeder reactor is that the conversion ratio 

exceeds unity; when this is the case, the reactor produces more fissile 

material than it consumes. Once supplied with its initial fissile inventory, 

such a reactor thereafter need only be provided with fertile material. 

After a period called the doubling time (which depends on the conversion 

ratio, power level, and the size of the initial fissile inventory) a breeder 

reactor will have produced enough new fissile material to replace its own 
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initial inventory and to provide such an inventory tor a second, identical 

reactor. The liquid-metal cooled fast breeder reactor, which has been the 

most intensively explored of the various possible breeder technologies, uses 

either U-235 or plutonium as the initial fissile material and in operation 

breeds plutonium from U-238. According to the AEC, the conversion ratio for 

early commercial lMFBRs should be about 1.3, that of advanced ones about 

1.5. 23 It is said that the ultimate uranium utilization of the lMFBR will 

be between 500 and 700 grams fissioned per kg of uranium mined. 24 (Since 

the lMFBR can even use the tails from the enrichment process as a source of 

fertile U-238, the only losses preventing 100 percent utilization are non­

productive consumption of fissile nuclei in the reactor and the small per­

centage losses each time fissile material is recycled.) A fuel-cycle flow 

diagram for the lMFBR is shown in Figure 3. 

A reactor of any kind contains a significant inventory of fissile 

fuel considerably greater, in fact, than one year's consumption. The 

cumulative demand for uranium at any given time therefore exceeds the 

cumulative consumption up to that time by the amount of the inventories in 

the existing reactors. The U30S requirement for the initial fuel inventory 

of a 1000 Mwe lWR is 300 to 600 metric tons, for an HTGR 400 to 500 metric 

tons. and for an lMFBR 500 to 900 metric tons. 25 (In a fission economy 

based on the lMFBR» of course» the U30a requirements for initial inventories 

would fall dramatically once bred plutonium became available to replace 

U-235 in new reactors.) Nominal values for inventories, fuel consumption, 
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and related characteristics, as they will be used in the remainder of 

this paper, are summarized in Table 1. 

Economics of Uranium Utilization 

The cost of uranium is generally quoted in terms of dollars per 

pound of uranium oxide (U308), as purchased at the mill where this material 

has been separated from the raw ore. The figure most frequently seen in 

the literature is $8 per pound of U308 ($17.60 per kg), which during most 

of the 1960s was the price at which the AEC made its own uranium purchases. 

(In 1970 the AEC terminated its U308 purchasing program entirely.) In the 

late 1960s and early 1970s the average price of U30S at the mill in the 

private uranium market varied between $5.50 and $7.50 per pound. 26 These 

prices reflect both the cost of mining operations and the cost of extracting 

the U308 from the ore. 

Beyond this point, the economics of nuclear fuel utilization becomes 

surprisingly complex, owing largely to the many steps in nuclear fuel cycles 

(see Figs. 1-3). The U30S is converted to UF6 • then separated in a gaseous 

diffusion plant into two streams, respectively enriched and depleted in 

terms of U-235 content; the enriched UF6 stream is then converted to U02, 

which is fabricated into the fuel elements to be used in reactors. Following 

IIburnupli in a reactor, the spent elements undergo chemical reprocessing to 

separate the remaining uranium and plutonium from the fission products. Then 

the uranium is reconverted to UF6 and reenters an enrichment plant; the 

plutonium is stored, sold or recycled; and the fission products are committed 

to a waste repository. Analyses of the contribution of the costs of these 
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various steps to the price of nuclear power generation vary in detail 

according to the assumptions used, but a rough average for lWRs is as 

fol10ws: 27 

(a) 0.4 mil1s/kwhe for the purchase of U30a, at $8/Ib; 

(b) 0,1 mill/kwhe for conversion to UF6 and reconversion to 

U02, at about $2/kg; 

(c) 0,5 mil1s/kwhe for enrichment, at $26 per kg of separative 

work; 

(d) 0,4 mil1s/kwhe for fabrication at about $70 per kg U; 

(e) 0.2 mills/kwhe for reprocessing and waste management 

(including shipping), at $45 kg of U; 

(f) 0.5 mil1s/kwhe for carrying charges on the fuel inventory, 

at about 10 percent per year cost of money and 3-year fuel 

residence time; 

{g} -0.2 mil1s/kwhe (credit) for plutonium, usually assumed in 

calculations of this sort to be sold at $8-$10/g rather 

than recycled. If the plutonium is recycled, one can reckon 

roughly that purchase of U308 contributes 0.3 mills/kwhe in­

stead of 0,4, enrichment cost and carrying charges drop by a 

similar percentage, and fabrication cost increases a few 

hundredths of a mill per kwhe. 

These figures assume a plant load factor of 80 percent and a thermal-to­

electrical conversion efficiency of 32.5 percent. 
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If we consider the case with plutonium recycling, and ascribe to 

the U30S that fraction of the carrying charges corresponding to the con­

tribution of U30a to the value of the finished fuel, we find that the cost 

of U30a at $8/1b contributes directly and indirectly about 0.4 mil1s/kwhe 

to the price of nuclear fuel. This is between a fifth and a fourth of the 

total fuel cost of l.a or 1.9 mills/kwhe, which compares in turn to a 

total nuclear generation cost of 7 to S mills/kwhe in contemporary LWRs. 

The foregoing rough figures suggest that the sensitivity of electric­

ity costs to uranium costs, for LWRs reeye! ing their plutonium, amounts 

to about .05 mil1/kwhe per dollar increase in the price of U30S per pound 

(above the base price of $8). More sophisticated fuel-cycle analyses per­

formed by the AEC for various approaches to reeyel ing plutonium in LWRs 

yielded sensitivities between 0.03 and 0.06 mil1/kwhe per dollar increase 

in the price of U30a per pound. 2a The same AEC study indicated a sensiti­

vity of 0.019 mills/kwhe per dollar increase in the price of U308, for the 

case of an HTGR with full recycle of U-233. 

The economics of thorium utilization in HTGRs is, by comparison, 

straightforward. AEC materials balances indicate that a 1000 Mwe HTGR 

with thermal efficiency of 40 to 43 percent and load factor of 85 percent 

requires the mining of 11 to 12 metric tons of thorium per year, which is 

12.5 to 13.5 tons of Th02. At the current market price of $7/1b for Th0231 

one finds that thorium's contribution to the price of electricity would be 

between 0.03 and 0.04 mills/kwhe, depending on interest charges. The 
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corresponding sensitivity to increases in the price of thorium is 0.004 to 

0.005 mills/kwhe per dollar increase in the price of Th02 above $7/1b. 

Uranium Supply versus Price 

The mean abundance of uranium in the earth's crust is about 4 parts 

per million (ppm). It is found in a wide variety of geologic formations 

in more than 100 different chemical forms. The principal deposits now 

being mined in the United States are the sedimentary rocks of the Colorado 

Plateau, which includes parts of Utah, Arizona and New Mexico, as well as 

of Colorado. Both open-pit and underground mining are practiced. The 

concentration of uranium in these ores is between 0.1 and 0.3 percent 

(1000 to 3000 ppm). Large quantities of uranium are also known to exist 

in western lignites (100-2000 ppm, and as much as 5000 ppm in the ash 

resulting from burning these coals), in phosphate beds underlying parts 

of Utah, Idaho, Wyoming and Montana (120 ppm), in the Chattanooga shales 

of Tennessee, Kentucky and Alabama (around 60 ppm), and in the 300 square­

mile Conway granite outcropping of New Hampshire (12 ppm).32 

Data on recoverable uranium resources in the U.S. are collected and 

published regularly by the AEC, based partly on its own investigations, 

partly on information provided by the uranium industry, and partly on 

the work of the U.S. Bureau of Mines. The AECis figures for uranium 

producible at prices up to $100 per pound ($220/kg) of U30S' estimated 

as of January 1, 1970,33 are given in Table 2. The IIreasonably assured" 

category of reserves refers to ore deposits that have been measured in 
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extent and sampled with respect to quality. This definition corresponds 

roughly to that of IIproved li reserves, as used in most minerals industries. 

The AECis lIes tlmated additional" category refers to uranium surmised to 

occur in unexplored extensions of known deposits or in undiscovered deposits 

in known uranium districts. This definition corresponds roughly to that 

of ilpotential 'i reserves in other minerals industries. The prices in the 

various categories reflect the prices per pound, in constant dollars, at 

which the AEC believes the respective amounts of U30S could actually be 

delivered. That is, these prices already account for the estimated cost 

of extracting the U308 from the ore of various grades. It is to be empha­

sized that the costs of the steps in the fuel cycle after the U308 leaves the 

uranium mill are independent of whether one has paid $5 or $100 for each 

pound of this material. 

Since there has been little incentive to map and evaluate uranium 

resources in the greater than $30/lb categories in a period when the price 

of U308 has been below $8/lb and falling, it is to be expected that the 

estimates in these expensive categories are quite crude. At the same time 

there are good reasons to bel ieve that the estimates in !.!.l the categories 

in Table 2 will prove to be very conservative. A uranium industry of any 

size has' only existed in the U.S. since World War I I, and during much of 

this relatively brief history a soft market has discouraged intensive explo­

ration. A 1968 AEC document stated in this connection: 34 
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The outstanding fact is that what is known today about U.S. 

uranium resources is almost entirely a product of work that 

was done in the 19505. With the renewal of uranium exploration 

activity it is anticipated that in this field, as in oil and 

other fields involving exploration activity. the more one 

searches the more one will find. 

A more recent review of the situation contained the following observatlon: 35 

Substantially all of the present proved reserves and approxi­

mately 85 percent of the potential reserves as determined by 

the AEC are located in the presently producing areas, yet these 

areas make up less than 10 percent of the total region in which 

uranium occurrences are found -- therefore, optimism is warranted 

regarding the ability of the uranium exploration industry to 

locate significant new domestic uranium resources, provided the 

necessary exploratory effort is mounted. 

These optimistic views would appear to be supported by the historical 

record in most minerals industries, which in their early stages almost invari­

ably have underestimated the ultimately recoverable resources by large factors. 

Further insight into the specific case of uranium is to be found in the recent 

history of additions to uranium reserves in the most solidly establ ished 

category, reasonably assured reserves of U30S at less than $8/lb. Between 

January If 1969 and January If 1972, a period during which exploratory drilling 

for uranium was generally declining, these reserves increased by 60 percent. 36 

11 figures are given in Table 3. 
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These considerations notwithstanding, the January 1970 figures for 

estimated uranium availability, given in Table 2, will be used in the 

remainder of this discussion. Although these figures almost certainly 

will prove to greatly underestimate the ultimately recoverable supplies 

of uranium, even in the least expensive categories, the point is that no 

special optimism about future discoveries is needed to reach the conclusion 

of adequate potential supply for the next fifty years. 

Many of the same arguments apply in the case of thorium for use in 

HTGRs, except that the situation is even more clear-cut. There has been 

little demand for thorium to date, and hence very 1 ittle exploration for 

it, but the estimated resources even on the basis of this scanty information 

are very large. The AEC's estimates 37 are given in Table 4, 

Projected Uranium Requirements 

Forecasting the scale of electricity generation over the next 30 to 

50 years with any degree of confidence is impossible. The very high pro­

jections that have been widely published, based in general upon extrapolation 

of past growth rates in the range of 6 to 8 percent per year, seem on a 

variety of grounds unlikely to be achieved. Whether nuclear energy will 

or should play the increasing role its promoters have predicted for it, 

amounting to between 40 and 60 percent of all U.S. electricity generation 

in the year 2000~ can also be questioned. Since the purpose of the present 

analysis, however, is to determine only whether fuel supply must constrain 
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the growth of nuclear power in the absence of breeder reactors, I shall 

seek the answer to that question in the context of the more dramatic growth 

projections. 

The projections used are shown in Table 5. The "medium" figures 

given there for total electricity are the base case used in the AECls 

December 1970 report, "Potential Nuclear Growth Patterns,le38 They cor­

respond to "medium" load forecasts by the Federal Power Commission, coupled 

with a very enthusiastic assessment of nuclear energy's contribution (more 

than 50 percent of all generation in 1990, and 60 percent in 2000). The 

"high" figures for nuclear generation in Table 5 are from the article on 

breeder reactors by Culler and Harms,9 and appear to correspond to "high" 

FPC forecasts for total generation coupled with an equally enthusiastic 

assessment of the role of nuclear energy (62 percent in the year 2000). 

The figures for approximate cumulative nuclear generation since 1970 are 

obtained from the annual figures by integration with the trapezoidal rule. 

Using the reactor characteristics summarized in Table 1, one can 

readily compute the cumulative uranium consumption implied by these cumu­

lative nuclear-generation figures. Uranium requirements for inventories, 

which at any given time must be added to the cumulative consumption to obtain 

cumulative demand up to that time, can be obtained from the generation figures 

and the inventory requirement per reactor (given an assumption about average 

load factor, here taken to be 67 percent). Although more sophisticated 

analyses generally consider various time-dependent mixes of reactor types, 
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the central question of uranium adequacy can be Illuminated simply by 

examining the cases of LWRs only, HTGRs only, and a 50-50 mix of the two 

types. (Since the great bulk of the cumulative consumption takes place 

after 1990, for which period the choice of reactor mix is still largely 

open to us, these simple cases are not necessarily wholly unreal istic.) 

The cumulative uranium demand in these three cases, for the "medium" and 

IIhighll growth projections, is given in Table 6. 

Can We Afford to Postpone the Breeder? 

The numbers developed in the preceding sections permit one to estimate 

the time scale and magnitude of the uranium supply-price squeeze that has 

been so widely offered as the rationale for early deployment of breeder 

reactors, Figure 4 combines elements of Tables 2 and 6 to illustrate the 

main characteristics of the situation. One sees there that even undet the 

IIhighll growth projection, I.Alith only LWRs available, the price of U308 is 

likely to be about $15/1b in the year 2000, about $30/1b in 2010, and in 

any case under $SO/lb in 2020 (all in 1967 dollars). 

To reach a more pessimistic conclusion one must assume either that 

reserves classified in 1970 as lIestimated ll will in fact prove to be illusory 

or that for some combination of reasons the existing resources will not be 

made available in time to meet the need. The first assumption -- that 

presently lIassured ll reserves comprise the only uranium that will be found 

in the next 30 to 40 years -- is an unsound one for reasons already given 

above. The second assumption that uranium of known location will not 
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be extracted in time to meet the needs of the nuclear industry -- couid 

prove to be true, but such a situation need not be permitted to develop. 

Restricting attention for the moment to the implications of the 

amount of uranium that exists, and deferring until later the separate 

issue of whether it will be made available in time, one finds that lWRs 

operating only on the presently assured reserves could sustain the ilhighll 

growth projection for the U.S. through 2018 without driving the price of 

U30a above $50/Ib. Use of the cost sensitivities from Table 1 reveals the 

economic import of this result: in virtually the worst case imaginable 

(very high growth, no HTGRs, no "estimated ll reserves materialize), the 

price of electricity need rise only 2 mil1s/kwhe by 2020 owing to rising 

uranium costs. 

It may be useful to compare this figure with various costs associated 

with electricity in the U.S. in 1970: 2 mil1s/kwhe total nuclear fuel cost, 

2-4 mills/kwhe for fuel in fossil-fueled plants, 6-9 mills/kwhe total 

generation costs, 17 mllls/kwhe average price of electricity delivered to 

all consumers, 22 mil1s/kwhe average price of electricity delivered to 

residential consumers. 39 It is difficult to imagine, to say the least, 

that dire economic consequences would devolve from an increase In nuclear 

costs, over the space of 50 years, amounting to 10 percent of the 

average delivered cost of electricity at the beginning of that period. 

more realistic assumptions, of course, the Increase in the 

cost of electricity owing to rising uranium costs is likely to be even 
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sma 11 er. Re 1i ance on a 50-50 mix of LWRs and HTGRs, under the Ilh i ghll 

growth projectIon, could keep the incremental contribution of rising 

uranium costs below 1 mi11/kwhe through 2010 if lIestimated ll reserves at 

less than $30/1b materialize. In the same situation, reliance mainly 

on HTGRs could hold the increment to about 0.5 mil1/kwhe in 2020. If 

lIestimated ll reserves under $1511b material ize and are exploitable by 

the year 2000, the uranium-induced increment even without HTGRs should 

not exceed about 0.4 mills/kwhe in that year. These and other possibili­

ties, which follow from Figure 4 and the cost sensitivities of Table 1, 

are summarized in Table 7. 

It is useful to compare the probable uranium-induced cost increments 

with possible increments to the cost of electricity from other sources. A 

combination of environmental standards, diminishing qual ity of resources, 

and need for expensive new technologies to expand supplies seems 1 ikely to 

increase the price of fossil fuels by at least 50 percent between 1970 and 

2000. Such an increase would produce an increment of 1 to 2 mills/kwhe in 

electricity costs. If breeder reactors should cost more to build than do 

lWRs or HTGRs, the effect on total electricity cost could more than offset 

the breeder's more economical use of uranium. For example, a difference 

of $100 per electrical kilowatt of capacity translates to 1.85 mills/kwhe 

if fixed charges (interest plus depreciation) on capital investment are 13 

percent per year and the plant runs at an average load factor of 80 percent. 40 

No one can say with any assurance that the lMFBR will not cost $100/kwe more 
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than lWRs or HTGRs, and the extreme materials problems and long history 

of development difficulties with the breeder argue that it might. The 

broader economic justification for the lMFBR has been challenged in detail 

elsewhere,3 and it is not my intention to do so here. What is important, 

in the framework of the present analysis, is that the possible increase in 

future electricity costs arising from the drain on uranium resources by 

nonbreeder reactors is matched or exceeded by the possible increase arising 

from higher than anticipated construction costs for the lMFBR. 

Problems Beyond Absolute Supply 

It has been argued above that known domestic uranium resources could 

sustain the most dramatic projected increases in U.S. nuclear generation, 

without breeder reactors and with very moderate increases in the cost of 

electricity, for at least 50 years. Of course, there is more to the issue 

of fuel supply than the amount of material in the ground. The main additional 

questions usually raised in connection with uranium are three. First, even 

if the resources are adequate in an absolute sense, can they be developed at 

a rate sufficient to keep pace with the projected growth of demand? Second, 

are the costs in energy and dollars of uranium enrichment on the scale 

t t would be necessitated by reliance on lWRs and HTGRs, and can enrichment 

capacity be expanded at a sufficient rate? Third, what are the environmental 

consequences of mining uranium on the expanded scale that would be necessitated 

by rapid growth of nuclear power without lMFBRs? 
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With respect to the rate of resource development, it is certainly 

true that time and money are required to convert "probabJeli resources into 

assured reserves and to bring new mines and uranium mills into operation. 

Although the economic factor is accounted for in the U30S figures used above, 

in the form of projected costs of exploration, extraction and milling, the 

uranium simply will not be made available in time unless advance planning 

is adequate and investment is timely. As a measure of the lead times re­

quired, it is often stated that assured reserves at any given time should 

be adequate for at least the next eight years of projected growth in the 

nuclear industry. According to this rule of thumb, for example, all the 

uranium needed through the year 2020 should have been brought into the 

reasonably assured reserves category by the year 2012. (If we are willing 

to pay $50 per pound of U30S, Figure 4 indicates that requirements through 

the year 2018 were already in the assured category in 1970.) In no event 

do the problems of lead time and capital availability constitute an ~ 

facto argument for a commitment to breeder reactors; an equally direct 

approach, given a consensus that fission power should be greatly expanded, 

would be to take steps insuring that adequate planning and investment in 

the uranium industry take place. 

The issue of uranium enrichment capacity for a growing number of 

lWRs and HTGRs also requires adequate advance planning and investment, but 

it need create no fundamental obstacles. economic cost of the enrichment 

process itself is independent of what one has had to pay for raw U
3
0S" The 
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AECls analyses of nuclear fuel-cycle costs have assumed that the figure 

will remain at about $26/kg of separative work indefinitely.41 In our 

plutonium-recycling LWR this contributes about 0.36 mill/kwhe to the 

overall fuel-cycle cost of about 1.8 mills/kwhe. 42 A recent analysis 

performed outside the AEC estimated enrichment costs in future gaseous 

diffusion plants at $40-$43/kg of separative work, presumably reflecting 

higher estimates of construction costs, interest rates, and the cost of 

electric power consumed by the plants. 43 

Data given in the same study enable one to compute that the elec-

tricity consumed to produce enriched uranium in gaseous diffusion plants 

is about 4 percent of the amount of electricity generated when this 

enriched fuel is consumed in LWRs, without recycling of plutonium. With 

plutonium recycle, the figure would be about 3 percent. The corresponding 

ratio for HTGRs with U-233 recycle is about 2 percent. It appears that 

the technology of uranium enrichment by means of gas centrifuges, now 

under intensive development, will be capable of reducing the energy con­

sumption of the enrichment process by a factor of 6 or 7. 43 Even without 

such advances, however, the future economic and energetic costs of uranium 

enrichment do not alter the basic conclusions of this study. In the worst 

case, that of LWRs supplied with enriched uranium by gaseous diffusion 

plants, the situation is energetically equivalent to a reduction in effi-

ciency of uranium utilization (mass fissioned divided by mass mined) from 

1.0 percent to 0.97 percent. If the average cost of enrichment should 
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actually increase from $26 to $40 per kg of separative work, the correspond­

ing increase in fuel-cycle cost would be about 0.2 mil1s/kwhe. 

Naturally, a decision to promote a major expansion of nuclear generat-

ing capacity in the form of lWRs and HTGRs would imply the construction of 

new enrichment capacity beyond what exists today. The capital costs of such 

new capacity are accounted for in the enrichment cost figures given above. 

Although there is in principle no reason why enrichment capacity cannot be 

expanded quickly enough to keep pace with the demands of new reactors, there 

are in practice some problems of logistics and economics, arising from a 

combination of factors: there is much uncertainty in the demand curve, one 

must plan well ahead because construction time is considerable, gaseous 

diffusion plants are economical only in very large sizes, and a commitment 

to ~ enrichment capacity than is actually needed at any given time would 

be an expensive error. 43 Again. the solution may 1 Ie in large part with 

the gas centrifuge, which, because it will be economical in smaller sizes, 

will permit the growth of enrichment capacity to match the growth of needs 

more closely and with less financial risk. 

With respect to the environmental effects of mining low-grade uranium 

ore, some insight can be obtained by comparison with coal mining. Consider 

average Chattanooga shale, which contains 0.006 percent U308 and comprises 

a substantial part of the assured uranium reserves between $30 and $50 

per pound. One cubic meter of this material, used as the raw feed for a 

plutonium-recycling LWR, is equivalent in energy content to about 2.5 cubic 
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meters of bituminous coal or 4 cubic meters of I ignite. 44 These volumes 

give at least a crude measure of the relative scale of mining operations 

needed to make available a given quantity of energy. 

A detailed comparison of minin9 conditions for coal and low-grade 

uranium, which would have to include depth of deposits, thickness and 

orientation of seams, and other factors, is not possible here. One may 

note, however, that the direct health hazards to underground miners of 

coal and of uranium are not altogether dissimilar in kind. In each case, 

air in the mines contains toxic substances -- principally coal dust on the 

one hand and radon gas on the other. Both problems can be greatly allevi­

ated with proper ventilation, and low-grade uranium ores will produce lower 

radon concentrations than do the high-grade ores mined today. Cave-ins 

are a universal hazard, although better mining methods may reduce this risk 

in time also. 

The most serious environmental effect of mining uranium on the surface 

is land disruption by the excavation and by spoil banks. The principal im­

pact on water is associated with mill ing the uranium and thus, for a given 

grade of ore, is the same whether surface or underground mining was employed. 

Some measures of the impact of uranium surface mining, and of mill lng, under 

different circumstances are given in Table 8, with some coal figures for 

comparison. The figures shown in the first column are based on recent 

s les of contemporary surface mining of uranlum,45,46 scaled to the case 

of lWRs recycling plutonium. These numbers correspond to the average grade 
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of ore (0.2 percent U30a) now being mined in the U.S. The figures in the 

second column are based on a detailed study of uranium recovery from one 

of the richer parts (0.007 percent U30S) of the Chattanooga shales. 46 

The third and fourth columns in Table 8 give the corresponding figures 

for LMFBRs operating on the Chattanooga shales and for surface mining of 

Eastern coal. 47 The reason for the surprisingly small land area excavated 

in the case of the Chattanooga shales is the great thickness of the minable 

seam. 

It appears from these rough comparisons that the environmental effects 

of mining the lowest grades of uranium ore for use in LWRs would be somewhat 

smaller than those of mining coal to generate the same amount of electricity, 

although still potentially serious. The problem certainly deserves more 

careful study. 

For several reasons, however, the potential environmental impact of 

mining low-grade uranium ore -- as important as it is -- does not in itself 

constitute a compel 1 ing argument for an early commitment to the LMFBR. 

First, reliance on HTGRs could cut the figures in column 2 of Table 8 by 

more than half, and would probably postpone the need for exploiting such 

low-grade ores to beyond 2020. Second, an expanded program of exploration 

for uranium is likely to yield large additions to reserves in the rich (low 

environmental impact) categories, for reasons out! ined above. Such additions 

would postpone the escalation of the environmental Impact of uranium mining, 

even without reliance on HTGRs. Third, other environmental liabil ities of 

the LMFBR may be judged by many observers to offset its advantage in fuel 
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extraction, just as its potentially high capital cost may offset its econ p 

omies in the fuel cycle. Finally, and perhaps most importantly, the possi­

bility of extracting uranium from sea water may render the question of 

mining very low-grade terrestrial ores entirely academic. The oceans 

contain about 4.2 billion metric tons of uranium (3.34 x 10-6 g/l), and 

estimates of the cost of extracting it, made in the mid-1960s, ranged from 

$11 to $100 per pound of U308.48 It is astonishing, in the face of the 

USAEC's expressed concerns about uranium suppl ies, that no significant 

program has been mounted to narrow this range of uncertainty. A demon­

stration of the ability to extract uranium from sea water efficiently and 

with low environmental impact 49 would be of enormous importance, even if 

the cost of the process proved to be $50-$100 per pound of U30S ' 

Conclusion 

The foregoing analysis indicates that rapid development and deploy­

ment of lMFBRs in the U.s. is not necessitated by any impending supply­

price squeeze on uranium. Existing, nonbreeder reactor technologies could 

meet the most ambitious projected increases in nuclear generation of elec­

tricity for at least the next 50 years, with very moderate uranium-related 

increases in the price of electricity. Indeed, these potential price 

increases appear to be of the order of or smaller than the potential costs 

of fossil-fuel alternatives. Reaching this conclusion required no optimism 

about discovery of presently unsuspected uranium resources. It holds, in 

fact, even if no reserves presently classified as lIestlmated additional" 
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ever materialize -- a premise so pessimistic as to be almost absurd. 

Moreover, since lMFBRs could use even the uranium resources at $100/1b 

economically, there is no danger that early reliance on nonbreeders would 

close the door on later implementation of breeders. 

Such problems as may arise in the next 50 years with respect to 

adequacy of U.S. uranium supply will be due not to lack of resources in 

the ground but to possible failures to deploy new facilities for extrac­

tion and enrichment in time. This need not be permitted to occur, and 

measures to prevent it comprise a more certain and simpler approach to 

assuring adequate supply on this time scale than does the early deployment 

of lMFBRs. In a similar vein, little attention has been given as yet to 

the optimization of lWR and HTGR fuel cycles for the case of relatively 

expensive uranium ores. A rough calculation indicates that reducing the 

U-235 content of the tails from the enrichment process from 0.2 percent to 

0.1 percent (a change that would pay only if U30a were more expensive) 

stretches uranium resources about 15 percent above the figures used in the 

present analysis; an increase in the conversion ratio of lWRs from 0.55 to 

0.65 could increase the efficiency of util ization of uranium in these reac­

tors by almost 30 percent. 

In the interests of holding the future environmental cost of uranium 

extraction to a minimum, two straightforward courses of action can be 

recommended: a vigorous program of exploration for additional high-grade 

ores, both within and beyond the presently producing regions; and a program 
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to clarify the technology and costs for extraction of uranium from sea 

water. These two steps would be cheap compared to the LMFBR program itself, 

and success in either one would extend the time period in which fission 

without the breeder remains an economically viable option. 

No account has been taken here of foreign uranium resources that 

might be sold to the U.S., nor have I made any detailed attempt to extend 

the conclusions to choices about fission power facing the rest of the world. 

Most parts of the world have been even less thoroughly explored for uranium 

than has the U.S, Since geological formations of the type that contain 

uranium in the U.S. are common and widespread, however, it is reasonable 

to suppose that world land-based reserves of uranium will eventually be 

discovered roughly In proportion to land area. If this is even approximately 

true, the conclusions reached here for the U.S. will certainly apply on a 

similar time scale for the rest of the world as well (although not necessar­

Ily for each individual country). 

Finally a few cautions. First, the use here of projections showing 

rapid growth of electricity generation through the year 2020 does not imply 

approval of such growth; there are reasons for believing that these massive 

increases in electricity use In the U.S. are unnecessary and, indeed, unlikely 

to take place, and these points have been amply made elsewhere. 50 Similarly, 

the assumption of a rapidly increasing nuclear share in electricity generation 

does not Imply advocacy of this scenario; in my view, serious questions of 

radioactive waste management, reactor safety, and safeguards against diversion 

fissionable material remain to be resolved before rapid proliferation of 
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nuclear reactors of ~ kind can be recommended. At the same time, It 

would be unwise to terminate research on the LMFBR simply because it is 

not needed now and because important questions about it remain to "be re­

solved. If fission is to be a long-term mainstay of civilization 1 s energy 

supply, breeders will be needed eventually. Perhaps solar energy or 

fusion will eliminate the need for fission altogether, but it is too early 

to be sure; in the meantime, the breeder option should be kept open with a 

program of research and development short of commercial deployment. 

It was the intention here, however, to focus on a much narrower 

question with a specified time horizon: whether uranium supplies are 

adequate to meet the most ambitious projections for the growth of nuclear 

power (irrespective of plausibility or desirability) for the next 30 to 

50 years, without breeder reactors and without dramatic increases in the 

price of nuclear-generated electricity. The answer obtained here is yes, 

indicating, in turn, that the urgency that has been ascribed to the LMFBR 

program primarily on grounds of limited availability of uranium is illusory.51 
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TABLE 1. Summary of Nominal Reactor Characteristics 

thermal efficiency (%) 

thermal power for 1000 Mwe (Mwt) 

conversion ratio 

grams fissioned/kg U mined* 

kg U m i ned>',/b ill ion kwhe 

short tons U30S mined*/109 kwhe 

specific inventory, kg fissile/Mwe 

short tons U30S for inventory 

mil1s/kwhe increase in electricity 
cost per dollar per Ib increase in 
U30S cost over $8 

electricity cost increment in millsl 
kwhe if U30a costs: 

$15/1 b 
$30/1b 
$50/1 b 
$lOO/lb 

* Consumption, not inventory. 

lWR 

32.5 

3,077 

0.55 

10 

14,000 

18.2 

2.0 

480 

0.05 

0.35 
1. 10 
2.10 
4.60 

HTGR 

43 

2,320 

O.SO 

18 

5,900 

7.6 

I.S 

470 

0.02 

0.14 
0.44 
0.84 
1.84 

lMFBR 

40 

2,500 

1.30 

570 

200 

3.0 

740 

0.001 

0.007 
0.022 
0.042 
0.092 

**Actually, LMFBRs would be able to use the accumulated tails of the uranium 
enrichment process as a principal source of U-238 for some time to come. 
The number given here corresponds to a lise If-conta i ned" breeder reactor 
economy, generating all its own fissile material and obtaining fresh fer­
tile material from ore, as would be the case in the long term. 

Sources: See text. 



-45-

TABLE 2. U.S. Uranium Reserves versus Price 

---------reserves, thousand short tons U30S-------

Price Reasonably Estimated Cumulative 
$/1 b U30S Assured Additional Tota 11: 

less than 8 204 390 594 

8-10 136 210 940 

10-15 160 350 1,450 

15-30 140 650 2,240 

30-50 5,400 2,400 10,000 

50-100 6,000 9,000 25,000 

*Each figure in this column includes reserves in all cheaper categories. 

Source: See Note 32. 
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TABLE 3. Reasonably Assured Reserves of U30a under $8/1b 

As of January 

1969 

1970 

1971 

1972 

Sources: See Note 35. 

Thousand short tons of U30S 

161 

204 

246 

273 



TABLE 4. U.S. Thorium Reserves versus Price 

AEC estimates» 1970 

---------reserves, thousand short tons ThOZ--------

Price Reasonably Est imated Cumulative 
S/lb ThOZ Assured Additional Tota 1 ~': 

less than 10 100 500 600 

10-30 100 100 800 

30-50 3,000 7,000 10,800 

50-100 8 p OOO 17 ,000 35,800 

*Each figure in this column includes reserves in all cheaper categories. 

Source: See Note 36. 



TABLE 5. Projected U.S. Electricity Consumption and Nuclear Contribution 

All figures in billions of kwhe 

CUMULATIVE NUCLEAR GENERATION 
TOTAL ELECTRICITY GENERATION NUCLEAR GENERATION AFTER 1970 

year limed lumll IIhigh" ilmedium ll "hJgh" limed i um" "high" 
-~ .. -- -- ----- - - - - ---

1970 (actua 1 ) 1,640 1,640 24 24 

1980 2,700 3,000 1,100 1,100 5,620 5,620 

1990 4,800 5,750 2,500 2,700 23,620 24,620 
I 

2000 8,000 4,800 6,200 60,120 69,120 
-I:'" 

10,000 00 
I 

2010 12,500 16,050 8,600 10,600 127,120 153,120 

2020 18,500 24,200 13,300 17 ,000 236,620 291 ,120 

Source: See Notes 37, 9 



TABLE 6. Cumulative Uranium Demand Without Breeder Reactors 

All figures in thousands of short tons of U30S 

LWRs ONLY HTGRs ONLY 50-50 MIX 

year limed ium" IIhigh" limed ium" "high" limed i um ll IIhighli 

1980 192 192 13 J 131 162 162 

1990 635 670 381 404 50S 537 

2000 1.486 1,768 842 1,023 1 • 164 1,396 

3,667 1,657 2,034 2.341 2,B51 
I 

2010 3,025 .t:'" 
\.0 
I 

2020 5,410 6,695 2.870 3.575 4.140 5.135 

Source: Computed from Tables I, 5. 



TABLE 7. Impact of Uranium Costs on Cost of Nuclear-Generated Electricity: 

A Range of Possibil ities 

All figures for Ilhigh" growth projection 

Year and cost increment in mills/kwhe 
associated with using U308 at: 

reactor mix reserves available $15/1b $30/1b $50/1 b 

LWRs only assured only 1987 (0.35) 1989 (1.10) 2018 (2.10) 

LWRs only assured & estimated 1998 (0.35) 2003 (1.10) >2020 (2.10) 
I 

U'1 

50-50 mix assured only 1989 (0.25) 1991 (0. n) > 2020 (1.47) 0 
I 

50-50 mix assured & estimated 2000 (0.25) 2006 (o.n) 2020 (1.47) 

HTGRs only assured only 1992 (0. 14) 1994 (0.44) 2020 (0.84) 

HTGRs only assured & estimated 2005 (0. 14) 2012 (0.44) 2020 (0.84) 

Sources: See Tables 1, 2, 6. 



TABLE 8. Measures of Environmental Impact of Surface Mining and Ore Processing 

(a 11 guant i ties per 109 k\'Ihe) 

fuel input to power plant 
(te U30S or coal)a 

ore extracted (m3) 

overburden moved (te) 

land area excavated (acres) 

water use (106 gal) 

a te = metric ton = 1,000 kg 

b density 2.7 te/m3 

LWRs, Pu recycle 
0.2% ore 

16.5 

3,060b 

245.000 

1.6 

5.ge 

c density 2.3 te/m3, 70% extraction of U308 from ore 

d density 1.4 te/m3, 23% loss in coal washing 

e milling only, which dominates water use 

f coal washing 

Sources: Notes 45-47. 

LWRS, Pu recycle LMFBR 
0.007% ore 0.007% ore 

16.5 0.24 

147.000c 2,140 

2,100,000 30,500 

8.2 0.12 

10.5e 0.15 

Eastern coal 

347,000 

400,000d 

5,800,000 

153 ! 
V'I -

26Of i 


