
caltechLIB:2001.003 

PURR – The Persistent URL Resource Resolver 
Ed Sponsler 

October 9, 2001 
Caltech Library System 

 
 
 
 
 
 
CONTENTS 
 

PURR – THE PERSISTENT URL RESOURCE RESOLVER .................................................................................. 1 
INTRODUCTION............................................................................................................................................................... 2 
PURR IMPLEMENTATION ............................................................................................................................................... 3 

The CLS Environment ............................................................................................................................................... 3 
Apache Configuration ............................................................................................................................................... 3 
Database Configuration............................................................................................................................................ 4 
Populating the PURR Database................................................................................................................................ 5 
The Resolver.pm Script ............................................................................................................................................. 5 

A COUPLE USEFUL BOOKS ............................................................................................................................................. 8 
 

 Page 1 of 8 



caltechLIB:2001.003 

 
 

Introduction 
URLs have a precarious functional lifespan. They resolve the intended target (web page, PDF, 
audio stream, and so on) only so long as the target is available, otherwise they’ll point to a 
dead end. Unfortunately, because companies fold, management changes, URL hostnames 
change, pages move, services are upgraded and reorganized, content becomes obsolete, and 
a host of other reasons, reliable, persistent URLs are the exception to the norm. 
 
The goal towards URL persistence challenges us with three distinct opportunities to failure: 
scrapping the service as a whole, changing the hostname portion of the URL or changing the 
remainder of the URL responsible for navigating to the precise target on the host. Thoughtful 
management decisions and commitments largely overcome the first two obstacles. A 
commitment by the institution for preserving a service in perpetuity contributes greatly to 
service persistence and using an alias hostname frees the service to move from one host to 
another, and therefore preserve the hostname portion of the URL.  
 
The remaining portion of the URL (following the http://hostname.whatever/ part) provides 
navigation to the specific target resource, typically by following a file system’s directory path 
to the intended target file. However, whenever the file name or it’s location in the file system’s 
directory structure changes, so does the URL.  
 
A typical URL: http://hostname.whatever/example/purr/index.html 
 
This nomenclature is commonly used since web servers are programmed to find (and deliver) 
the target file by simply parsing the file’s path and name from the URL. This is convenient for 
many web applications but it is a crutch to URL persistence.  
 
A solution is found in assigning a unique identifier to a document and to use that identifier in 
the URL in place of the directory path/filename.  
 
Example:  http://hostname.whatever/PURR:unique.001a  
 
It is then necessary to modify the way in which the web server uses the URL to find the 
document. 
 
We implemented PURR to provide persistent URLs to documents in our eprint archives. (See 
http://library.caltech.edu/digital). The unique identifier comprises the archive name followed 
by a colon, the year and a series number. This identifier is printed on the document header. 
Thus, any of our documents may be accessed by giving the Resolver the identifier in the form 
of a URL.  
 
For example the document your reading (number caltechLIB:2001.003) is located here, in the 
caltechLIB eprint archive: 
 
http://resolver.library.caltech.edu/caltechLIB:2001.003 
 

 Page 2 of 8 

http://library.caltech.edu/digital
http://resolver.library.caltech.edu/caltechLIB:2001.003


caltechLIB:2001.003 

 

PURR Implementation 
Index of Figures  
FIGURE 1 -- DATABASE STRUCTURE................................................................................................................................... 4 
FIGURE 2 -- SYNCH_PURR.PL .............................................................................................................................................. 5 
FIGURE 3 -- RESOLVER.PM ................................................................................................................................................. 8 
 
The CLS Environment 
The Caltech Library System (CLS) implements PURR to resolve documents contained in its 
Digital Collections of eprint archives. The archive software, EPrints.org, stores document 
metadata in a MySQL database. A script synchronizes information from the EPrints database 
with the PURR database. Described below is not only the implementation of PURR but also the 
synchronization routine (synch_purr.pl, Figure 2). You will have to adapt this routine to fit 
your particular environment. 
 
The development environment: 

• Linux 
• MySQL 
• Apache 
• Perl 
• mod_perl 
• DBI 

 
The core component of PURR is the Resolver.pm perl script which runs as an Apache module. 
You will need to compile mod_perl into Apache for Resolver.pm to work as published here. 
mod_perl provides access to the Apache API via perl. For more information, see Stein (1999). 
MySQL runs the database backend. DBI is a database connectivity module for perl freely 
available from CPAN. Linux (a unix variant) is used as the operating system because, like 
everything else in this environment, it is free and flexible.  
 
Apache Configuration 
Apache is available here: http://httpd.apache.org 
mod_perl is available here: http://perl.apache.org 
 
The following is a basic procedure to compile mod_perl into Apache. It is essentially what we 
do at CLS. Expand both packages in the same directory, such as /usr/src. Then enter the 
mod_perl directory and do this: 
 
$ perl Makefile.PL \ 
APACHE_SRC=/usr/src/apache_source_directory \ 
DO_HTTPD=1 \ 
USE_APACI=1 \ 
PREP_HTTPD=1 \ 
EVERYTHING=1 
 
$ make; make install 

 
Then enter the apache directory and do this (at minimum): 
 
$ ./configure \ 
--prefix=/usr/local/apache_installation_directory \ 
--activate-module=src/modules/perl/libperl.a 
 
$make; make install 

 
Create a file called startup.pl, containing the following. Place startup.pl in your apache/conf 
folder: 
 
#!/usr/local/bin/perl 

 Page 3 of 8 

http://httpd.apache.org/
http://perl.apache.org/


caltechLIB:2001.003 

BEGIN { 
   use Apache(); 
   use lib Apache->server_root_relative('lib/perl'); 
} 
use Apache::Registry(); 
use Apache::Constants(); 
use CGI qw(-compile :all); 
use CGI::Carp(); 
 
1; 

 
Add these lines to your /apache/conf/httpd.conf file: 
 
PerlRequire conf/startup.pl 
PerlFreshRestart On 
 
SetHandler perl-script 
PerlHandler Apache::Resolver 
  
Place the Resolver.pm script (see Figure 3) into apache/lib/perl/Apache. 
 
Restart apache. 
 
Database Configuration 
The main table 
Figure 1 shows the ‘main’ table fields and properties. There is a primary key (pkey), the 
unique identifier (id) the URL to the document (url) and a miscellaneous notes field. Although 
it isn’t used (yet), the title is stored to provide some human recognizable label to the record.  
 
+-------+--------------+------+-----+---------+----------------+ 
| Field | Type         | Null | Key | Default | Extra          | 
+-------+--------------+------+-----+---------+----------------+ 
| pkey  | int(11)      |      | PRI | 0       | auto_increment | 
| id    | varchar(255) |      | UNI |         |                | 
| url   | varchar(255) |      |     |         |                | 
| notes | text         | YES  |     |         |                | 
+-------+--------------+------+-----+---------+----------------+ 
Figure 1 -- Database Structure 
 
Here is a SQL script to produce this table. Login with the root mysql account, open the mysql 
database and: 
 
mysql> create table main (pkey int not null primary key auto_increment, 
    -> id varchar(255) not null, url varchar(255) not null, notes text, 
    -> unique index index_id (id)) 
    -> go 
 
Resolver.pm queries this table to retrieve the document's URL based on the document's 
Unique Identifier (supplied in the URL sent to Apache). 
 
Access control 
You will need to supply the appropriate access controls. The following is a basic security setup. 
Let us assume that the username is 'resolver', the password is 'password' and access to the 
database is occurring on the local machine 'localhost'. Then, you will need to first make an 
entry into the user table (with no specific controls other than to allow 'resolver' to connect 
from 'localhost'). Login with the root mysql account, open the mysql database and: 
 
mysql> INSERT INTO user (host, user, password) 
    -> VALUES ('localhost', 'resolver', password('password')) 
    -> go 

 
Next provide specific access controls on the PURR database from the localhost. If the database 
is named 'purr_eerl' then execute this SQL statement: 
 

 Page 4 of 8 



caltechLIB:2001.003 

mysql> insert into db (host, db, user, select_priv, insert_priv,        
    -> update_priv, delete_priv) values ('localhost', 'purr_eerl', 
    -> 'resolver', 'y', 'y', 'y', 'y') 
    -> go 

 
After making any changes to the access tables, reload the database: 
 
$ mysqladmin -u root -p reload 
 
Populating the PURR Database 
As mentioned previously, the Library uses PURR to resolve documents in its Digital Collections 
archives run with EPrints.org software. So the following information get quite specific for that 
environment. 
 
One way or another, you will need to put data into the PURR database. The following script, 
synch_purr.pl extracts data from an EPrint archive database and imports it for immediate use 
into the PURR system described in this report. 
 
A special note: each EPrint archive must have its own PURR database. The reason will become 
clear as you read on. An obvious consequence of this is to be sure to run slightly modified 
version of synch_purr, one for each EPrint archive, perhaps on a nightly cron schedule. 
 
Some notes on the script 
The script assumes that the EPrints database is on the same host / port as the PURR 
database, and that access to read the EPrints data is granted to user 'resolver'.  
 
The script must insert three pieces of information into the PURR database.  
 

• The Report Number 
• The Destination URL 
• The Title (optional) 

 
The Report Number stored in the EPrints database does not include the archive name. That is, 
if the Unique Identifier of a document was 'PURR:unique.001a' then the value stored in EPrints 
is 'unique.001a'. However, since there is a separate PURR database for each archive, this isn't 
a problem. You will see in Resolver.pm how these pieces come together. 
 
The URL which our resolver returns is to the main EPrint document 'service' page.  
 
An example: http://caltecheerl.library.caltech.edu/documents/disk0/00/00/09/27/index.html 
 
This URL is not stored anywhere, but may be reconstructed using available data. The base URL 
is entered as a variable near the top of the script. The string '/documents/disk0/' is always the 
same and so is hard coded. The numbers following are derived from the internally used Eprint 
ID, a field in the EPrint database ('eprintid'). In the URL example above, the eprintid is 
00000927. And of course 'index.html' is always the same and hard coded. 
 
The title is stored as an EPrint field. 
 
Kobes, et. al., (2001) treat the subject of perl DBI programming in Chapter 6 of their excellent 
book, "Professional Perl Development". 
 
 
#!/usr/local/bin/perl -w 
# synch_purr.pl 
# Ed Sponsler, August 17, 2001 
# This script exports data from an EPrints.org archive and imports 
# necessary data into a PURR database. 
 
use strict; 
use warnings; 

 Page 5 of 8 



caltechLIB:2001.003 

use DBI; 
 
our ($dsn_export, $dbh_export, $sth_export, $purr_db,  
    $dc_db, $script_user, $purr_server, $purr_port, $db_user, $db_pass, 
    $url_base); 
 
$purr_db = 'purr_eerl'; # PURR database name (unique for each EPrints db) 
$dc_db = 'eerl'; # Digital Collection EPrint archive database name 
$db_user = 'resolver'; # DC and PURR database username  
$db_pass = 'password'; # DC and PURR database user password 
$url_base = 'caltecheerl.library.caltech.edu'; # base URL of EPrint archive 
 
$dsn_export = "DBI:mysql:database=$purr_db"; 
 
$dbh_export = DBI->connect($dsn_export, $db_user, $db_pass); 
$sth_export = $dbh_export->prepare("DELETE from main"); 
$sth_export->execute; 
 
my ($dsn_import, $dbh_import, $sql_import, $sth_import); 
our ($a, $b, $c, $d, $url, $title, $qtitle, $reportno, $eprintid); 
 
$dsn_import = "DBI:mysql:database=$dc_db"; 
$dbh_import = DBI->connect($dsn_import, $db_user, $db_pass,  
   {RaiseError => 1}); 
$sql_import = "SELECT title, reportno, eprintid from archive"; 
$sth_import = $dbh_import->prepare($sql_import); 
$sth_import->execute; 
$sth_import->bind_columns(\($title, $reportno, $eprintid)); 
while ($sth_import->fetch) 
{ 
   $a = substr($eprintid,0,2); 
   $b = substr($eprintid,2,2); 
   $c = substr($eprintid,4,2); 
   $d = substr($eprintid,6,2); 
    
   $url = "http://$url_base/documents/disk0/$a/$b/$c/$d/index.html"; 
   $qtitle = $dbh_export->quote("$title"); 
   $sth_export = $dbh_export->prepare("INSERT into main SET id='$reportno', url='$url', 
notes=$qtitle"); 
   $sth_export->execute; 
} 
 
$sth_export->finish; 
$dbh_export->disconnect; 
$sth_import->finish; 
$dbh_import->disconnect; 

Figure 2 -- synch_purr.pl 

The Resolver.pm Script 
Resolver.pm is called by Apache at the appropriate time during the processing of a request. 
Apache passes the 'request object' to this script and immediately runs the 'handler' 
subroutine. The first thing that 'handler' does is copy the 'request object' into $r. Many Apache 
subroutines are now available through $r. For more details, see Stein, et. al, (1999). 
 
The convention CLS uses for constructing Unique Identifiers is: 
 
archive_name:report_number 
 
The discussion on synch_purr pointed out that only the report_number is stored in the EPrints 
database, and so, this is the only number stored in the PURR database. However, there is a 
separate PURR database for each EPrint archive. Since the archive_name is included in the 
URL, Apache is able to figure out which PURR database in which to lookup the URL based on 
the report_number given.  
 
The hash %db is used in the get_url subroutine to translate the archive name included in the 
URL into the appropriate PURR database. So given a URL: 

 Page 6 of 8 



caltechLIB:2001.003 

 
http://resolver.library.caltech.edu/caltechEERL:1988.023 
 
It can split the caltechEERL:1988.023 into two parts, caltechEERL and 1988.023. The first is 
used to determine which PURR database to look up, and use the second is used to lookup 
which record within that database contains the URL to return to the requestor. 
 
In this way, a single Resolver.pm script may be used for an indefinite number of PURR / EPrint 
databases, just by adding additional pairs in %db. 
 
The basic error handling is to redirect the user to our main Digital Collections page if no 
Unique Identifier is given to resolver.caltech.edu and to produce an error page with email link 
if the Unique Identifier is garbage or non-existent.  
 
package Apache::Resolver; 
use Apache::Constants qw(REDIRECT); 
use DBI; 
 
our %db; # This hash will translate archive names into the PURR db name 
 
%db = ( 
   caltechCSTR => 'purr_cstr', 
   caltechEERL => 'purr_eerl', 
   cav2001 => 'purr_cav', 
); 
 
our ($db_user, $db_pass); 
$db_user = 'resolver'; # database username 
$db_pass = 'password'; # database user password 
 
sub handler { 
   my ($r, $uri, $id, $url); 
   $r = shift; 
   $uri = $r->uri; 
   if ($uri eq '/') {  
      $r->header_out(Location => 'http://library.caltech.edu/digital'); 
      return REDIRECT; 
   } 
   $id = substr($uri,1);  
   $url = get_url($id); 
   if ($url) { 
      $r->header_out(Location => $url); 
      return REDIRECT; 
   } 
   else 
   { 
      $r->content_type('text/html'); 
      $r->send_http_header; 
      $r->print(<<_HTML_); 
<HTML> 
<HEAD> 
<TITLE>Error: Not Found</TITLE> 
</HEAD> 
<BODY> 
<H1>Error</H1> 
<P> 
The Unique ID: <b>$id</b> cannot be found.<br> 
Try again, or <a href="mailto:web\@library.caltech.edu">contact us</a>. 
</P> 
</BODY> 
</HTML> 
_HTML_ 
   return OK; 
} 
} 
 
sub get_url { 
   my ($id, $dsn, $dbh, $sql, $sth, $url, $rep_id, $reportno); 

 Page 7 of 8 



caltechLIB:2001.003 

   $id = shift; 
   ($rep_id, $reportno) = split (':', $id, 2); 
   unless ($db{$rep_id}) {return 0}; 
   $dsn = "DBI:mysql:$db{$rep_id}"; 
   $dbh = DBI->connect($dsn,$db_user,$db_pass); 
   unless ($dbh){die "Can't open database: $DBI::errstr";} 
   $sql = "SELECT url from main WHERE id='$reportno'"; 
   $sth = $dbh->prepare($sql); 
   $sth->execute; 
   $sth->bind_col(1,\$url); 
   $sth->fetch; 
   $sth->finish; 
   $dbh->disconnect; 
   return $url; 
} 
1; 

Figure 3 -- Resolver.pm 

A Couple Useful Books 
Kobes, Randy; Wainwright, Peter & Gundavaram, Shishir (2001) "Professional Perl 
Development". Wrox Press, Inc. [Esspecially Chapter 6, "Databases"] 
 
Stein, Lincoln & MacEacherm (1999) "Writing Apache Modules with Perl and C: The Apache API 
and mod_perl". Oreilly & Associates, Inc. 
 
 
 

 Page 8 of 8 


	PURR – The Persistent URL Resource Resolver
	Introduction
	PURR Implementation
	The CLS Environment
	Apache Configuration
	Database Configuration
	Populating the PURR Database
	The Resolver.pm Script

	A Couple Useful Books


