List, E. John (1965) The stability and mixing of a densitystratified horizontal flow in a saturated porous medium. California Institute of Technology , Pasadena, CA. (Unpublished) http://resolver.caltech.edu/CaltechKHR:KHR11

PDF
See Usage Policy. 18Mb 
Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechKHR:KHR11
Abstract
The mixing of two miscible fluids in motion in a saturated isotropic porous medium and the stability of the density interface between them has been studied. The density interface was formed by a line source introducing a denser fluid into a uniform confined horizontal flow. It was shown that the halfbody thus formed may be approximated to within the density difference by the shape when the densities are equal. The mixing of the two fluids by lateral dispersion along such an interface was investigated experimentally and it was found that up to density differences of at least 1 per cent there was no observable effect on the lateral dispersion coefficient. A theoretical investigation has been made of the stability of the uniform twodimensional horizontal motion of two miscible fluids of different density in a saturated, isotropic, homogeneous porous medium. The fluid of higher density overlay the lower density fluid and both were moving with the same seepage velocity in the same direction. The analytical solution for the stability was obtained from the continuity equation, Darcy's law and the dispersion equation by investigating the stability of arbitrary sinusoidal perturbations to the velocity vector and the density profile prescribed by the lateral dispersion of one fluid into the other. A stability equation similar to the OrrSommerfeld equation was obtained and a neutral stability curve in a wave numberRayleigh number plane was found by two approximate methods. The growth rates of instabilities were investigated for a linear density profile and it has been found that although the flow was always unstable the growth rates of unstable waves could be so low as to form a quasistable flow; examples of such flows have been demonstrated experimentally.
Item Type:  Report or Paper (Technical Report) 

Group:  W. M. Keck Laboratory of Hydraulics and Water Resources 
Record Number:  CaltechKHR:KHR11 
Persistent URL:  http://resolver.caltech.edu/CaltechKHR:KHR11 
Usage Policy:  You are granted permission for individual, educational, research and noncommercial reproduction, distribution, display and performance of this work in any format. 
ID Code:  25985 
Collection:  CaltechKHR 
Deposited By:  Imported from CaltechKHR 
Deposited On:  14 Jun 2004 
Last Modified:  26 Dec 2012 13:50 
Repository Staff Only: item control page