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Abstract

We introduce a new algorithm for consistent failure detection in asynchronous
systems. Informally, consistent failure detection requires processes in a dis-
tributed system to distinguish between two different populations: a fault free
population and a faulty one.

The major contribution of this paper is in combining ideas from group mem-
bership and leader election, in order to have an election protocol for a fault man-
ager whose convergence is delayed until a new consistent view of the connectivity
of the network is established by all processes. In our algorithm a group of pro-
cesses agrees upon the failed population of the system, and then gives to a unique
leader, called the fault manager, the possibility of executing distributed tasks in
a centralized way.

This research and the new perspective that we propose are driven by the
study of an actual system, the Caltech RAIN (Reliable Array of Independent
Nodes), on which our protocol has been implemented in order to perform fault
recovery in distributed checkpointing. Other potential applications include fault
tolerant distributed database services and fault tolerant distributed web servers.
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1 Introduction

In fault tolerant asynchronous distributed systems, it is necessary for processes! to be
able to monitor one another, keeping track of failures and recoveries of the system’s
members. Processes might need to take actions based on such failures and recoveries.

As an example, we may consider a distributed fault tolerant server, that works
as follows [18]: a request for a particular service is multicast to all processes in the
system, the operational process having the smaller id services the request. In order to
perform this task, all processes are required to agree on which of them are currently
operational and on their ID’s. When such knowledge is lost, anomalous situations in
which no process responds to a request (because all operational processes believe that
there is a failed process with a smaller id that is still operational), or in which more
than one process responds (because some operational processes believe that all pro-
cesses with smaller id’s have failed when they have not), may arise. Moreover, when
a process changes its status from operational to failed or vice versa, it is necessary for
all processes to agree to handle incoming requests before or after such status change.
Processes should be able to consistently decide on which of them has to respond to
incoming requests.

In the example presented above, a need for coordination arises because processes
do not perceive changes in the state of the network at the same time. Two possible
approaches for achieving such coordination are leader election and group membership.

The first approach requires running an election protocol each time a failure or re-
covery is suspected. Leader election is one of the fundamental problems in distributed
computing [13]. The election of a leader brings a distributed system to a nonsym-
metric global state. Once a leader has been determined, distributed tasks such as
consensus, resource allocation, load balancing etc., may be solved by a centralized
approach.

The second approach is based on membership services that provide process groups
with a consistent membership view [14] [16]. Membership services are useful in sys-
tems subject to failures, because when a process in a group fails, it may be removed
from the group if there is another one that suspects it to be faulty. Changes in the
state of a process are reflected in the membership of the group, and are ordered with
respect to task management.

The problem with coordination protocols, such as group membership and leader
election, is that they require some form of process agreement in the presence of failures.
When developing a distributed protocol in an asynchronous system subject to failures,
one should be aware of the impossibility result of Fisher Lynch and Paterson [6], that
shows that consensus is impossible in an asynchronous system, where one process may
fail silently. Chandra et al. [4] adapted the impossibility result to a weakly specified
group membership problem that allows removal of erroneously suspected processes
from the group. However, their proof requires a liveness property, namely, if process
p1 or po leaves the group, a new view is eventually installed by at least one process
in the system. Neiger [15] showed that weakening the liveness property enables a
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solution of the group membership problem. He presented a specification that allows
runs in which a membership change occurs, but no process learns the identity of the
new group, and the group becomes empty with no process knowing it. However, his
new algorithm has a single point of failure, since the crash of a single process (the
current leader) hangs all processes.

The algorithm we present performs election of a leader each time a failure or
recovery is suspected. However, unlike traditional leader election, the convergence
of our algorithm is delayed until a consistent view of the network connectivity is
established by all processes. This convergence property is reflected in real systems,
where processes crashes always lead —after an arbitrary long amount of time- to a
scenario in which a connected cluster of processes share a consistent view of the
network connectivity.

Unlike group membership, the point of failure of our algorithm is not in a single
process, but in a connected component. Our leader is dynamically elected depending
upon failures occurrences, so that if it fails, it is replaced by another process. Only
if a view of the network connectivity is established in which all processes suspect all
others to have failed, our algorithm blocks and the network needs to be (re)initialized.

Our solution adopts a logical approach to failure detection. The algorithm is
based on the idea that a change in the state of the system should not be considered,
until it is perceived by all processes in the network. Therefore a process, instead of
acting directly when it detects a failure (or a recovery), waits for local views of the
other processes to conform with its own, designating a unique leader of the group
when convergence is established. With this mechanism, at each instant of time every
process is either part of a logical completely connected component or is in a dead
state, thus preventing from performing inconsistent actions.

It is important to note that our algorithm, as those in [9] [14] [16], applies to
systems that attempt to maintain a single agreed view of the network connectivity.
These are known as primary partition systems, i.e. systems with no network parti-
tions, or systems in which a primary component mechanism ensures that only one
network partition is considered as the logical connected component.

In particular, we have implemented our algorithm on the Caltech RAIN system,
which is based on non-partitionable, fault tolerant network topologies [10]. This sys-
tem has the property that in presence of failures the network topology always consists
of a single connected component and a number of isolated nodes. On systems differ-
ent from RAIN, our agorithm may still be used in conjuction with a simple primary
component mechanism that allows only a majority (or quorum) of the processes to
be logically connected and to have a leader. This approach has been used for al-
gorithms implemented on systems described in [1] [9]. Articulate dynamic voting
protocols that define quorums adaptively, depending on a dynamically changing set
of processes, have also been proposed [8] [12]. Such protocols are always based on
underlying group mechanisms, depend from their liveness properties and may be
implemented on top of our algorithm.

Finally, if our protocol is run on a partitionable network, with no mechanism for
maintaining a primary component, in the case of a partition the algorithm splits and



elects a leader for each subset of connected processes.

In the following, we give a scenario that intuitively explains how our protocol
behaves. This scenario is clarified later in the paper, when the actual algorithm is
presented.

e Consider a system that initially consists of five processes, numbered 1,2,3,4,5,
that are completely connected and are led by process 1.

e The system first loses process 5, i.e. 1,2,3,4 suspect 5 failed.

e Process 5 spontaneously enters a dead state. Processes 1,2,3,4 are led by pro-
cess 1.

e The system loses process 1 (current leader) and reacts in a similar way: pro-
cesses 2,3,4 are led by process 2 and process 1 enters a dead state.

e Processes 1 and 5 rejoin the network. Since they are dead processes, they do not
react to any change in connectivity that occurs in their local views and remain
dead, until the alive connected component led by process 2 accepts them.

e Finally, processes 1 and 5 are released and enter again an alive state.

Note that at any given instant of time the system is always in a consistent global
state, led by a wnique leader, and that the connected component becomes empty
and the protocol blocks only when all processes enter a dead state, i.e. every process
suspects its neighbors failed.

The rest of the paper is organized as follows. In Section 2 we describe our model.
In Section 3 we describe the algorithm in a step-wise refinement fashion. We start by
considering an election protocol that does not consider process crashes, then we extend
it to handling failures, to handling recoveries, and finally we present our complete
algorithm. In section 4 we describe an application of the algorithm as part of a fault
recovery project. In Section 5 we draw conclusions and discuss future work.

2 The Model

Our system is modeled as a complete graph (N,E), where N represents processors
and E represents communication links. We assume that each node has a unique
identity defined by a unique weight associated with it. The network is considered
to be asynchronous, i.e. there is no global clock and message transmission and node
processing times are finite but unpredictable. Processors in the network may fail
silently and recover. Communication is considered to be point to point and messages
successfully sent over a link, arrive at destination in a FIFO fashion. Every send
operation is considered a blocking operation, in the sense that upon sending a message,
a processor waits until either the send action succeeds (i.e. is acknowledged by the
receiving processor), or it considers the link to the receiving processor in a failed state.
We assume a processor to have the ability to query the state of its communication
links, using an underlying protocol that maintains a consistent history on the state
of a link between a pair of nodes [11]. In particular, such protocol guarantees that:



e Every time processor 1 is unable to communicate with processor 2 (i.e. p; sees
an up-down transition on the link to po), then processor 2 will eventually be
unable to communicate with processor 1.

e Every time processor 1 is able to communicate with processor 2 (i.e. p; sees a
down-up transition on the link to ps), then processor 2 will eventually be able
to communicate with processor 1.

Processor failure detection is performed independently at each node and corresponds
to determining the state of the communication links incident on each node. From
our point of view a processor fails when it loses communication links to all other
processors in the network, i.e. it becomes isolated. A processor recovers becoming
again fully connected to all other not failed processors.

Note that failure detection, i.e. determining the state of a link between two proces-
sors, is only equivalent to suspecting a crash, since accurate detection of failures (and
recoveries) is impossible in an asynchronous environment. Therefore, the underlying
protocol [11] that we assume existing on the system, is equivalent to an unreliable
failure detector that is eventually consistent between a pair of nodes connected to the
same link.

3 The Leader Election Algorithm

In this section first we describe a very simple algorithm for leader election, as it was
presented in [17]. We call it protocol I'. Such protocol does not consider any kind
of failures, however it solves the problem of leader election in completely connected
asynchronous networks. We then modify protocol I' for handling failures, obtaining
protocol ®. From ® we derive protocol ¥ that handles failures and recoveries. Finally,
we introduce protocol €2, that works in more dynamic, real world conditions.

3.1 Protocol T’

We consider a leader election problem in which an arbitrary subset of nodes, called
the candidates, wake up spontaneously and start the protocol. All other nodes are
passive and wake up on receiving a message of the protocol. Initially, a node knows
only its own identity. At the termination of the protocol, exactly one node among
the candidates is elected, and all nodes know the identity of this node.

The protocol works as follows. A candidate attempts to capture all other nodes.
The node that is able to capture all other nodes declares itself the leader. A candidate
sends a candidate message on all incident edges. When a node j receives a candidate
message from node i, it behaves as follows:

e If j is a candidate and j < 7, then no response is sent.
e Otherwise, j sends an accept message to i.

A node that receives an accept message on all incident edges, declares itself the leader
to all nodes.



3.2 Protocol &

We extend the naive solution of protocol I" to a system with failures.

Note that in protocol I' a subset of the nodes spontaneously wakes up and starts
the protocol, while in protocol ® all nodes are potential candidates, and candidacy
is performed depending from failure occurrences. Moreover, in protocol I' a node
initially knows only its own identity, and candidates send candidacy messages to all
nodes. In protocol ®, nodes perform the protocol depending on their weight and
on the weights of the other nodes they are connected to. If a node is connected to
another node, i.e. it is able to communicate with it, it is expected to know its identity.

3.2.1 Protocol & (informal)

Weights define an ordering between the nodes. When a node crashes it starts losing
links to other nodes. The node with the lower weight in the connected network is
expected to become the leader.

A node that experiences a link failure suspects the node corresponding to that
link to be failing. If it does not have any available link towards a node with a smaller
weight, it proposes to be the leader, sending candidate messages on all of its output
links. If it does not have any available link, it goes into a dead state and it stops
performing any action.

Nodes send accept messages only to the node with the smaller number they are
connected to, as soon as it proposes to be a leader, and they agree on the state of the
links the candidate lost.

The convergence condition for leader election is expressed as follows: each leader
candidate, in order to declare itself as leader, needs to collect accept messages from
all nodes it sent candidate messages to, if it is still connected to them.

3.2.2 Protocol ¢ (formal)

V node 7

let n, = number of available links from 7

let IC = {i : weight(i) < weight(n)}

let nr = number of available links from 1 to nodes € K

V link loss regarding node j
if (n, = 0) = enter dead
else if (ny = 0) = V available link i send cand(5)

V cand(j) received from a node s
let 75 = number of available links to nodes p : weight(p) < weight(s)
if [(link to node j has failed) A(n, = 0)] = send accept(j) to s

Definition 3.1 The convergence condition for leader election may be formally ez-
pressed as follows:
Y node 1

let 1 = number of accept messages received by 1

let ¢ = number of cand messages sent by n



1 outputs leader < the following condition holds:

(g#0)A{(r=4q) VI[(r<q)A(qg—r)cand(j)to node i: link toi has failed]} (1)

3.2.3 Protocol ¢, Proof of Correctness

Theorem 3.1 Given a completely connected network of n nodes, for every k <n—1
node failures, the convergence condition for leader election (Def. 3.1) eventually holds
for exactly a single node in the network, which is the elected leader.

Proof:

Let H be the set of n — k nodes that are operational after a k-node failure. Let
us introduce an arbitrary long time interval [0,T]. We assume that after time T, &k
nodes are perceived to be faulty by all nodes in H. In addition, we assume that at
time t €[0,T], the £ failing nodes are perceived to be faulty only by a subset of .

The proof is organized as follows. First we show that at time ¢ €[0,T] there is no
node for which the convergence condition in Def. 3.1 holds. Then we show that after
time T, there is exactly a single node in H for which the convergence condition holds.

The proof of the first part is by contradiction. Let us assume that there is an
elected leader for the k failing nodes at time ¢ €][0,T]. Hence, it follows from Def. 3.1
that the elected leader has collected accept messages from all nodes it considers op-
erational, regarding all nodes it perceived to be faulty. This means that there is a
set of nodes that agree on the leader view of the faulty nodes. Hence, there is a set
of nodes H' that suspect all nodes not in H' to be faulty. Each node in H' cannot
suspect all the k failing nodes to be faulty, because, it would imply that H' = H.
This would contradict the fact that we have assumed that at time ¢ €[0,T] k failing
nodes are perceived to be faulty only by a subset of #. Neither each node in H’ can
suspect less (more) than k nodes, because, it would imply # C (D)H' and a leader
election for less (more) than £ failing nodes.

We now consider time ¢ >T. After time T an arbitrary node is either in H or is
considered to be faulty by all nodes in H. A candidate in H is the node with the
minimal weight, that has sent k(n — k) cand messages to all nodes in H. After time
T, k failing nodes are perceived to be faulty by all nodes in . Therefore nodes in
‘H that have received k cand messages from the candidate with the minimal weight,
have sent k accept messages to it. Since there are n — k nodes in H, there is exactly
one candidate in H that received the maximum number of k(n — k) accept messages,
for which the convergence condition in Def. 3.1 holds. O

3.2.4 Example

Let us consider the complete network of four nodes depicted in Fig. 1. Let us consider
a double failure of nodes N1 and N2, with the following link loss sequence: 1,6,2,4,5.
Let us look at table 1 and see at each link loss what is the state of the network, in
terms of messages sent and received by the nodes.

Note that node N3 is elected leader within the connected component composed
of nodes N3 and N4.



| failure: link 1 | failure: link 6
node || state | sent received state | sent received
N1 alive | cand(2)—N3 alive | cand(2)—N3
cand(2)—N4 cand(2)—N4
cand(3)—N4
N2 alive | cand(1)—N3 alive | cand(1)—N3 N3—accept(1)
cand(1)—N4 cand(1)—N4
N3 alive Nl—cand(2) alive | accept(1)—=>N2 | N1—cand(2)
N2—cand(1) N2—cand(1)
N4 alive Nl—cand(2) alive Nl—cand(2)
N2—cand(1) N2—cand(1)
Nl—cand(3)
| failure: link 2 | failure: link 4
N1 alive | cand(2)—N3 dead
cand(2)—N4
cand(3)—N4
N2 alive | cand(1)»N3 | N3—accept(l) || alive | cand(1)—N3 N3—accept(1)
cand(1)—N4 cand(1)—»N4 | Nd—accept(1)
cand(3)—N4 cand(3)—N4
N3 alive | accept(1)—N2 | N1—cand(2) alive | accept(1)—=>N2 | N1—cand(2)
cand(1)—»N4 | N2—cand(1) cand(1)—N4 N2—cand(1)
cand(2)—N4 cand(2)—N4
N4 alive Nl—cand(2) alive | accept(1)—N2 | N1—cand(2)
N2—cand(1) N2—cand(1)
Nl—cand(3) Nl—cand(3)
N2—cand(3) N2—cand(3)
N3—cand(1) N3—cand(1)
N3—cand(2) N3—cand(2)
| failure: link 5 |
N1 dead
N2 dead
N3 alive | accept(1)=N2 | N1—cand(2)
cand(1)—»N4 | N2—cand(1)
cand(2)—»N4 | Nd—accept(1)
N4—accept(2)
N4 alive | accept(1)—N2 | N1—cand(2)
accept(1)—N3 | N2—cand(1)
accept(2)—N3 | N1—cand(3)
N2—cand(3)
N3—cand(1)
N3—cand(2)

Table 1: Node states
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Figure 1: Complete four node network

3.3 Protocol ¥

A natural extension of protocol ®, deals with handling node recoveries as well as
node failures. A node that recovers “regains” its links towards the other nodes in the
network at different times, in a similar fashion than when it lost them when it failed.

Forcing the leader to always be a node in the connected component we use a
protocol similar to ®.

3.3.1 Protocol ¥ (informal)

The protocol forces a leader candidate to always be part of the connected component.
Link repairing is treated in the same way as link loss in protocol ®. We distinguish
between four kinds of messages: candgown(j), candy,(j) acceptaown(j), acceptyy(j).
Protocol W is equivalent to protocol @ in terms of the convergence condition in Def. 3.1
and response to cand messages.

3.3.2 protocol ¥ (formal)

Y node 7
let 1, = number of available links from 7
let IC = {i : weight(i) < weight(n)}
let nx = number of available links from 7 to nodes € K
V link loss V link repair regarding node j
if (n, = 0) = enter dead
if (n & dead) A (ngy = 0) = V available channel 7 send cand(j)down V cand(j)up
let s = available links to nodes p : weight(p) < weight(s) A p & dead
Y cand(j)down received from a node s
if [(link to node j is failed) A(ns = 0)] = send accept(j)down to s
V cand(j)yp received from a node s
if [(link to node j is available) A(ns = 0)] = send accept(j)up to s



3.3.3 Protocol ¥, Proof of Correctness

Theorem 3.2 Given an n-node network, composed of a connected component of size
m < n, and of n —m isolated nodes, for every k < n —1 node failures and g < n—m
node repairs, the convergence condition for leader election (Def. 3.1) eventually holds
for exactly a single node in the network, which is the elected leader.

Proof: The proof follows the one given for Theorem 3.1. The size of the connected
component after time T is m — k 4+ ¢q. The total number of accept messages sent to
the final leader after time T is (k + ¢)(m — k + q), instead of k(n — k). Likewise, the
number of cand messages of a leader candidate towards healthy nodes after time T
is (k + q)(m — k + ¢). The proof proceeds as in Theorem 3.1, substituting n with m
and adding the parameter ¢q. O

3.4 Protocol )

Protocol ¥ handles both node failures and recoveries. However it is not completely
general, and presents some problems in dynamic conditions.

Protocol ¥ considers a node to fail losing all of its communication links to other
nodes, and a node to recover, regaining them. In a “real world” environment a node
may lose some communication links to other nodes and regain them, without becom-
ing completely isolated from the network. This may happen because of inaccurate
failure detection performed by some nodes, or simply because a node that crashes
(or recovers), may present transient conditions, during which its state alternatively
“bounces” between an up and down condition, before stabilizing.

Protocol €2 handles inaccurate failure detection and dynamic transient conditions.
It introduces the notion of logical connected component and cancel messages, in order
to maintain a consistent global state in the network.

3.4.1 Example

In the following, we give an example that shows how protocol ¥ may fail in the case
of inaccurate failure detection and a need for protocol {2 arises.

Let us consider a network composed of a fully connected component composed
of nodes 1,2,3,4, and an isolated node (node 5). Imagine that a subset of the nodes
in the connected component (for example nodes 1 and 3), perform a wrong failure
detection, suspecting node 4 to have failed. According to protocol ¥, node 1 sends
candgown(4) messages to nodes 2 and 3 and node 3 sends an accept g, (4) message
to node 1. Suppose then, that node 4 becomes again fully connected together with
node 5. At this point the network is composed of a fully connected component of five
nodes. However, protocol ¥ prevents a leader to be elected because node 1 still waits
for an accept joun (4) message from node 2.

3.4.2 Protocol Q (informal)

Initially the network is composed of a fully connected component and a number
of isolated nodes. Every node has its own local view of the connectivity that is
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consistent with the views of the other nodes. Possible changes in the local connectivity
view include node failures and repairs, as well as link repairs to nodes that have not
failed, and link failures to nodes that have previously failed and are in the process of
being again fully connected to the network. We assume that nodes in the connected
component do not consider link repairs to logically connected nodes that entered a
dead state. Therefore, once a node enters a dead state, it must exit the connected
component (i.e. the leader election process should converge), before being readmitted
to it through a new election.

Node failures and repairs are treated as in protocol ¥ and are recognized as link
failures to nodes in the connected component and link repairs to isolated nodes.
Link failures to logically isolated nodes and link repairs to nodes that are already
logically connected (and are alive), are treated as previous wrong detections and
cancel messages are issued. Nodes update their state flushing memory regarding
received messages, upon receiving cancel messages, and flushing memory regarding
sent messages, upon sending cancel messages.

In terms of the convergence condition, protocol € slightly differs from protocols
® and P, introducing the additional requirement that in order to become a leader,
a node should not be connected to nodes with a smaller weight. This requirement
becomes necessary in a dynamic environment, where nodes may candidate when they
are isolated from nodes with a smaller weight and subsequently regain links to them
before convergence is established.

3.4.3 Protocol Q (formal)

The protocol is formally fully described in Fig. 2, using predicate calculus. A high
level representation of the protocol’s behaviour in terms of finite state machines is
depicted in Fig. 3. The convergence condition for protocol €2 is expressed below.

Definition 3.2 The convergence condition for leader election for protocol 2 may be
formally expressed as follows:
Y node n

let I = {i : weight(i) < weight(n)}

let mi = number of available links from n to nodes € K

let I; € {0,1} : state of link from n to node j

let ¢ = number of cand messages sent by n

1 outputs leader < the following condition holds:

(e = 0) A (¢ # 0) (2)
NVs,j {sent(candg(j)to s) = [received(acceptyy, () from s)V —l;]
A sent(candyy(j)to s) = [received(acceptyy(j) from s)V =l;]}

In Fig. 2 three predicate calculus sentences must hold at all times. The first
sentence regards actions to be taken due to connectivity changes (e.g. seding candidacy
or cancel messages). The second sentence regards actions to be taken due to receiving
of messages (e.g. sending accept messages, flushing memory of previously received
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messages upon receiving cancel messages). The third sentence regards checking the
convergence condition for leader election expressed in Def. 3.2.

In Fig. 3 a node state is captured by the state of its links and by a private
state determined by the total number of its available links and by messages sent
and received. Three finite state automata are represented. Two of them describe
transitions on links /; to nodes in the connected component and on links /; to isolated
nodes. The third one describes transitions between the node private states. Variables
candS and candR represent the total number of candidacy messages sent and received
by a node respectively. Such number varies accordingly to cancel messages sent and
received. The finite state machines evolve concurrently, starting in a state where the
network is composed of a fully connected component and a number of isolated nodes
and no messages are sent and received. At each machine state, actions are taken
according to the predicate calculus sentences in Fig. 2.

3.4.4 Protocol (), Proof of Correctness

By its definition it is easy to see that protocol © includes protocol ¥ (see Fig. 2 and
Fig. 3), i.e. it is correct in the case of a k-node failure and g-node recovery. In the
following, we present a theorem that proves the correctness of protocol € in the case of
wrong failure detection of £ nodes (k-fake failure). Wrong failure detection is referred
to the case that some nodes that are initially considered to be faulty only by a subset
of the nodes in the connected component, then become again fully connected to the
network. It is easy to extend the theorem to the case of incorrect recovery detection.

Definition 3.3 A k-fake node failure regards k nodes that are temporarily suspected
of being faulty by a subset of the nodes in the connected component. Formally:

let H ={1:VYj€H,iis connected to j}
let M CH

k-fake node failure < 3T > 0 :
at time t € [0,T] k nodes € H are perceived faulty only by some nodes in M
at time t > T they are perceived operational by all nodes in H

Theorem 3.3 Given a completely connected network composed of a set H of n nodes,
for every k < n fake node failure, there is no node for which the convergence condition
for leader election (Def. 3.2) holds, and the state of the network in terms of messages
sent and received by the nodes is eventually the same of the initial one.

Proof:

The proof of the first part of the theorem follows the one given for Theorem 3.1.
Reasoning as in Theorem 3.1, we state that since M C H, at time ¢ €[0,T] there is no
node for which the convergence condition in Def. 3.2 holds. Note that the stronger
expression for the convergence condition in Def. 3.2 is required this time, in order to
state that an elected leader has collected accept messages from all nodes it considers
operational, regarding all nodes it perceived to be faulty.
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let conn the initial set of fully connected nodes
let dead the initial set of isolated nodes
YV node 7
let n, = number of available links from 5
let I; € {0,1} : state of link from 7 to node j
let K = {i : weight(i) < weight(n)}
let nr = number of available links from 7 to nodes € K
let S = {p: weight(p) < weight(s) A p & dead}
let ns = number of available links from 7 to nodes € S
let msgs : received by n from node s

Vi Vi a;(i) = B;(i) = false
Forever in time:

1. Vj

(-lj Nj € conn) =
[(na = 0) = enter (9, dead)] V {[(n & dead) A (), = 0)] =
Vi [l; A —sent(candg,(j) to i) = send (candgn(j) to i )A set (8;(i), true)]} vV

(l; Nj ¢ conn) =
[(n & dead) A (me = 0)] =
Vi [l A nsent(candyy(j) to 1) = send (cand,,(j) to i) A set (a;(i), true)] V

(I; Nj € conn) =

Vi [(8; (i) AN l;) = send (cancelqn(j) to i) A set (8;(i), false)] V
(—lj Nj ¢ conn) =

Vi [(o (i) Al;) = send (cancely, () to i) A set (a;(i), false)]

2. Ymsgs

(msgs = candgn(j)) =
[(=l; A (ns = 0) Als A —sent(acceptqn(j) to s)) = [send(acceptqn(j) to s) A
set (8;(7), true)] v

(msgs = candyy(j)) =
[(; A (ns = 0) Al A —sent(acceptyy () to s)) = [send(accepty,(j) to s) A
set (a; (i), true)] V

(msgs = cancelgn(j)) =
[(3 msgs = candg,(§) = flush(msgs))A (3 msgs = acceptyn(j) = flush(msgs))]V

(msgs = cancelyy(j)) =
[(3msgs = candyy(j) = flush(msgs))A (3 msgs = acceptyy(j) = flush(msgs))]

3. convergence condition(Def. 3.2) = out(leader,n)

Figure 2: Protocol Q
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forall j Leader / 1

Start Start

Leader/ 1

1i down

Figure 3: A node executing protocol 2 maintains a finite state automata for every link
incident on it and sends messages according to the state of its links and to messages
received from other nodes.

If there is no leader elected at time ¢ €[0,T], there cannot be a leader at time
t >T, because after time T all nodes in H are perceived to be operational and no
more accept messages regarding failures are sent.

After time T all nodes in H share the same connectivity view, which is of a fully
connected component of operational processes, identical to the initial one. Therefore,
after time T all cancel messages have been successfully sent. Hence, after time T no
node has memory of sent or received messages regarding failed nodes, otherwise there
is at least a node that has not sent cancel messages. This would contradict the fact
that after time T the network is fully connected, i.e. all nodes in H are able to send
messages to all other nodes in H. O

4 Applications: the fault recovery project on RAIN

One of the research projects at Caltech is focusing on the construction of highly re-
liable distributed environments, by leveraging commercially available personal com-
puters, workstations and interconnect technologies.

The Caltech Reliable Array of Independent Nodes (see Fig. 4 for a photo) is a
fault tolerant distributed computing environment, built on top of a switched Local
Area Network. The system is in continuous evolution, as new features are added.

In particular, the protocol we presented has been implemented on RAIN as part
of a fault recovery project. Such project presents many innovative aspects [7]:

14



Figure 4: The RAIN System

e Distributed checkpointing. Redundant checkpointing information is distributed
on local disks in the network using array codes [2] [3].

e Redundant connections to switches. The physical network topology presents
features of resistance to partitioning [10].

e Reliable messaging. Reliable message exchange is guaranteed by link-monitoring
protocols running on the system [11].

e Fault manager. The dynamic election of a leader in presence of faults ensures
continuous computation.

We have developed a demo that shows some of the capabilities we can achieve
combining the aspects above. An application that displays a fractal image is run on
the system and performs distributed checkpointing. Redundancy in the checkpointing
information allows reconstruction of the state of the computation from a working
subset of all the machines in the system (using an n, k code, we can reconstruct the
state when at least k, out of the total n machines, are still working). We are able
to disconnect machines from the network, simulating faults. The election protocol
designates a fault manager that decodes data from some of the remaining machines,
recontructs the state of lost applications and performs fault recovery assuring that
they continue computing on other nodes of the network. Likewise, the disconnected
machines enter spontaneously a dead state and quit the application. When we recon-
nect previously disconnected machines a new election is performed and they become
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again potential leaders to handle future failures in the group.

5 Conclusions

We have presented a new algorithm for election of a fault manager in asynchronous
systems. Our algorithm has been implemented as part of a fault recovery project and
currently runs on the Caltech RAIN system.

We stress out that the algorithm satisfies a weak liveness property: it eventually
converges only when a connected cluster of processes is found in the system. An
infinite sequence of link failures and recoveries may have the protocol run forever,
but single or multiple processes crashes cannot force it to halt. This is a very desir-
able feature in real world systems and an important difference with respect to what
presented in [15] where a single process crash may halt all processes.

The satisfaction of weak liveness is coherent with our loose definition of failure
detection given in section 2. A failure detection mechanism is usually defined in
terms of abstract accuracy and completeness global properties [5]. We differ from
this approach. We do not use any global system properties like the ones introduced
in [5] to classify our failure detection mechanism. We define failure detection as a
local feature of each process in determining the state of its communication links.
The link connectivity protocol [11] we assume existing on the system is simple to
implement and, ensuring consistency on each link state between every pair of nodes,
makes it possible to reason on the network as on a simple —one edge per pair of nodes—
bidirectional graph. Convergence of our algorithm maps onto a topology property of
full connectivity of this graph. In this way, liveness of our algorithm depends from
global system state.

We believe that our approach in weakening liveness is an equivalent alternative
to using formally defined global failure detectors. In particular, we conjecture that
it is possible to describe our protocol introducing failure detector modules defined
in terms of abstract properties as in [5], thus strenghtening the liveness guarantees.
While our loose definition of local failure detectors that operate independently at each
node is reflected in the protocol’s property of eventual convergence, a definition in
terms of abstract global properties of the system may transfer liveness into a feature
of the failure detection mechanism.

We are currently investigating techniques to reduce the message complexity of the
algorithm, as well as the possibility of using our ideas of delayed convergence and local
connectivity monitoring, to solve other problems in distributed computing, formally
relating convergence to global system state in terms of network topology properties.
Moreover, we are trying to relate algorithms that use weak liveness requirements (e.g.
algorithms that only eventually converge), to algorithms with strong liveness guaran-
tees based on formally defined failure detection modules, since the latter usually define
failure detectors through liveness properties [5]. We believe that the study of this re-
lationship may set a bridge between two different approaches adopted to circumvent
well known impossibility results in asynchronous systems subject to failures.
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