Langberg, Michael and Sprintson, Alexander and Bruck, Jehoshua (2005) The encoding complexity of network coding. In: 2005 IEEE International Symposium on Information Theory (ISIT), Adelaide, Australia, 49 September, 2005. IEEE , Piscataway, NJ, pp. 19871991. http://resolver.caltech.edu/CaltechAUTHORS:LANisit05b

PDF
See Usage Policy. 115Kb 
Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:LANisit05b
Abstract
In the multicast network coding problem, a source s needs to deliver h packets to a set of k terminals over an underlying network G. The nodes of the coding network can be broadly categorized into two groups. The first group includes encoding nodes, i.e., nodes that generate new packets by combining data received from two or more incoming links. The second group includes forwarding nodes that can only duplicate and forward the incoming packets. Encoding nodes are, in general, more expensive due to the need to equip them with encoding capabilities. In addition, encoding nodes incur delay and increase the overall complexity of the network. Accordingly, in this paper we study the design of multicast coding networks with a limited number of encoding nodes. We prove that in an acyclic coding network, the number of encoding nodes required to achieve the capacity of the network is bounded by h^3k^2. Namely, we present (efficiently constructible) network codes that achieve capacity in which the total number of encoding nodes is independent of the size of the network and is bounded by h^3k^2. We show that the number of encoding nodes may depend both on h and k as we present acyclic instances of the multicast network coding problem in which [Omega](h^2k) encoding nodes are needed. In the general case of coding networks with cycles, we show that the number of encoding nodes is limited by the size of the feedback link set, i.e., the minimum number of links that must be removed from the network in order to eliminate cycles. Specifically, we prove that the number of encoding nodes is bounded by (2B+1)h^3k^2, where B is the minimum size of the feedback link set. Finally, we observe that determining or even crudely approximating the minimum number of encoding nodes needed to achieve the capacity for a given instance of the network coding problem is NPhard.
Item Type:  Book Section 

Additional Information:  © Copyright 2005 IEEE. Reprinted with permission. Posted online 31 October 2005 This work was supported in part by the Caltech Lee Center for Advanced Networking and by NSF grants ANI0322475 and CCF0346991. We would like to thank Matthew Cook for useful discussions. 
Record Number:  CaltechAUTHORS:LANisit05b 
Persistent URL:  http://resolver.caltech.edu/CaltechAUTHORS:LANisit05b 
Alternative URL:  http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=32581&arnumber=1523693&count=501&index=415 
Usage Policy:  No commercial reproduction, distribution, display or performance rights in this work are provided. 
ID Code:  2606 
Collection:  CaltechAUTHORS 
Deposited By:  Archive Administrator 
Deposited On:  12 Apr 2006 
Last Modified:  26 Dec 2012 08:50 
Repository Staff Only: item control page