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Abstract— In the multicast network coding problem, a source� needs to deliver � packets to a set of � terminals over
an underlying network � . The nodes of the coding network
can be broadly categorized into two groups. The first group
incudes encoding nodes, i.e., nodes that generate new packets by
combining data received from two or more incoming links. The
second group includes forwarding nodes that can only duplicate
and forward the incoming packets. Encoding nodes are, in
general, more expensive due to the need to equip them with
encoding capabilities. In addition, encoding nodes incur delay
and increase the overall complexity of the network.

Accordingly, in this paper we study the design of multicast
coding networks with a limited number of encoding nodes. We
prove that in an acyclic coding network, the number of encoding
nodes required to achieve the capacity of the network is bounded
by �����
	 . Namely, we present (efficiently constructible) network
codes that achieve capacity in which the total number of
encoding nodes is independent of the size of the network and
is bounded by � � � 	 . We show that the number of encoding
nodes may depend both on � and � as we present acyclic
instances of the multicast network coding problem in which�
� � 	 �
� encoding nodes are required.

In the general case of coding networks with cycles, we show
that the number of encoding nodes is limited by the size of
the feedback link set, i.e., the minimum number of links that
must be removed from the network in order to eliminate cycles.
Specifically, we prove that the number of encoding nodes is
bounded by

��������� �������
	 , where
�

is the minimum size of
the feedback link set. Finally, we observe that determining or
even crudely approximating the minimum number of encoding
nodes required to achieve the capacity for a given instance of
the network coding problem is ��� -hard.

I. INTRODUCTION

The goal of communication networks is to transfer infor-
mation between source and destination nodes. Accordingly,
the fundamental question that arises in network design is
how to increase the amount of information transferred by the
network. Recently, it has been shown that the ability of the
network to transfer information can be significantly improved
by employing the novel technique of network coding [1]–
[3]. The idea is to allow the intermediate network nodes to
combine data received over different incoming links. Nodes
with coding capabilities are referred to as encoding nodes,
in contrast to forwarding nodes that can only forward and
duplicate incoming packets. The network coding approach

This work was supported in part by the Caltech Lee Center for Advanced
Networking and by NSF grants ANI-0322475 and CCF-0346991.

extends traditional routing schemes, which include only
forwarding nodes.

The concept of network coding was introduced in a semi-
nal paper by Ahlswede et. al. [1] and immediately attracted a
significant amount of attention from the research community.
A large body of research focused on the multicast network
coding problem where a source � needs to deliver � packets
to a set of � terminals � over an underlying network � . It
was shown in [1] and [2] that the capacity of the network, i.e.,
the maximum number of packets that can be sent between
� and � , is characterized by the size of the minimum cut1

that separates the source � and a terminal  "!#� . Namely, a
source � can transmit at capacity � to a set of terminals if
and only if the size of the minimum cut separating � and any
one of the terminals is at least � . This capacity was shown
to be achievable in [2] by using a linear network code, i.e., a
code in which each packet sent over the network is a linear
combination of the original packets. In a subsequent work,
Koetter and Médard [3] developed an algebraic framework
for network coding and investigated linear network codes for
directed graphs with cycles. This framework was used by Ho
et al. [4] to show that linear network codes can be efficiently
constructed by employing a randomized algorithm. Jaggi et
al. [5] proposed a deterministic polynomial-time algorithm
for finding a feasible network code for a given multicast
network.

In this study we focus on minimizing the total number of
encoding nodes in multicast coding networks. More specif-
ically, given a communication network � , a source node
� , a set of terminals � , and a required number of packets
� , our goal is to find a feasible network code with as few
encoding nodes as possible. This problem is important for
both theoretical and practical reasons. First, encoding nodes
in a network are, in general, more expensive than forwarding
nodes, mostly because of the need to equip them with coding
capabilities. In addition, encoding nodes may incur delay and
increase the overall complexity of the network.

1A cut $&%('�)*% 	�+ in graph ,-$.%/)�0 + is a partition of , into two subsets%(' and % 	-1 %324%�' . The size of the cut is equal to the total capacity of
links that leave a node in %�' and enter a node in % 	 . We say that a cut$.%�'�)*% 	�+ separates node 5 and 6 if 5879%�' and 6:7;% 	 .



Contribution

The contribution of our paper can be summarized as
follows. We prove that to enable transmission at rate � from
a source � to � terminals over an acyclic graph, one can
efficiently construct network codes in which the number of
encoding nodes is independent of the size of the underlying
graph � and depends only on � and � . Our construction pro-
cedure is very simple and involves three steps: (1) Transform
the original network into one which is minimal with respect
to link removal and in which the degree of each internal
node is at most three; (2) Find a feasible network code for
the reduced network; (3) Reconstruct a network code for the
original network. We show that such a procedure yields codes
with only ��� � � encoding nodes. We also show that in the
worst case the number of encoding nodes depends on both
� and � . To that end, we present, for any values of � and � ,
a coding network that requires

��� � � ��� encoding nodes.
Next, we consider the general case of coding networks

with cycles. We show that in such networks, the number of
encoding nodes required to enable transmission at capacity
� from a source � to � terminals depends on the size of the
feedback link set of the network, i.e., the minimum number
of links that must be removed from the network in order to
eliminate cycles. Specifically, we prove that the number of
encoding nodes needed is bounded by

�	��

��� � ��� � � , where

is the minimum size of the feedback link set. We also

present a lower bound of
��� � 
 � on the number of encoding

nodes in a network with cycles.
Finally, we consider the problem of finding a network

code that enables transmission at capacity � from a source �
to � terminals with a minimum number of encoding nodes.
We observe that determining, or even crudely approximating,
the minimum number of encoding nodes needed to achieve
capacity is ��� -hard.

Encoding links

A more accurate estimation of the total amount of com-
putation performed by a coding network can be obtained by
counting encoding links, rather than encoding nodes. A link������� � , ���! � , is referred to as an encoding link if each
packet sent on this link is a combination of two or more
packets received through the incoming links of

�
. Indeed, as

the output degrees of nodes in � may vary, each encoding
node might have different computation load. In addition, only
some of the outgoing links of a node

�
can be encoding, while

other outgoing links of
�

merely forward packets that arrive
on
�
. Accordingly, we can consider the problem of finding

a feasible network code that minimizes the total number of
encoding links. It turns out that all upper and lower bounds
on the minimum number of encoding nodes we present, as
well as our inapproximability results, carry over to the case
in which we want to minimize the number of encoding links.
This follows from the fact that all our results are derived by

studying networks in which internal nodes are of total degree
three. In such networks, the number of encoding links is equal
to the number of encoding nodes. For the remainder of this
paper we state our results in terms of encoding nodes.

Related work

The problem of minimizing the number of encoding nodes
in a network code is partially addressed in the works of
Fragouli et al. [6], [7], and Tavory et al. [8]. The works
of Fragouli et al. study the special case in which the given
network is acyclic and one is required to transmit two packets
from the source to a set of terminals of size � . For this
specific case (i.e., ��� �

) they show that the required
number of encoding nodes is bounded by � . The proof
techniques used in [6] and [7] rely on a certain combinatorial
decomposition of the underlying network and seem difficult
to generalize for the case in which the number of packets �
is larger than two.

The problem of minimizing the number of encoding nodes
in a network code is also studied by Tavory et al. [8]. They
obtain partial results of nature similar to those of [6] and
[7], mentioned above. Namely, they are able to prove, for
the case ��� � , that the number of required encoding nodes
is independent of the size of the underlying graph � . For
general values of � , [8] presents several observations which
lead to the conjecture that the number of encoding nodes
needed to enable transmission at capacity � from a source
� to � terminals over an acyclic graph, is independent of
the size of the underlying graph. In our study we prove this
conjecture.

Finally, encoding vs. forwarding nodes in the solution of
network coding problems was also studied by Wu et al. [9].
Wu et al. do not consider the amount of encoding nodes
in a given network code. Rather, they show the existence
(and efficient construction) of network codes in which only
nodes which are not directly connected to a terminal perform
encoding. The results in [9] do not imply bounds on the
number of encoding nodes needed in communicating over a
network.

Organization

The rest of the paper is organized as follows. In Section II,
we define the model of communication and state our results in
detail. In Section III, we define the notion of a simple network
and describe our algorithm for finding network codes with a
bounded number of encoding nodes.

Due to space limitations, proofs and some technical details
are omitted from this version, and can be found in [10].

II. MODEL

The communication network is represented by a directed
graph ��� �	 !�#" � where

 
is the set of nodes in � and"

is the set of links. We assume that each link $ ! "
can transmit one packet per time unit. In order to model



links whose capacity is higher than one unit, � may include
multiple parallel links. An instance � � � � � � � � ��� of the
network coding problem is a 4-tuple that includes the graph
� , a source node � !  , a set of terminals � , and the number
of packets � that must be transmitted from the source node
� to every terminal  "! � . We assume that each packet is a
symbol of some alphabet � .

Definition 1 (Network code � � � � ): A network code for
� � � � � � � � ��� is defined by functions � � � ���������
	 $ ! "
� .
For links $�� � � �#� � leaving the source, � �
� ������� . For
other links $ � ������� � , ��� � ��������������� � . Here, !�"$# ��� � is the
in-degree of node

�
.

The function � ���&% '�� specifies the packet transmitted on link������� � for any possible combination of packets transmitted on
the incoming links of

�
. For links leaving the source, ��� takes

as input the � packets available at a source.

Definition 2 (Encoding and forwarding links and nodes):
For a network code � � � � , $ is referred to as an encoding
link, if it has a corresponding function � � that depends on
two variables or more. If ��� depends on a single variable,
we refer to $ as a forwarding link. We say that a node

�
,�)(� � , is an encoding node if at least one of its outgoing

links
� ���#� � is encoding. If all outgoing links of a node

�
are

forwarding, the node is referred to as a forwarding node.

Note, that there may be links $ for which the function
�*� depends on a single variable, but ��� �,+ � (� + . We refer
to such links as forwarding nevertheless, and do not count
them as encoding links. It is not hard to verify that in the case
that � � � � includes links with corresponding functions � � that
depend on a single variable but are not the identity function,
one can construct a new network code �.- � � � without such
functions such that the number of encoding links in �/- � � �
and � � � � are equal.

The capacity of a multicast coding network is determined
by the minimum size of a cut that separates the source �
and any terminal  ! � [2]. An instance � � � � � � � � ��� of the
network coding problem is said to be feasible if and only if
the size of each such cut is at least � . Let � � � � � � � � ��� be a
feasible network. A network code �0� ���&% '�� 	

������� � ! "
� for
� is said to be feasible if it allows communication at rate �
between � and each terminal  -!3� . For acyclic networks, a
network code is said to allow communication at rate � if each
terminal  -!3� can compute the original � packets available
at the source from the packets received via its incoming links.
To define the notion of rate for cyclic networks, one must take
into consideration multiple rounds of transmission (in which
� packets are sent from the source � over the network in each
round), and require that over time each terminal  9! � can
compute the original packets available at the source from the
packets received via its incoming links. In both the cyclic
and acyclic case, if � � � � � � � � ��� is feasible then there exists
a feasible network code for � [2].

A. Statement of results

As mentioned in the Introduction, our goal is to find
feasible network codes with a minimum number of encoding
nodes. For a given instance � � � � � � � � ��� of the network
coding problem, we denote by 132/ � � � the minimum num-
ber of encoding nodes in any feasible network code for
� � � � � � � � ��� .

We show that computing 132/ � � � for a given instance
� � � � � � � � ��� of a network coding problem is an ��� -hard
problem. Furthermore, it is ��� -hard to approximate 132/ � � �
within any multiplicative factor or within an additive factor
significantly less than 	  	 . This result follows from the fact
that it is ��� -hard to distinguish between instances � in
which 132  � � � �54 and instances in which 132/ � � �7684 .

Theorem 3: Let 9
654 be any constant. Let � � � � � � � � ���
be an instance of the multicast network coding problem in
which the underlying graph has 	  	 nodes. Approximating
the value of 132  � � � within any multiplicative factor or within
an additive factor of 	  	;:�<.= is ��� -hard.

Although the problem of finding the exact or approximate
value of 132  � � � is ��� -hard, it is possible to establish upper
bounds on 132  � � � that hold for any instance � � � � � � � � ��� of
the multicast network coding problem. The main contribution
of our paper is an upper bound on 132/ � � � which is inde-
pendent of the size of the network and depends on � and
	 �>	 � � only. Specifically, we show that 132/ � � �@? ��� � �
for any acyclic coding network � that delivers � packets
to � �A	 �>	 terminals. Our bound is constructive, i.e., for
any feasible instance � � � � � � � � ��� we present an efficient
procedure that constructs a network code with at most ��� � �
encoding nodes. In what follows, an algorithm is said to be
efficient if its running time is polynomial in the size of the
underlying graph � .

Theorem 4 (Upper bound, acyclic networks): Let � be
an acyclic graph and let � � � � � � � � ��� be a feasible instance
of the multicast network coding problem. Then, one can
efficiently find a feasible network code for � with at most
� � � � encoding nodes, i.e., 132  � � �B?�� � � � , where � �C	 �>	 .

Theorem 5 (Lower bound, acyclic networks): Let D : and
D � be arbitrary integers. Then, there exist instances
� � � � � � � � ��� of the network coding problem such that �FE
D : , 	 �>	 � �5EGD � , the underlying graph � is acyclic, and
132  � � �BE ��� � � ��� .

Finally, we establish upper and lower bounds on the
number of encoding nodes in the general setting of com-
munication networks with cycles. We show that the value of
132  � � � in a cyclic network � depends on the size of the
minimum feedback link set.

Definition 6 (Minimum feedback link set [11]): Let
� �	 !�#" � be a directed graph. A subset H"JI " is referred
to as a feedback link set if the graph �K- formed from � by
removing all links in H" is acyclic. A feedback link set of
minimum size is referred to as the minimum feedback link



set. Given a network � � � � � � � � ��� , we denote by

�� � � the

minimum feedback link set of its underlying graph � .
Theorem 7 (Upper bound, cyclic networks): Let
� � � � � � � � ��� be an instance of the multicast network
coding problem. Then, one can efficiently find a feasible
network code for � with at most

� � 
�� � � � � � ���(� � encoding
nodes, i.e., 132/ � � �B? �	� 
 � � � � � � ��� � � , where � �C	 �>	 .

Theorem 8 (Lower bound, cyclic networks): Let D : and
D � be arbitrary integers. Then (a) there exists instances
� � � � � � � � ��� of the multicast network coding problem such
that


�� � �5E D : , � E D � and 132  � � �5E ��� 
 � � � ��� ; (b)
there exist instances � � � � � � � � ��� of the multicast network
coding problem such that 	  	 E D : , � � 	 �>	 � �

, and
132  � � � � � ��� <��� (here

 
is the set of nodes in � ).

A couple of remarks are in place. First, note that Theo-
rem 7 generalizes Theorem 4, as for acyclic networks the
minimum feedback link set is of size 0. Second, note that
Theorem 8 establishes two lower bounds. The first comple-
ments the upper bound of Theorem 7, while the second shows
that in the case of cyclic networks the value of 132/ � � � is
not necessarily independent of the size of the network and
may depend linearly on the number of nodes in � .

III. “SIMPLE” CODING NETWORKS

Let � � � � � � � � ��� be a feasible instance to the network
coding problem. In order to establish a constructive upper
bound on the minimal number of encoding nodes 132/ � � � of
� we consider a special family of feasible networks, referred
to as simple networks. In what follows we define simple
coding networks, and show that finding network codes with
few encoding nodes for this family of restricted networks
suffices to prove Theorems 4 and 7. We start by defining
feasible instances which are minimal with respect to link
removal.

Definition 9 (Minimal Instance): A feasible instance of
the network coding problem � � � � � � � � ��� is said to be mini-
mal with respect to link removal if any instance H� � H� � � � � � ���
formed from � by deleting a link $ from � is no longer
feasible.

Definition 10 (Simple instance): Let � � � � � � � � ��� be an
instance of the network coding problem. � � � � � � � � ��� is said
to be simple if and only if (a) � is feasible; (b) � is minimal
with respect to link removal; (c) the total degree of each node
in � is at most 3 (excluding the source and terminal nodes);
and (d) the terminal nodes � have no outgoing links.

We now present our reduction between general and simple
networks.

A. Reduction to simple networks

Let � � � � � � � � ��� be a feasible instance of the network
coding problem. We construct a simple instance H� � H� � � � H� � ���
corresponding to � . The simple instance H� we construct
corresponds to � in the sense that any feasible network code

�� �� ��

�� �� �� ��

�� �� ��

�� �� �� ��

�� �� ��

��

��
��

�� �� ��

	�� 	�� 	��

	��	��
	��	��

	��

��

Fig. 1. Substituting a node � by a gadget �	� .

for H� yields a network code for � which includes the same
or a smaller amount of encoding nodes. Our construction
is computationally efficient and includes the three following
steps.

Step1: Replacing terminals. Let � :
I � be the set of

terminals whose out-degree is not zero. For each terminal  -!
� : we replace  by adding a new node  - to � and connecting
 and  - by � parallel links. We denote the resulting set of
terminals by H� , the resulting graph by � : , and the resulting
coding network by � :

� � :
� � � H� � ��� .

Step 2: Reducing degrees. Let � � be the graph formed
from � : by replacing each node

� ! � : ,
� (� � , � �! � :

whose degree is more than 3 by a subgraph 
 � , constructed
as follows. Let � + " 	�� � ����
�
�
 � ! "�# ��� � � and ��� " 	�� �����
�
�
 � !�� '��

��� � � be the incoming and outgoing links of
�

,
respectively, where ! "�# ��� � and ! � '��

��� � are the in- and out-
degrees of

�
. For each incoming link

+ " , we construct a
binary tree � " that has a single incoming link

+ " and
!�� '��

��� � outgoing links $�" :
��
�
�
 � $ " ������� ����� (with one or two

links leaving each leaf). Similarly, for each outgoing link
��� we construct an inverted binary tree ��� that has a single
outgoing link � � and ! "�# ��� � incoming links $ : �

��
�
�
 � $ � ��� ����� �
(again, with one or two links entering each leaf). Fig. 1
demonstrates the construction of the subgraph 
 � for a node�

with !�"�# � � � �G!�� '��
��� � �! . Note that for any two links+ " and � � there is a path in 
 � that connects

+ " and � � . The
resulting coding network is denoted by � � � � � � � � H� � ��� .

Step 3: Removing links. Let H� be any subgraph of
� � such that H� � H� � � � H� � ��� is minimal with respect to link
removal. The graph � � can be efficiently computed by
employing the following greedy approach. For each link
$ !3� � , in an arbitrary order, we check whether removal of $
from � � would result in a violation of the min-cut condition.
The min-cut condition can be easily checked by finding �
link-disjoint paths between � and each terminal  ! H� (via
max-flow techniques, e.g., [12]). All links whose removal
does not result in a violation of the min-cut condition are
removed from � � . The resulting coding network, denoted by
H� � H� � � � H� � ��� , is the final outcome of our reduction. We are
now able to prove ( [10]):

Lemma 11: Let � � � � � � � � ��� be a feasible instance of the



Algorithm NET-COD ( � ):
input: Coding network �
1 Transform � into a simple network

�
� as described in

Section III-A.
2 Find any feasible network code for

�
� , e.g., by using

algorithms appearing in [4], [5].
3 Reconstruct the corresponding network code for � .

Fig. 2. Algorithm NET-COD

network coding problem. Then, one can efficiently construct
a simple instance H� � H� � H� � H� � ��� for which (a) 	0H�>	 � 	 �>	 , (b)
the size of the feedback link set of H� is less than or equal
to that of � , and (c) any feasible network code for H� with �
encoding nodes can be used to efficiently construct a feasible
network code for � with at most � encoding nodes.

B. The value of 132/ � � � in simple instances

In [10] we show that for simple instances � � � � � � � � ���
the value of 132  � � � is equal to the number of nodes in �
(excluding the terminals) with in-degree 2.

Lemma 12: Let � � � � � � � � ��� be a simple instance of the
network coding problem. Let � � � � be any feasible network
code for � . Then, a node

� ! � ,
� (� � , � �! � , is an

encoding node in � � � � if and only if the in-degree of
�

is 2.

C. The algorithm

Lemma 12 implies that for any given simple network
� � � � � � � � ��� , any upper bound on the number of nodes of
in-degree 2 is also an (efficiently constructible) upper bound
on 132  � � � . Accordingly, in [10] we prove the following
theorem:

Theorem 13: Let � � � � � � � � ��� be a simple instance of the
network coding problem. Then, the number of nodes of in-
degree

�
in � is bounded by ��� � � �	��

��� � , where



is the

size of the minimum feedback link set of � and � � 	 �>	 .
In particular, if � is acyclic, the number of such nodes is
bounded by ��� � � .
This theorem constitutes the main result of our study. The
proof of the theorem is rather involved and omitted from
this version due to space constraints.

Theorem 13 leads to the following efficient procedure for
finding a feasible network code with a bounded number
of encoding nodes (implied by Lemma 11). The procedure
works for a general (not necessarily simple) instance of
the network coding problem � � � � � � � � ��� . We begin by
transforming � into a simple network H� . Then, we find
any feasible network code for H� . Finally, we reconstruct the
corresponding network code for the original network � . The
description of our procedure appears in Figure 2.

IV. CONCLUSION

We consider the design of network codes which enable
the source to transmit at rate � to � terminals and include

a bounded number of encoding nodes. For acyclic networks,
we present an efficient and simple procedure which finds a
network code that enables the source to transmit at capacity,
in which the number of encoding nodes is independent of
the size of the network and is bounded by ��� � � . We show
that our bound on the number of encoding nodes may depend
both on � and � as we present networks in which any feasible
network code has at least

��� � � � � encoding nodes. It would
be interesting if the � � gap between our upper and lower
bound could be settled.

For general (cyclic) networks we present results of similar
nature. Namely, we present an upper bound which depends on
the size of the minimum feedback link set



of the network

of size
�	��
 � � � ��� � � . Our lower bound in this case is of

order ����� � 	  	 � ���#
 � � � � � � where 	  	 is the total number
of nodes in the network.

In the proof of Theorem 5 that appears in [10] we present
instances � to the network coding problem which establish
a lower bound of � � < : � �� � �	� � � on 132/ � � � . Matthew Cook
[13] has suggested an elaborated construction that establishes
an improved lower bound of

� ��� � � � � �
� � � .
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