Coding and Scheduling for Efficient Loss-Resilient Data Broadcasting

Kevin Foltz Lihao Xu Jehoshua Bruck
Computer and Software Engineering Division = Department of Computer Science ~ Department of Electrical Engineering
Institute for Defense Analyses Washington University California Institute of Technology
Alexandria, VA 22311 St. Louis, MO 63130 Pasadena, CA 91125
kfoltz@paradise.caltech.edu lihao@cs.wustl.edu bruck@paradise.caltech.edu
Abstract

We examine the problem of sending data to clients over a broadcast channel in a way that minimizes the
expected waiting time of the clients for this data. This channel, however, is not completely reliable, and packets
are occasionally lost. This poses a problem, as performance is greatly degraded by even a single packet loss. For
example, one lost packet will increase our expected waiting time for an item from .75 to 2, or 167%, when sending
two items with equal demands. We propose and analyze two solutions that attempt to minimize this degradation.
In the first, we code packets and in the second we code packets and slightly modify our schedule. The resulting
degradations are 67% for the first solution and less than 1% for the second. We conclude that using the second
scheme is a very effective way to combat single packet losses, and we extend this solution to combat up to ¢ packet
losses per data item for any ¢ < k, where k is the number of packets per data item.

1 Introduction

We examine the problem of scheduling data transmission over a broadcast channel. This problem has been studied by
others. Vaidya and Hameed [8] proposed a method for nearly-optimal periodic broadcast scheduling. Jiang and Vaidya
[4] ook at combining the metrics of mean and variance of the waiting time, and give a scheduling method to minimize
combinations of the two. Su and Tassiulas [6] also examine broadcast scheduling, including memory management
of client caching [7]. Khanna and Zhou [5] look at combining waiting time and tuning time and minimizing them
together. Aksoy et al. [1] discuss general issues relating to broadcast disks and push technology.

The basic model we consider is similar to that of Vaidya and Hameed, where data items are sent periodically,
according to some fixed schedule. The expected waiting time for an item is the time a client will expect to wait
to receive that item, averaged over all possible starting times in the schedule. Transmission time of the item is not
included in the expected waiting time. Unlike Vaidya and Hameed, we look at splitting items into smaller pieces, as
discussed in [2] and [3]. In this paper, we first consider two data items, and then show that the ideas extend to 3 or
more items. We assume each data item has the same length, and each is split into k equal-sized pieces (packets). We
examine the effect of packet losses on the expected waiting time of the clients. We show how MDS codes can help
reduce expected waiting times when there are errors. In the remaining sections, we will use the term error to refer to
a packet loss, and coding to refer to applying an error control code, in particular an MDS code.

In Section 2 we calculate expected waiting times as a function of the demands for the items. We then find the best
schedules as a function of these demands. In Section 3 we examine the effects of a single packet loss on expected
waiting times. We look at both coded and uncoded schedules and show that coding performs better. In Section 4, we
consider a slightly modified schedule with coding. We show that this schedule is even better, with almost no penalty
for a packet loss. In Section 5, we show how this work can be extended to a more general setting, and in Section 6,
we draw some conclusions as to good scheduling methods to deal with packet loss.

2 Schedules of the form 12"

In this work, our schedules are periodic, so we represent a schedule by one of its periods. We use a simple notation
to represent schedules, where *1’ means to send the first data item and ’2’ means to send the second data item. A

schedule is written as a sequence of numbers. For example, if we alternate sending item 1 and item 2, we write the
corresponding schedulie as 12. Exponents indicate how much of each item to send, so 122 is the same as 1222, and
means to alternately send data item 1 once and data item 2 three times.

Expected waiting time (EWT) is the average time ciients must wait for data items. We assume ciients start waiting
for data items at times that are uniformly distributed over a broadcast schedule period. For item ¢ (i = 1,2), we
compute how iong a ciient must wait at each time during a scheduie, and then average this waiting time over the entire
schedule and get the average waiting time EW'T; for item . We then average over the data items, with weights p;
and po, the reiative demands for the items, given to items i and 2, respectively, and get the expected waiting time of
items 1 and 2, i.e., EWT = pi EWT} 4+ po EW'T5. Essentially, p; is the probability that the next item some client
will want is item 1, p is the probability it is item 2.

Example 1 EWT of Schedule 12

If a client wants item 1, the waiting time will be 1 if it starts listening during the broadcast of item 1. It simply receives
item 1 starting somewhere in the middle, waits 1 time unit while item 2 is sent, and then receives the rest of item 1,
for a total wait of 1 (we don’t include transmission of useful data in the waiting time). If the client starts listening
during the broadcast of item 2, it waits through the remainder of item 2, and then receives item 1, for a total wait
between 0 and 1, depending on the initial iistening time. Thus the average waiting time, EWW 11, for item 1 is the
average of 1 and % (the average of the values between 0 and 1), i.e., EWT] = %. The analysis for a client wanting
item 2 is similar, and EWTy = %. So the expected waiting time, EWT, for schedule 12 with demands p; = py = % is

EWT =p EWT) + p2EWT, =3 . O

For the schedule 12", we compute the expected waiting times for each item, EW1T7 and EWT5, and the overall
expected waiting time, EWW1™. We use the formula for EW 1™ to compute the expected waiting time, EW 1™ t!, for
127+1, Here 12" means to send all of item 1 followed by n copies of item 2. These items are sent in packets, where
each item consists of k packets. For simplicity of calculation, we assume k — oo. For any sufficiently large k, such
as k > 100, the results are similar. The calculations follow:

1 n n
EWL = n+1(n)+n+1(§>
_ n? 4 2n
 2(n+1)
1 /1 n—1 1
EWT = n+1<§>+n+1<0)+n+1(1)
B 3
 2(n+1)
n? +2n
EWI" = oot sy)
_ 3 n?+2n—3
S 2yt 2
Wt — 3 n? +4n

212 T2mt2)™

We find the values of p; for which 12" and 12"*! have the same expected waiting times, and we then compute
the optimal n as a function of p;.

3 +n2+4n B 3 +n2+2n—3 _
2mn+2) 2+ T 2m+1) " 2m+1)
3
PL= 2306
3 1 [12
— . _ __1l'
! {2 2\ m 4

Expected Waiting Time for Optimal Schedules

1 T T T T T T T T T
%os(1
= 12 P e
E:ﬂ & 5 ~NE 2 T
=0. 2 1
=
T 04F -
O
2
i 021/ Y
{
0 | | | | | | 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P

Figure i: Expected waiting time vs. p; for the optimai scheduies of the form 127 and 172. The individual optimai
schedules are labeled for n < 3.

We use the ceiling function for n because at the boundary where 12" and 127*! are optimal, we want to switch
from n to n + 1. Without the ceiling function, we would only go from n to n + €. Figure 1 shows a plot of expected
waiting time (EWT) as a function of p; when we schedule with these values of n. Each linear segment of the curve
corresponds to a particular schedule (value of n).

3 Performance with 1 error

We look at what happens with the schedule 12" when a client loses one packet of the item it wants. We look at the two
cases of coding and no coding. For our baseline, we use the EWT with no errors. Notably, this EWT is the same for
coding and no coding. For coding, we assume an MDS code where any k of n coded packets are needed to reconstruct
the original k. We do not specify n, but a value such as n = 2k will suffice for all examples presented. If we do not
code, we must wait until the next broadcast of the specific packet that we missed. If we do code, we need only wait
until the broadcast of the next piece of the desired item, since we can reconstruct the item from any k of the n coded
packets. We examine the advantage this gives coding over no coding when we lose one packet.
We look at what happens when we wait for item 1. Without coding, we have an expected waiting time of

EWTr = 3n?+4n +1
2(n+1)
With coding, we have an expected waiting time of
3n? + 2n
EWTf = ——.
Y7 2(m+1)

For item 2, without coding we have an expected waiting time of

2

ifn=1

With coding, we have an expected waiting time of
EWTC _ ﬁ ifn 2 2
R ifn =1

Combining the expected waiting times for items 1 and 2, we see that we get overall expected waiting times, for
n > 2, of
n+5 3n?+3n—4
o
2(n+1) 2(n+1)

3 3n?+2n—3
EWTe =
V= " 2mr)

Forn =1, we add % (1 — p1) to each.

Using our earlier value of n = ‘—% + % 11)—? — 15, we can plot EWT as a function of p;, as in Figure 2, for
coding and no coding. We note that our EWT increases about half as much with coding as with no coding. For
example, at p; = %, we have an expected waiting time of % with no errors. With one error and no coding, this jumps

to 2, but with coding, it only increases to g. However, in either case, EWT increases noticeably.

4 Changing the Schedule Slightly for Improved Performance

We try a slightly different set of schedules, where we send one more packet of item 1 in the schedule 12", or one more
packet of item 2 in the schedule 1™2 (or one more packet of each item for the schedule 12). Essentially, we are using
the schedule 11727 or 1721+% (or 117%21%%), where k — oco. These schedules have slightly worse performance
than the originals when there are no errors, but with one error perform much better.

We omit the calculations, as they are fairly computationally intense, and give the results. For large k, the plot of
EWT vs. p; with the new schedule and one error closely resembles the original curve for no coding and no errors. In
Figure 2, the curve for this siightiy modified scheduie with one error wouid lie just above the curve for the originai
schedule without errors. As & — oo these two become indistinguishable. So, the bottom curve represents expected
waiting time for the modified schedule with coding and one packet loss as well as the original schedule with no packet
losses.

5 Extensions

Our work has focused on combating a single packet loss in two data items of equal size. However, the ideas of coding
and slightly changing the schedule are extensible in a number of ways.

A simple extension would be to consider items of different sizes. Either the packets of the items would differ in
size or, more likely, one would consist of more packets than the other. The main difference here is that the starting
schedules would be different, since the optimal starting schedules (for no errors, no coding) depend on the demands
and sizes of the items. The rest of the work and the resulting improvements in EWT closely parallel the work for the
equal-length case.

Another extension would be to consider more than two items. Again, the starting schedules would be different,
but the rest of the analysis is similar to the work for two items.

An interesting extension is to consider more than a single packet loss. In this case, we find that the EWT for no
coding increases a significant, although diminishing, amount with each additional packet lost. The EWT with coding,
however, does not increase significantly. In fact, for large & the change in EWT is close to zero. For the modified
schedule with coding, we have an increase in EWT when going from one to two losses. The resulting EWT for two
losses is approximately the same as the EWT for the schedule with coding but no modification. For more losses, the
EWT stays nearly constant, as it does without the schedule modification. Figure 3 illustrates the expected waiting
times for p; = ps = % as a function of the number of packets lost, for each method.

Multiple errors thus seem to be a significant problem. However, we can reduce the EWT to nearly the no-error
value by adopting a generalized version of our modified schedule. Instead of adding one additional packet to our
schedule, we add ¢ additional packets, where ¢ is the number of errors we wish to combat. Using this (further)
modified schedule, we reduce the EWT to nearly the no-error EWT for any number of packets lost up to ¢.

‘We must note, however, that this technique only works for small numbers of packet losses. If the number of lost
packets is some appreciable fraction of the total number, these techniques will help, but the resulting performance will

4

Comparison of scheduling techniques

2.5 T T T T T T T T T
ol . : |
| 1 error, no coding
|
/"f/
rd .r"-’-’
]
E }_ .r"'l:'/-'/
= 15
=3 .-'Lr/
£ K,
= i
= ! 1 errar, coding
- i’])
E I.’I|l i ,/f"-’ x
& 1/ /| .
i f /| / L~
N
' no errors
| | |
0.4 0.5 0.6
Py

Figure 2: EWT for various scheduling methods. The bottom curve is for the original schedule (no coding) with no
errors. The top one is for no coding with one packet error. The middle one is for coding and one error.

no longer approach the optimal time, as our assumptions about ¢ < k no longer hold. This is expected, though, since
as the error rate grows, the expected waiting time must also grow. Our methods provide a way to prevent unnecessarily
large increases in EWT due to a very small increase in error frequency.

6 Conclusions

We make two general conclusions based on the analysis presented. The first is that coding and slightly changing the
schedule are good ways to combat errors in transmission. We see that we can essentially negate the effect of errors
on expected waiting time by using these techniques. If changing the schedule is not possible, it would be advisable to
at least code the items to gain some improvement. It is interesting to note that changing the schedule without coding
offers no gains. Thus, coding is the key to making error recovery work.

Our second conclusion is that knowledge of how errors occur helps. We see that if we schedule to combat one
error and we get two, our coding and modifying are no better than just coding. If a bound, b, on the number of packet
losses can be established, where b is significantly less than k, then we can schedule for b packet losses and achieve
near-optimal performance for any number of errors up to b.

Expected Waiting Times with More than One Packet Loss

3 T T T T T T T T T
& o P
o <
25+ o & E
Ar
or
Mo Coding
g
= 2 } w -
=]
3
=
g
E. 15F -
s
i
_' IH} o 5 + = = = & i
Coding
Vi
1k f,f -
/ Coding and Rearranging
¢ d
05 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Number of Packets Lost

Figure 3: Expected waiting time as a function of the number of packet losses for no coding, coding, and coding with
schedule modification.

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

D. Aksoy, M. Altinel, R. Bose, U. Centemel, M. Franklin, J. Wang, S. Zdonik, “Research in Data Broadcast and Dissem-
ination,” Proceedings of 1st International Conference on Advanced Multimedia Content Processing, Osaka, Japan, Nov.
1998.

K. Foltz, J. Bruck, “Robustness of Time-Division Schedules for Internet Broadcast,” ISIT 2002, Lausanne, Switzerland.

K. Foltz, J. Bruck, “Splitting Schedules for Periodic Internet Broadcast,” IEEE Trans. Info. Theory, vol. 48, pp. 345-358,
Feb. 2002.

S. Jiang, N. H. Vaidya, “Scheduling Algorithms for a Data Broadcast System: Minimizing Variance of the Response Time,”
Technical Report 98-005, Computer Science, Texas A&M University, February 4, 1998.

S. Khanna, S. Zhou, “On Indexed Data Broadcast,” Proceedings of the 30th Annual ACM Symposium on Theory of
Computing (STOC-98), pp. 463-472, New York, 1998.

C.J. Su, L. Tassiulas, “Broadcast Scheduling for Information Distribution,” Proceedings of the 16th Annual Joint Confer-
ence of the IEEE Computer and Communications Societies (INFO-COM’97), vol. 1, pp. 109-117, 1997.

L. Tassiulas, C. J. Su, “Optimal Memory Management Strategies for a Mobile User in a Broadcast Data Delivery System,”
1IEEE JSAC Special Issue on Networking and Performance Issues of Personal Mobile Communications, 15(7):1226-1238,
September 1997.

N. H. Vaidya, S. Hameed, “Data Broadcast in Asymmetric Wireless Environments,” First International Workshop on
Satellite-based Information Services (WOSBIS), Rye, NY, November 1996.

