Abstract

Interleaving codewords is an important method not only for combatting burst-errors, but also for flexible data-retrieving. This paper defines the Multi-Cluster Interleaving (MCI) problem, an interleaving problem for parallel data-retrieving. The MCI problems on linear arrays and rings are studied. The following problem is completely solved: how to interleave integers on a linear array or ring such that any m ($m \geq 2$) non-overlapping segments of length 2 in the array or ring have at least 3 distinct integers. We then present a scheme using a ‘hierarchical-chain structure’ to solve the following more general problem for linear arrays: how to interleave integers on a linear array such that any m ($m \geq 2$) non-overlapping segments of length L ($L \geq 2$) in the array have at least $L + 1$ distinct integers. It is shown that the scheme using the ‘hierarchical-chain structure’ solves the second interleaving problem for arrays that are asymptotically as long as the longest array on which an MCI exists, and clearly, for shorter arrays as well.

Index Terms

Array, cluster, error-correcting code, interleaving, multi-cluster interleaving, ring.

I. INTRODUCTION

Interleaving codewords is an important method for both data-retrieving and error-correction. Its application in error-correction is well-known. The most familiar example is the interleaving of codewords on a linear array, which has the form $-1 - 2 - 3 - \cdots - n - 1 - 2 - 3 - \cdots - n -$, for combating one-dimensional burst-errors of length up to n. Other interesting examples include [1] [2] [3] [6] [7] [13], which are mainly for correcting burst-errors of different shapes on two- or three-dimensional arrays.

The applications of codeword interleaving in data-retrieving, although maybe less well-known, are just as broad. Data streaming and broadcast schemes using forward-error-correcting codes have received extensive interest in both academia and industry, where interleaved components of a codeword are transmitted in sequence and every client can listen to this data stream for a while until a sufficiently large subset of the codeword components are received for recovering the information in the codeword [4] [9]. Interleaving is also studied in the scenario of file storage, where a file is encoded into a codeword and components of the codeword are interleavingly placed on a network, such that every node in the network can retrieve enough

1 This work was supported in part by the Lee Center for Advanced Networking at the California Institute of Technology.
distinct codeword components from its proximity for recovering the file [8] [10]. In all those cases, the codeword components are interleaved on some graph structure. For example, in the data streaming and broadcast case, the codeword components can be seen as interleaved on a linear array, because they are sequentially transmitted along the time axis. (If the sequence of data are transmitted repeatedly — e.g., using a broadcast disk — then they can be seen as interleaved on a ring.) For file storage schemes as those in [8] and [10], the codeword components are interleaved (placed) on more general graphs, with the graphs’ vertices representing network-nodes and edges representing network-links. What’s more, most of the time, retrieving data corresponds to retrieving the interleaved codeword components on a connected subgraph — for example, in data streaming/broadcast a client usually listens to the data in one time period, which form a segment of the array (or ring); and in file storage [8] [10] the proximity of each node is a subgraph. We call every such connected subgraph a cluster.

By using interleaving, the above schemes all enable ‘flexible’ data-retrieving, in the sense that the original information contained in the interleaved data can be recovered by accessing any sufficiently large cluster. The data-retrieving performance can be further improved if multiple clusters can be accessed in parallel. Accessing data placed in different parts of a graph in parallel has the benefits of balancing load and reducing access time, and has already been studied [5] [12]. In fact, even the RAID system [11] can be seen as an example of it. Then it’s natural to ask the following question: what is the appropriate form of interleaving for parallel data-retrieving?

If it is required that for any \(m (m \geq 2) \) non-overlapping clusters, the interleaved codeword components on them are all distinct, then each codeword component can be placed only once on the graph, even if \(m \) is as small as 2. Such an interleaving scheme, although minimizes the sizes of clusters that a client needs to access to retrieve enough distinct codeword components, is not scalable because it requires the number of components in the codeword to equal the size of the graph, which would imply very high encoding/decoding complexity or even non-existence of the code if the graph is huge. So a tradeoff is needed between the scheme’s scalability and the amount of overlapping among codeword components on different clusters.

In this paper we only study interleaving on linear arrays and rings. We define the following general interleaving problem for parallel data-retrieving:

Definition 1: Let \(G = (V, E) \) be a linear array (or ring) of \(n \) vertices. Let \(N, K, m \) and \(L \) be positive integers such that \(N \geq K > L \) and \(m \geq 2 \). A cluster is defined to be a connected subgraph of the array (or ring) containing \(L \) vertices. Assign one number in the set \(\{1, 2, \cdots, N\} \) to each vertex. Such an assignment is called a Multi-Cluster Interleaving (MCI) if and only if any \(m \) clusters that are non-overlapping are assigned no less than \(K \) distinct numbers.

Note that the \(N \) numbers in \(\{1, 2, \cdots, N\} \) assigned to the array (or ring) represent the \(N \) components in a codeword decoding which needs \(K \) distinct components. Clearly if we let \(m = 1 \) in the above definition (and then let \(K = L \)), then it becomes the traditional interleaving. And if an interleaving on a linear array (or ring) is an MCI for some given value of \(m \), then it is an MCI for larger values of \(m \) as well. The following is an example of MCI.

Example 1: A ring \(G = (V, E) \) of \(n = 21 \) vertices is shown in Fig. 1. The parameters are \(N = 9, K = 5, m = 2 \) and \(L = 3 \). An interleaving is shown in the figure, where the number on every vertex is the number assigned to it. It can be verified that any 2 clusters that don’t overlap have at least 5 distinct numbers. For
example, the two clusters in circle in Fig. 1 have numbers ‘9, 1, 2’ and ‘7, 1, 6’ respectively, so they together have no less than 5 distinct numbers. So the interleaving is a multi-cluster interleaving on the ring \(G \).

If we remove an edge in the ring, then \(G \) will become a linear array. Clearly if all other parameters remain the same, the interleaving shown in Fig. 1 will be a multi-cluster interleaving on the array.

\[\square \]

The general MCI problem can be divided into smaller problems according to the values of the parameters. Our main results in this paper are:

- The family of problems with constraints that \(L = 2 \) and \(K = 3 \) are solved completely for both arrays and rings. In this case, structural properties of MCI are revealed, and algorithms are presented which output MCI on arrays or rings as long as the MCI exists.

- The family of problems with the constraint that \(K = L + 1 \) are studied for arrays. A scheme using a ‘hierarchical-chain’ structure is presented for constructing MCI on arrays. It is shown that the scheme solves the MCI problem for arrays that are asymptotically as long as the longest array on which an MCI exists, and clearly, for shorter arrays as well.

The multi-cluster interleaving on arrays and rings seems to have natural applications in data-streaming and broadcasting. Imagine that the interleaved codeword components are transmitted in several channels, and the data in each channel have a different time-offset. Then a client can simultaneously listen to multiple channels in order to get data faster, which is equivalent to retrieving data from multiple clusters. Another possible application is data storage on disks, where we assume multiple instruments can read different parts of a disk in parallel to accelerate I/O speed.

II. MCI with Constraints \(L = 2 \) and \(K = 3 \)

In this section we study the MCI on linear arrays and rings with constraints that \(L = 2 \) and \(K = 3 \).

A. Linear Arrays

The following notations will be used throughout this paper. We denote the \(n \) vertices in the linear array \(G = (V, E) \) by \(v_1, v_2, \ldots, v_n \). For \(2 \leq i \leq n - 1 \), the two vertices adjacent to \(v_i \) are \(v_{i-1} \) and \(v_{i+1} \). A connected subgraph of \(G \) induced by vertices \(v_i, v_{i+1}, \ldots, v_j \) \((j \geq i)\) is denoted by \((v_i, v_{i+1}, \ldots, v_j) \). If \(G \) has an interleaving on it, then \(c(v_i) \) denotes the number assigned to vertex \(v_i \). The numbers assigned to a connected subgraph of \(G, (v_i, v_{i+1}, \ldots, v_j) \), are denoted by \([c(v_i) - c(v_{i+1}) - \cdots - c(v_j)] \).

For any fixed parameters \(N, K, m \) and \(L \), there is a corresponding number \(n_{max} \) of finite value such that an MCI exists on an array \(G \) only if \(G \)’s length \(n \) is no greater than \(n_{max} \). That’s because in an MCI, for any
set of \(L \) distinct numbers, there can be at most \(m - 1 \) non-overlapping clusters each of which is assigned those \(L \) numbers (including a subset of those \(L \) numbers) only. There are totally \(\binom{N}{L} \) such sets containing \(L \) distinct numbers; and each cluster is assigned at most \(L \) distinct numbers. So \(n_{\text{max}} \) can’t be infinite. Below we study the relationship between the structure of the MCI and the length of the array.

Lemma 1: Let the values of \(N, K, m \) and \(L \) be fixed, where \(N \geq 4, K = 3, m \geq 2 \) and \(L = 2 \). Let \(n_{\text{max}} \) denote the maximum value of \(n \) such that an MCI exists on an array of \(n \) vertices. Then in any MCI on an array \(G = (V, E) \) of \(n_{\text{max}} \) vertices, no two adjacent vertices are assigned the same number.

Proof: We’ll prove this lemma by showing that if in an MCI on an array \(G = (V, E) \) of \(n_{\text{max}} \) vertices, two adjacent vertices are assigned the same number, then there exists a longer array that also has an MCI, which would clearly contradict the definition of \(n_{\text{max}} \).

Assume that there is an MCI on an array \(G = (V, E) \) of \(n_{\text{max}} \) vertices such that there exist two adjacent vertices having the same number. Then without loss of generality (WLOG), we say one of the following four cases must be true (because we can always get one of the four cases by permuting the numbers or reversing the indices of the vertices):

Case 1: There exist 4 consecutive vertices \(v_i, v_{i+1}, v_{i+2}, v_{i+3} \) such that \(c(v_i) = 1, c(v_{i+1}) = c(v_{i+2}) = 2, \) and \(c(v_{i+3}) = 1 \) or 3.

Case 2: There exist \(x + 2 \geq 5 \) consecutive vertices \(v_i, v_{i+1}, \cdots, v_{i+x}, v_{i+x+1} \) such that \(c(v_i) = 1, c(v_{i+1}) = c(v_{i+2}) = \cdots = c(v_{i+x}) = 2, \) and \(c(v_{i+x+1}) = 1 \) or 3.

Case 3: \(c(v_1) = c(v_2) = 1, \) and \(c(v_3) = 2. \)

Case 4: There exists \(x \geq 3 \) such that \(c(v_1) = c(v_2) = \cdots = c(v_x) = 1, \) and \(c(v_{x+1}) = 2. \)

We analyze the four cases one by one.

Case 1: In this case, we insert a vertex \(v' \) between \(v_{i+1} \) and \(v_{i+2} \), and get a new array of \(n_{\text{max}} + 1 \) vertices. Call this new array \(H \), and assign the number ‘4’ to \(v' \). Consider any \(m \) non-overlapping clusters in \(H \). If none of those \(m \) clusters contains \(v' \), then clearly they are also \(m \) non-overlapping clusters in the array \(G \), and therefore have at least \(K = 3 \) distinct numbers. If the \(m \) clusters contain all the three vertices \(v_{i+1}, v' \) and \(v_{i+2} \), then either \(v_i \) or \(v_{i+3} \) is also contained in the \(m \) clusters because each cluster contains \(L = 2 \) vertices, and therefore the \(m \) clusters have at least \(K = 3 \) distinct numbers: ‘1,2,4’ or ‘2,3,4’. WLOG, the only remaining possibility is that one of the \(m \) clusters contains \(v_{i+1} \) and \(v' \) while none of them contains \(v_{i+2} \). Note that among the \(m \) clusters, the \(m - 1 \) of them which don’t contain \(v' \) are also \(m - 1 \) clusters in the array \(G \), and they together with \((v_{i+1}, v_{i+2})\) are \(m \) non-overlapping clusters in \(G \) and therefore have at least \(K = 3 \) distinct numbers. Since \(c(v_{i+1}) = c(v_{i+2}) \), the original \(m \) clusters including \((v_{i+1}, v')\) must also have at least \(K = 3 \) distinct numbers. Now we can conclude that the interleaving on \(H \) is also an MCI. But \(H \)'s length is greater than \(n_{\text{max}} \), which contradicts the definition of \(n_{\text{max}} \).

Case 2: In this case, we insert a vertex \(v' \) between \(v_{i+1} \) and \(v_{i+2} \), and insert a vertex \(v'' \) between \(v_{i+x-1} \) and \(v_{i+x} \), and get a new array of \(n_{\text{max}} + 2 \) vertices. Call this new array \(H \), assign the number ‘4’ to \(v' \), and assign the number ‘3’ to \(v'' \). Consider any \(m \) non-overlapping clusters in \(H \). If neither \(v' \) nor \(v'' \) is contained in the \(m \) clusters, then clearly they are also \(m \) non-overlapping clusters in the array \(G \), and therefore have at least \(K = 3 \) distinct numbers. If both \(v' \) and \(v'' \) are contained in the \(m \) clusters, then at least one vertex in the set \(\{v_{i+1}, v_{i+2}, \cdots, v_{i+x-1}, v_{i+x}\} \) is also in the \(m \) clusters, and therefore the \(m \) clusters have at least these 3 numbers: ‘2’, ‘3’ and ‘4’. WLOG, the only remaining possibility is that the \(m \) clusters contain \(v' \) but not \(v'' \). In that case, if the \(m \) clusters contain \(v_{i+x+1} \), then they have at least 3 numbers — ‘1,2,4’ or
‘2,3,4’; if the m clusters don’t contain v_{i+x+1}, then they don’t contain v_{i+x} either — then we divide the m clusters into two groups A and B, where A is the set of clusters none of which contains any vertex in $\{v', v_{i+2}, v_{i+3}, \ldots, v_{i+x-1}\}$, and B is the set of clusters none of which is in A. Say there are y clusters in B. Then there exist a set C of y clusters in the array G that only contain vertices in $\{v_{i+1}, v_{i+2}, \ldots, v_{i+x-1}, v_{i+x}\}$ such that the m clusters in $A \cup C$ are non-overlapping in G. Those m clusters in $A \cup C$ have at least $K = 3$ distinct numbers; and they have no more distinct numbers than the original m clusters in A and B do, because $c(v_{i+1}) = c(v_{i+2}) = \cdots = c(v_{i+x})$ and either v_{i+1} or v_{i+2} is in the same clusters as v'. So the m clusters in $A \cup B$ have at least $K = 3$ distinct numbers. Now we can conclude that the interleaving on H is also an MCI. And that again contradicts the definition of n_{max}.

Case 3: In this case, we insert a vertex v' between v_1 and v_2, and assign the number ‘3’ to v'. The rest of the analysis is very similar to that for Case 1.

Case 4: In this case, we insert a vertex v' between v_1 and v_2, and insert a vertex v'' between v_{x-1} and v_x, assign the number ‘3’ to v', and assign the number ‘2’ to v''. The rest of the analysis is very similar to that for Case 2.

So this lemma is proved.

Lemma 2: Let the values of N, K, m and L be fixed, where $N \geq 4$, $K = 3$, $m \geq 2$ and $L = 2$. Let n_{max} denote the maximum value of n such that an MCI exists on an array of n vertices. Then $n_{\text{max}} \leq (N - 1)[(m - 1)N - 1] + 2$.

Proof: Let $G = (V, E)$ be a linear array of n_{max} vertices. And say there is an MCI on G. Then we color the vertices in G with three colors — ‘red’, ‘yellow’ and ‘green’ — through the following three steps: Step 1, for $2 \leq i \leq n_{\text{max}} - 1$, if $c(v_{i-1}) = c(v_{i+1})$, then we color v_i with the ‘red’ color; Step 2, for $2 \leq i \leq n_{\text{max}}$, we color v_i with the ‘yellow’ color if v_i is not colored ‘red’ and there exists j such that these four conditions are satisfied: (1) $1 \leq j < i$, (2) v_j is not colored ‘red’, (3) $c(v_j) = c(v_i)$, (4) the vertices between v_j and v_i — that is, $v_{j+1}, v_{j+2}, \ldots, v_{i-1}$ — are all colored ‘red’; Step 3, for $1 \leq i \leq n_{\text{max}}$, if v_i is neither colored ‘red’ nor colored ‘yellow’, then color v_i with the ‘green’ color.

If we arbitrarily pick two different numbers — say ‘i’ and ‘j’ — from the set $\{1, 2, \ldots, N\}$, then we get a pair $[i, j]$. There are totally \(\binom{N}{2} \) such un-ordered pairs. We divide those \(\binom{N}{2} \) pairs into four groups ‘A’, ‘B’, ‘C’ and ‘D’ in the following way:

(1) A pair $[i, j]$ is placed in group A if and only if the following two conditions are satisfied: (i) at least one ‘green’ vertex is assigned number ‘i’ and at least one ‘green’ vertex is assigned number ‘j’, (ii) for any two ‘green’ vertices that are assigned numbers ‘i’ and ‘j’ respectively, there is at least one ‘green’ vertex between them.

(2) A pair $[i, j]$ is placed in group B if and only if the following two conditions are satisfied: (i) at least one ‘green’ vertex is assigned number ‘i’ and at least one ‘green’ vertex is assigned number ‘j’, (ii) there exist two ‘green’ vertices that are assigned numbers ‘i’ and ‘j’ respectively such that there is no ‘green’ vertex between them.

(3) A pair $[i, j]$ is placed in group C if and only if one of the following two conditions is satisfied: (i) at least one ‘green’ vertex is assigned number ‘i’ and no ‘green’ vertex is assigned number ‘j’, (ii) at least one ‘green’ vertex is assigned number ‘j’ and no ‘green’ vertex is assigned number ‘i’.

(4) A pair $[i, j]$ is placed in group D if and only if no ‘green’ vertex is assigned number ‘i’ or ‘j’.
For any $1 \leq i \neq j \leq N$, let $E(i, j)$ be such a set of edges of G: an edge is in $E(i, j)$ if and only if the two endpoints of the edge are assigned number ‘i’ and number ‘j’ respectively. Let $z(i, j)$ denote the number of edges in $E(i, j)$. For any pair $[i, j]$ in group A or group C, $z(i, j) \leq 2m - 2$, because otherwise there would exist m non-overlapping clusters — note that a cluster contains exactly one edge — each of which has numbers ‘i’ and ‘j’, which would contradict the statement that the interleaving on G is an MCI. For any pair $[i, j]$ in group B, $z(i, j) \leq 2m - 3$. That’s because $z(i, j)$ must be no greater than $2m - 2$ for the same reason as in the previous case; and if $z(i, j) = 2m - 2$, in order to avoid the existence of m non-overlapping clusters each of which has numbers ‘i’ and ‘j’, the $z(i, j) = 2m - 2$ edges in $E(i, j)$ would have to be consecutive in the array G, which means WLOG that there are $2m - 1$ consecutive vertices whose assigned numbers are in the form of ‘*[i – j – i – j – · · · – i – j – i]*’ — but then the pair $[i, j]$ can’t be in group B, which is not difficult to verify by using the definition of group B. For any pair $[i, j]$ in group D, $z(i, j) = 0$, because $[i, j]$’s being in group D implies that all vertices that are assigned numbers ‘i’ or ‘j’ are colored ‘red’, which is simple to verify, and then $z(i, j) \geq 1$ would imply that there is an infinitely long segment of the array G to which the numbers assigned are in the form of ‘*[· · · – i – j – i – j – i]*’, which is certainly impossible.

By Lemma 1, any two adjacent vertices in G are assigned different numbers. Let the number of distinct numbers assigned to ‘green’ vertices be denoted by ‘x’, and let ‘X’ denote the set of those x distinct numbers.

It’s simple to see that exactly $\left(\begin{array}{c} x \\ 2 \end{array}\right)$ pairs $[i, j]$ are in group A and group B, where $i \in X$ and $j \in X$ — and among them at least $x - 1$ pairs are in group B. It’s also simple to see that exactly $x(N - x)$ pairs are in group C and exactly $\left(\begin{array}{c} N - x \\ 2 \end{array}\right)$ pairs are in group D. By using the upper bounds we’ve derived on $z(i, j)$, we see that the number of edges in G is at most $\left[\left(\frac{x}{2}\right) - (x - 1)\right] \cdot (2m - 2) + (x - 1) \cdot (2m - 3) + x(N - x) \cdot (2m - 2) + \left(\frac{N - x}{2}\right) \cdot 0 = (1 - m)x^2 + (2mN - 2N - m)x + 1$, whose maximum value (at integer solutions) is achieved when $x = N - 1$ — and that maximum value is $(N - 1)[(m - 1)N - 1] + 1$. So n_{max}, the number of vertices in G, is at most $(N - 1)[(m - 1)N - 1] + 2$.

\[\square\]

Lemma 3: Let the values of N, K, m and L be fixed, where $N = 3$, $K = 3$, $m \geq 2$ and $L = 2$. Let n_{max} denote the maximum value of n such that an MCI exists on an array of n vertices. Then $n_{\text{max}} \leq (N - 1)[(m - 1)N - 1] + 2$.

Proof: Let $G = (V, E)$ be a linear array of n vertices that has an MCI on it. We need to show that $n \leq (N - 1)[(m - 1)N - 1] + 2$. If in the MCI on G, no two adjacent vertices are assigned the same number, then with the same argument as in the proof of Lemma 2, it can be shown that $n \leq (N - 1)[(m - 1)N - 1] + 2$. Now assume there are two adjacent vertices in G that are assigned the same number. Clearly we can find a maximal set of t non-overlapping clusters (of size $L = 2$) such that at least one of them contains two vertices that are assigned the same number and $n \leq 2t + 2$. Among those non-overlapping clusters, let x, y, z, a, b and c respectively denote the number of clusters that are assigned only number 1, only number 2, only number 3, both number 1 and 2, both number 2 and 3, and both number 1 and 3. Since the interleaving is an MCI, clearly $x + y + a \leq m - 1$, $y + z + b \leq m - 1$, $z + x + c \leq m - 1$. So $2x + 2y + 2z + a + b + c \leq 3m - 3$. So $x + y + z + a + b + c \leq 3m - 3 - (x + y + z)$. Since $x + y + z \geq 1$, $t = x + y + z + a + b + c$, and $n \leq 2t + 2$, we get $n \leq 2(x + y + z + a + b + c + 1) \leq 2[3m - 3 - (x + y + z) + 1] \leq 6m - 6 = (N - 1)[(m - 1)N - 1] + 2$. So Lemma 3 is proved.
Below we present the algorithm for computing an MCI on a linear array.

Algorithm 1: MCI on linear array with constraints \(L = 2 \) and \(K = 3 \)

Input: A linear array \(G = (V, E) \) of \(n \) vertices. Parameters \(N, K, m \) and \(L \), where \(N \geq 3, K = 3, m \geq 2 \) and \(L = 2 \).

Output: An MCI on \(G \).

Algorithm:
1. If \(n > (N - 1)((m - 1)N - 1) + 2 \), there doesn’t exist an MCI, so exit the algorithm.
2. If \(n \leq N \), select \(n \) numbers in \(\{1, 2, \ldots, N\} \) and assign each number to one vertex, and exit the algorithm.
3. If \(N < n \leq (N - 1)((m - 1)N - 1) + 2 \) and \(n - \{(N - 1)((m - 1)N - 1) + 2\} \) is even, then select a set of integers \(\{x_{i,j} | i = 1, 2, \ldots, N - 1; j = 2, 3, \ldots, N; i < j\} \) that satisfy the following four requirements: (1) for \(1 \leq i \leq N - 1, x_{i,N} \) is even and \(0 \leq x_{i,N} \leq 2m - 2 \); (2) for \(1 \leq i \leq N - 2 \) and \(j = i + 1, x_{i,j} \) is odd and \(1 \leq x_{i,j} \leq 2m - 3 \); (3) for \(1 \leq i \leq N - 3 \) and \(i + 2 \leq j \leq N - 1, x_{i,j} \) is even and \(0 \leq x_{i,j} \leq 2m - 2 \); (4) if we define \(S \) as \(S = \{x_{i,j} | i = 1, 2, \ldots, N - 1; j = 2, 3, \ldots, N; i < j\} \), then \(\sum_{x \in S} x = n - 1 \).

Let \(H = (V_H, E_H) \) be such a multi-graph: the vertex set \(V_H = \{u_1, u_2, \ldots, u_N\} \); and for any \(1 \leq i < j \leq N \), there are \(x_{i,j} \) undirected edges between \(u_i \) and \(u_j \).

Find a walk in \(H, u_{k_1} \rightarrow u_{k_2} \rightarrow \cdots \rightarrow u_{k_n} \), that satisfies the following conditions: (1) the walk starts with \(u_1 \) and ends with \(u_{N - 1} \) — namely, \(u_{k_1} = u_1 \) and \(u_{k_n} = u_{N - 1} \) — and passes every edge in \(H \) exactly once; (2) for any \(1 \leq i < j \leq N \), the walk passes all the \(x_{i,j} \) edges between \(u_i \) and \(u_j \) consecutively.

For \(i = 1, 2, \ldots, n \), assign the number ‘\(k_i \)’ to the vertex \(v_i \) in \(G \), and we get an interleaving on \(G \). Exit the algorithm.

4. If \(N < n \leq (N - 1)((m - 1)N - 1) + 2 \) and \(n - \{(N - 1)((m - 1)N - 1) + 2\} \) is odd, then select a set of integers \(\{x_{i,j} | i = 1, 2, \ldots, N - 1; j = 2, 3, \ldots, N; i < j\} \) that satisfy the following three requirements: (1) for \(1 \leq i \leq N - 1 \) and \(j = i + 1, x_{i,j} \) is odd and \(1 \leq x_{i,j} \leq 2m - 3 \); (2) for \(1 \leq i \leq N - 2 \) and \(i + 2 \leq j \leq N, x_{i,j} \) is even and \(0 \leq x_{i,j} \leq 2m - 2 \); (3) if we define \(S \) as \(S = \{x_{i,j} | i = 1, 2, \ldots, N - 1; j = 2, 3, \ldots, N; i < j\} \), then \(\sum_{x \in S} x = n - 1 \).

Let \(H = (V_H, E_H) \) be such a multi-graph: the vertex set \(V_H = \{u_1, u_2, \ldots, u_N\} \); and for any \(1 \leq i < j \leq N \), there are \(x_{i,j} \) undirected edges between \(u_i \) and \(u_j \).

Find a walk in \(H, u_{k_1} \rightarrow u_{k_2} \rightarrow \cdots \rightarrow u_{k_n} \), that satisfies the following conditions: (1) the walk starts with \(u_1 \) and ends with \(u_N \) — namely, \(u_{k_1} = u_1 \) and \(u_{k_n} = u_N \) — and passes every edge in \(H \) exactly once; (2) for any \(1 \leq i < j \leq N \), the walk passes all the \(x_{i,j} \) edges between \(u_i \) and \(u_j \) consecutively.

For \(i = 1, 2, \ldots, n \), assign the number ‘\(k_i \)’ to the vertex \(v_i \) in \(G \), and we get an interleaving on \(G \). Exit the algorithm.

Algorithm 1 requires selecting the values of \(x_{i,j} \) for \(1 \leq i < j \leq N \) and finding a walk that passes each edge once. Selecting the values of \(x_{i,j} \) for \(1 \leq i < j \leq N \) is extremely easy because the only constraints given are the range of values each \(x_{i,j} \) can take, and the value of those variables’ summation. Finding the walk is also extremely simple because of the special topology of the underlying graph and the constraints on the walk. Algorithm 1 has complexity \(O(n) \). The following is an example of the algorithm.
Example 2: Assume $G = (V, E)$ is a linear array of $n = 9$ vertices, and the parameters are $N = 4$, $K = 3$, $m = 2$, and $L = 2$. Therefore $N < n \leq (N-1)[(m-1)N-1]+2$ and $n - ((N-1)[(m-1)N-1]+2) = -2$ is even. So Algorithm 1’s step 3 is used to compute the interleaving. We can very easily choose the following values for $x_{i,j}$: $x_{1,2} = x_{2,3} = 1$, $x_{1,3} = x_{1,4} = x_{2,4} = 2$. Then the graph $H = (V_H, E_H)$ is as shown in Fig. 2(a). We can easily find the following walk that passes every edge once: $u_1 \rightarrow u_3 \rightarrow u_1 \rightarrow u_4 \rightarrow u_1 \rightarrow u_2 \rightarrow u_4 \rightarrow u_2 \rightarrow u_3$. Corresponding to that walk, we get the MCI as shown in Fig. 2(b).

Generally speaking, when $N < n \leq (N-1)[(m-1)N-1]+2$ and $n - ((N-1)[(m-1)N-1]+2)$ is even, for $1 \leq i \leq N-3$, the walk in graph H that Algorithm 1 needs to find passes all the edges between u_i and u_{i+1} before passing any edge between u_{i+1} and u_{i+2}. The walk contains many ‘ears’ (small cycles) of the form ‘$i \rightarrow j \rightarrow i$’. If we delete all the ‘ears’ from the walk, the remaining walk is simply ‘$u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_{N-1}$’. It’s clear that such a walk in H can be easily found based on the above observation. The case where $N < n \leq (N-1)[(m-1)N-1]+2$ and $n - ((N-1)[(m-1)N-1]+2)$ is odd can be analyzed in similar ways.

Now we prove the correctness of Algorithm 1.

Theorem 1: Algorithm 1 is correct.

Proof: For the cases where $n > (N-1)[(m-1)N-1]+2$ or $n \leq N$, Algorithm 1 executes its step 1 or 2 and can be easily seen to be correct. Now consider the case ‘$N < n \leq (N-1)[(m-1)N-1]+2$ and $n - ((N-1)[(m-1)N-1]+2)$ is even’, where Algorithm 1 uses its step 3 to compute the MCI. In the graph $H = (V_H, E_H)$ constructed there, the number of edges between two vertices u_i and u_j ($i < j$) is odd if $2 \leq j = i + 1 \leq N - 1$ and is even otherwise. So the walk described as follows satisfies all the requirements on the walk in step 3: the walk starts at u_1, traverses all the edges between u_1 and u_j for all $j \neq 1, 2$, then goes to u_2 (by traversing all the edges between u_1 and u_2), and traverses all the edges between u_2 and u_j for all $j \neq 1, 2, 3$, then goes to u_3 (by traversing all the edges between u_2 and u_3), \ldots, then goes to u_i (by traversing all the edges between u_{i-1} and u_i), and traverses all the edges between u_i and u_j for all $j \neq 1, 2, \ldots, i + 1$, then goes to u_{i+1}, \ldots, then goes to u_{N-1}, traverses all the edges between u_{N-1} and u_N, and ends at u_{N-1}. (Note that for any two vertices, all the edges between them are traversed consecutively.) So H contains at least one walk that satisfies the requirements in step 3. The walk found in step 3 has a one-to-one correspondence to the interleaving on the linear array $G = (V, E)$, where
a vertex in H corresponds to a number assigned to G. Clearly in G every cluster (of size $L = 2$) contains two different numbers; and for any $1 \leq i \neq j \leq N$, the clusters in G that are assigned both number i and number j aggregated form a connected subgraph of G containing at most $2m - 1$ vertices — so there don’t exist m non-overlapping clusters that are assigned numbers i and j only. Therefore any m non-overlapping clusters are assigned at least $K = 3$ distinct numbers, meaning that the interleaving on G is an MCI. So for the current case, Algorithm 1 is correct. The case where ‘$N < n \leq (N - 1)((m - 1)N - 1] + 2$ and $n - \{(N - 1)((m - 1)N - 1] + 2\}$ is odd’ can be analyzed similarly.

\[\square\]

Theorem 2: Let the values of N, K, m and L be fixed, where $N \geq 3$, $K = 3$, $m \geq 2$ and $L = 2$. Then there exists an MCI on a linear array of n vertices if and only if $n \leq (N - 1)((m - 1)N - 1] + 2$.

Proof: Let $G = (V, E)$ be a linear array of n vertices. If G has an MCI, then by Lemma 2 and Lemma 3, $n \leq (N - 1)((m - 1)N - 1] + 2$. If $n \leq (N - 1)((m - 1)N - 1] + 2$, then by Theorem 1, Algorithm 1 can successfully find an MCI on G. So Theorem 2 is proved.

\[\square\]

B. Rings

Lemma 4: Let the values of N, K, m and L be fixed, where $N \geq 4$, $K = 3$, $m \geq 2$ and $L = 2$. Let n_{max} denote the maximum value of n such that an MCI exists on a ring of n vertices. Then in any MCI on a ring $G = (V, E)$ of n_{max} vertices, no two adjacent vertices are assigned the same number.

Lemma 5: Let the values of N, K, m and L be fixed, where $N \geq 4$, $K = 3$, $m \geq 2$ and $L = 2$. Let n_{max} denote the maximum value of n such that an MCI exists on a ring of n vertices. Then $n_{\text{max}} \leq (N - 1)((m - 1)N - 1]$.

Lemma 6: Let the values of N, K, m and L be fixed, where $N = 3$, $K = 3$, $m \geq 2$ and $L = 2$. Let n_{max} denote the maximum value of n such that an MCI exists on a ring of n vertices. Then $n_{\text{max}} \leq (N - 1)((m - 1)N - 1]$.

The above three lemmas can be proved with techniques similar to those used in the proofs of Lemma 1, Lemma 2 and Lemma 3 respectively (although the proof for Lemma 6 will be substantially more complex than that for Lemma 3). We present the detailed proofs for the three lemmas in Appendix I.

Below we present the algorithm for computing an MCI on a ring. (Note that an Eulerian walk is a closed walk that traverses every edge in a graph exactly once. And we denote the n vertices in the ring $G = (V, E)$ by v_1, v_2, \ldots, v_n, where v_1 is adjacent to v_N and v_2, v_2 is adjacent to v_1 and v_3, and so on \ldots)

Algorithm 2: MCI on ring with constraints $L = 2$ and $K = 3$

Input: A ring $G = (V, E)$ of n vertices. Parameters N, K, m and L, where $N \geq 3$, $K = 3$, $m \geq 2$ and $L = 2$.

Output: An MCI on G.

Algorithm:

1. If $n > (N - 1)((m - 1)N - 1]$, there doesn’t exist an MCI, so exit the algorithm.
2. If $n \leq N$, select n numbers in $\{1, 2, \ldots, N\}$ and assign each number to one vertex, and exit the algorithm.
3. If $N < n \leq (N - 1)((m - 1)N - 1]$ and $n - \{(N - 1)((m - 1)N - 1]\}$ is even, then select a set of integers $\{x_{i,j}|i = 1, 2, \ldots, N - 1; j = 2, 3, \ldots, N; i < j\}$ that satisfy the following four requirements: (1)
for $1 \leq i \leq N - 1$, $x_{i,N}$ is even and $0 \leq x_{i,N} \leq 2m - 2$; (2) for $1 \leq i \leq N - 2$ and $j = i + 1$, $x_{i,j}$ is odd and $1 \leq x_{i,j} \leq 2m - 3$; also, $x_{1,N-1}$ is odd and $1 \leq x_{1,N-1} \leq 2m - 3$; (3) for $1 \leq i \leq N - 4$ and $i + 2 \leq j \leq N - 2$, $x_{i,j}$ is even and $0 \leq x_{i,j} \leq 2m - 2$; also, for $2 \leq i \leq N - 3$ and $j = N - 1$, $x_{i,j}$ is even and $0 \leq x_{i,j} \leq 2m - 2$; (4) if we define S as $S = \{ x_{i,j} | i = 1, 2, \ldots, N - 1; j = 2, 3, \ldots, N; i < j \}$, then $\sum_{x \in S} x = n$.

Let $H = (V_H, E_H)$ be such a multi-graph: the vertex set $V_H = \{ u_1, u_2, \ldots, u_N \}$; and for any $1 \leq i < j \leq N$, there are $x_{i,j}$ undirected edges between u_i and u_j.

Find an Eulerian walk in H, $u_{k_1} \rightarrow u_{k_2} \rightarrow \cdots \rightarrow u_{k_n}$ (and finally back to u_{k_1}), that satisfies the following condition: for any $1 \leq i < j \leq N$, the walk passes all the $x_{i,j}$ edges between u_i and u_j consecutively.

For $i = 1, 2, \ldots, n$, assign the number ‘k_i’ to the vertex v_i in G, and we get an interleaving on G. Exit the algorithm.

4. If $N < n \leq (N - 1)[(m - 1)N - 1]$ and $n - \{(N - 1)[(m - 1)N - 1] \}$ is odd, then select a set of integers $\{ x_{i,j} | i = 1, 2, \ldots, N - 1; j = 2, 3, \ldots, N; i < j \}$ that satisfy the following three requirements: (1) for $1 \leq i \leq N - 1$ and $j = i + 1$, $x_{i,j}$ is odd and $1 \leq x_{i,j} \leq 2m - 3$; also, $x_{1,N}$ is odd and $1 \leq x_{1,N} \leq 2m - 3$; (2) for $1 \leq i \leq N - 3$ and $i + 2 \leq j \leq N - 1$, $x_{i,j}$ is even and $0 \leq x_{i,j} \leq 2m - 2$; also, for $2 \leq i \leq N - 2$ and $j = N$, $x_{i,j}$ is even and $0 \leq x_{i,j} \leq 2m - 2$; (3) if we define S as $S = \{ x_{i,j} | i = 1, 2, \ldots, N - 1; j = 2, 3, \ldots, N; i < j \}$, then $\sum_{x \in S} x = n$.

Let $H = (V_H, E_H)$ be such a multi-graph: the vertex set $V_H = \{ u_1, u_2, \ldots, u_N \}$; and for any $1 \leq i < j \leq N$, there are $x_{i,j}$ undirected edges between u_i and u_j.

Find an Eulerian walk in H, $u_{k_1} \rightarrow u_{k_2} \rightarrow \cdots \rightarrow u_{k_n}$ (and finally back to u_{k_1}), that satisfies the following condition: for any $1 \leq i < j \leq N$, the walk passes all the $x_{i,j}$ edges between u_i and u_j consecutively.

For $i = 1, 2, \ldots, n$, assign the number ‘k_i’ to the vertex v_i in G, and we get an interleaving on G. Exit the algorithm.

Similar to Algorithm 1, Algorithm 2 is also simple to execute. It has complexity $O(n)$.

In Algorithm 2, an Eulerian walk in a multi-graph H needs to be found. Generally speaking, when $N < n \leq (N - 1)[(m - 1)N - 1]$ and $n - \{(N - 1)[(m - 1)N - 1] \}$ is even, the Eulerian walk passes all the edges between u_1 and u_2, and then (after passing some other edges) passes all the edges between u_2 and u_3, and then (after passing some other edges) passes all the edges between u_3 and u_4, and then (after passing some other edges) passes all the edges between u_{N-2} and u_{N-1}, and then (after passing some other edges) passes all the edges between u_{N-1} and u_1. If we roughly understand ‘passing an odd number of edges between u_i and u_j’ as ‘going from u_i to u_j’, then that Eulerian walk contains an ‘inner cycle’, which goes from u_1 to u_2, then to u_3, to u_4, to u_{N-2}, then back to u_1. Given this observation, an Eulerian walk in H can be easily found. The case where ‘$N < n \leq (N - 1)[(m - 1)N - 1]$ and $n - \{(N - 1)[(m - 1)N - 1] \}$ is odd’ can be dealt with similarly, with the only major difference that the ‘inner cycle’ there goes from u_1 to u_2, then to u_3, to u_4, to u_N, then back to u_1.

Theorem 3: Algorithm 2 is correct.

Theorem 4: Let the values of N, K, m and L be fixed, where $N \geq 3$, $K = 3$, $m \geq 2$ and $L = 2$. Then there exists an MCI on a ring of n vertices if and only if $n \leq (N - 1)[(m - 1)N - 1]$.

We present the detailed proofs of Theorem 3 and Theorem 4 in Appendix II.
III. MCI with Constraint $K = L + 1$

In this section we study the MCI problem on linear arrays with the constraint that $K = L + 1$. It covers the MCI problem with constraints that $L = 2$ and $K = 3$, which is studied in the previous section, as a special case.

We define three operations on arrays — ‘remove a vertex’, ‘insert a vertex’ and ‘combine two arrays’. Let G be an array of n vertices: v_1, v_2, \cdots, v_n. By ‘removing the vertex v_i’ from G ($1 \leq i \leq n$), we get a new array $v_i v_{i-1} \cdots v_1 v_{i+1} \cdots v_n$. By ‘inserting a vertex \hat{v}’ in front of the vertex v_i in G ($1 \leq i \leq n$), we get a new array $v_{i+1} \cdots v_1 v_i v_{i-1} \cdots v_n \hat{v}$. (Similarly we can define ‘inserting a vertex \hat{v} behind the vertex v_i in G’ and ‘inserting a vertex \hat{v} between the vertices v_i and v_{i+1} in G’.)

Let H be an array of n' vertices: $u_1, u_2, \cdots, u_{n'}$. Assume for $1 \leq i \leq n$, v_i is assigned the number $c(v_i)$, and assume for $1 \leq i \leq n'$, u_i is assigned the number $c(u_i)$. Also let l be a positive integer between 1 and $\min(n, n')$, and assume for $1 \leq i \leq l$, $c(v_i) = c(u_{n' + l + i})$. Then by saying ‘combining H with G such that the last l vertices of H overlap the first l vertices of G’, we mean to construct an array of $n' + n - l$ vertices whose assigned numbers are $[c(u_1) - c(u_2) - \cdots - c(u_{n'} - c(v_{l+1}) - c(v_{l+2}) - \cdots - c(v_n)])$.

Now we present an algorithm which computes an MCI on a linear array. Different from Algorithm 1 and Algorithm 2, in this algorithm the length of the array is unknown. Instead, the algorithm tries to find the longest array that has an MCI, and compute an MCI on it. Thus the output of this algorithm not only provides an MCI solution, but also gives a lower bound on the maximum length of the array on which an MCI exists.

Algorithm 3: MCI on linear array with the constraint $K = L + 1$

Input: Parameters N, K, m and L, where $N \geq K = L + 1 \geq 3$ and $m \geq 2$.

Output: An MCI on a linear array $G = (V, E)$ of n vertices, with the value of n as large as possible.

Algorithm:

1. If $L = 2$, then let $G = (V, E)$ be an array of $n = (N - 1)(m - 1)N - 1 + 2$ vertices, and use Algorithm 1 to find an MCI on G. Output G and the MCI on it, and return. (So step 2 to step 4 will be executed only if $L \geq 3$.)

2. Find a linear array B_{L+1} as long as possible that satisfies the following two conditions: (1) each vertex of B_{L+1} is assigned a number in $\{1, 2, \cdots, L\}$, namely, there is an interleaving of the numbers in $\{1, 2, \cdots, L\}$ on B_{L+1}; (2) any m non-overlapping connected subgraphs in B_{L+1} each of which contains $L - 1$ vertices are assigned at least L distinct numbers. To find the array B_{L+1}, (recursively) call Algorithm 3 by replacing the inputs of the algorithm — N, K, m and L — respectively with L, L, m and $L - 1$.

Scan the vertices in B_{L+1} backward (from the last vertex to the first vertex), and insert a new vertex after every $L - 1$ vertices in B_{L+1}. (In other words, if the vertices in B_{L+1} are $v_1, v_2, \cdots, v_{\hat{n}}$, then by inserting vertices into B_{L+1}, we get a new array of $\hat{n} + \lceil \frac{\hat{n}}{L - 1} \rceil$ vertices; and if we look at the new array in the reverse order — from the last vertex to the first vertex — then the array is of the form $\hat{v}_{\hat{n} - 1} - \cdots - v_{\hat{n} + 2(L - 1) - 1} - (\text{new vertex}) - v_{\hat{n} - (L - 1) - 1} - \cdots - v_{\hat{n} + 2 - 1} - \cdots - v_{\hat{n} + 1 - 1} - (\text{new vertex}) - v_{\hat{n} - 1} - \cdots - v_{\hat{n} + 1 - 1}$. In this new array, every connected subgraph of L vertices contains exactly one newly inserted vertex.) Assign the number ‘$L + 1$’ to every newly inserted vertex in the new array, and denote this new array by ‘A_{L+1}’.

3. for $i = L + 2$ to N do

\{ Find a linear array B_i as long as possible that satisfies the following three conditions: (1) each vertex of B_i is assigned a number in $\{1, 2, \cdots, i - 1\}$, namely, there is an interleaving of the numbers in
{1, 2, ⋯, i − 1} on \(B_i \); (2) any \(m \) non-overlapping connected subgraphs in \(B_i \) each of which contains \(L − 1 \) vertices are assigned at least \(L \) distinct numbers; (3) for \(j = 1 \) to \(L − 1 \), the \(j \)-th last vertex of \(B_i \) is assigned the same number as the \((L − j) \)-th vertex of \(A_{i−1} \). To find the array \(B_i \), (recursively) call Algorithm 3 by replacing the inputs of the algorithm — \(N, K, m \) and \(L \) — respectively with \(i − 1, L, m \) and \(L − 1 \).

Scan the vertices in \(B_i \) backward (from the last vertex to the first vertex), and insert a new vertex after every \(L − 1 \) vertices in \(B_i \). Assign the number ‘\(i \)’ to every newly inserted vertex in the new array, and denote this new array by ‘\(A_i \).

4. Combine \(A_N \) with \(A_{N−1} \), combine \(A_{N−1} \) with \(A_{N−2}, \cdots \), and combine \(A_{L+2} \) with \(A_{L+1} \) such that the last \(L − 1 \) vertices of \(A_N \) overlap the first \(L − 1 \) vertices of \(A_{N−1} \), the last \(L − 1 \) vertices of \(A_{N−1} \) overlap the first \(L − 1 \) vertices of \(A_{N−2}, \cdots \), and the last \(L − 1 \) vertices of \(A_{L+2} \) overlap the first \(L − 1 \) vertices of \(A_{L+1} \). (In other words, if we denote the number of vertices in \(A_i \) by \(l_i \), for \(L + 1 \leq i \leq N \), then the new array we get has \(\sum_{i=L+1}^{N} l_i = (L−1)(N−L−1) \) vertices.) Let this new array be \(G = (V, E) \). Output \(G \) and the interleaving (which is an MCI) on it, and return.

□

Algorithm 3 outputs an array \(G \), which is as long as the algorithm can find, and an MCI on \(G \). The MCI on \(G \) has a ‘hierarchical-chain’ structure, because \(G \) consists of sub-arrays \(A_{L+1}, A_{L+2}, \cdots, A_N \), and these sub-arrays form the horizontal hierarchy since they are assigned interleavings of more and more numbers and have increasing lengths. \(G \) is a chain of those sub-arrays, in which every two adjacent sub-arrays have some overlapping. For each \(A_i \) \((L + 1 \leq i \leq N) \), it is derived from an array \(B_i \), and \(B_i \) likely also consists of its own sub-arrays (note that Algorithm 3 is recursive), and so on ⋯ ⋯ so they form the vertical hierarchy in the MCI. \(G \)’s length, \(n \), is unknown before Algorithm 3 ends. But if we can use to \(n \) to evaluate the complexity of Algorithm 3, then Algorithm 3 can be easily seen to have complexity \(O(n) \). If an interleaving on a long array is an MCI, then the interleaving on a connected subgraph of it (a sub-array) is also an MCI; and Algorithm 3 constructs the array \(G \) piece by piece. So it’s simple to see that the algorithm can be easily modified to compute the MCI on any array of less than \(n \) vertices.

The following is an example of Algorithm 3.

Example 3: Given the parameters \(N = 6, K = 4, m = 2 \) and \(L = 3 \), we use Algorithm 3 to compute an MCI on an array as long as possible. Three arrays — \(B_4, B_5 \) and \(B_6 \) — need to be found. To compute each \(B_i \) \((4 \leq i \leq 6) \), Algorithm 3 is (recursively) called; and for this example we’re considering now, \(B_i \) is eventually computed by Algorithm 1. For \(4 \leq i \leq 6 \), \(B_i \) has \((i−2)[(m−1)(i−1)−1]+2 \) vertices.

As a possible result, let’s say that the numbers on \(B_4 \) are \([1−3−1−2−3−2]\); and therefore the numbers on \(A_4 \) are \([4−1−3−4−1−2−4−3−2]\). Then the numbers on \(B_5 \) can be made to be \([3−4−3−1−3−2−4−2−1−4−1]\). (Note that the last \(L−1 = 2 \) vertices of \(B_5 \) are assigned numbers ‘4-1’, the same as the first \(L−1 = 2 \) vertices of \(A_4 \). That can be done easily by permuting numbers on \(B_5 \).

Then the numbers on \(A_5 \) are \([3−5−4−3−5−1−3−5−2−4−5−2−1−5−4−1]\). Then the numbers on \(B_6 \) can be made to be \([1−3−1−4−1−5−1−2−3−2−5−2−4−3−4−5−3−5]\). (Note that the last \(L−1 = 2 \) vertices of \(B_6 \) are assigned numbers ‘3-5’, the same as the first \(L−1 = 2 \) vertices of \(A_5 \).

Then the numbers on \(A_6 \) are \([6−1−3−6−1−4−6−1−5−6−1−2−6−3−2−6−5−2−6−4−3−6−4−5−6−3−5]\). Finally, \(A_6 \) is combined with \(A_5 \) with \(L−1 = 2 \) overlapping vertices, and \(A_5 \) is combined with \(A_4 \) with \(L−1 = 2 \) overlapping vertices, and we get the array \(G = (V, E) \) which
are assigned numbers \([6 - 1 - 3 - 6 - 1 - 4 - 6 - 1 - 5 - 6 - 1 - 2 - 6 - 3 - 2 - 6 - 5 - 2 - 6 - 4 - 3 - 6 - 4 - 5 - 6 - 3 - 5 - 4 - 3 - 5 - 1 - 3 - 5 - 2 - 4 - 5 - 2 - 1 - 5 - 4 - 1 - 3 - 4 - 1 - 2 - 4 - 3 - 2]\).

\(G\) has 48 vertices. It can be verified that the interleaving on \(G\) is an MCI.

\(\square\)

Theorem 5: Algorithm 3 is correct.

Proof: We prove this theorem by induction. If \(L = 2\), then Algorithm 3 uses Algorithm 1 to compute the MCI — so the result is clearly correct. Also, we notice that for any MCI output by Algorithm 1, any two adjacent vertices are assigned different numbers. We use that as the base case.

Let \(I\) be an integer such that \(2 < I \leq L\). Let’s assume the following statement to be true: if we replace the inputs of Algorithm 3 — parameters \(N, K, m\) and \(L\) — with any other set of valid inputs \(\hat{N}, \hat{K}, \hat{m}\) and \(i\) such that \(2 \leq i < I\), then Algorithm 3 will correctly output an MCI on an array; and in that MCI, any \(i\) consecutive vertices are assigned \(i\) different numbers.

Now let’s replace the inputs of Algorithm 3 — parameters \(N, K, m\) and \(L\) — with a set of valid inputs \(N', K', m'\) and \(I\). Then Algorithm 3 needs to compute (in its step 2 and step 3) \(N' - I\) arrays: \(B_{I+1}, B_{I+2}, \ldots, B_{N'}\). For \(I + 1 \leq j \leq N'\), \(B_j\) is (recursively) computed by calling Algorithm 3. The interleaving on \(B_j\) is in fact an MCI where the size of each cluster is \(I - 1\) — by the induction assumption, Algorithm 3 will correctly output the interleaving on \(B_j\). \(B_j\) is assigned the numbers in \(\{1, 2, \ldots, j - 1\}\); and by the induction assumption, any \(I - 1\) consecutive vertices in \(B_j\) are assigned \(I - 1\) different numbers. The array \(A_{I+1}\) is constructed by inserting vertices into \(B_{I+1}\) such that every \(I\) consecutive vertices in \(A_{I+1}\) contains exactly one newly inserted vertex, and all the newly inserted vertices are assigned the number ‘\(I + 1\)’. So any \(I\) consecutive vertices in \(A_{I+1}\) are assigned \(I\) different numbers. Therefore it’s very easy to adjust the interleaving on \(B_{I+2}\) to make the last \(I - 1\) vertices of \(B_{I+2}\) be assigned the same numbers as the first \(I - 1\) vertices of \(A_{I+1}\). Noticing that the last \(I - 1\) vertices of \(B_{I+2}\) are assigned the same numbers as the last \(I - 1\) vertices of \(A_{I+2}\), we see that \(A_{I+2}\) and \(A_{I+1}\) can be successfully combined with \(I - 1\) overlapping vertices by Algorithm 3. Similarly, for \(I + 3 \leq t \leq N'\), \(A_t\) and \(A_{t-1}\) can be successfully combined by Algorithm 3; and for \(I + 2 \leq t \leq N'\), any \(I\) consecutive vertices in \(A_t\) are assigned \(I\) different numbers. Algorithm 3 uses \(G\) to denote the array got by combining \(A_{L+1}, A_{L+2}, \ldots, A_N\). Clearly any \(I\) consecutive vertices in \(G\) are also \(I\) consecutive vertices in \(A_j\) for some \(j\) \((I + 1 \leq j \leq N')\), therefore are assigned \(I\) different numbers.

And for any \(m'\) non-overlapping clusters in \(G\) — each cluster here contains \(I\) vertices — either they are all contained in \(A_j\) for some \(j\) \((I + 1 \leq j \leq N')\), or at least one cluster is contained in \(A_{j'}\) for some \(j'\) and one other cluster is contained in \(A_{j''}\) for some \(j'' \neq j'\) \((I + 1 \leq j', j'' \leq N')\). In the former case, by deleting those vertices that are assigned the number ‘\(j\)’ in those \(m'\) clusters, we get \(m'\) non-overlapping connected subgraphs in \(B_j\) each of which contains \(I - 1\) vertices, which are assigned at least \(I\) different numbers not including ‘\(j\)’ — so the \(m'\) clusters in \(G\) (and also in \(A_j\)) are assigned at least \(I + 1\) different numbers. In the latter case, without loss of generality, let’s say \(j' < j''\). Then the cluster in \(A_{j'}\) are assigned \(I\) different numbers not including ‘\(j''\)’, and the cluster in \(A_{j''}\) is assigned a number ‘\(j''\)’ — so the \(m'\) clusters in \(G\) are assigned at least \(I + 1\) different numbers. Therefore the interleaving on \(G\) is an MCI (with parameters \(N', K', m'\) and \(I\)). So the induction assumption also holds when \(i = I\).

Algorithm 3 computes the result for the original problem by recursively calling itself. By the above induction, every intermediate time Algorithm 3 is called, the output is correct. So the final output of Algorithm 3 is also correct.
The length of the longest array on which an MCI exists increases when \(N \), the number of integers that are interleaved, increases. The performance of Algorithm 3 can be evaluated by the difference between the length of the array constructed by Algorithm 3 and the length of the longest array on which an MCI exists. We’re interested in studying how the difference goes when \(N \) increases. The following theorem shows the result.

Theorem 6: Fix the values of the parameters \(K, m \) and \(L \), where \(K = L + 1 \geq 3 \) and \(m \geq 2 \), and let \(N \) be a variable \((N \geq K)\). Then the longest linear array on which an MCI exists has \(\frac{m-1}{(L-1)!} N^L + O(N^{L-1}) \) vertices. And the array output by Algorithm 3 also has \(\frac{m-1}{(L-1)!} N^L + O(N^{L-1}) \) vertices.

Proof: Let \(G = (V, E) \) be a linear array of \(n \) vertices with an MCI on it. We can find at most \(\lfloor \frac{n}{L} \rfloor \) non-overlapping clusters in \(G \). Let \(S \subseteq \{1, 2, \ldots, N\} \) be an arbitrary set of \(L \) distinct numbers. Then since the interleaving on \(G \) is an MCI, among those \(\lfloor \frac{n}{L} \rfloor \) non-overlapping clusters, at most \(m - 1 \) of them are assigned only numbers in \(S \) and no numbers in \(\{1, 2, \ldots, N\} - S \). \(S \) can be any one of \(\binom{N}{L} \) sets. So \(\lfloor \frac{n}{L} \rfloor \leq (m - 1) \binom{N}{L} \). So we get \(n \leq \frac{m-1}{(L-1)!} N^L + O(N^{L-1}) \).

When \(L = 2 \), Algorithm 3 outputs an array of \((N-1)[(m-1)N-1] + 2 \) vertices. When \(L \geq 3 \), to get the output, Algorithm 3 needs to construct the arrays \(A_{L+1}, A_{L+2}, \ldots, A_N \); and for \(L + 1 \leq i \leq N \), \(A_i \) is got by inserting vertices into the array \(B_i \). \(B_i \) is again an output of Algorithm 3, which is assigned \(i - 1 \) distinct numbers, and in which an corresponding ‘cluster’ has \(L - 1 \) vertices. Let’s use \(F(N, m, L) \) to denote the number of vertices in the array output by Algorithm 3, and use \(A(i, m, L) \) to denote the number of vertices in the array \(A_i \). Then based on the above observed relations, we get the following 3 equations: (1) \(F(N, m, 2) = (N-1)[(m-1)N-1] + 2 \); (2) when \(L \geq 3 \), \(F(N, m, L) = \sum_{i=L+1}^{N} A(i, m, L) - (N - L - 1)(L - 1) \); (3) when \(i \geq L + 1 \geq 4 \), \(A(i, m, L) = \lfloor \frac{L-1}{L-1} \cdot F(i - 1, m, L - 1) \rfloor \). By solving the equations, we get \(F(N, m, L) = \frac{m-1}{(L-1)!} N^L + O(N^{L-1}) \), which meets the upper bound on the array’s length we’ve derived. So the longest linear array on which an MCI exists has \(\frac{m-1}{(L-1)!} N^L + O(N^{L-1}) \) vertices; and the array output by Algorithm 3 also has \(\frac{m-1}{(L-1)!} N^L + O(N^{L-1}) \) vertices.

Theorem 6 shows that the array output by Algorithm 3 is asymptotically as long as the longest array on which an MCI exists. As mentioned before, clearly the algorithm can be easily modified to computer MCI on shorter arrays as well.

IV. Conclusion

This paper defines the multi-cluster interleaving (MCI) problem for flexible parallel data-retrieving. Two families of MCI problems are solved for arrays/rings. MCI seems to have natural applications in data-streaming, broadcasting, etc. We expect that the techniques for solving the MCI problems presented in this paper may provide valuable insights into solving more general MCI problems.

APPENDIX I

In this appendix, we present the proofs of Lemma 4, Lemma 5 and Lemma 6.

The following notations will be used in the remainder of this paper. We denote the \(n \) vertices in the ring \(G = (V, E) \) by \(v_1, v_2, \ldots, v_n \). For \(2 \leq i \leq n - 1 \), the two vertices adjacent to \(v_i \) are \(v_{i-1} \) and \(v_{i+1} \). A
connected subgraph in \(G \) containing vertices \(v_i, v_{i+1}, \ldots, v_j \) is denoted by \((v_i, v_{i+1}, \ldots, v_j)\). If \(G \) has an interleaving on it, then \(c(v_j) \) denotes the number assigned to vertex \(v_i \). The numbers assigned to a connected subgraph of \(G, (v_i, v_{i+1}, \ldots, v_j) \), are denoted by \([c(v_i) - c(v_{i+1}) - \cdots - c(v_j)]\).

Lemma 4: Let the values of \(N, K, m \) and \(L \) be fixed, where \(N \geq 4, K = 3, m \geq 2 \) and \(L = 2 \). Let \(n_{\text{max}} \) denote the maximum value of \(n \) such that an MCI exists on a ring of \(n \) vertices. Then in any MCI on a ring \(G = (V, E) \) of \(n_{\text{max}} \) vertices, no two adjacent vertices are assigned the same number.

Proof: We’ll prove this lemma by showing that if in an MCI on a ring \(G = (V, E) \) of \(n_{\text{max}} \) vertices, two adjacent vertices are assigned the same number, then there exists a longer ring that also has an MCI, which would clearly contradict the definition of \(n_{\text{max}} \).

Assume that there is an MCI on a ring \(G = (V, E) \) of \(n_{\text{max}} \) vertices such that there exist two adjacent vertices having the same number. Then without loss of generality (WLOG), we say one of the following two cases must be true (because we can always get one of the two cases by permuting the numbers or reversing the indices of the vertices):

Case 1: There exist 4 consecutive vertices \(v_i, v_{i+1}, v_{i+2}, v_{i+3} \) such that \(c(v_i) = 1, c(v_{i+1}) = c(v_{i+2}) = 2, \) and \(c(v_{i+3}) = 1 \) or 3.

Case 2: There exist \(x + 2 \geq 5 \) consecutive vertices \(v_i, v_{i+1}, \ldots, v_{i+x}, v_{i+x+1} \) such that \(c(v_i) = 1, c(v_{i+1}) = c(v_{i+2}) = \cdots = c(v_{i+x}) = 2, \) and \(c(v_{i+x+1}) = 1 \) or 3.

We analyze the two cases one by one.

Case 1: In this case, we insert a vertex \(v' \) between \(v_{i+1} \) and \(v_{i+2} \), and get a new ring of \(n_{\text{max}} + 1 \) vertices. Call this new ring \(H \), and assign the number ‘4’ to \(v' \). Consider any \(m \) non-overlapping clusters in \(H \). If none of those \(m \) clusters contains \(v' \), then clearly they are also \(m \) non-overlapping clusters in the ring \(G \), and therefore have at least \(K = 3 \) distinct numbers. If the \(m \) clusters contain all the three vertices \(v_{i+1}, v' \) and \(v_{i+2} \), then either \(v_i \) or \(v_{i+3} \) is also contained in the \(m \) clusters because each cluster contains \(L = 2 \) vertices, and therefore the \(m \) clusters have at least \(K = 3 \) distinct numbers: ‘1,2,4’ or ‘2,3,4’. WLOG, the only remaining possibility is that one of the \(m \) clusters contains \(v_{i+1} \) and \(v' \) while none of them contains \(v_{i+2} \). Note that among the \(m \) clusters, the \(m - 1 \) of which don’t contain \(v' \) are also \(m - 1 \) clusters in the ring \(G \), and they together with \((v_{i+1}, v_{i+2})\) are \(m \) non-overlapping clusters in \(G \) and therefore have at least \(K = 3 \) distinct numbers. Since \(c(v_{i+1}) = c(v_{i+2}) \), the original \(m \) clusters including \((v_{i+1}, v')\) must also have at least \(K = 3 \) distinct numbers. Now we can conclude that the interleaving on \(H \) is also an MCI. But \(H \)'s length is greater than \(n_{\text{max}} \), which contradicts the definition of \(n_{\text{max}} \).

Case 2: In this case, we insert a vertex \(v' \) between \(v_{i+1} \) and \(v_{i+2} \), and insert a vertex \(v'' \) between \(v_{i+x-1} \) and \(v_{i+x} \), and get a new ring of \(n_{\text{max}} + 2 \) vertices. Call this new ring \(H \), assign the number ‘4’ to \(v' \), and assign the number ‘3’ to \(v'' \). Consider any \(m \) non-overlapping clusters in \(H \). If neither \(v' \) nor \(v'' \) is contained in the \(m \) clusters, then clearly they are also \(m \) non-overlapping clusters in the ring \(G \), and therefore have at least \(K = 3 \) distinct numbers. If both \(v' \) and \(v'' \) are contained in the \(m \) clusters, then at least one vertex in the set \(\{v_{i+1}, v_{i+2}, \ldots, v_{i+x-1}, v_{i+x}\} \) is also in the \(m \) clusters, and therefore the \(m \) clusters have at least these 3 numbers: ‘2’, ‘3’ and ‘4’. WLOG, the only remaining possibility is that the \(m \) clusters contain \(v' \) but not \(v'' \). In that case, if the \(m \) clusters contain \(v_{i+x+1} \), then they have at least 3 numbers — ‘1,2,4’ or ‘2,3,4’; if the \(m \) clusters don’t contain \(v_{i+x+1} \), then they don’t contain \(v_{i+x} \) either — then we divide the \(m \) clusters into two groups \(A \) and \(B \), where \(A \) is the set of clusters none of which contains any vertex in \(\{v', v_{i+2}, v_{i+3}, \ldots, v_{i+x-1}\} \), and \(B \) is the set of clusters none of which is in \(A \). Say there are \(y \) clusters in \(B \).
Then there exist a set C of y clusters in the ring G that only contain vertices in $\{v_{i+1}, v_{i+2}, \ldots, v_{i+x-1}, v_{i+x}\}$ such that the m clusters in $A \cup C$ are non-overlapping in G. Those m clusters in $A \cup C$ have at least $K = 3$ distinct numbers; and they have no more distinct numbers than the original m clusters in A and B do, because $c(v_{i+1}) = c(v_{i+2}) = \cdots = c(v_{i+x})$ and either v_{i+1} or v_{i+2} is in the same clusters as v'. So the m clusters in $A \cup B$ have at least $K = 3$ distinct numbers. Now we can conclude that the interleaving on H is also an MCI. And that again contradicts the definition of n_{max}.

So this lemma is proved.

\[\square \]

Lemma 5: Let the values of N, K, m and L be fixed, where $N \geq 4$, $K = 3$, $m \geq 2$ and $L = 2$. Let n_{max} denote the maximum value of n such that an MCI exists on a ring of n vertices. Then $n_{\text{max}} \leq (N - 1)(m - 1)N - 1$.

Proof: Let $G = (V, E)$ be a ring of n_{max} vertices. And say there is an MCI on G. Then we color the vertices in G with three colors — ‘red’, ‘yellow’ and ‘green’ — through the following three steps: Step 1, for $1 \leq i \leq n_{\text{max}}$, if the two vertices adjacent to v_i are assigned the same number, then we color v_i with the ‘red’ color; Step 2, for $1 \leq i \leq n_{\text{max}}$, we color v_i with the ‘yellow’ color if v_i is not colored ‘red’ and there exists j such that these three conditions are satisfied: (1) v_j is not colored ‘red’, (2) $c(v_j) = c(v_i)$, (3) the following vertices between v_j and $v_i = v_j+1, v_j+2, \ldots, v_i-1$ — are all colored ‘red’; Step 3, for $1 \leq i \leq n_{\text{max}}$, if v_i is neither colored ‘red’ nor colored ‘yellow’, then color v_i with the ‘green’ color.

If we arbitrarily pick two different numbers — say ‘i’ and ‘j’ — from the set $\{1, 2, \ldots, N\}$, then we get a pair $[i, j]$. There are totally \(\binom{N}{2} \) such un-ordered pairs. We divide those \(\binom{N}{2} \) pairs into four groups ‘A’, ‘B’, ‘C’ and ‘D’ in the following way:

1. A pair $[i, j]$ is placed in group A if and only if the following two conditions are satisfied: (i) at least one ‘green’ vertex is assigned number ‘i’ and at least one ‘green’ vertex is assigned number ‘j’, (ii) there doesn’t exist a connected subgraph of G such that the subgraph contains exactly two green vertices (and possibly also vertices of other colors), where one of the green vertices is assigned number ‘i’ and the other green vertex is assigned number ‘j’.

2. A pair $[i, j]$ is placed in group B if and only if the following two conditions are satisfied: (i) at least one ‘green’ vertex is assigned number ‘i’ and at least one ‘green’ vertex is assigned number ‘j’, (ii) there exists a connected subgraph of G such that the subgraph contains exactly two green vertices (and possibly also vertices of other colors), where one of the green vertices is assigned number ‘i’ and the other green vertex is assigned number ‘j’.

3. A pair $[i, j]$ is placed in group C if and only if one of the following two conditions is satisfied: (i) at least one ‘green’ vertex is assigned number ‘i’ and no ‘green’ vertex is assigned number ‘j’, (ii) at least one ‘green’ vertex is assigned number ‘j’ and no ‘green’ vertex is assigned number ‘i’.

4. A pair $[i, j]$ is placed in group D if and only if no ‘green’ vertex is assigned number ‘i’ or ‘j’.

For any $1 \leq i \neq j \leq N$, let $E(i, j)$ be such a set of edges of G: an edge is in $E(i, j)$ if and only if the two endpoints of the edge are assigned number ‘i’ and number ‘j’ respectively. Let $z(i, j)$ denote the number of edges in $E(i, j)$. For any pair $[i, j]$ in group A or group C, $z(i, j) \leq 2m - 2$, because otherwise there would exist m non-overlapping clusters — note that a cluster contains exactly one edge — each of which has numbers ‘i’ and ‘j’, which would contradict the statement that the interleaving on G is an MCI. For any pair $[i, j]$ in group B, $z(i, j) \leq 2m - 3$. That’s because $z(i, j)$ must be no greater than $2m - 2$ for the same
reason as in the previous case; and if \(z(i, j) = 2m - 2 \), in order to avoid the existence of \(m \) non-overlapping clusters each of which has numbers ‘\(i \)’ and ‘\(j \)’, the \(z(i, j) = 2m - 2 \) edges in \(E(i, j) \) would have to be consecutive in the ring \(G \), which means WLOG that there are \(2m - 1 \) consecutive vertices whose assigned numbers are in the form of \([i - j - i - j - \cdots - i - j - i] \) — but then the pair \([i, j]\) can’t be in group \(B \), which is not difficult to verify by using the definition of group \(B \). For any pair \([i, j]\) in group \(D \), \(z(i, j) = 0 \), because \([i, j]\)’s being in group \(D \) implies that all vertices that are assigned numbers ‘\(i \)’ or ‘\(j \)’ are colored ‘red’, which is simple to verify, and then \(z(i, j) \geq 1 \) would imply that there is an infinitely long segment in the ring \(G \) to which the numbers assigned are in the form of ‘\(\cdots - i - j - i - j - i - j - \cdots \)’, which is certainly impossible.

By Lemma 4, any two adjacent vertices in \(G \) are assigned different numbers. Let the number of distinct numbers assigned to ‘green’ vertices be denoted by ‘\(x \)’, and let ‘\(X \)’ denote the set of those \(x \) distinct numbers. It’s simple to see that exactly \(\binom{x}{2} \) pairs \([i, j]\) are in group \(A \) and group \(B \), where \(i \in X \) and \(j \in X \) — and among them at least \(x \) pairs are in group \(B \). It’s also simple to see that exactly \(x(N - x) \) pairs are in group \(C \) and exactly \(\frac{N - x}{2} \) pairs are in group \(D \). By using the upper bounds we’ve derived on \(z(i, j) \), we see that the number of edges in \(G \) is at most \(\left(\binom{x}{2} - x \right) \cdot (2m - 2) + x \cdot (2m - 3) + x(N - x) \cdot (2m - 2) + \left(\frac{N - x}{2} \right) \cdot 0 = (1 - m)x^2 + (2mN - 2N - m)x \), whose maximum value (at integer solutions) is achieved when \(x = N - 1 \) — and that maximum value is \((N - 1)(m - 1)N - 1 \). So \(n_{\text{max}} \), the number of vertices in \(G \), is at most \((N - 1)(m - 1)N - 1 \).

\(\square \)

Lemma 6: Let the values of \(N, K, m \) and \(L \) be fixed, where \(N = 3 \), \(K = 3 \), \(m \geq 2 \) and \(L = 2 \). Let \(n_{\text{max}} \) denote the maximum value of \(n \) such that an MCI exists on a ring of \(n \) vertices. Then \(n_{\text{max}} \leq (N - 1)(m - 1)N - 1 \).

Proof: Let \(G = (V, E) \) be a ring of \(n_{\text{max}} \) vertices that has an MCI on it. We need to show that \(n_{\text{max}} \leq (N - 1)(m - 1)N - 1 \). It’s simple to see that \(G \) is assigned \(N = 3 \) distinct numbers. If in the MCI on \(G \), no two adjacent vertices are assigned the same number, then with the same argument as in the proof of Lemma 5, it can be shown that \(n_{\text{max}} \leq (N - 1)(m - 1)N - 1 \). Now assume there are two adjacent vertices in \(G \) that are assigned the same number. Then there are three possible cases.

Case 1: \(n_{\text{max}} \) is even.

Case 2: \(n_{\text{max}} \) is odd, and there are at least 2 non-overlapping clusters in \(G \) each of which is assigned only 1 distinct number.

Case 3: \(n_{\text{max}} \) is odd, and there don’t exist 2 non-overlapping clusters in \(G \) each of which is assigned only 1 distinct number.

We consider the three cases one by one.

Case 1: \(n_{\text{max}} \) is even. In this case, clearly we can find \(\frac{n_{\text{max}}}{2} \) non-overlapping clusters (of size \(L = 2 \)) such that at least one of them contains two vertices that are assigned the same number. Among those \(\frac{n_{\text{max}}}{2} \) non-overlapping clusters, let \(x, y, z, a, b \) and \(c \) respectively denote the number of clusters that are assigned only number 1, only number 2, only number 3, both number 1 and 2, both number 2 and 3, and both number 1 and 3. Since the interleaving is an MCI, clearly \(x + y + a \leq m - 1 \), \(y + z + b \leq m - 1 \), \(z + x + c \leq m - 1 \). So \(2x + 2y + 2z + a + b + c \leq 3m - 3 \). So \(x + y + z + a + b + c \leq 3m - 3 - (x + y + z) \). Since \(x + y + z \geq 1 \) and \(n_{\text{max}} = 2(x + y + z + a + b + c) \), we get \(n_{\text{max}} \leq 2[3m - 3 - (x + y + z)] \leq 6m - 8 = (N - 1)(m - 1)N - 1 \).
Case 2: \(n_{\text{max}} \) is odd, and there are at least 2 non-overlapping clusters in \(G \) each of which is assigned only 1 number. In this case, clearly we can find \(\frac{n_{\text{max}} - 1}{2} \) non-overlapping clusters (of size \(L = 2 \)) among which there are at least two clusters each of which is assigned only one number. Among those \(\frac{n_{\text{max}} - 1}{2} \) non-overlapping clusters, let \(x, y, z, a, b \) and \(c \) respectively denote the number of clusters that are assigned only number 1, only number 2, only number 3, both number 1 and 2, both number 2 and 3, and both number 1 and 3. Since the interleaving is an MCI, clearly \(x + y + a \leq m - 1 \), \(y + z + b \leq m - 1 \), \(z + x + c \leq m - 1 \). So \(2x + 2y + 2z + a + b + c \leq 3m - 3 \). So \(x + y + z + a + b + c \leq 3m - 3 - (x + y + z) \). Since \(x + y + z \geq 2 \) and \(n_{\text{max}} = 2(x + y + z + a + b + c) + 1 \), we get \(n_{\text{max}} \leq 2[(3m - 3 - (x + y + z)) + 1 \leq 6m - 9 < (N - 1)(m - 1)(N - 1) \).

Case 3: \(n_{\text{max}} \) is odd, and there don’t exist 2 non-overlapping clusters in \(G \) each of which is assigned only 1 number. Let \(x', y', z', a', b' \) and \(c' \) respectively denote the number of edges in \(G \) whose two endpoints are both assigned number 1, are both assigned number 2, are both assigned number 3, are assigned number 1 and 2, are assigned number 2 and 3, are assigned number 1 and 3. (Then \(x' + y' + z' + a' + b' + c' = n_{\text{max}} \).

It’s simple to see that among \(x', y' \) and \(z' \), two of them equal 0, and the other one is either 1 or 2. So without loss of generality, we consider the following two sub-cases.

Sub-case 1: \(x' = 1 \), and \(y' = z' = 0 \). In this case, \(a' \leq 2m - 3 \), because otherwise there will be \(m \) non-overlapping clusters in \(G \) that only have numbers ‘1’ and ‘2’. Similarly, \(c' \leq 2m - 3 \). Also clearly, \(b' \leq 2m - 2 \). If \(a' = 2m - 3 \) and \(c' = 2m - 3 \), then since there don’t exist \(m \) non-overlapping clusters in \(G \) that have only 1 or 2 distinct numbers, the MCI on \(G \) can only take the following form: in \(G \), there are \(a' = 2m - 3 \) consecutive edges each of which has numbers ‘1’ and ‘2’ assigned to its endpoints (the segment of the ring \(G \) consisting of these edges begins with a vertex with number ‘2’ and ends with a vertex with number ‘1’), followed by an edge whose two endpoints both have number ‘1’, then followed by \(c' = 2m - 3 \) consecutive edges each of which has numbers ‘1’ and ‘3’ assigned to its endpoints (the segment of the ring \(G \) consisting of these edges begins with a vertex with number ‘1’ and ends with a vertex with number ‘3’), then followed by \(b' \) consecutive edges each of which has numbers ‘2’ and ‘3’ assigned to its endpoints (the segment of the ring \(G \) consisting of these edges begins with a vertex with number ‘3’ and ends with a vertex with number ‘2’). — then it’s simple to see that \(b' \) can’t be even, which implies that \(b' < 2m - 2 \) here. So in any case, we have \(a' + b' + c' \leq (2m - 3) + (2m - 2) + (2m - 3) = 6m - 8 \). So \(n_{\text{max}} = x' + y' + z' + a' + b' + c' < 6m - 7 \). So \(n_{\text{max}} \leq 6m - 8 = (N - 1)(m - 1)(N - 1) \).

Sub-case 2: \(x' = 2 \), and \(y' = z' = 0 \). In this case, with arguments similar to those in sub-case 1, we get \(a' \leq 2m - 4 \), \(c' \leq 2m - 4 \), and \(b' \leq 2m - 2 \). So \(n_{\text{max}} = x' + y' + z' + a' + b' + c' \leq 2 + (2m - 4) + (2m - 2) + (2m - 4) = 6m - 8 = (N - 1)(m - 1)(N - 1) \).

So it’s proved that in any case, \(n_{\text{max}} \leq (N - 1)(m - 1)(N - 1) \).

\(\square \)

APPENDIX II

In this appendix, we present the proofs of Theorem 3 and Theorem 4.

Theorem 3: Algorithm 2 is correct.

Proof: For the cases where \(n > (N - 1)(m - 1)(N - 1) \) or \(n \leq N \), Algorithm 2 executes its step 1 or 2 and can be easily seen to be correct. Now consider the case ‘\(N < n \leq (N - 1)(m - 1)(N - 1) \) and \(n - \{(N - 1)(m - 1)(N - 1)\} \) is even’, where Algorithm 1 uses its step 3 to compute the MCI. In the graph \(H = (V_H, E_H) \) constructed there, the number of edges between two vertices \(u_i \) and \(u_j \) (\(i < j \)) is odd if
‘2 ≤ j = i + 1 ≤ N − 1’ or ‘i = 1 and j = N − 1’, and is even otherwise. So the cycle described as follows is an Eulerian walk in H: the cycle starts at \(u_1 \), traverses all the edges between \(u_1 \) and \(u_j \) for all \(j \neq N − 1,1,2 \), then goes to \(u_2 \) (by traversing all the edges between \(u_1 \) and \(u_2 \)), and traverses all the edges between \(u_2 \) and \(u_j \) for all \(j \neq 1,2,3 \), then goes to \(u_3 \) (by traversing all the edges between \(u_2 \) and \(u_3 \), \(\cdots \), then goes to \(u_i \) (by traversing all the edges between \(u_{i−1} \) and \(u_i \)), and traverses all the edges between \(u_i \) and \(u_j \) for all \(j \neq 1,2,\cdots,i + 1 \), then goes to \(u_{i+1} \), \(\cdots \), then goes to \(u_{N−1} \), traverses all the edges between \(u_{N−1} \) and \(u_N \), then traverses all the edges between \(u_{N−1} \) and \(u_1 \) and finishes the cycle.

(Note that for any two vertices, all the edges between them are traversed consecutively.) So \(H \) contains at least one Eulerian walk that satisfies the requirements in step 3. The Eulerian walk found in step 3 has a one-to-one correspondence to the interleaving on the ring \(G = (V, E) \), where a vertex in \(H \) corresponds to a number assigned to \(G \). Clearly in \(G \) every cluster (of size \(L = 2 \)) contains two different numbers; and for any \(1 ≤ i \neq j ≤ N \), the clusters in \(G \) that are assigned both number \(i \) and number \(j \) aggregately form a connected subgraph of \(G \) containing at most \(2m − 1 \) vertices — so there don’t exist \(m \) non-overlapping clusters that are assigned numbers \(i \) and \(j \) only. Therefore any \(m \) non-overlapping clusters are assigned at least \(K = 3 \) distinct numbers, meaning that the interleaving on \(G \) is an MCI. So for the current case, Algorithm 1 is correct. The case where ‘\(N < n ≤ (N − 1)\![((m − 1)N − 1) \] and \(n − \{(N − 1)\![((m − 1)N − 1) \} \) is odd’ can be analyzed similarly.

\[
\square
\]

Theorem 4: Let the values of \(N, K, m \) and \(L \) be fixed, where \(N ≥ 3, K = 3, m ≥ 2 \) and \(L = 2 \). Then there exists an MCI on a ring of \(n \) vertices if and only if \(n ≤ (N − 1)\![((m − 1)N − 1) \].

Proof: Let \(G = (V, E) \) be a ring of \(n \) vertices. If \(G \) has an MCI, then by Lemma 5 and Lemma 6, \(n ≤ (N − 1)\![((m − 1)N − 1) \]. If \(n ≤ (N − 1)\![((m − 1)N − 1) \), then by Theorem 3, Algorithm 2 can successfully find an MCI on \(G \). So Theorem 4 is proved.

\[
\square
\]

REFERENCES

