
Network Coding: A Computational Perspective
Michael Langberg1 Alexander Sprintson2 Jehoshua Bruck1

Abstract— In this work, we study the computational perspec-
tive of network coding, focusing on two issues. First, we address
the computational complexity of finding a network code for
acyclic multicast networks. Second, we address the issue of
reducing the amount of computation performed by network
nodes. In particular, we consider the problem of finding a
network code with the minimum possible number of encoding
nodes, i.e., nodes that generate new packets by combining the
packets received over incoming links.

We present a deterministic algorithm that finds a feasible
network code for a multicast network over an underlying graph
G(V, E) in time O(|E|kh + |V |k2h2 + h4k3(k + h)), where k
is the number of destinations andh is the number of packets.
Our result improves the best known running time of O(|E|kh +
|V |k2h2(k + h)) of the algorithm due to Jaggi et al. [1] in the
typical case of large communication graphs. In addition, our
algorithm guarantees that the number of encoding nodes in the
obtained network code is bounded byO(h3k2).

Next, we address the problem of finding a network code with
the minimum number of encoding nodes in both integer and
fractional coding networks. We prove that in the majority of
settings this problem is NP-hard. However, we show that if
h = O(1), k = O(1), and the underlying communication graph
is acyclic, then there exists an algorithm that solves this problem
in polynomial time.

I. I NTRODUCTION

The new paradigm of network coding promises to bene-
fit many areas of communication and networking [2]. The
network coding approach generalizes traditional routing by
allowing intermediate network nodes to generate new packets
by combining incoming data packets.

Establishing efficient multicast connections is a central
problem in network coding. In themulticast network coding
problema sources needs to deliverh packets to a setT of k
terminals over the underlying communication graphG. It was
shown in [2] and [3] that the capacity of the network, i.e.,
the maximum number of packets that can be sent between
s and T per time unit, is equal to the minimum size of
a cut that separates the sources from a terminalt ∈ T .
Specifically, a sources can sendh packets to all terminals
T if and only if the total capacity of all links in any cut that
separatess and t ∈ T is at leasth. Li et. al. [3] proved that
linear network codesare sufficient for achieving the capacity
of the network. In a subsequent work, Koetter and Médard
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[4] developed an algebraic framework for network coding and
investigated linear network codes for directed graphs with
cycles. This framework was used by Ho et al. [5] to show that
linear network codes can be efficiently constructed througha
randomized algorithm. Jaggi et al. [1] proposed a deterministic
polynomial-time algorithm for finding feasible network codes
for multicast networks.

In this paper we study the computational perspective of
multicast network coding. Our goal to minimize (i) The
time required for finding an feasible network code; (ii) The
total amount of computation performed by network nodes. In
particular, we consider the problem of finding a network code
that uses a bounded number ofencoding nodes. Encoding
nodes generate new packets by combining the packets received
over incoming links, in contrast toforwarding nodes that can
only forward and duplicate incoming packets.

We study bothfractional and integer coding networks. In
fractional coding networks, each packet can be split into a
number of smaller packets, each of which is sent over different
paths. In integer coding networks packets cannot be split and
have to be sent through the network in one piece.

A. Our results

Our study makes the following contributions. First, we
present an efficient algorithm for integer coding networks.
Given an acyclic multicast network withh packets andk
terminals, our algorithm finds a network code that includes at
mostO(h3k2) encoding nodes. The computational complexity
of our algorithm isO(|E| + |V |k2 + k4) for h = 2 and
O(|E|kh + |V |k2h2 + h4k3(k + h)) for general h. Our
algorithm improves the previously best known running time
of O(|E|kh + |V |k2h2(k + h)) of the algorithm due to Jaggi
et al. [1]. The improvement is most significant in the case of
sparse graphs with a large number of nodes, which is typically
the case in communication networks.

Second, we study the problem of finding a network code
with the minimum possible number of encoding nodes, con-
sidering both integer and fractional coding networks. We prove
that in the majority of settings this problem isNP-hard.
However, we show that ifh = O(1), k = O(1), and the
underlying communication graph is acyclic, then the problem
can be solved in polynomial time. Our results are summarized
in Figure 1.

B. Related work

In a previous work of ours [6] we established a lower and an
upper bounds ofΩ(h2k) andh3k2, respectively. In addition,
we proved that finding the minimum number of encoding



Type of Coding Network Restrictions Acyclic General(cyclic)

Integer k andh are constant DTIME(nO(h3k2)) (Theorem 14) NP-hard (Theorem 12)

no restrictions NP-hard (Theorem 13)

Fractional k andh are constant DTIME(nO(h3k2)) (Theorem 15) Not resolved in this work

no restrictions NP-hard (Theorem 13) NP-hard (Theorem 13)
Fig. 1. Our results for the problem of finding a network code with the minimum possible number of encoding nodes.

nodes in integer coding networks with cycles is anNP-hard
problem. In this paper we use the results of [6] in order to
devise an efficient algorithm for finding network codes with
bounded number of encoding nodes.

The fastest deterministic algorithm for finding feasible net-
work code for multicast networks prior to our work was due
to Jaggi et al. [1]. Randomized algorithms for this problem
have been presented in [1] and [5]. For acyclic graphs, the
currently best known expected running time for randomized
algorithms isO(|E|kh + kh2.376) when the packet size may
depend on the size of the networkG andO(|E|kh+ |V |k2h3)
when the packet size is independent of the size ofG; both
results appear in [1]. Recently, [7] proposed an algorithm for
finding multicast network codes based on matrix completion.
Their algorithm addresses a more general class of problems
and has a running time ofmin(O(k|E|3 log |E|), O(|E|kh +
|V |3k3h3 log(|V |h))). However, none of the previous work
provide a non-trivial bound on the number of encoding nodes
in the network.

A recent work by Bhattad et al. [8] considered several
several optimization problems that arise in fractional multicast
coding networks. This work models the flow of information in
a coding network by a linear program withO(|G|2k) variables,
where|G| is the size of the underlying communication graph
andk is the number of terminals. For small values ofk this
program enables to optimize several objective functions that
are strongly related to the number of encoding nodes in coding
networks. We use the framework of [8] in parts of this work.

The rest of the paper is organized as follows. In Section II,
we formulate the network model and present the definition
of integer coding networks. In Section III, we present our
efficient algorithm for finding feasible network codes in integer
networks. In Section IV, we define fractional coding networks
and analyze the computational complexity of minimizing the
number of encoding nodes in both fractional and integer
coding networks.

II. M ODEL

The communication network is represented by a directed
graphG = (V, E), whereV is the set of nodes andE the set
of links in G. The capacityce of link e ∈ E is defined to be the
number of packets that can be sent overe in one time unit. We
assume that link capacitiesce are integer numbers. An instance
N(G, s, T, h) of the multicast network coding problem is a 4-
tuple that includes the graphG(V, E), a source nodes ∈ V , a
setT ⊂ V of terminals, and the number of packetsh that must

be transmitted from the source nodes to every terminalt ∈ T .
We assume, without loss of generality, that the sources has
no incoming links and that the terminalsT have no outgoing
links. We also assume that each packet is an element of a finite
field Σ. We denote the size|T | of the terminal set byk. Each
nodev ∈ G, v 6= s, v /∈ T is referred to as aninternal node.

In this section, we define network codes for acyclic inte-
ger coding networks. A more general settings of cyclic and
fractional coding networks is discussed in Section IV.

Definition 1 (Integer network codeF(N)): A network code
for N(G, s, T, h) is defined by the set of encoding functions
F(N) = {fe | e ∈ E}. If e(v, u) is an outgoing link of
the source nodes, then fe is a mapping fromΣh to Σce .
Otherwise, fe is a mapping fromΣcin(v) to Σce , where
cin(v) =

∑
(w,v)∈E c(w,v) is the total capacity of the incoming

links of v.
The encoding functionfe of e(v, u) determines the packets

transmitted on linke for any possible combination of the
packets available at the source (ifv = s) or received over
the incoming links ofv (if v 6= s).

We focus on linear network codesF(N), i.e., for eache ∈ E
the encoding functionfe is a linear function overΣ. With
linear network coding, each packet transmitted over linke ∈ E
is a linear combination of theh packets available at source
s. Accordingly, we define a functionFe : Σh 7→ Σce that
determines the packets transmitted on linke as a function
of the packets available ats. If e is an outgoing link of the
source node, thenFe is identical tofe. For any other link
e(v, u) ∈ E, Fe is defined asFe ≡ fe(Fev

1
, . . . , Fev

din(v)
),

where din(v) is the in-degree ofv and {ev
1, . . . , e

v
din(v)} is

the set of the incoming links ofv.
A network codeF(N) for N(G, s, T, h) is said to be feasible

if for each destination nodet ∈ T , there exists a decoding
function gt : Σcin(t) 7→ Σh such thatgt(Fet

1
, . . . , Fet

din(t)
) is

the identify function, wheredin(t) is the in-degree oft and
{et

1, . . . , e
t
din(t)} is the set of the incoming links oft.

An instanceN(G, s, T, h) of the multicast network coding
problem is said to be feasible if there exists a feasible network
code forN. If N(G, s, T, h) is feasible we refer toh as therate
of the multicast coding network. The multicast capacity of the
communication networkG with respect to sources and setT
of terminals is defined to be the maximum value ofh such
that the coding networkN(G, s, T, h) is feasible. Thecapacity
of the network is determined by the minimum capacity of a
cut that separates the sources and any terminalt ∈ T [2], [3],
where the capacity of a cut is the sum of the capacities of the



links that belong to the cut.
A coding networkN(G, s, T, h) is said to beminimal with

respect to link removal if (i)N(G, s, T, h) is feasible (ii)
Removal of any link fromG would violate the feasibility of
N(G, s, T, h).

Let N(G, s, T, h) be a feasible coding network. We say that
link e ∈ G is vital if after removinge from G the resulting
network is no longer feasible. Note that every link of the
minimal network is vital.

Definition 2 (Encoding and forwarding links and nodes):
Let F(N) be a network code. A linke is referred to as a
forwarding link if it is an outgoing link of the source nodes
or if fe can be decomposed toce functionsf1

e , . . . , f ce
e that

map Σcin(v) to Σ such that each functionf i
e depends only

on one variable, wherecin(v) =
∑

(w,v)∈E c(w,v). Otherwise,
link e is referred to as anencoding link. We say that a node
v, v 6= s, is anencoding nodeif at least one of its outgoing
links (v, u) is encoding. If all outgoing links of a nodev are
forwarding, the node is referred to as aforwarding node.

Encoding links generate new packets by combining the
packets received over the incoming links; forwarding linkscan
only forward incoming packets.

We will use the following lemma implied by [6]:
Lemma 3 ( [6]): Let N(G, s, T, h) be an acyclic coding

network which is minimal with respect to link removal. Then,
the number of internal nodes inG of degree 3 or more is
bounded byO(h3k2).

Let N(G(V, E), s, T, h) and N̂(Ĝ(V̂ , Ê), ŝ, T̂ , ĥ) be multi-
cast coding networks. We say thatN̂ is equivalent toN if the
following three conditions hold (i)N is feasible if and only
if N̂ is feasible; (ii) For any feasible network codêF(N̂) for
N̂, there exists a corresponding network codeF(N) for N that
includes the same or lower number of encoding nodes (iii)
Such code can be found through an efficient procedure whose
running time is bounded byO(|E| + |Ê|).

In some parts of our paper we use a notion of network flows
[9].

Definition 4 (Flow): An integer (s, t)-flow θ is a function
θ : E 7→ R that satisfies the following two properties:

1) For all e = (u, v) ∈ E, it holds thatθe is an integer
number that satisfies0 ≤ θe ≤ ce;

2) For each internal nodev ∈ V , v 6= s, v /∈ T it holds
that ∑

w:(w,v)∈E

θ(w,v) =
∑

w:(v,w)∈E

θ(v,w).

Thevalue|θ| of a flow θ is defined as|θ| =
∑

v:(s,v)∈E

θ(s,v).

If each linke ∈ E is associated with a costω(e) then the cost
ω(θ) of a flow θ is defined as follows:

ω(θ) =
∑

(u,v)∈E

ω(u,v) · θ(u,v) (1)

A minimum cost(s, t)-flow ω can be decomposed into a
set of |ω| paths betweens and t [9].

III. A LGORITHM FOR COMPUTING A FEASIBLE NETWORK

CODE

In this section we present an algorithm that receives as
input an acyclic coding networkN(G, s, T, h) and computes
a feasible integer network code forN over a field of size
k = |T |. The computational complexity of our algorithm is
O(|E|kh + |V |k2h2 + h4k3(h + k)).

A. Algorithm overview

Our algorithm uses three auxiliary coding networks
N′(G′, s, T, h), N∗(G∗, s, T, h), andN̂(Ĝ, s, T, h), all of them
are equivalent toN(G, s, T, h).

The coding networkN′(G′, s, T, h) is constructed by Pro-
cedure EXPAND, described in Section III-B. This network has
the following properties: (i) All links inG′ are of capacity
1; (ii) The total number of links inG′ is bounded by|V |hk;
(iii) For each ti ∈ T there existh node-disjoint paths inG′

betweens and ti.
Next, we apply Algorithm MIN-GLOBAL , described in

Section III-D below. The algorithm constructs the auxiliary
networkN∗(G∗, s, T, h) by deleting redundant links fromG′

such that the number of nodes of in-degree more than 2 in
G∗ is bounded byO(h3k2). Finally, we invoke Procedure
SHRINK, described in Section III-E below. This procedure
constructs coding network̂N(Ĝ, s, T, h) by contracting all
nodes inN∗(G∗, s, T, h) of degree 2. The number of links
in N̂(Ĝ, s, T, h) is bounded byO(h3k2).

This property enables us to find a network code forN by
performing the following steps:

1) Construct an auxiliary coding network̂N(Ĝ, s, T, h);
2) Find a feasible network codêF(N̂) for N̂, i.e., by

applying the algorithm due to Jaggi et. al. [1];
3) Find a network codeF(N) for N that corresponds to

F̂(N̂).
which has the following properties: (i)̂N is equivalent toN;
(ii) The number of links inĜ is bounded byO(h3k2).

B. ProcedureEXPAND

Procedure EXPAND begins by assigning a unit cost for each
link e ∈ E. Then, the procedure finds, for each terminal
ti ∈ T , a minimum-cost(s, ti)-flow θi of valueh. In order to
find a minimum cost flow we employ the Successive Shortest
Path algorithm [9, Chapter 9]. Next, each linke(v, u) ∈ E is
substituted bymaxti∈T θi(e) parallel links of unit capacity that
connectv andu. All links for which maxti∈T θi(e) = 0 are
removed from the graph. Note that the resulting graph contains
h link-disjoint paths between sources and any terminalti ∈ T .
We denote a set ofh link-disjoint paths betweens and ti by
Pi. The sets{Pi |ti ∈ T } can be found by invoking the flow
decomposition algorithm [9].

Finally, the procedure substitutes each internal nodev in
the resulting graph of degree larger than 3 by a gadgetΓv,
constructed as follows: LetEin

v andEout
v be the incoming and

outgoing links ofv, respectively. For every link(x, v) ∈ Ein
v

we add a nodex′ to Γv and a link (x, x′). Similarly, for
every link (v, y) ∈ Eout

v we add a nodey′ to Γv and a



ProcedureEXPAND (N(G, s, T, h)):
Input:

N - a feasible coding network;

1 Assign a unit cost for every linke ∈ E.
2 for each terminalti ∈ T do
3 Find a minimum cost(s, ti)-flow θi.
4 for each linke(v, u) ∈ E do
5 if maxti∈T θi(e) > 0 then
6 Replacee by maxti∈T θi(e) parallel links of

capacity one betweenv andu
7 else
8 Removee
9 for each terminalti ∈ T do

10 Find a setPi of h link-disjoint paths betweens andti.
11 For each nodev ∈ G, v 6= s, v /∈ T whose degree is more

than 3, replacev by a gadgetΓv .
12 Denote byG′ the resulting graph.
13 ReturnN

′(G′, s, T, h).

Fig. 2. Procedure EXPAND
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Fig. 3. Substituting a nodev by a gadgetΓv .

link (y′, y). For each pathP ∈ {Pi | ti ∈ T } let x′ be
a node inΓv that corresponds to link(x, v) ∈ Pi and y′

be a node inΓv that corresponds to link(v, y) ∈ Pi. If
Γv does not include link(x′, y′), we add (x′, y′) to Γv.
Fig. 3 demonstrates the construction of the subgraphΓv. The
resulting graph is denoted byG′(V ′, E′). Note that inG′ the
paths corresponding toPi are node disjoint.

The formal description of Procedure EXPAND appears in
Fig. 2. We proceed to analyze the computational complexity
of the procedure. Finding flows{θi |ti ∈ T } and decomposing
them into paths{Pi |ti ∈ T } can be done inO(|E|kh) time
[9]. The total number of links that belong to paths in

⋃
ti∈T Pi

is bounded by|V |hk. SinceG′(V ′, E′) includes at most two
links for every link that belongs to a path in

⋃
ti∈T Pi, the

number of links inG′ is bounded byO(|V |kh). Thus, the
computational complexity of Procedure EXPAND is bounded
by O(|E|kh). In Theorem 7 below we show that the coding
network N′(G′, s, T, h) returned by Procedure EXPAND is
equivalent to the original coding networkN(G, s, T, h).

C. AlgorithmM IN-LOCAL

We proceed to describe Algorithm MIN-LOCAL, which
is an important building block of Algorithm MIN-GLOBAL ,
presented in the next section.

Algorithm MIN-LOCAL receives as input a coding network
N′(G′, s, T, h) and two sets ofh link-disjoint pathsPi, Pj

Algorithm M IN-LOCAL (N′(G′, s, T, h), Pi, Pj):
Input:

N′ - a feasible coding network,
Pi - a set ofh node-disjoint paths betweens and ti,
Pj - a set ofh node-disjoint paths betweens and tj ;

1 Gij ← the subgraph ofG′ induced by links that belong to
paths inPi andPj .

2 Assign zero cost to every link that belongs to a path inPi and
assign a unit cost to every other link inGij .

3 Find h link-disjoint pathsP
∗

j in Gij betweens and tj
of minimum total cost.

4 G′

ij ← the subgraph ofGij induced by links that belong to
paths inPi andP∗

j .

5 Assign zero cost to every link that belongs to a path inP∗

j and

assign a unit cost to every other link inG′

ij .

6 Find h link-disjoint pathsP
∗

i in G′

ij betweens and ti of
minimum total cost.

7 ReturnP
∗

i andP
∗

j .

Fig. 4. Algorithm MIN-LOCAL

that connect sources to terminals ti and tj , respectively.
The algorithm finds two sets ofh node-disjoint pathsP∗

i , P∗
j

connectings to ti and s to tj such that the subgraphG∗
ij of

G′ induced by paths inP∗
i ∪ P∗

j is minimal with respect to
link removal. That is, removal of any link fromG∗

ij results in
a reduction of the value of the minimum cut betweens andti
or s andtj . The formal description of Algorithm MIN-LOCAL

appears in Fig. 4.
Lemma 5:Let G∗

ij be a subgraph ofG induced by path
setsP∗

i and P∗
j returned by Algorithm MIN-LOCAL and let

N∗ = N∗(G∗
ij , s, {ti, tj}, h) be a coding network formed by

G∗
ij and two terminals,ti and tj . Then, all links inN∗ =

N∗(G∗
ij , s, {ti, tj}, h) are vital.

Proof: We start by showing that the links inP∗
j are vital.

Consider graphG′
ij with link costs assigned at Step 2. We

assume, by way of contradiction, that there exists a linke ∈ P∗
j

which is not vital inN∗(G∗
ij , s, {ti.tj}, 2). Then, there existh

link-disjoint pathsP̂j betweens andtj in G∗
ij that do not use

link e. We denote byf̂ and f∗ the flows defined by sets of
disjoint pathŝPj andP∗

j , respectively. We denote byG′
ij(f

∗)
the residual graph ofG′

ij with respect to flowf∗. That is,
G′

ij(f
∗) is formed fromG′

ij by reversing links that belong to
pathsP∗

j and negating their cost. Note that the cost of every
link e ∈ G′

ij(f
∗) is either 0 or−1. By the Augmenting Cycle

Theorem [9, Chapter 3], floŵf is equal to flowf∗ plus flow
along a set of directed cyclesC in G′

ij(f
∗). Moreover, the

cost of f̂ equals to the cost off∗ plus the cost of flow on
cycles inC, where the cost of flow is defined with respect to
costs assigned at Step 2. SinceP

∗
j is a minimum cost set of

disjoint paths, the cost of floŵf is greater or equal to that of
f∗. This implies that all cycles inC contain only zero cost
links, i.e., links whose originals belong to paths inPi.

Let C be a cycle inC. Note thatC must contain at least
one cycle becausêf and f∗ differ by at least one link. We
classify the links inC into two categories: (1) the links that



were reversed with respect toG′
ij (that is, whose origins in

G′
ij belong to a path inP∗

j ) (2) the links that were not reversed.
We observe that the degree of any node inGij (and thus in
G′

ij ) is at most 3 and consider the following cases.
1) The cycleC contains only links of type (1) or only

links of type (2). Then, there is a cycleC′ ∈ G′
ij that

corresponds toC. Such a cycle is either equal toC or
obtained fromC by reversing all its links. Since the total
degree of each node inG′

ij is at most 3,C′ belongs to
a single path inPi. This contradicts the minimality of
Pi (recall that these paths are chosen to be of minimum
cost when all links inG were of unit cost).

2) The cycleC contains links of both types (1) and (2).
Then, there exists a nodev ∈ C whose incoming link
is of type (2) and whose outgoing link is of type (1).
Thus, inG′

ij nodev has two incoming links that belong
to two different paths inPi. Such a node will also have
two outgoing links, which contradicts the fact that the
degree of any node inG′

ij is at most3.
We have proven so far that every link inP∗

j is vital. To show
that every link inP∗

i is also vital, notice that every link of cost
1 with respect to costs assigned at Step 5 is vital. Indeed, a
non-vital link of cost one would contradict the minimality of
P∗

i . Hence the lemma follows.
It is not hard to verify that Algorithm MIN-LOCAL runs in

time O(|V |h2) (again we use the augmenting path approach
to find h link-disjoint paths).

D. Algorithm M IN-GLOBAL

Algorithm MIN-GLOBAL receives, as input, a feasible cod-
ing network N′(G′, s, T, h). First, the algorithm iteratively
constructs, for eachti ∈ T , a setPi of h link-disjoint paths
betweens and ti. We denote byE(Pi) the set of links that
belong to paths inPi, by Ei = ∪i

j=1E(Pj), and by G∗

the subgraph ofG′ induced by links inEk. Our goal is
to ensure that the total number of links inG∗ which are
incoming links of nodes of in-degree 2 or more is bounded
by O(h3k2). To that end, we first minimize the number of
links in Ei \ Ei−1. In addition, we apply Algorithm MIN-
LOCAL for E(Pj) andE(Pi), 1 ≤ j < i, in order to further
delete non-vital edges fromEi. The algorithm returns a coding
networkN∗(G∗, s, T, h). The formal description of Algorithm
M IN-GLOBAL appears in Fig. 5.

Theorem 6:Let N∗(G∗(V ∗, E∗), s, T, h) be the coding net-
work returned by Algorithm MIN-GLOBAL (N). Let V̄ ∗ be the
subset ofV ∗ \T that includes nodes of in-degree two or more
and letĒ∗ be the set of incoming links of nodes in̄V ∗. Then,
it holds that|Ē∗| = O(h3k2).

Proof: We denote byGi(Vi, Ei) the subgraph ofG′

induced by links inEi. We also denote bȳVi the subset of
Vi \ T that includes nodes of in-degree two or more and by
Ēi the set of incoming links of nodes in̄Vi. We prove, by
induction oni, that |Ēi| is bounded by2h3ki.

For the base step, we note that|Ē2| is bounded by2h3.
Indeed, Lemma 3, stated in Section II, implies that the
subgraphG1,2 induced by links inE(P1) ∪ E(P2) includes

Algorithm M IN-GLOBAL (N′(G′, s, T, h)):
Input:

N′(G′, s, T, h) - a feasible coding network;

1 P← ∅.
2 for i← 1 to k do
3 Assign zero cost to all links inE(P). Assign unit costs

to all other links inG′.
4 Find a set ofh link-disjoint pathsPi in G′ betweens

and ti of minimal total cost.
5 if i > 1 do
6 for j ← 1 to i− 1 do
7 Pi, Pj ← M IN-LOCAL(N′(G′, s, T, h), Pi, Pj)

8 P←
i[

j=1

Pj and Ei ←
i[

j=1

E(Pj).

9 G∗ ← a subgraph ofG′ induced by links inEk.
10 ReturnN

∗(G∗, s, T, h).

Fig. 5. Algorithm MIN-GLOBAL

at mosth3 nodes of in-degree 2, each such node has at most
two incoming links.

For the induction step, we prove that fori = 2, . . . , k it
holds that|Ēi| ≤ 2h3ki. We divide the set̄Ei into two subsets
Ē1

i = Ēi∩Ēi−1 andĒ2
i = Ēi\Ē1

i . By the inductive argument,
the number of links inĒ1

i is bounded by2h3k(i − 1). Thus,
in order to complete the proof we need to bound the number
of links that belong toĒ2

i .
We denote byEij the set of incoming links of nodes of

in-degree two in the subnetwork ofG induced by links in
E(Pi) ∪ E(Pj) in step 7. By Lemma 3, stated in Section II,
each of the setsEij , j ∈ {1, . . . , i − 1} contains at most
2h3 links each. We show that each link in̄E2

i belongs to
Eij for somej ∈ {1, . . . , i − 1}, which, in turn, implies that
|Ē2

i | ≤ 2h3k which concludes our assertion.
Let e = (u, v) be a link in Ē2

i . We consider two cases.

1) Link e = (u, v) belongs toEi \ Ei−1. This implies
that e belongs toE(Pi). In fact, e belongs toE(Pi)
at any time during iterationi of the main loop (the loop
that begins on line 2). Indeed, otherwise, there would
exists a set of disjoint paths betweens and ti that has
a smaller cost than that selected in line 4, resulting in
a contradiction. Since the in-degree ofv is at least two,
v has an additional incoming linke′ = (w, v). Note
that e′ /∈ Pi becausePi only contains node-disjoint
paths. We conclude thate belongs toEij for some
j ∈ {1, . . . , i − 1}.

2) Link e = (u, v) belongs toEi−1. This implies that in
Gi−1 nodev has in-degree one. Since the in-degree of
v in Ei is at least two,v has an additional incoming
link e′ = (w, v). Such link must belong toEi \ Ei−1,
and, in turn toE(Pi) (due to the same argument as in
case 1). This implies thate belongs toEij for some
j ∈ {1, . . . , i − 1}.

Note that N∗(G∗, s, T, h) is a feasible network obtained
from N′(G′, s, T, h) by deleting redundant links. Thus,



N
∗(G∗, s, T, h) is equivalent toN

′(G′, s, T, h), and, in turn,
to N(G, s, T, h).

Algorithm MIN-GLOBAL invokes Algorithm MIN-LOCAL

k2 times, hence its running time isO(|V |k2h2).

E. ProcedureSHRINK

Procedure SHRINK receives as input the coding network
N∗(G∗, s, T, h). The procedure forms an auxiliary network
N̂(Ĝ, s, T, h) by repeatedly contracting nodes of total degree
2. Specifically, we remove every nodev ∈ G∗ that has
one incoming link(u, v) and one outgoing link(v, w) and
substitute links(u, v) and (v, w) by a single link (u, w).
By Theorem 6, the total number of links in̂N(Ĝ, s, T, h)
is bounded byO(h3k2). The computational complexity of
Procedure SHRINK is O(|V |).

F. Algorithm Analysis

We are ready to formally prove the correctness of our
algorithm for finding a feasible network code and analyze its
performance.

Theorem 7:Let N(G, s, T, h) be an acyclic coding network
with unit capacity links. IfN(G, s, T, h) is feasible, then there
exists a deterministic algorithm that computes a network code
F(N) for N in time O(|E|kh + |V |k2h2 + h4k3(k + h)).
Moreover, the number of encoding nodes inF(N) is bounded
by O(h3k2).

Proof: We begin by observing that̂N(Ĝ, s, T, h) is a
feasible coding network. Let̂F(N̂) be a feasible network code
for N̂. The number of encoding nodes in̂F is bounded by the
number of nodes in̂G of in-degree two or more. Theorem 6
implies that the number of such nodes inG∗ and, in turn, in
Ĝ is at mostO(h3k2).

Let N∗(G∗, s, T, h) be the coding network formed by graph
G∗. We construct a feasible network codeF

∗(N∗) for N
∗ as

follows. All nodes of G∗ that belong toĜ have the same
encoding function as in̂F. All other nodes just forward their
incoming packets. Since all nodes inG∗ that do not appear
in Ĝ have one incoming link and one outgoing link,F∗(N∗)
is a feasible network code. SinceG∗ is a subgraph ofG′,
F∗(N∗) can be immediately extended into a feasible network
codeF′(N′) for N′(G′, s, T, h). The number of encoding nodes
in F

′(N′) is at mostO(h3k2).
Next, we show how to construct a feasible network code for

the original networkN(G, s, T, h). Let e = (v, u) be a link in
G. Let {e′1, . . . , e

′
ce
} be the set of links inG′ that correspond

to e and letf ′(e′i) be the encoding function of linke′i in G′.
If e′i /∈ G′, we f ′(e′i) is equal to the zero element ofΣ. Then
the encoding functionfe of e is a composition of the encoding
functions{f(e′1), . . . , f(e′ce

)}. The number of encoding nodes
in F(N) is now bounded by the number of encoding nodes in
F′(N′).

We proceed to determine the computational complexity
of the algorithm. Recall that the running time of Procedure
EXPAND is bounded byO(|E|kh). The running time of
Algorithm MIN-GLOBAL is O(|V |k2h2). Since the grapĥG
containsO(h3k2) links, finding a feasible network codêF(N̂)

for N̂(Ĝ, s, T, h) requiresO(h4k3(k+h)) (using the algorithm
of [1]). We conclude that the total running time of the
algorithm is bounded byO(|E|kh + |V |k2h2 + h4k3(k + h)).

For the special case ofh = 2, the computational complexity
of the algorithm can be improved by using the algorithm due
to [10].

Corollary 8: Let N(G, s, T, h) be an acyclic coding net-
work with links of integer capacity in whichh = 2. If
N(G, s, T, h) is feasible, then there exists a deterministic
algorithm that computes a network codeF(N) for N in time
O(|E|+|V |k2+k4). Moreover, the number of encoding nodes
in F(N) is bounded byO(k2).

Proof: In Procedure EXPAND, when findingh = 2 link
disjoint paths betweens and every terminalti we use the
algorithm of [10] which preforms this task in timeO(|E|).

IV. M INIMIZING THE NUMBER OF ENCODING NODES

In this section we consider the problem of finding a network
code with the minimum possible number of encoding nodes
for both integer and fractional coding networks. We begin by
defining information flow in a fractional coding network. Then,
we show a relation between information flow and network
codes in fractional coding networks. Finally, we present our
results for both integer and fractional networks. We followthe
definitions that appear in [8].

A. Fractional information flows

So far we considered integer coding networksN(G, s, T, h)
that useh link-disjoint paths to deliver information between
sources and each terminalti ∈ T . Fractional coding networks
can use a set of paths betweens and ti ∈ T which are
not necessarily link-disjoint, each path delivers packetsof a
fractional size. For eachti ∈ T we denote byPi the set
of paths used to deliver information betweens and ti. Each
pathP ∈ Pi is associated with a weightw(P ) that specifies
the size of a packet that can be sent overP . The setPi

is said to bevalid if for every link e ∈ G it holds that∑
e∈P ;P∈Pi

w(P ) ≤ 1. Menger’s theorem [11] implies that
if N(G, s, T, h) is feasible then there exists a valid path setPi

betweens and ti for everyti ∈ T .
With the network coding approach paths that belong to

different path sets in{Pi}k
i=1 can share a link or a portion of

link capacity. In general, the capacity of a linke ∈ G is divided
between a number of subsetsα1, α2, . . . , αx of T , such that
the paths in path sets{Pi | ti ∈ αj} share the portion ofe’s
capacity allocated forαj . Accordingly, for each linke ∈ G
we associate anaggregation functionxe : T → R+, whereT
is the power set ofT andR+ is the set of non-negative real
numbers. The functionxe(α) specifies the capacity allocated
to the subsetα of T . We refer to setsαi for which xe(αi) > 0
as path aggregates. We say that the setX = {xe}e∈G of
aggregation functions is consistent with path setsP1, . . . ,Pk

if for all e ∈ G it holds that
∑

α∈T xe(α) ≤ 1 and



∀e ∈ G, ∀ti ∈ T
∑

e∈P ; P∈Pi

w(P ) =
∑

ti∈α

xe(α).

Note that for given path setsP1, . . . ,Pk there may exist
many sets of consistent aggregation functions.

Let P1, . . . ,Pk be valid paths sets and letX be a set of
consistent aggregation functions. We divide the nodes ofG
into path routingnodes andpath mixingnodes. A path routing
node either preserves or splits incoming path aggregates. We
represent the splitting of path aggregates by the functionr
defined below. LetQ ⊆ T × T be the set of all pairs of
disjoint sets inT . A nodev is said to be a path routing node
with respect toX if there exists a functionrv : Q → R+

such that for eachα ∈ T it holds that
∑

e∈dout
v

xe(α) =∑
e∈din

v
xe(α)+

∑
{α,β}∈Q rv({α, β})−

∑
β∪γ=α rv({β, γ}).

Intuitively, if rv(α, β) = x then path aggregateγ = α ∪ β of
valuex is split into two path aggregatesα andβ.

Any nodev ∈ G which is not path routing is referred to as
a path mixing node. Path mixing nodes can preserve, split, or
combine path aggregates. The following theorem appears in a
slightly modified form in [8]:

Theorem 9:Let N(G(V, E), s, T, h) be a coding network.
Let V1 and V2 be a partition ofV . Then, there exists a
linear program withO(|E|2k) variables and coefficients in
{−1, 0, 1} which is feasible if and only if there exist feasible
path setsP1, . . . ,P|T | and a corresponding set of aggregation
functionsX = {xe}e∈G in which only nodes inV2 are path
mixing nodes. Such{Pi}ti∈T andX are obtained as a solution
to the linear program.

B. Fractional network codes

We begin with the definition of anm-fractional network
code. Such a code partitions each of theh packets present at
the source intom parts.

Definition 10 (m-fractional network codeF(Nm)): For an
integerm, an m-fractional code forN(G, s, T, h) is defined
by an integral network code forNm= N(Gm, s, T, mh). Here
Gm is the graphG in which each linke is replaced bym
parallel links{e1, . . . , em}).

Note that a1-fractional network code forN is an integral
network code. The notions of encoding nodes and of the fea-
sibility of N(Gm, s, T, mh) andF(Nm) are defined similarly
to that of integer coding networks (see Section II).

For a given instanceN=N(G, s, T, h) and an integerm, we
denote byOptm(N) the minimum number of encoding nodes
in any feasible network code forNm′ , wherem′ ≤ m. We
then defineOpt(N) to beminm Optm(N) (the minimum exists
as Optm(N) is monotone inm and integral). The following
theorem connects fractional information flows with fractional
network coding and is sketched in [8].

Theorem 11:Let N(G, s, T, h) be a given network. Given
an m-fractional feasible network code forN with Γ encoding
nodes one can construct valid path setsP1, . . . ,P|T | and a
consistent set of aggregation functionsX = {xe}e∈G such
that for eachti ∈ T the total weight of the pathsP ∈ Pi is

h and the number of path mixing nodes is bounded byΓ. Let
P1, . . . ,P|T | be valid path sets such that for eachti ∈ T the
total weight of the pathsP ∈ Pi is h, and such that each path
in ∪Pi has weight which is a multiple of1

m
. LetX = {xe}e∈G

be a corresponding consistent family of functions that haveΓ
path mixing nodes. Then, one can construct anm-fractional
feasible network code forN with at mostΓ encoding nodes.
The reduction in both directions can be done in time which is
polynomial in |G|, m, and2k.

C. Our results

We are now ready to state and prove our results.
Theorem 12 ( [6], [12]): ComputingOpt1(N) is NP-hard

for general networksN(G, s, T, h) in which k = h = 2.
Theorem 13:ComputingOpt(N) andOpt1(N) is NP-hard

even for acyclic networksN(G, s, T, h) in which eitherk or
h is equal to2.

Proof: We use a variant of the well know reduction from
the minimum Set Cover (SC) problem. The input to the SC
problem is a universeU = (x1, . . . , xn) of n elements and
a set systemS = {S1, . . . , Sm}; the objective is to find a
minimum sized subsetS′ of S that covers all elements in
U (namely each elementx ∈ U is in at least one setSi ∈
S′). Consider the followingbase graphG = (V, E) with a
source nodes, m intermediate nodes{S1, . . . , Sm}, and n
leafs {x1, . . . , xn}. We use the same notation for nodes and
corresponding sets/elements throughout this proof. To avoid
confusion, we will specify our exact meaning when needed.
We add the links(s, Sj) for all setsSj , and the links(Sj , xi)
iff xi ∈ Sj .

In our reductions we use this base graph as a starting point,
and enhance it with various nodes/links. We start with the
case ofk = 2. We add some nodes toG: t1, t2 (which will
be our terminal nodes), and a new nodes∗. We add the link
(s, s∗). We partition each link(s, Sj) into a path of length
four (s, αj , βj , γj, Sj). For t1 we add the links(xi, t1) (for
all elementsxi); the link (s∗, t1); and the link(s, t1). For t2
we add the links(s∗, βj), (γj , t2), and(αj , t2) (for all j). The
capacity of the links in our enhanced graph are either1, n,
n(m−1) or nm. The links of capacity1 are the links(Sj , xi)
(for all i, j), and the links(xi, t1). The links of capacitynm
are the links(s, s∗) and(s∗, t1). The link (s, t1) is of capacity
n(m − 1). The rest of the links are of capacityn. We now
consider the networkN = (G, s∗, {t1, t2}, 2nm). It is not hard
to verify thatN is feasible. We now prove thatOpt(N)= k iff
the minimum SC is of sizek

First we note that any feasible set of pathsP2 (for t2)
must consist of the paths(s, αj , t2) and (s, s∗, βj , γj , t2). In
addition, any feasible set of pathsP1 for t1 must include the
path(s, s∗, t1) of weightnm, the link(s, t1) of weightnm−n,
and a set of valid paths of total weightn that entert1 through
the nodesxi. Consider any pathP that enterst1 through node
xi. It must be of the form(s, αj , βj , γj , Sj , xi, t1) for some
xi ∈ Sj . Notice any such pathP (of any weight) implies an
encoding node (or more specifically a path mixing node) at
βj . HenceOpt(N) is obtained when we design these paths to



pass through as few as possible nodesβj . If there is a set cover
of sizek (say by the sets1, . . . k) then there is a set of valid
paths of weightn from s∗ to t1 that only pass throughβj for
j ≤ k and we have thatOpt(N)≤ k. In the other direction,
if all the paths tot1 of weight n (throughxi) pass throughk
nodes ofβj then there is a set cover of size at mostk.

For the caseh = 2 and arbitraryk we consider another
variant of the base graph. We add some nodes toG. The
terminal nodes will bêx1, . . . , x̂n, and t1, . . . , tm. We also
add a new nodes∗. We add the link(s, s∗), and links(xi, x̂i).
We partition each link(s, Sj) into a path of length four
(s, αj , βj , γj , Sj). For terminalsx̂i we add the links(s∗, x̂i).
For terminals tj we add the links(αj , tj) and the links
(s∗, βj), (γj , tj). All capacities of the links in our enhanced
graph are unit capacities. We now consider the networkN =
(G, s∗, {x̂1, . . . , x̂n; t1, . . . , tm}, 2). It is not hard to verify that
N is feasible. We now prove thatOpt(N)= k iff the minimum
SC is of sizek

First we note that any feasible set of pathsPtj
(for terminal

tj) must consist of the paths(s, αj , tj) and (s, s∗, βj, γj , tj).
In addition, any feasible set of pathsPx̂i

for x̂i must include
the path (s, s∗, x̂i) and a set of valid paths of weight1
that enterx̂i through the nodesSj . Consider any pathP
that entersx̂i through nodeSj . It must be of the form
(s, αj , βj , γj , Sj , xi, x̂i). Notice any such pathP (of any
weight) implies a path mixing node atβj . Hence as before
Opt(N) is obtained when we design these paths to pass
through as few as possible nodesβj . If there is a set cover
of sizek (say by the sets1, . . . k) then there is a set of valid
paths for eachxi that only pass throughβj for j ≤ k and we
have thatOpt(N)≤ k. In the other direction, if all the set of
paths corresponding to allxi pass throughk nodesβj then
there is a set cover of size at mostk.

Theorem 14:For a given feasible acyclic network
N(G, s, T, h), an integral network code withOpt1(N)
encoding nodes can be found in timenO(h3k2).

Proof: In [6] it was shown thatN has a network code
with at mostO(h3k2) encoding nodes (alternatively one can
use the results of Section III). More specifically, it was shown
that for each terminalti ∈ T there is a set ofh link disjoint
pathsPi, such that for the subgraphG′ of G consisting only of
links in {Pi} it holds that (a)G′ has as mostO(h3k2) nodes of
in-degree larger than 1, (b)G′ has as mostO(h3k2) nodes of
out-degree larger than 1 and (c) the networkN′ = (G′, s, T, h)
is feasible.

Consider the graphG′. Let Γ = Γin ∪ Γout be the set
of nodes in G′ with in-degree (Γin) or out-degree (Γout)
larger than 1 . The links ofG′ can be decomposed into a
set of paths with endpoints inΓ. Denote this set of paths
by P = {P (uj, vj)}r

j=1 where r = O(h3k2), uj ∈ Γout,
vj ∈ Γin, andP (uj , vj) is a path betweenuj andvj that does
not pass through any other node inΓ (the bound onr follows
from the analysis in [6] or the analysis in the Section III).
Consider the integer multicommodity flow problemΠ on the
original graphG in which we wish to route a unit of flow
between each pair(uj , vj) above. ClearlyΠ is feasible (using

P = {P (uj, vj)}
r
j=1), and its solution implies a set ofh

link disjoint paths betweens and eachti ∈ T : {P∗
i }

k
i=1. We

now claim that one can construct the functionsX = {xe}
(as defined above) corresponding to{P∗

i }
k
i=1, such that inX

there are at most|Γin| path mixing nodes. Indeed, for all pairs
(uj , vj) and allα ∈ T definexe(α) to be constant along the
links of the path connecting(uj , vj). More specifically, for
each link e ∈ G′ there exists a subsetαe of T such that
xe(αe) = 1 and xe(α) = 0 for all α 6= αe. The subsetαe

is the set of indicesi such thatP∗
i passes throughe. The

existence ofX in turn implies an integral network code with
at most|Γin| encoding nodes (Theorem 11).

The discussion above implies the following algorithm for
computingOpt(N1). For all subsetsΓ = Γin ∪ Γout of V
and all subsetsA of Γin × Γout as defined above; define the
integral multicommodity flow problemΠ in which a unit of
flow is to be routed between each pair inA. As G is acyclic,
Π is solvable in timenO(h3k2) [13], and the solution toΠ
implies the functionsX = {xe}. If X implies a set ofh link
disjoint paths betweens and eachti ∈ T , thenX implies a
network code with at most|Γin| encoding nodes. We now take
Opt(N1) to be the minimum value of|Γin| over all choices of
Γ = Γin ∪Γout andA as defined above in which the solution
to the correspondingΠ implies h link disjoint paths between
s and eachti ∈ T . The total running time of our algorithm is
nO(h3k2) as asserted.

Theorem 15:For a given feasible acyclic network
N(G, s, T, h), an m-fractional network code withOpt(N)
encoding nodes can be constructed in timenO(h3k2).

Proof: In [6] it was shown thatN has a network
code with at mosth3k2 encoding nodes. This implies the
following procedure for constructing the asserted network
code. For all subsets of nodesV ′ in G of size at mosth3k2

construct and solve a linear program as in Theorem 9 in
which V1 = V \ V ′ and V2 = V ′. If the linear program is
feasible, one may construct a network code corresponding to
its solution (Theorem 11). We return the feasible network code
corresponding to the smallest setV ′. The running time follows
from Theorem 11.

Our results for various settings are summarized in Figure 1.
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