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~ Abstract—In this work, we study the computational perspec- [4] developed an algebraic framework for network coding and
tive of network coding, focusing on two issues. First, we adess jnvestigated linear network codes for directed graphs with
the computational complexity of finding a network code for cycles. This framework was used by Ho et al. [5] to show that

acyclic multicast networks. Second, we address the issue ofl. twork cod be efficientl tructed th h
reducing the amount of computation performed by network Inear neétwork codes can be efliciently constructe roag

nodes. In particular, we consider the problem of finding a randomized algorithm. Jaggi et al. [1] proposed a detestimi
network code with the minimum possible number ofencoding polynomial-time algorithm for finding feasible network @l
nodes, i.e., nodes that generate new packets by combining the for multicast networks.

packets received over incoming links. In this paper we study the computational perspective of

We present a deterministic algorithm that finds a feasible lticast work di o |t o Y Th
network code for a multicast network over an underlying graph ~ Multicast network coding. Our goal to minimize (i) The

G(V,E) in time O(|E|kh + |V|k*h* + h*k*(k + b)), where i time required for finding an feasible network code; (ii) The
is the number of destinations and/ is the number of packets. total amount of computation performed by network nodes. In
Our gegult improves the best known running time of O(|E|kh +  particular, we consider the problem of finding a network code
\VIE"h*(k + h)) of the algorithm due to Jaggi et al. [1] in the {5t yses a bounded number eficoding nodesEncoding
typical case of large communication graphs. In addition, ou d ¢ kets b binina th kets rdcei
algorithm guarantees that the number of encoding nodes in ta N0U€S génerate new packets by combining the packets receive
obtained network code is bounded byO(h*k?). over incoming links, in contrast tforwarding nodes that can
Next, we address the problem of finding a network code with only forward and duplicate incoming packets.

the minimum number of encoding nodes in both integer and e study bothfractional and integer coding networks. In
fractional coding networks. We prove that in the majority of = gactional coding networks, each packet can be split into a
settings this problem is NP-hard. However, we show that if b f I k h of which i difite
h =0(1), k = O(1), and the underlying communication graph number of smaller packets, each ot which is sent over re

is acyclic, then there exists an algorithm that solves thisppblem Paths. In integer coding networks packets cannot be spdit an
in polynomial time. have to be sent through the network in one piece.

I. INTRODUCTION A. Our results

The new paradigm of network coding promises to bene-Our study makes the following contributions. First, we
fit many areas of communication and networking [2]. Thpresent an efficient algorithm for integer coding networks.
network coding approach generalizes traditional routizyg IGiven an acyclic multicast network with packets andk
allowing intermediate network nodes to generate new packetrminals, our algorithm finds a network code that includes a
by combining incoming data packets. mostO(h3k?) encoding nodes. The computational complexity

Establishing efficient multicast connections is a centraf our algorithm isO(|E| + |[V|k? + k*) for h = 2 and
problem in network coding. In thenulticast network coding O(|E|kh + |V |k?h? + h*k3(k + h)) for general h. Our
problema sources needs to delivek packets to a sef’ of £ algorithm improves the previously best known running time
terminals over the underlying communication graghlt was of O(|E|kh + |V|k*h?(k + h)) of the algorithm due to Jaggi
shown in [2] and [3] that the capacity of the network, i.est al. [1]. The improvement is most significant in the case of
the maximum number of packets that can be sent betwesparse graphs with a large number of nodes, which is typicall
s and T' per time unit, is equal to the minimum size ofthe case in communication networks.

a cut that separates the souredrom a terminalt € T. Second, we study the problem of finding a network code

Specifically, a source can sendh packets to all terminals with the minimum possible number of encoding nodes, con-

T if and only if the total capacity of all links in any cut thatsidering both integer and fractional coding networks. \avpr

separates andt¢ € T is at leasth. Li et. al. [3] proved that that in the majority of settings this problem §"P-hard.

linear network codesre sufficient for achieving the capacityHowever, we show that iv = O(1), k¥ = O(1), and the

of the network. In a subsequent work, Koetter and Médatthderlying communication graph is acyclic, then the proble
can be solved in polynomial time. Our results are summarized
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[ Type of Coding Network | Restrictions | Acyclic | General(cyclic) |

Integer k andh are constan{ DTIME(n® O(h°k?) )) (Theorem 14) | N"P-hard (Theorem 12)
no restrictions NP-hard (Theorem 13)

Fractional k andh are constant DTIME(n® O(R°k?) )) (Theorem 15) | Not resolved in this work
no restrictions NP-hard (Theorem 13) NP-hard (Theorem 13)

Fig. 1. Our results for the problem of finding a network cod¢éhvthe minimum possible number of encoding nodes.

nodes in integer coding networks with cycles is &iP-hard be transmitted from the source nogléo every terminat € 7.
problem. In this paper we use the results of [6] in order fd/e assume, without loss of generality, that the sourdms
devise an efficient algorithm for finding network codes witlmo incoming links and that the termindlshave no outgoing
bounded number of encoding nodes. links. We also assume that each packet is an element of a finite
The fastest deterministic algorithm for finding feasible-nefield ¥. We denote the sizg'| of the terminal set by:. Each
work code for multicast networks prior to our work was duaodev € G, v # s, v ¢ T is referred to as amternal node.
to Jaggi et al. [1]. Randomized algorithms for this problem In this section, we define network codes for acyclic inte-
have been presented in [1] and [5]. For acyclic graphs, tger coding networks. A more general settings of cyclic and
currently best known expected running time for randomizdtactional coding networks is discussed in Section IV.
algorithms isO(|E|kh + kh?-37%) when the packet size may Definition 1 (Integer network codg(N)): A network code
depend on the size of the netwatkandO(|E|kh+ |V |k?h3)  for N(G, s, T, h) is defined by the set of encoding functions
when the packet size is independent of the siz&zofboth F(N) = {f. | e € E}. If e(v,u) is an outgoing link of
results appear in [1]. Recently, [7] proposed an algoritem fthe source node, then f. is a mapping fromx" to ..
finding multicast network codes based on matrix completio®@therwise, f. is a mapping fromXc~(*) to X, where
Their algorithm addresses a more general class of problems(v) = Z(ww)eE C(w,v) IS the total capacity of the incoming
and has a running time ofin(O(k|E|?log |E|), O(|E|kh + links of v.
[VI3k*h*log(|V |h))). However, none of the previous work The encoding functiorf. of e(v,u) determines the packets
provide a non-trivial bound on the number of encoding nod@sinsmitted on linke for any possible combination of the
in the network. packets available at the source {(if= s) or received over
A recent work by Bhattad et al. [8] considered severaghe incoming links ofv (if v # s).
several optimization problems that arise in fractionaltioabt ~ We focus on linear network cod&gN), i.e., for eacte € F
coding networks. This work models the flow of information inhe encoding functiorf. is a linear function ovei. With
a coding network by a linear program with(|G|2") variables, linear network coding, each packet transmitted over dink E
where|G| is the size of the underlying communication grapls a linear combination of thé packets available at source
andk is the number of terminals. For small valuestothis s. Accordingly, we define a functio, : " — X° that
program enables to optimize several objective functiord thdetermines the packets transmitted on linkas a function
are strongly related to the number of encoding nodes in godiof the packets available at If e is an outgoing link of the
networks. We use the framework of [8] in parts of this worksource node, ther¥, is identical to f.. For any other link
The rest of the paper is organized as follows. In Section H(v,u) € E, F, is defined asF, = f.( 61,...,Fd » ))
we formulate the network model and present the definitiq,oheredm(v) is the in-degree of» and {¢¥,... ey (v)} is
of integer coding networks. In Section Ill, we present ouhe set of the incoming links af.
efficient algorithm for finding feasible network codes ireiger A network codeF (N) for N(G, s, T, h) is said to be feasible

networks. In Section IV, we define fractional coding netveorkif for each destination node € T, there exists a decoding
and analyze the computational complexity of minimizing thginction g, : $¢»® — ©"* such thatg,(Fue,..., Fer ) iS

number of encoding nodes in both fractional and integgt, |dent|fy function, wherel;, (1) is the in- degree o(f)and

coding networks. {el,... €l )} is the set of the incoming links of

An instanceN(G, s, T, h) of the multicast network coding
problem is said to be feasible if there exists a feasible adtw

The communication network is represented by a directedde forN. If N(G, s, T', h) is feasible we refer ta as therate
graphG = (V, E), whereV is the set of nodes anfl the set of the multicast coding network. The multicast capacityhs t
of links in G. The capacity.. of link e € E is defined to be the communication networks with respect to source and setl’
number of packets that can be sent avér one time unit. We of terminals is defined to be the maximum valuefotuch
assume that link capacities are integer numbers. An instancehat the coding networK(G, s, T, h) is feasible. Theapacity
N(G, s, T, h) of the multicast network coding problem is a 4-of the network is determined by the minimum capacity of a
tuple that includes the grapgh(V, E), a source node € V, a cut that separates the sourcand any terminat € T [2], [3],
setT C V of terminals, and the number of packétthat must where the capacity of a cut is the sum of the capacities of the
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links that belong to the cut. I1l. ALGORITHM FOR COMPUTING A FEASIBLE NETWORK

A coding networkN(G, s, T, h) is said to beminimal with CobE
respect to link removal if ()N(G,s,T,h) is feasible (i)  |n this section we present an algorithm that receives as
Removal of any link fromG would violate the feaS|b|I|ty of input an acycﬁc Coding networN(G’ s, T, h) and computes
N(G,s, T, h). a feasible integer network code fof over a field of size

Let N(G, s, T, h) be a feasible coding network. We say that = |T'|. The computational complexity of our algorithm is
link e € G is vital if after removinge from G the resulting O(|E|kh + |V |k?h? + h4k3(h+ k).
network is no longer feasible. Note that every link of th
minimal network is vital.

Definition 2 (Encoding and forwarding links and nodes):  Our algorithm uses three auxiliary coding networks
Let F(N) be a network code. A link is referred to as a N'(G',s,T,h), N*(G*, s, T, h), andN(G, s, T’ ), all of them
forwarding linkif it is an outgoing link of the source node are equivalent tiN(G, s, T', h). .
or if f. can be decomposed tg@ functionsf!,..., fe that ~ The coding networkY'(G’, s, T’ h) is constructed by Pro-
map 2 () to ¥ such that each functiorfi depends only cedure &PAND, described in Section IlI-B. This network has
on one variable, wherei, (v) = Y, )¢ s C(uw.0)- Otherwise, the following properties: (i) All links inG’ are of capacity
link ¢ is referred to as aencoding link We say that a node 1; (ii) The total number of links ir" is bounded byV'|k;

v, v £ s, is anencoding nodéf at least one of its outgoing (i) For eacht; € T there existh node-disjoint paths i’
links (v, u) is encoding. If all outgoing links of a nodeare betweens andt;. _ _ _
forwarding, the node is referred to afawarding node Next, we apply Algorithm MN-GLOBAL, described in

Encoding links generate new packets by combining theection 11I-D below. The algorithm constructs the auxyiar

packets received over the incoming links; forwarding lices NeWOrkN"(G*, s, T’ k) by deleting redundant links fror”
only forward incoming packets. such that the number of nodes of in-degree more than 2 in

* 31.2 ; :
We will use the following lemma implied by (6] SR, described 1n Sedion NLE below This prosedre
Lemma 3 ( [6]): Let N(G,s,T,h) be an acyclic coding ' ' P

e . . constructs coding networl(G, s, T, h) by contracting all
network which is minimal with respect to link removal. Then e :
) ) -~ hodes inN*(G*,s,T,h) of degree 2. The number of links
the number of internal nodes i& of degree 3 or more is

39 in N(G, s, T, h) is bounded byO(h3k2).
bounded byO(h"k"). oA A A aa ) This property enables us to find a network code foby
cast coding networks. We say thdtis equivalent taN if the e . PR i
: . N S 1) Construct an auxiliary coding netwotk(G, s, T, h);
following three conditions hold (iN is feasible if and only : : PN N
if N is feasible; (ii) For any feasible network cod¢N) for 2) Find a feasible network cod&(N) for N, i.e., by
' applying the algorithm due to Jaggi et. al. [1];

.N’ there exists a corresponding network Cate) .for N that ... 3) Find a network codé&(N) for N that corresponds to
includes the same or lower number of encoding nodes (iii) fF(N)

Such code can be found through an efficient procedure whose, . ) o .
running time is bounded b@(|E| + |E|). which has the following properties: (iY is equivalent toN;

i) The number of links inG is bounded byO(h3k2).

%\. Algorithm overview

In some parts of our paper we use a notion of network rov&

[9]. B. ProcedureEXPAND
Definition 4 (Flow): An integer (s, ¢)-flow ¢ is a function  procedure EPAND begins by assigning a unit cost for each
6 : E — R that satisfies the following two properties: link e € E. Then, the procedure finds, for each terminal
1) For alle = (u,v) € E, it holds thatd, is an integer t; € T', @ minimum-cos{s, t;)-flow ¢; of valueh. In order to
number that satisfie8 < 0, < c.; find a minimum cost flow we employ the Successive Shortest
2) For each internal node € V, v # s, v ¢ T it holds Path algorithm [9, Chapter 9]. Next, each liak,u) € E is
that substituted bynax;, c1 6;(e) parallel links of unit capacity that
Z 9 _ Z 0 connectv andu. All links for which max;,er 0;(e) = 0 are
(w,) (v,w)- removed from the graph. Note that the resulting graph costai

w:(w,v)EE w:(v,w)eEE

Thevalue|d| of a flow ¢ is defined ag0] = > 0,.0). h link-disjoint paths between soureand any terminal; € 7.

vi(s,0)EE We denote a set df link-disjoint paths between andt; by
If each linke € E is associated with a cost(e) then the cost P;. The sets{lP; |t; € T'} can be found by invoking the flow

w(0) of a flow 6 is defined as follows: decomposition algorithm [9].
Finally, the procedure substitutes each internal noda
w(f) = Z W) " O (1) the resulting graph of degree larger than 3 by a gadyget
(uw)EE constructed as follows: Lt and E2“* be the incoming and

outgoing links ofv, respectively. For every linkz,v) € E"
A minimum cost (s, ¢)-flow w can be decomposed into awe add a node:’ to I', and a link (z,z’). Similarly, for
set of |w| paths betweer andt¢ [9]. every link (v,y) € E°“ we add a node/ to T', and a



ProcedureExpPAND (N(G, s, T, h)): Algorithm MIN-LocaL (N'(G', s, T, h), P;, P;):
Input: Input:
N - a feasible coding network; N’ - a feasible coding network,
P, - a set ofh node-disjoint paths betweenandt;,
1 Assign a unit cost for every link € E. P; - a set ofh node-disjoint paths betweenandt;;
2 for each terminak; € T do
3 Find a minimum cos{s, ¢;)-flow 6;. 1 Gjj < the subgraph of’ induced by links that belong to
4 for each linke(v,u) € E do paths inP; andP;.
5 if max;, e 0;(e) > 0 then 2 Assign zero cost to every link that belongs to a pati?jrand
6 Replacee by max,, e 6;(e) parallel links of assign a unit cost to every other link @;;.
capacity one between andu 3 Find h link-disjoint pathsPY in G; betweens andi;
7 else of minimum total cost.
8 Removee 4 G;j — the subgraph of7;; induced by links that belong tg
9 for each terminak; € T do paths inP; and]p;_
10 Find a sef?; of h link-disjoint paths betwees a_ndti. 5 Assign zero cost to every link that belongs to a patﬁ’jnand
11 For each node € G, v # s, v ¢ T whose degree is more . . . ,
than 3, replaces by a gadget. assign a unit cost to every other link mi]..
12 Denote byG’ the resulting graph. 6 Find h link-disjoint pathsP? in G;j betweens andt; of
13 ReturnN’(G’,s, T, h). minimum total cost.
* *
Fig. 2. Procedure EPAND 7 RewumP7 andPy.

Fig. 4. Algorithm MIN-LOCAL

Py Py, P; P4 P5,Pg P;
& G & ®
that connect source to terminals¢; and ¢;, respectively.
(v The algorithm finds two sets df node-disjoint path®;, P
connectings to ¢; ands to ¢; such that the subgraph;; of
G’ induced by paths i®; U P; is minimal with respect to
OBOBORO, @ ) link removal. That is, removal of any link from’;; results in
Ps  PPyP;  Ps PP P.  PyPyP;  Ps P2,Ps a reduction of the value of the minimum cut betweeandi;
or s andt;. The formal description of Algorithm Mi-LoCAL
Fig. 3. Substituting a node by a gadgef",. appears in Fig. 4.

Lemma 5:Let G;; be a subgraph o+ induced by path
_ setsP; and P} returned by Algorithm MN-LOCAL and let
link (y',y). For each path? € {P; | t; € T} let 2’ be N* = N*(G;,s,{t: t;},h) be a coding network formed by
a node inI', that corresponds to linkz,v) € P; andy’ G and two terminalst; and ¢;. Then, all links inN* =
be a node inl', that corresponds to linKv,y) € P;. If N*(G;, s, {ti,t;},h) are vital,
I', does not include link(z",y’), we add (z',y’) to I',. Proof: We start by showing that the links I; are vital.
Fig. 3 demonstrates the construction of the subgiaphThe consider graphGy;; with link costs assigned at Step 2. We
resulting graph is denoted hy'(V”’, E'). Note that inG’ the  assume, by way of contradiction, that there exists adirkP;

paths corresponding t; are node disjoint. which is not vital inN*(G%;, s, {t;.t;},2). Then, there exisk

) , I ij>
The formal description of ProcedurexBAND appears in jin_gisjoint paths?; betweens andt, in G, that do not use

Fig. 2. We proceeq tq analyze the computational compIeX||t|¥|k e. We denote byf and f* the flows defined by sets of
of the procedure. Finding flond); |¢; € T} and decomposing disjoint pathgf”- andP*, respectively. We denote by’ (f*)
them into pathsP; |£; € T} can be done irO(|E|kh) time the residual g';aph otj?”-- with respéct to flows* Tﬁat is

9]. The total number of links that belong to pathg if ., P; . 4 S ' ’

i[s bounded by |hk. SinceG’(V", E') includes at mgg; WO G;(f*) is formed fromG;; by reversing links that belong to
links f link ) hat bel ’ h h pathsP; and negating their cost. Note that the cost of every
inks for every link that belongs to a path 1, ., i, the link e € G};(f*) is either 0 or—1. By the Augmenting Cycle

number of links inG’ is bounded byO(|V|kh). Thus, the h h fow | | to flow * olus fi
computational complexity of ProcedurexBanD is bounded Theorem [9, Chapter 3], flow is equal to flow™ plus flow

by O(|E|kh). In Theorem 7 below we show that the codinéllong a set of directed cycldS in G, (f7). Moreover, the
network N'(G’, s, T, h) returned by Procedure XBAND is COSt of f equals to the cost of* plus the cost of flow on

equivalent to the original coding netwotk(G, s, T', h). cycles inC, where the cost of flow is defined with respect to
. costs assigned at Step 2. Siriggis a minimum cost set of
C. AlgorithmMIN-LocAL disjoint paths, the cost of floyi is greater or equal to that of

We proceed to describe Algorithm IM-LocAL, which f*. This implies that all cycles irC contain only zero cost
is an important building block of Algorithm Mi-GLoBAL, links, i.e., links whose originals belong to pathsFn
presented in the next section. Let C' be a cycle inC. Note thatC must contain at least

Algorithm MIN-LOCAL receives as input a coding networkone cycle becaus§ and f* differ by at least one link. We
N(G,s,T,h) and two sets ofr link-disjoint pathsP;, P; classify the links inC' into two categories: (1) the links that



were reversed with _respect ©; .(that is, whose origins in Algorithm MIN-GLOBAL (N'(G', s, T, h)):
G, belong to a path iiP}) (2) the links that were not reversed Input:
We observe that the degree of any nodeGy) (and thus in N'(G',s,T,h) - a feasible coding network;
G};) is at most 3 and consider the following cases. L Py
1) The cycleC contains only Iin_ks of type (1) or only 2 fori— 1tokdo
links of type (2). Then, there is a cycle’ € G;; that 3 Assign zero cost to all links i (IP). Assign unit costs
corresponds t@'. Such a cycle is either equal @ or to all other links inG’. -
obtained fromC' by reversing all its links. Since the total 4 Find & set ofu link-disjoint pathsP; in G* betweens
sy s ’ and¢; of minimal total cost.
degree of each node i@;; is at most 3,C" belongs to 5 if i 1do
a single path inP;. This contradicts the minimality of 6 for j — 1toi—1do
P; (recall that these paths are chosen to be of minimuym 7 P;,P; — MIN-LocAL(N(G’, s, T, h),P;,P;)
cost when all links inG' were of unit cost). o 5 k b . B
2) The cycleC contains links of both types (1) and (2)] *]L:Jl g oan “_]91 (F5)-
Then, there exists a nodec C whose incoming link 9 G* «— a subgraph ofy’ induced by links inEy.
is of type (2) and whose outgoing link is of type (1) 10 ReturnN*(G*, s, T, h).
Thus, in.GQj nodev ha§ two incoming Iinks. that belong Fig. 5. Algorithm MIN-GLOBAL
to two different paths ifP;. Such a node will also have
two outgoing links, which contradicts the fact that the
degree of any node i6; is at most3. at mosth® nodes of in-degree 2, each such node has at most
We have proven so far that every link[itj is vital. To show two incoming links.
that every link inP; is also vital, notice that every link of cost For the induction step, we prove that for= 2,... k it

1 with respect to costs assigned at Step 5 is vital. Indeedhe@lds that E;| < 2hki. We divide the sefs; into two subsets
non-vital link of cost one would contradict the minimality o E! = E;NE,;_; andE? = E;\ E}. By the inductive argument,
P¥. Hence the lemma follows. B the number of links inE} is bounded by2h®k(i — 1). Thus,

It is not hard to verify that Algorithm MN-LOCAL runs in in order to complete the proof we need to bound the number
time O(|V'|h?) (again we use the augmenting path approadi links that belong toE?.
to find % link-disjoint paths). We denote byE;; the set of incoming links of nodes of
D. Algorithm MIN-GLOBAL in-degree two in the subnetwork @ induced by I|nk§ in

E(P;) U E(P;) in step 7. By Lemma 3, stated in Section I,

Algorithm MIN-GLOBAL receives, as input, a feasible cod 1" of the set€;;, j € {1,...,i — 1} contains at most

ing network N'(G’, s, T, h). First, the algorithm iteratively 9,3 |inks each. We show that each link iA2 belongs to
constructs, for each; € T, a setP; of h link-disjoint paths E !

. ;; for somej € {1,...,i — 1}, which, in turn, implies that
betweens and¢;. We denote byE(Pi) the set of links that |E2| < 213k which concludes our assertion.
belong to paths inP;, by E; = U, E(P;), and by G* Let e = (u,v) be a link in E2. We consider two cases.

the subgraph ofG’ induced by links inE;. Our goal is ] S

to ensure that the total number of links @& which are 1) Link e = (u,v) belongs toE; \ E;_.. This implies
incoming links of nodes of in-degree 2 or more is bounded ~ thate b_elongs toE(P;). In f?crt], e be_lolngs tof(ﬂii)
lt)ka(h3k2). To that eng;j we first minirinizeI the rrllumber of ?r:aint})/eténi O%r'ﬂgétzr)at'l?ﬂge; eoiﬂzlrr\}vi(sjgpt(r;[e?e ?/f/)cl)auld
inks in E; \ E;_;. In addition, we a Algorithm - - e e ' '

LOCAL for E(Pj)land E(P), 1<j< splﬁ orger to further exists a set of disjoint paths betwgergnd t; that hgs _
delete non-vital edges frod;. The algorithm returns a coding a smaller cost than that selected in line 4, resulting in
networkN*(G*, s, T, h). The formal description of Algorithm a contradiction. Since the in-degreeofs at least two,

MIN-GLOBAL appears in Fig. 5. v has an additional incoming link’ = (w,v). Note
Theorem 6:Let N*(G*(V*, E*), s, T, h) be the coding net- that ¢’ ¢ P; becauseP; only contains node-disjoint
work returned by Algorithm NN-GLOBAL (N). Let V* be the paths. We conclude that belongs toE;; for some
subset oft’*\ T that includes nodes of in-degree two or more JE {1,...i—1} S )
and letE* be the set of incoming links of nodes #*. Then, ~ 2) Link ¢ = (u,v) belongs toF;_,. This implies that in
it holds that|E*| = O(h*k?). Gi_,l nodev has in-degree one. Slnce_z_the |r_1-degr_ee of
Proof: We denote byG;(V;, E;) the subgraph of:’ v in E; is at least two:v has an additional incoming
induced by links inE;. We also denote by/; the subset of link ¢’ = (w, v). Such link must belong td; \ Ei—1,
V; \ T that includes nodes of in-degree two or more and by ~ @nd, in tum toE(P;) (due to the same argument as in
E; the set of incoming links of nodes ifi;. We prove, by case 1). This implies that belongs tof;; for some
induction oni, that|E;| is bounded by2h3ki. je{l,..i—1})
For the base step, we note thd,| is bounded by2h3. [ |
Indeed, Lemma 3, stated in Section Il, implies that the Note thatN*(G*,s,T,h) is a feasible network obtained

subgraphG 2 induced by links inE(P;) U E(P;) includes from N'(G’,s,T,h) by deleting redundant links. Thus,



N*(G*,s,T,h) is equivalent toN'(G’, s, T, h), and, in turn, for N(G, s, T, h) requiresO(h*k?(k+h)) (using the algorithm

to N(G, s, T, h). of [1]). We conclude that the total running time of the
Algorithm MIN-GLOBAL invokes Algorithm MN-LocAL  algorithm is bounded by (| E|kh + |V |k2h? + h4k3 (k + h)).
k? times, hence its running time &(|V |k2h?). [ ]

For the special case af = 2, the computational complexity
of the algorithm can be improved by using the algorithm due
Procedure BRINK receives as input the coding networko [10].
N*(G*,s,T,h). The procedure forms an auxiliary network Corollary 8: Let N(G, s,T,h) be an acyclic coding net-
N(G, s, T, h) by repeatedly contracting nodes of total degregork with links of integer capacity in whicth = 2. If
2. Specifically, we remove every node € G* that has N(@, s,T,h) is feasible, then there exists a deterministic
one incoming link(u,v) and one outgoing linKv, w) and algorithm that computes a network cofiéN) for N in time
substitute links(u,v) and (v,w) by a single link (u,w). O(|E|+|V|k2+k*). Moreover, the number of encoding nodes
By Theorem 6, the total number of links IN(G,s,T,h) in F(N) is bounded byO(k2).
is bounded byO(h’k?). The computational complexity of  proof: In Procedure EPAND, when findingh = 2 link
Procedure 8RINK is O(|V]). disjoint paths betweer and every terminat; we use the
algorithm of [10] which preforms this task in tin@(|E|). B

E. ProcedureSHRINK

F. Algorithm Analysis

We are ready to formally prove the correctness of our
algorithm for finding a feasible network code and analyze its

performance. In this section we consider the problem of finding a network
Theorem 7:LetN(G, s, T', h) be an acyclic coding network code with the minimum possible number of encoding nodes

with unit capacity links. IfN(G, s, T', h) is feasible, then there for hoth integer and fractional coding networks. We begin by

exists a deterministic algorithm that computes a netwodecoefining information flow in a fractional coding network. Fhe

F(N) for N in time O(|E|kh + |V|k*h* + h'k*(k + h)). we show a relation between information flow and network

Moreover, the number of encoding nodesfifN) is bounded ¢odes in fractional coding networks. Finally, we present ou

by O(h*k?). . results for both integer and fractional networks. We folkie

Proof: We begin by observing thali(G:,s, T, h) is @ definitions that appear in [8].

feasible coding network. L& (N) be a feasible network code

for N. The number of enf:oding nodeslihis bounded by the A. Fractional information flows

number of nodes iz of in-degree two or more. Theorem 6

implies that the number of such nodesGff and, in turn, in So far we considered integer coding netwol(g~, s, T, h)

G is at mostO (h3k?). that useh link-disjoint paths to deliver information between
Let N*(G*, s, T, h) be the coding network formed by graphsources and each termina}, € T'. Fractional coding networks

G*. We construct a feasible network cotié(N*) for N* as can use a set of paths betweenandt; € T which are

follows. All nodes of G* that belong toGG have the same not necessarily link-disjoint, each path delivers packsts

encoding function as if¥. All other nodes just forward their fractional size. For each; € T we denote byP; the set

incoming packets. Since all nodes @ that do not appear of paths used to deliver information betweerandt;. Each

in G have one incoming link and one outgoing lifk:(N*) path P € P; is associated with a weight(P) that specifies

is a feasible network code. Singg* is a subgraph ofs’, the size of a packet that can be sent over The setP;

F*(N*) can be immediately extended into a feasible netwoik said to bevalid if for every link e € G it holds that

codel’(N') for N'(G', s, T, h). The number of encoding nodes) _ . p. pcp, w(P) < 1. Menger's theorem [11] implies that

in F'(N') is at mostO(h3k?). if N(G, s, T, h) is feasible then there exists a valid path Bet
Next, we show how to construct a feasible network code fbetweens andt¢; for everyt; € T.

the original networkN(G, s, T, h). Lete = (v, u) be a link in With the network coding approach paths that belong to

G. Let{e],...,e. } be the set of links irG’ that correspond different path sets ifP;}*_, can share a link or a portion of

to e and let f’(e;) be the encoding function of link, in G’.  link capacity. In general, the capacity of a linkc G is divided

If e ¢ G’, we f'(e}) is equal to the zero element &f Then between a number of subsets, as, ..., «, of T, such that

the encoding functiotf. of e is a composition of the encodingthe paths in path set§P; | ¢; € a;;} share the portion oé’s

functions{ f(e}),..., f(e..)}. The number of encoding nodescapacity allocated fory;. Accordingly, for each linke € G

in F(N) is now bounded by the number of encoding nodes ime associate aaggregation function, : 7 — R™, where7T

F/(N). is the power set of” and R™ is the set of non-negative real
We proceed to determine the computational complexibumbers. The functior.(«) specifies the capacity allocated

of the algorithm. Recall that the running time of Procedur® the subset. of T. We refer to sets; for which z.(a;) > 0

ExPAND is bounded byO(|E|kh). The running time of as path aggregatesWe say that the seX = {z.}.cq Of

Algorithm MIN-GLOBAL is O(|V|k2h2). Since the graplty aggregation functions is consistent with path sets. .., P;

containsO(h*k2) links, finding a feasible network cod&N) if for all ¢ € G it holds that) . 7c(a) <1 and

IV. MINIMIZING THE NUMBER OF ENCODING NODES



h and the number of path mixing nodes is bounded by et
P1,..., P be valid path sets such that for eaghe T the
Vee G VLET Y w(P)=) w(a). total weig‘ht‘ of the path® € P; is h, and such that each path
e€P; PeP: tica in UP; has weight which is a multiple of . Let X = {z.}ceq
Note that for given path set®y,...,P; there may exist be a corresponding consistent family of functions that Have
many sets of consistent aggregation functions. path mixing nodes. Then, one can constructnairactional
Let Py,..., P, be valid paths sets and Iéf be a set of feasible network code faN with at mostI’ encoding nodes.
consistent aggregation functions. We divide the nodes;of The reduction in both directions can be done in time which is
into path routingnodes angbath mixingnodes. A path routing polynomial in|G|, m, and2*.
node either preserves or splits incoming path aggregates. W
represent the splitting of path aggregates by the functionC: Our results
defined below. Let@ C 7 x 7 be the set of all pairs of We are now ready to state and prove our results.
disjoint sets in7. A nodewv is said to be a path routing node Theorem 12 ( [6], [12]): ComputingOpt; (N) is N'P-hard
with respect toX if there exists a function, : @ — R*™ for general network®(G, s, T, h) in which k = h = 2.
such that for eactne € 7 it holds thatzeedgu, ze(a) = Theorem 13:ComputingOpt(N) andOpt; (N) is NP-hard
Pecam Te(@) T3 (0 e (e, BY) =3 50,0 7o({B8,7}).  even for acyclic network$\(G, s, T, i) in which eitherk or
Intuitively, if r,(a, 3) = x then path aggregate= o U 3 of h is equal to2.
valuez is split into two path aggregatesand . Proof: We use a variant of the well know reduction from
Any nodev € G which is not path routing is referred to aghe minimum Set Cover (SC) problem. The input to the SC
a path mixing node. Path mixing nodes can preserve, split,oblem is a univers&¢/ = (z1,...,z,) of n elements and
combine path aggregates. The following theorem appears ia et systemS = {Si,...,Sn,}; the objective is to find a
slightly modified form in [8]: minimum sized subsef’ of S that coversall elements in
Theorem 9:Let N(G(V, E), s, T, h) be a coding network. U (namely each element € U is in at least one sef; ¢
Let V; and V, be a partition of V. Then, there exists aS’). Consider the followingbase graphG = (V, E) with a
linear program withO(|E|2*) variables and coefficients insource nodes, m intermediate nodegSi, ..., S}, andn
{~1,0,1} which is feasible if and only if there exist feasibldeafs {z1,...,z,}. We use the same notation for nodes and
path setsP;, ..., Pr and a corresponding set of aggregatioporresponding sets/elements throughout this proof. Tadavo
functions X = {x.}.cc in which only nodes inl; are path confusion, we will specify our exact meaning when needed.
mixing nodes. SuckP;};,cr andX are obtained as a solutionWe add the linkgs, S;) for all setsS;, and the linkg(S;, z;)
to the linear program. iff x; € Sj.
In our reductions we use this base graph as a starting point,
and enhance it with various nodes/links. We start with the
We begin with the definition of amn-fractional network case ofk = 2. We add some nodes @: ¢y, to (which will
code. Such a code partitions each of thpackets present atbe our terminal nodes), and a new node We add the link
the source inton parts. (s,s*). We partition each link(s, S;) into a path of length
Definition 10 (n-fractional network codé(N,,)): For an four (s,a;, 5;,7;,5;). Fort; we add the links(x;,t,) (for
integerm, an m-fractional code forN(G, s, T, h) is defined all elementsz;); the link (s*,¢;); and the link(s, t1). Fortq
by an integral network code fd¥,,= N(G,,, s, T,mh). Here we add the linkgs*, 5,), (v;,t2), and(«a;, t2) (for all j). The
G, is the graphG in which each linke is replaced bym capacity of the links in our enhanced graph are eithen,
parallel links{ey,...,em}). n(m—1) or nm. The links of capacityl are the links(S;, x;)
Note that al-fractional network code foN is an integral (for all ¢, ), and the links(z;, ¢1). The links of capacity.m
network code. The notions of encoding nodes and of the fesre the links(s, s*) and(s*,¢1). The link (s, t1) is of capacity
sibility of N(G,,, s, T, mh) andF(N,,,) are defined similarly n(m — 1). The rest of the links are of capacity. We now
to that of integer coding networks (see Section II). consider the networN = (G, s*, {t1,t2}, 2nm). Itis not hard
For a given instanc®=N(G, s, T, h) and an integem, we to verify thatN is feasible. We now prove th&pt(N)= k iff
denote byOpt,,(N) the minimum number of encoding nodeghe minimum SC is of sizé&
in any feasible network code fdX,,,,, wherem’ < m. We First we note that any feasible set of paffig (for t5)
then definept(N) to bemin,,, Opt,, (N) (the minimum exists must consist of the path, o, t2) and (s, s*, 5;,7;,t2). In
as Opt,,(N) is monotone inm and integral). The following addition, any feasible set of patffs for ¢; must include the
theorem connects fractional information flows with franab path(s, s*,¢1) of weightnm, the link (s, t) of weightnm—n,
network coding and is sketched in [8]. and a set of valid paths of total weightthat enter; through
Theorem 11:Let N(G, s, T, h) be a given network. Given the nodes:;. Consider any patt® that enterg; through node
an m-fractional feasible network code fof with I encoding ;. It must be of the form(s, «;, 85,7, S;, xi,t1) for some
nodes one can construct valid path s®ts..., Py and a z; € S;. Notice any such patt® (of any weight) implies an
consistent set of aggregation functiods = {z.}.c¢ such encoding node (or more specifically a path mixing node) at
that for eacht; € T the total weight of the path® € P; is ;. HenceOpt(N) is obtained when we design these paths to

B. Fractional network codes



pass through as few as possible nodedf there is a set cover P = {P(u;,v;)};_;), and its solution implies a set of
of sizek (say by the sets, ... k) then there is a set of valid link disjoint paths between and eacht; € T {P;}F_,. We
paths of weight: from s* to ¢; that only pass throughi; for now claim that one can construct the functioks= {z.}
j < k and we have thaOpt(N)< k. In the other direction, (as defined above) corresponding{t8; }~_,, such that inX
if all the paths tot; of weightn (throughz;) pass througlt there are at most;,,| path mixing nodes. Indeed, for all pairs
nodes of$3; then there is a set cover of size at mést (uj,v;) and alla € T definex.(«) to be constant along the
For the caseh = 2 and arbitraryk we consider another links of the path connectingu;,v;). More specifically, for
variant of the base graph. We add some nodeg-toThe each linke € G’ there exists a subset, of 7 such that
terminal nodes will bet,...,%,, andty,...,t,. We also z.(a.) = 1 andz.(a) = 0 for all @ # a.. The subset,
add a new node*. We add the link(s, s*), and links(z;,2;). is the set of indices such thatP; passes through. The
We partition each link(s,.S;) into a path of length four existence ofX in turn implies an integral network code with
(s, a5, B5,7;,5;). For terminalsz; we add the linkgs*, ;). at most|T';,| encoding nodes (Theorem 11).
For terminalst; we add the links(«;,t;) and the links  The discussion above implies the following algorithm for
(s*,85), (v4,t;). All capacities of the links in our enhancedcomputingOpt(N;). For all subsetd” = T';, U Ty of V
graph are unit capacities. We now consider the netwdek and all subsetsi of I';,, x I',,¢ as defined above; define the

(G,s*,{%1,...,&n;t1,...,tm},2). Itis not hard to verify that integral multicommodity flow problendl in which a unit of
N is feasible. We now prove th@pt(N)= & iff the minimum flow is to be routed betwegr; each pairdn As G is acyclic,
SC is of sizek II is solvable in timen®""¥") [13], and the solution tdI

First we note that any feasible set of pakhg (for terminal implies the functionsX = {z.}. If X implies a set of: link
t;) must consist of the paths, «;,t;) and (s, s*, 8;,7;,t;). disjoint paths betwees and eacht; € T, then X implies a
In addition, any feasible set of patlis, for &; must include network code with at most';,,| encoding nodes. We now take
the path (s,s*,2;) and a set of valid paths of weight Opt(N;) to be the minimum value df";,,| over all choices of
that enterz; through the nodesS;. Consider any path? T =T, UT,,. andA as defined above in which the solution
that entersi; through nodesS;. It must be of the form to the correspondingl implies A link disjoint paths between
(s, a5, 85,75, 55, i, ;). Notice any such pathP? (of any s and each; € T. The total running time of our algorithm is
weight) implies a path mixing node at;. Hence as before nO("’**) as asserted. ]
Opt(N) is obtained when we design these paths to passTheorem 15:For a given feasible acyclic network
through as few as possible nodés If there is a set cover N(G, s, T,h), an m-fractional network code withOpt(N)
of sizek (say by the sets,...k) then there is a set of valid encoding nodes can be constructed in tinf&"°<*).
paths for each; that only pass through; for j < k and we Proof: In [6] it was shown thatN has a network
have thatOpt(N)< k. In the other direction, if all the set of code with at most:3k2 encoding nodes. This implies the
paths corresponding to all; pass throught nodesg; then following procedure for constructing the asserted network
there is a set cover of size at madst B code. For all subsets of nod&¥ in G of size at most3k?
Theorem 14:For a given feasible acyclic networkconstruct and solve a linear program as in Theorem 9 in
N(G,s,T,h), an integral network code withOpti(N) which V3 = V \ V/ and Vs, = V. If the linear program is
encoding nodes can be found in tim@*+*). feasible, one may construct a network code corresponding to
Proof: In [6] it was shown thatN has a network code its solution (Theorem 11). We return the feasible networtkeco
with at mostO(h*k?) encoding nodes (alternatively one camorresponding to the smallest $ét The running time follows
use the results of Section Ill). More specifically, it waswho from Theorem 11. [ ]

that for each terminal; € T there is a set of. link disjoint  Qur results for various settings are summarized in Figure 1.
pathsP;, such that for the subgraght of G consisting only of
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