
Joint Coding for Flash Memory Storage
Anxiao (Andrew) Jiang

Computer Science Department
Texas A&M University

College Station, TX 77843, U.S.A.
ajiang@cs.tamu.edu

Jehoshua Bruck
Electrical Engineering Department
California Institute of Technology

Pasadena, CA 91125, U.S.A.
bruck@paradise.caltech.edu

Abstract—Flash memory is an electronic non-volatile memory
with wide applications. Due to the substantial impact of block
erasure operations on the speed, reliability and longevity of
flash memories, writing schemes that enable data to be modified
numerous times without incurring the block erasure is desirable.
This requirement is addressed by floating codes, a coding scheme
that jointly stores and rewrites data and maximizes the rewriting
capability of flash memories. In this paper, we present several new
floating code constructions. They include both codes with specific
parameters and general code constructions that are asymptoti-
cally optimal. We also present bounds to the performance of
floating codes.

I. I NTRODUCTION

Flash memory is a type of electronic non-volatile memory
(NVM) with wide applications. It stores data in floating-gate
cells, where each cell hasq states:0, 1, · · · , q− 1. To increase
or decrease the state of a cell, charge is injected into or
extracted from the cell using the hot-electronic mechanism or
the Fowler-Nordheim tunneling mechanism [1]. An interesting
feature of flash memories is theirblock erasureoperation.
Cells in a flash memory are organized into blocks, with each
block containing105 or so cells. The state of a cell can be
raised individually (calledcell programming). But to decrease
the state of a cell, the flash memory needs to erase the whole
block (i.e., lowering the states of all the cells to the minimum
value) and then re-program all the cells. Such an operation is
calledblock erasure/programming. It is well known that block
erasures can substantially reduce the writing speed, reliability
and longevity of flash memories [1], with the benefit of a
lower circuitry complexity. For storage schemes, it is important
to minimize block erasures, especially for applications where
data are modified frequently.

Floating codes [3] address this requirement by maximizing
the number of times data can be rewritten (i.e., modified)
between two block erasures. A floating code jointly stores
multiple variables inn cells and with each rewrite, the cells’
states keep increasing. No block erasure is necessary until the
cell states reach the maximum state value. A floating code
maps the state of cells to the stored variables and, through the
joint coding approach, the ability to support rewrites can be
substantially improved.

The known results on floating codes are limited. Exist-
ing code constructions are mainly for two to three binary
variables [3]. In this paper, we present several new code
constructions based on varied approaches. They include both
codes with specific parameters and code constructions for
general parameters. We analyze their performance and bounds,

and show the asymptotic optimality of most of the presented
codes.

II. N OTATION

Let v1, v2, · · · , vk be k variables. Each variablevi has an
alphabet of sizel: {0, 1, · · · , l− 1}. (v1, v2, · · · , vk) is called
the variable vector, and V denotes the set of alllk variable
vectors. Let c1, c2, · · · , cn be the states ofn cells. Each
cell stateci has one ofq possible states:{0, 1, · · · , q− 1}.
(c1, c2, · · · , cn) is called thecell state vector, andC denotes
the set of allqn cell state vectors. Theweight of a cell state
vector is∑n

i=1 ci.

Definition 1. [3] A floating code is a mappingD : C → V ∪
{⊥}. Forα ∈C andβ∈V, if D(α) = β, it means that the cell
statesα represent the variable valuesβ; if D(α) = ⊥, it means
thatα does not represent any value of the variables.2

A rewrite means to change the value of one of thek
variables. Initially, the cell state vector is(0, 0, · · · , 0), and
they represent the variable vector(0, 0, · · · , 0). A floating
code is for rewriting data between two block erasures; so for
each rewrite, the state of a cell can only increase or remain
the same. A rewrite changes the cell states so that the new cell
state vector represents the new variable vector. Lett denote the
number of rewrites that are guaranteed to be feasible by using
the floating code, regardless of what the sequence of rewrites
are. Clearly,t is a finite number. Given the parametersn, q, k, l,
a floating code that maximizest is calledoptimal.

Example 2. Three examples of a family of floating codes are
shown in Fig.1. This family of codes are for the parameters
n = k > 3, l = 2 and arbitraryq. They achievet = 2(q −
1). The codes have acyclic property: If the cell state vector
(c1 = a1, c2 = a2, · · · , cn = an) represents the variable vector
(v1 = b1, v2 = b2, · · · , vk = bk), then the cell state vector
(c1 = a2, c2 = a3, · · · , cn−1 = an, cn = a1) represents the
variable vector(v1 = b2, v2 = b3, · · · , vk−1 = bk , vk = b1).
For simplicity, for every set of cell state vectors that are cyclic
shifts of each other, only one of them is shown in Fig.1 as their
representative.

Take the code in Fig.1 (c) as an instance, which is for
n = k = 5, q = 4, l = 2. If a sequence of rewrites
change the variables as(0, 0, 0, 0, 0) → (1, 0, 0, 0, 0) →
(1, 0, 1, 0, 0) → (1, 0, 0, 0, 0) → (1, 0, 0, 0, 1) →
(1, 0, 1, 0, 1) → (1, 0, 1, 1, 1), the cell state vector can
change as(0, 0, 0, 0, 0) → (1, 0, 0, 0, 0) → (1, 0, 1, 0, 0) →
(2, 1, 1, 1, 1) → (2, 1, 1, 1, 2) → (2, 1, 2, 1, 2) →



(2, 1, 2, 2, 2). A general code construction forn = k, l =
2, t = 2(q − 1), including this code as a special example, is
shown in Section III.2

We present an upper bound tot for general floating codes.

Theorem 3. For i = 1, 2, · · · , k, definesi as follows: (1) If
l = 2 and i is even,si = ∑ j=0,2,··· ,i (k

j); (2) if l = 2 and i
is odd,si = ∑ j=1,3,··· ,i (k

j); (3) if l > 2, si = ∑i
j=0 (k

j)(l −
1) j. Also, definewi as the smallest positive integer such that
(n+wi

n ) − (n+i−1
n ) > si. Let m∈ {1, 2, · · · , k} be the integer

such thatwm
m > w j

j for j = 1, 2, · · · , k, .

For any floating code,t 6 b n(q−1)
wm

c · m + min{m −
1, n(q− 1) modwm}.

Proof: si is the number of values that the variable vector
can possibly take afteri rewrites. (By symmetry,si does not
depend on the initial value of the variable vector.) Consider
m consecutive rewrites. They increase the weight of the cell
state vector by at leastm. For anyx > m, the number of ways
to raise the states ofn cells such that the weight of the cell
state vector increases by at leastm and at mostx is (n+x

n )−
(n+m−1

n ). Them consecutive rewrites can change the variable
into sm possible values, each of which corresponds to at least
one way of raising the cell states. So by the definition ofwi,
there is a sequence ofm consecutive rewrites that increases
the weight of the cell state vector by at leastwm. Choose
b n(q−1)

wm
c such sequences of rewrites (one after another), and

they make the weight of the cell state vector be at leastn(q−
1)− [n(q− 1) mod wm]. After that, since the weight cannot
exceedn(q − 1), there is a sequence ofm rewrites that is
not feasible due to the lack of room for the weight increase.
Also, each rewrite increases the weight by at least one. So
after the initialb n(q−1)

wm
c sequences of rewrites (which consist

of b n(q−1)
wm

c ·m rewrites in total), at mostmin{m− 1, n(q−
1) mod wm} more rewrites are guaranteed to be feasible. So
t 6 b n(q−1)

wm
c ·m + min{m− 1, n(q− 1) mod wm}.

The bound in Theorem 3 compares favorably with the upper
bounds in [3] whenk or l is relatively large. For example,
when n = 4, q = 8, k = 4, l = 4, Theorem 3 givest 6 11,
and the bounds in [3] showt 6 14.

III. C ODE CONSTRUCTION FORn = k

In this section, we present a floating code forn = k > 3,
l = 2 and arbitraryq. Codes for more general parameters will
be presented in the following sections. It will be proved that
when n = k = 3, the code presented here is optimal. Several
examples of the code have been shown in Example 2 and
Fig. 1. We now present the general code construction. (Note
that the code has acyclic property, as explained in Example 2.)
In the following, definesmin = min{c1, c2, · · · , cn} and
smax = max{c1, c2, · · · , cn}.

Construction 4. (Code for n = k > 3, l = 2 and arbitrary
q) The cell state vectors(c1, c2, · · · , cn) are mapped to the
variable vectors(v1, v2, · · · , vk) in the following way:

2, 2, 1, 1, 1

(1, 1, 1, 1, 0)

1, 1, 1, 1, 0

(1, 0, 0, 0, 0)

3, 2, 2, 2, 2

(1, 1, 1, 0, 0)

2, 2, 2, 1, 1

(1, 1, 1, 1, 1)

0, 2, 1, 1, 1

(0, 0, 0, 0, 0)

3, 3, 3, 3, 3

(1, 1, 0, 0, 0)

3, 3, 2, 2, 2

(1, 1, 1, 1, 0)

2, 2, 2, 2, 1

(1, 1, 0, 0, 0)

(1, 0, 1, 0)

3, 2, 3, 2

(b) k=n=4, q=4

(1, 0, 0, 0, 0)

1, 0, 0, 0, 0

(0, 0, 0, 0, 0)

1, 1, 1, 1, 1

(1, 1, 0, 0, 0)

1, 1, 0, 0, 0

(1, 0, 0, 0, 0)

2, 1, 1, 1, 1

(1, 1, 1, 0, 0)

1, 1, 1, 0, 0

2, 2, 2, 2, 2

(0, 0, 0, 0, 0)

Layer 1

Layer 0

(c) k=n=5, q=4

(1, 0, 1, 1, 1)

0, 2, 2, 1, 1

(a) k=n=3, q=4

(0, 0, 0)

3, 3, 3 3, 3, 2

(1, 1, 0) (0, 1, 1)

3, 3, 1

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 2

(0, 0, 0, 0, 0)

0, 0, 0, 0, 0

(1, 0, 1, 0, 0)

1, 0, 1, 0, 0

(1, 1, 0, 1, 0)

1, 1, 0, 1, 0

(1, 0, 1, 0, 0)

2, 1, 2, 1, 1

(1, 1, 0, 1, 0)

2, 2, 1, 2, 1

(1, 0, 1, 0, 0)

3, 2, 3, 2, 2Layer 6

Layer 5

Layer 4

Layer 3

2, 1, 2, 1

1, 3, 2

(0, 0, 0)

2, 2, 2 2, 2, 1

(1, 1, 0) (0, 1, 1)

2, 2, 0

(0, 0, 0, 0)

3, 3, 3, 3

(1, 0, 0, 0)

3, 2, 2, 2

(1, 1, 0, 0)

3, 3, 2, 2

(1, 1, 1, 0)

2, 2, 2, 1

(1, 1, 1)

0, 0, 0

(0, 0, 0)

(1, 0, 0)

1, 0, 0

(0, 0, 0)

1, 1, 1

(1, 1, 0)

1, 1, 0

(1, 0, 0)

2, 1, 1

(1, 1, 1)

0, 2, 1

(1, 0, 0)

3, 2, 2

0, 0, 0, 0

(0, 0, 0, 0)

(1, 1, 1, 1)

0, 2, 1, 1

(1, 1, 1, 1)

1, 3, 2, 2Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

(1, 0, 1, 0)

1, 0, 1, 0

(1, 0, 1, 0)

1, 0, 0, 0

(1, 0, 1, 1)

0, 2, 2, 1

(0, 0, 0, 0)

2, 2, 2, 2 2, 2, 1, 1

(1, 1, 0, 0)

(1, 0, 0, 0)

2, 1, 1, 1

(1, 1, 1, 0)

1, 1, 1, 0

(0, 0, 0, 0)

1, 1, 1, 1

(1, 1, 0, 0)

1, 1, 0, 0

(1, 0, 0, 0)

Figure 1. A family of floating codes withn = k > 3, l = 2 and t =
2(q− 1). The numbers inside (resp. beside) a node are the cell state vector
(resp., variable vector). The code has acyclic property. The layer of a cell
state vector is the number of rewrites it takes for the cells to each that state.
(a) n = k = 3, q = 4. (b) n = k = 4, q = 4. (c) n = k = 5, q = 4.



• Type I: If c1 = c2 = · · · = cn, thenvi = 0 for 1 6 i 6 k.
• Type II: If smax = smin + 1, thenvi = ci − smin for 1 6

i 6 k.
• Type III: If (c1, c2, · · · , cn) = (smin, smin + 2, smin +

1, smin + 1, · · · , smin + 1) – that is, it starts with
smin, smin + 2 and is followed byn− 2 smin + 1’s – then
vi = 1 for 1 6 i 6 k.

• Type IV: If (c1, c2, · · · , cn) = (smin, smin + 2, smin +
2, smin + 1, smin + 1, · · · , smin + 1) – that is, it starts
with smin, smin + 2, smin + 2 and is following byn − 3
smin + 1’s – thenv2 = 0 andvi = 1 for i 6= 2, 1 6 i 6 k.

• Cyclic law: If we cyclically shift any cell state vector
mentioned above byi positions (0 6 i 6 n − 1), the
corresponding variable vector also cyclically shifts byi
positions.2

To explain how the code is used for rewriting, let’s first
define layer number. Every cell state vector has a layer
number (see Fig. 1 for examples), which is the number of
rewrites it takes for the cells to reach that state. For notational
convenience, ifC is a cell state vector of type I (resp., II, III
or IV), then we call a cyclic shift ofC type I (resp., II, III
or IV) as well. For this code, the layer number of a cell state
vectorα = (c1, c2, · · · , cn) is determined as follows:

• If α is of type I, it is in layer2c1.
• If α is of type II, let x denote the number of cells whose

states aresmax, then it is in layer2smin + x.
• If α is of type III, it is in layer2smin + n.
• if α is of type IV, it is in layer2smin + n + 1.

For a cell state vector in layeri > 0, a rewrite al-
ways changes it into a cell state vector in layeri + 1.
For example, if n = k = 5 and the current cell
state vector is(0, 2, 1, 1, 1) (type III, layer 5, representing
(v1, v2, · · · , v5) = (1, 1, 1, 1, 1)), and we want to change the
variable vector to(1, 1, 1, 0, 1), we can change the variable
state vector to(2, 2, 2, 1, 2) (type II, layer 6). It is simple to
verify through case enumeration that for any cell state vector in
layer i < 2(q− 1), there arek cell state vectors in layeri + 1
it can change into that correspond to thek possible rewrite
requests. So we get:

Theorem 5.The code in Construction4 hast = 2(q− 1).

Corollary 6. Whenk = 3, the code is optimal.

Proof: By the Theorem 2 of [3], for any floating code
with n > k(l − 1) − 1, t 6 [n − k(l − 1) + 1](q − 1) +
b [k(l−1)−1](q−1)

2 c. So whenn = k = 3 and l = 2, t 6
2(q− 1). That matches the performance of this code.

IV. COMPOSITECODES WITH 3 6 k 6 6

In this section, we present a family of codes for3 6 k 6 6
and l = 2. Due to their similarity, we present the code for
k = 4 in detail, and describe the codes fork = 3, 5, 6 only
succinctly.

Construction 7. (Code fork = 4, l = 2, n > 7 and arbitrary
q) We first show the construction for a simplified case:q = 2.

Here every valid cell state vector (i.e., a cell state vector that
represents variables) has at least three cells at state 0. The seg-
ment of cells before (resp., behind) the second (resp., second-
last) cell at state 0 is called thehead(resp.tail). (For example, if
the cell state vector is(0, 1, 0, 0, 1, 1), then the head is(0, 1),
the tail is (0, 1, 1).) For simplicity of explanation, denote the
cell state vector by(a1, a2, · · · , ai , 0, · · · , 0, b j, · · · , b2, b1).
Here the head and the tail have lengthi and j, respectively. Note
that both of them contain exactly one cell at state 0.

The two variablesv1, v2 are determined by the head as
follows: (1) v1 = v2 = 0 if i is odd andai = 0; (2)
v1 = v2 = 1 if i is odd andai 6= 0; (3) v1 = 0, v2 = 1 if
i is even andai 6= 0; (4) v1 = 1, v2 = 0 if i is even andai = 0.

The two variablesv3, v4 are determined by the tail in the
same way. Note that hereb1 replacesa1, b2 replacesa2, and so
on; andv3 (resp.v4) replacesv1 (resp.,v2).

For a rewrite, if we need to modify the head (resp., tail), we
always change the leftmost (resp., rightmost) cell that gives the
desired result. A rewrite changes the state of exactly one cell.
The process ends when only three cells at state 0 are left.

If q > 2, we use the cell states layer-by-layer: first use cell
states 0 and 1 as above; then use cell levels 1 and 2 in the same
way; then use cell levels 2 and 3· · · Each rewrite raises only
one cell’s state except during the transition from one layer to
the next.2

Example 8.Let k = 4, l = 2, n = 7, q = 4. If the variable
vector changes as(0, 0, 0, 0) → (1, 0, 0, 0) → (1, 1, 0, 0) →
(1, 1, 1, 0) → (0, 1, 1, 0) → (0, 1, 0, 0) → (0, 1, 0, 1) →
· · · , the cell states change as(0, 0, 0, 0, 0, 0, 0) →
(1, 0, 0, 0, 0, 0, 0) → (1, 0, 1, 0, 0, 0, 0) →
(1, 0, 1, 0, 0, 0, 1) → (1, 0, 1, 1, 0, 0, 1) →
(1, 2, 1, 1, 1, 1, 1) → (1, 2, 1, 1, 1, 2, 1) → · · · 2

Theorem 9.For the code in Construction7, if n is even,t =
(n− 6)(q− 1) + 3; if n is odd,t = (n− 5)(q− 1) + 2.

Proof: It is not hard to see that every rewrite raises one
cell’s state by one, unless the rewrite causes the transition
from one layer to the next. During that transition, ifn is even
(resp., odd), at most four (resp., three) cells need to be set to
the higher state of the new layer. So the first layer supports
n − 3 rewrites and every subsequent layer supports at least
n− 6 (if n is even) orn− 5 (if n is odd) rewrites.

The following results summarize the codes fork = 3, 5 and
6. We present their constructions in the appendix.

• When k = 3, l = 2, n > 5, if n is even, there is a code
with t = (n− 4)(q− 1) + 2; otherwise, there is a code
with t = (n− 3)(q− 1) + 1.

• When k = 5, l = 2, n > 9, there is a code witht >
(n− 10− 2 log2 n)(q− 1) + 3.

• When k = 6, l = 2, n > 12, there is a code witht >
(n− 17− 6 log2 n)(q− 1) + 5.

All the four codes presented here havet = n(q − 1) −
o(nq). Since every rewrite raises the cell states (up toq− 1),
the codes are all asymptotically optimal inn, the number of
cells, and inq, the number of cell levels.



V. I NDEXED CODE

The codes introduced above are for the joint coding of a few
variables. In this section, we introduce a code construction,
indexed code, for generalk.

Construction 10. (Indexed code)Divide thek variables intoa
groups:g1, g2, · · · , ga. For then cells, set aside a small number
of cells asindex cellsand divide the other cells intob groups:
h1, h2, · · · , hb. Herea andb are chosen parameters, andb > a.
For 1 6 i 6 a, the variables ofgi are coded using a floating
code and are stored inhi. Afterwards, every time a cell group
can no longer support any more rewriting (say it storesgi), store
gi in the next unused cell group. The index cells are used to
remember which cell group stores which variable group. (The
details of the index cells is the topic of study in this section.)2

We first show that the indexed code is asymptotically
optimal in n and q. Let there be

√
n − o(

√
n) cell groups,

each containing
√

n− o(
√

n) cells. At mostlogqa index cells
are needed on average per cell group. Apply known floating
codes, such as those presented in Section IV, to each variable
group. Those codes can support

√
n(q− 1)− o(

√
nq) rewrites

in each cell group. There can be at mosta partially used cell
groups at any moment, so in the end,

√
n− o(

√
n) cell groups

are fully used. So the indexed code enablesn(q− 1)− o(nq)
rewrites.

The simplest way to use index cells is to uselogq a
index cells for each cell group to remember which variable
group it stores. However, whenn is sufficiently large, much
fewer index cells are necessary. The best coding strategy is
to remember the mapping between thea partially used cell
groups and thea variable groups, which is a permutation.
(The unused, partially used, and fully used cell group are
differentiated in the following way. Cells in unused groups
are at state 0. Make cells in a fully used group all have state
q− 1. Ensure that in a partially used group, at least one cell is
not at stateq− 1. The last step costs the support for at most
one rewrite, depending on the used floating code.)

Example 11.Let a = 3 and b = 6. Initially, the cell group
hi stores the variable groupgi for i = 1, 2, 3. Assume that as
rewriting continues, firsth4 is used to storeg2, thenh5 is used
to storeg1, thenh6 is used to storeg2. We use a permutation
(π1, π2, π3) to record the information that thei-th partially
used cell group stores theπi-th variable group, fori = 1, 2, 3.
Then, the permutation changes as(1, 2, 3) → (1, 3, 2) →
(3, 2, 1) → (3, 1, 2). The index cells are used to remember the
permutation. Note that the permutation changes at mostb− a
times.

We now show a coding strategy for the index cells. First,
build a mapping between the permutations and binary vectors
of length four as follows.

binary (0,0,0,0) (0,0,0,1) (0,0,1,0) (1,0,1,0) (1,0,0,0) (1,0,0,1)

vector (0,1,1,1) (0,1,1,0) (0,1,0,1) (1,1,0,1) (1,1,1,1) (1,1,1,0)

permutation (1,2,3) (3,1,2) (2,3,1) (2,1,3) (1,3,2) (3,2,1)

For every change of the permutation, onlyone bit in the
binary vector needs to change. (Note that every such change
shifts one number to the end of the permutation.) For in-
stance, if the permutation changes as(1, 2, 3) → (1, 3, 2) →
(3, 2, 1) → (2, 1, 3) → (2, 3, 1), the binary vector can change
as(0, 0, 0, 0) → (1, 0, 0, 0) → (1, 0, 0, 1) → (1, 1, 0, 1) →
(0, 1, 0, 1). Use a floating code that stores the four bits in the
binary vector (such as the code for four variables in Section IV),
and this code also records the permutation. By Theorem9, only

b
q−1 + o(b) index cells are needed, which is close to one index
cell on average for everyq− 1 cell groups whenb is large.2

The design of general coding schemes for index cells is
beyond the scope of this paper. In the following, We present
a lower bound for the number of index cells that are needed
for remembering the permutation (i.e., the mapping between
partially used cell groups and the variable groups).

Theorem 12. The number of cells needed for indexing is at
least b−a

q−1 + a
2 − 1 if (a− 2)(q− 1) < 2(b− a), and at least

2(b−a)
q−1 if (a− 2)(q− 1) > 2(b− a).

Proof: Assume that an indexing scheme that usesx cells
for indexing is given. We first prove that they can only guaran-
tee the recording of at most(x− a + 2)(q− 1) + (a−2)(q−1)

2
changes of the permutation ifx > a− 2, and at mostx(q−1)

2
changes of the permutation ifx 6 a− 2.

Let’s consider the casex > a− 2 first. Let (s1, s2, · · · , sx)
denote the states of thex cells. Initially, (s1, s2, · · · , sx) =
(0, 0, · · · , 0) and the permutation is(1, 2, · · · , a). Let A =
(s1, s2, · · · , sa−2) denote the firsta− 2 cells’ states, and let
B = (sa−1, sa, · · · , sx) denote the lastx− a + 2 cells’ states.
Define theweight ofA (resp.,B) as∑a−2

i=1 si (resp.,∑x
i=a−1 si).

The permutation is a permutation ofa numbers; and when
it changes, a number is moved to the back. So there area− 1
possible ways to change a permutation each time. When the
permutation changes, some cell states need to be raised. Since
there are onlya− 2 cells in A, at any time, if all thea− 1
ways to change the permutation increase only the weight ofA
(not the weight ofB), there must be one way of changing the
permutation that increases the weight ofA by at least two.

We now choose a sequence of changes to the permutation
as follows. Assume thati > 0 changes have been chosen.
For the (i + 1)-th change, if all thea − 1 ways to change
the permutation increase only the weight ofA (not the weight
of B), choose the(i + 1)-th change as one that increases the
weight of A by at least two (we call such a changetype I);
otherwise, choose the(i + 1)-th change as one that increases
the weight ofB by at least one (we call such a changetype
II ). Since the maximum weight ofA is (a− 2)(q− 1) and
the maximum weight ofB is (n− a + 2)(q− 1), there can
be at most(a−2)(q−1)

2 changes of type I and at most(n− a +
2)(q − 1) changes of type II. So the number of changes of
permutation that the indexing scheme guarantees to record is
at most(x− a + 2)(q− 1) + (a−2)(q−1)

2 .
The casex 6 a− 2 is simpler. By the same argument, we

can choose a sequence of changes of the permutation such



that every change increases∑x
i=1 si by at least two. So the

number of changes of permutation that the indexing scheme
guarantees to record is at mostx(q−1)

2 .
Since there area variable groups andb cell groups, there

can beb− a changes of permutation. So an indexing scheme
needs to have(x − a + 2)(q − 1) + (a−2)(q−1)

2 > b − a if

x > a− 2 and havex(q−1)
2 > b− a if x 6 a− 2. Thus we get

x > b−a
q−1 + a

2 − 1 if x > a− 2 and x > 2(b−a)
q−1 if x 6 a− 2.

So when (a−2)(q−1)
2 < b− a, we must havex > a− 2 and

therefore havex > b−a
q−1 + a

2 − 1. When (a−2)(q−1)
2 > b− a,

we either havex > a− 2 > 2(b−a)
q−1 , or havex 6 a− 2 and

therefore havex > 2(b−a)
q−1 . So the conclusion holds.

VI. CONSTRUCTIONSBASED ON COVERING CODES

There have been no existing floating code constructions for
l > 2 (i.e., non-binary alphabets) [3]. In this section, we
present a new method that converts floating codes with large
alphabets to floating codes with small alphabets (including
the binary alphabet) by using covering codes. The idea is to
map a variable with a large alphabet to a vector of a small
alphabet such that when the variable changes its value (i.e.,
is rewritten), only a few (preferably one) entries in the vector
change their values. Based on this method, we can obtain a
series of bounds and code constructions for large alphabets.

Construction 13. (Mapping based on linear covering codes)
Let v be a variable of alphabet sizel. Choose an(n0, k0) linear
covering code of alphabet sizel0, which has lengthn0 and
dimensionk0. The requirement isln0−k0

0 > l. The code has
ln0−k0
0 cosets of the codewords. Among them, choose anyl

cosets, and map them to thel values ofv. 2

Example 14.Let v be a variable that takes its value from an
alphabet of sizel = 4: {0, 1, 2, 3}. Choose the simple(3, 1)
repetition code. As a result, the mapping fromv to bit vectors
of length 3 is as follows:

vector (0,0,0) (1,0,0) (0,1,0) (0,0,1)
(1,1,1) (0,1,1) (1,0,1) (1,1,0)

v 0 1 2 3

To design a floating code for variablesv1, v2, · · · , vk
of alphabet size 4, we first map them to binary vari-
ables {wi, j|1 6 i 6 k, 1 6 j 6 3}, where
each binary vector(wi,1, wi,2, wi,3) representsvi. Then we
use a floating code for the3k binary variables. Every
rewrite for (v1, v2, · · · , vk) maps to exactly one rewrite for
(w1,1, w1,2, · · · , wk,3). (For instance, ifk = 2 and (v1, v2)
changes as(0, 0) → (0, 3) → (0, 2) → (3, 2) → (3, 1),
the binary vector(w1,1, w1,2, w1,3, w2,1, w2,2, w2,3) will corre-
spondingly change as(0, 0, 0, 0, 0, 0) → (0, 0, 0, 0, 0, 1) →
(0, 0, 0, 1, 0, 1) → (0, 0, 1, 1, 0, 1) → (0, 0, 1, 1, 0, 0).) So if
the floating code supportst rewrites for the binary variables, it
also supportst rewrites for the 4-ary variablesv1, v2, · · · , vk.
2

It is important for the selected linear covering code to
have a small covering radius, because when the large-alphabet
variable changes, the covering radius of the code equals
the number of entries in the small-alphabet vector that may
change.

Let R denote the covering radius of the(n0, k0) covering
code in Construction 13. Lett(n, q, k, l) denote the greatest
number of rewrites that a floating code can guarantee to sup-
port, whenk l-ary variables are stored inn cells with q states.
(Namely,t(n, q, k, l) is the optimal value oft for floating codes
with parametersn, q, k, l.) The following theorem compares
the coding performance for different alphabets.

Theorem 15.

t(n, q, k, l) > bt(n, q, kn0, l0)/Rc
Proof: Map the variablesv1, v2, · · · , vk of alphabet sizel

to kn0 variables of alphabet sizel0 with Construction 13. Build
an optimal floating codeC for the kn0 variables of alphabet
size l0, which guaranteest(n, q, kn0, l0) rewrites.

For the(n0, k0) covering code, every vector of lengthn0 is
within Hamming distanceR from a codeword. So by the sym-
metry of linear codes, for every vector and each of theln0−k0

0
cosets, there is a vector in the coset that is within Hamming
distanceR from the former vector. So when we rewritevi
(1 6 i 6 k), we are correspondingly rewriting at mostR l0-
ary variables. SoC supportsbt(n, q, kn0, l0)/Rc rewrites for
v1, v2, · · · , vk. So t(n, q, k, l) > bt(n, q, kn0, l0)/Rc.

By using known results on covering codes [2], we can obtain
a number of bounds for floating codes with large alphabets
in terms of the performance of floating codes with binary
alphabets. We report some of the results in Fig. 2.

To show how to derive the results in Fig. 2, we first
need to define a few terms. Letl(m, R) denote the smallest
possible length of a binary linear code with codimension (i.e.,
redundancy)m and covering radiusR. Let t(n, k) denote
the minimum possible covering radius of(n, k) binary linear
codes. (Note that some of the letters here have different
meanings from those used for floating codes. We use these
notations following the convention of the research on covering
codes [2].) A list of known results on binary linear covering
codes are shown in Fig. 3.

We show how to derive the inequalities in Fig. 2 by two
examples. The first example is the 3rd inequality in Fig. 2:
For a > b > 1 and l 6 2a−b,

t(n, q, k, l) > bt(n, q, ka, 2)/d a− b
2

ec.
By the 3rd inequality in Fig. 3, whena > b > 1, t[a, b] 6
d a−b

2 e. So if l 6 2a−b, we can map the variables of alphabet
size l to the cosets of a binary(a, b) linear covering code,
whose covering radius is at mostd a−b

2 e. By Theorem 15, we
get the 3rd inequality of Fig. 2.

The second example is the 18th inequality in Fig. 2: For all
m > 3 and l 6 22m+1,

t(n, q, k, l) > bt(n, q, k(2m+1 + 2m − 4), 2)/2c.



1. For m > 2, l 6 2m, t(n, q, k, l) > t(n, q, k(2m − 1), 2).
2. For l 6 211, t(n, q, k, l) > bt(n, q, 23k, 2)/3c.
3. For a > b > 1 and l 6 2a−b, t(n, q, k, l) > bt(n, q, ka, 2)/d a−b

2 ec.
4. For b > 4, a > 2b−2 and l 6 2a−b, t(n, q, k, l) > bt(n, q, ka, 2)/(b a

2 c − 2(b−4)/2)c.
5. For l 6 27, t(n, q, k, l) > bt(n, q, 23k, 2)/2c.
6. For l 6 219, t(n, q, k, l) > bt(n, q, 47k, 2)/5c.
7. For all a > 1 and l 6 2a−1, t(n, q, k, l) > bt(n, q, ka, 2)/b a

2 cc.
8. For all a > 2 and l 6 2a−2, t(n, q, k, l) > bt(n, q, ka, 2)/b a−1

2 cc.
9. For all a > 3 and l 6 2a−3, t(n, q, k, l) > bt(n, q, ka, 2)/b a−2

2 cc.
10. Fora > 6 and l 6 2a−4, t(n, q, k, l) > bt(n, q, ka, 2)/b a−4

2 cc.
11. Fora > 7 and l 6 2a−5, t(n, q, k, l) > bt(n, q, ka, 2)/b a−5

2 cc.
12. Fora > 14 and l 6 2a−6, t(n, q, k, l) > bt(n, q, ka, 2)/b a−8

2 cc
13. Fora > 19 and l 6 2a−7, t(n, q, k, l) > bt(n, q, ka, 2)/b a−9

2 cc.
14. For allb > 2, a > 22b − 1 and l 6 2a−2b−1, t(n, q, k, l) > bt(n, q, ka, 2)/b a−2b

2 cc.
15. For allb > 2, a even andl 6 2a−2b, t(n, q, k, l) > bt(n, q, ka, 2)/b a−2(2b−1)/2

2 cc.
16. For allb > 2, a odd andl 6 2a−2b, t(n, q, k, l) > bt(n, q, ka, 2)/b a−2(2b−1)/2−1

2 cc.
17. Fora > 127 and l 6 2a−8, t(n, q, k, l) > bt(n, q, ka, 2)/b a−16

2 cc.
18. For allm > 3 and l 6 22m+1, t(n, q, k, l) > bt(n, q, k(2m+1 + 2m − 4), 2)/2c.
19. For allm > 4 and l 6 22m, t(n, q, k, l) > bt(n, q, k(2m+1 − 4), 2)/2c.
20. For allm > 1 and l 6 24m, t(n, q, k, l) > bt(n, q, k(22m+1 − 2m − 1), 2)/2c.
21. For allm > 2 and l 6 24m+1, t(n, q, k, l) > bt(n, q, k(22m+1 + 22m − 2m − 2), 2)/2c.
22. For allm > 2 and l 6 24m+2, t(n, q, k, l) > bt(n, q, k(222m+2−2m−2), 2)/2c.
23. For allm > 2 and l 6 24m+3, t(n, q, k, l) > bt(n, q, k(22m+2 + 22m+1 − 2m − 2), 2)/2c.
24. Form > 4 and l 6 22m, t(n, q, k, l) > bt(n, q, k(27 · 2m−4 − 1), 2)/2c.
25. Form > 1 and l 6 22m+1, t(n, q, k, l) > bt(n, q, k(5 · 2m−1 − 1), 2)/2c.
26. For allm > 4 and l 6 22m, t(n, q, k, l) 6 bt(n, q, k(27 · 2m−4 − 1), 2)/2c.
27. For allm > 1 and l 6 22m+1, t(n, q, k, l) > bt(n, q, k(5 · 2m−1 − 1), 2)/2c.
28. For allm > 6 and l 6 23m, t(n, q, k, l) > bt(n, q, k(155 · 2m−6 − 2), 2)/3c.
29. For allm > 9 and l 6 23m, t(n, q, k, l) > bt(n, q, k(152 · 2m−6 − 1), 2)/3c.
30. For allm > 7 and l 6 23m+1, t(n, q, k, l) > bt(n, q, k(3 · 2m − 1), 2)/3c.
31. For allm > 4 and l 6 23m+2, t(n, q, k, l) > bt(n, q, k(1024 · 2m−8 − 1), 2)/3c.
32. For allm > 8 and l 6 23m+2, t(n, q, k, l) > bt(n, q, k(822 · 2m−8 − 2), 2)/3c.
33. For allm > 13 and l 6 23m+2, t(n, q, k, l) > bt(n, q, k(821 · 2m−8 − 1), 2)/3c.
34. Form = 5 or m > 11 and l 6 24m, t(n, q, k, l) > bt(n, q, k(47 · 2m−4 − 1), 2)/4c.
35. For allm > 8 and l 6 24m+1, t(n, q, k, l) > bt(n, q, k(896 · 2m−8 − 2), 2)/4c.
36. For allm > 10 and l 6 24m+1, t(n, q, k, l) > bt(n, q, k(896 · 2m−8 − 3), 2)/4c.
37. For allm > 15 and l 6 24m+1, t(n, q, k, l) > bt(n, q, k(895 · 2m−8 − 1), 2)/4c.
38. For allm > 8 and l 6 24m+2, t(n, q, k, l) > bt(n, q, k(992 · 2m−8 − 2), 2)/4c.
39. For allm > 10 and l 6 24m+2, t(n, q, k, l) > bt(n, q, k(992 · 2m−8 − 3), 2)/4c.
40. For allm > 15 and l 6 24m+2, t(n, q, k, l) > bt(n, q, k(991 · 2m−8 − 1), 2)/4c.
41. For allm > 10 and l 6 24m+3, t(n, q, k, l) > bt(n, q, k(1248 · 2m−8 − 3), 2)/4c.
42. Form = 8 or m > 15 and l 6 24m+3, t(n, q, k, l) > bt(n, q, k(1247 · 2m−8 − 1), 2)/4c.

Figure 2. The relationship between floating codes withl > 2 and floating codes withl = 2. Heret(n, q, k, l) denotes the optimal value oft (the number of
rewrites) for a floating code with the parametersn, q, k, l.

By the 18th inequality in Fig. 3, whenm > 3, l(2m + 1, 2) 6
2m+1 + 2m − 4. So whenm > 3 and l 6 22m+1, we can
map variables of alphabet sizel to the cosets of a binary
(x, x− 2m− 1) linear covering code with covering radius 2,
wherex = l(2m + 1, 2) 6 2m+1 + 2m − 4. By Theorem 15,
t(n, q, k, l) > bt(n, q, kx, 2)/2c. Sincex 6 2m+1 + 2m − 4,
t(n, q, kx, 2) > t(n, q, k(2m+1 + 2m − 4), 2). So we get the
18th inequality of Fig. 2.

The rest of the inequalities in Fig. 2 are derived in the same
ways.

Since there have been a number of floating code construc-
tions for binary variables (especially the codes presented in
this paper), floating codes with large alphabets can also be
built. The number of such results that can be obtained is large.
We show some example data of the obtainable floating codes
in Fig. 4.

VII. C ONCLUSION

In this paper, several new constructions for floating codes
have been presented. New bounds for floating codes have
also been shown. Compared to the known results, the code



1. (Hamming code:) For m > 2, l(m, 1) = 2m − 1.
2. (Golay code:) l(11, 3) = 23.
3. For n > k > 1, t[n, k] 6 d n−k

2 e.
4. For k > 4 and n > 2k−2, t[n, k] 6 b n

2 c − 2(k−4)/2.
5. t(23, 16) 6 2.
6. t(47, 28) 6 5.
7. For all n > 1, t[n, 1] = b n

2 c.
8. For all n > 2, t[n, 2] = b n−1

2 c.
9. For all n > 3, t[n, 3] = b n−2

2 c.
10. Forn > 4 and n 6= 5, t[n, 4] = b n−4

2 c.
11. Forn > 5 and n 6= 6, t[n, 5] = b n−5

2 c.
12. Forn > 14, t[n, 6] 6 b n−8

2 c.
13. Forn > 19, t[n, 7] 6 b n−9

2 c.
14. For all p > 2 and for n > 22p − 1, t[n, 2p + 1] 6 b n−2p

2 c.
15. For all p > 2 and for n even,n > 22p−1, t[n, 2p] 6 b n−2(2p−1)/2

2 c.
16. For all p > 2 and for n odd, n > 22p−1 − 1, t[n, 2p] 6 b n−2(2p−1)/2−1

2 c.
17. Forn > 127, t[n, 8] 6 b n−16

2 c.
18. For allm > 3, l(2m + 1, 2) 6 2m+1 + 2m − 4.
19. For allm > 4, l(2m, 2) 6 2m+1 − 4.
20. For allm > 1, l(4m, 2) 6 22m+1 − 2m − 1.
21. For allm > 2, l(4m + 1, 2) 6 22m+1 + 22m − 2m − 2.
22. For allm > 2, l(4m + 2, 2) 6 222m+2−2m−2.
23. For allm > 2, l(4m + 3, 2) 6 22m+2 + 22m+1 − 2m − 2.
24. Form > 4, l(2m, 2) 6 27 · 2m−4 − 1.
25. Form > 1, l(2m + 1, 2) 6 5 · 2m−1 − 1.
26. For allm > 4, l(2m, 2) 6 27 · 2m−4 − 1.
27. For allm > 1, l(2m + 1, 2) 6 5 · 2m−1 − 1.
28. For allm > 6, l(3m, 3) 6 155 · 2m−6 − 2.
29. For allm > 9, l(3m, 3) 6 152 · 2m−6 − 1.
30. For allm > 7, l(3m + 1, 3) 6 3 · 2m − 1.
31. For allm > 4, l(3m + 2, 3) 6 1024 · 2m−8 − 1.
32. For allm > 8, l(3m + 2, 3) 6 822 · 2m−8 − 2.
33. For allm > 13, l(3m + 2, 3) 6 821 · 2m−8 − 1.
34. Form = 5 and for all m > 11, l(4m, 4) 6 47 · 2m−4 − 1.
35. For allm > 8, l(4m + 1, 4) 6 896 · 2m−8 − 2.
36. For allm > 10, l(4m + 1, 4) 6 896 · 2m−8 − 3.
37. For allm > 15, l(4m + 1, 4) 6 895 · 2m−8 − 1.
38. For allm > 8, l(4m + 2, 4) 6 992 · 2m−8 − 2.
39. For allm > 10, l(4m + 2, 4) 6 992 · 2m−8 − 3.
40. For allm > 15, l(4m + 2, 4) 6 991 · 2m−8 − 1.
41. For allm > 10, l(4m + 3, 4) 6 1248 · 2m−8 − 3.
42. Form = 8 and for all m > 15, l(4m + 3, 4) 6 1247 · 2m−8 − 1.

Figure 3. Existing bounds for binary linear covering codes [2].

constructions presented in this paper are considerably broader,
covering general parameters. Several novel coding techniques
– including indexes based on permutations, code mapping
based on covering codes, etc. – have been presented. As future
research, the authors will study the further optimization of
these coding techniques.

APPENDIX

In this appendix, we present the constructions of the com-
posite codes fork = 3, 5 and 6.

The composite code in Construction 7 – a code that encodes
four binary variables – uses theheadand thetail of the cell

array to encode two variables, respectively. In the same way,
we get the following floating code fork = 3.

Construction 16.(Code fork = 3, l = 2, n > 5 and arbitrary
q) We first show the construction for a simplified case:q =
2. Here every valid cell state vector has at least two cells at
state 0. The segment of cells before (resp., behind) the second
(resp., the last) cell at state 0 is called thehead (resp.,tail).
(For example, if the cell state vector is(0, 1, 0, 0, 1, 1, 1), then
the head is (0, 1), the tail is (1, 1, 1). The headencodes the
variablesv1, v2 in the same way as Construction7. The tail
encodes the variablev3 as follows: if the number of cells in the
tail is even (including zero),v3 = 0; otherwise,v3 = 1.



n q k l t tup α

20 8 5 2 49 126 0.39
60 8 5 2 223 406 0.55
100 8 5 2 465 686 0.68
20 8 2 4 49 122 0.40
60 8 2 4 223 402 0.55
100 8 2 4 465 682 0.68
20 8 2 8 16 94 0.17
60 8 2 8 121 374 0.32
100 8 2 8 265 654 0.41
20 8 5 4 14 91 0.15
60 8 5 4 85 371 0.23
100 8 5 4 248 651 0.38

Figure 4. Some typical data on obtained floating codes. Heret is the number
of rewrites guaranteed by the obtained code,tup is an upper bound fort
(computed using known results), andα = t/tup.

If q > 2, we use the cell states layer-by-layer, the same way
as Construction7.

Example 17. Let k = 3, l = 2, n = 7, q = 4. If the
variables change as(0, 0, 0) → (0, 1, 0) → (0, 1, 1) →
(1, 1, 1) → (1, 1, 0) → (0, 1, 0) → (0, 1, 1) → (1, 1, 1) →
(1, 0, 1) → (0, 0, 1) → (1, 0, 1) · · · , the cell states
change as(0, 0, 0, 0, 0, 0, 0) → (0, 1, 0, 0, 0, 0, 0) →
(0, 1, 0, 0, 0, 0, 1) → (0, 1, 1, 0, 0, 0, 1) →
(0, 1, 1, 0, 0, 1, 1) → (0, 1, 1, 1, 0, 1, 1) →
(1, 2, 1, 1, 1, 1, 2) → (1, 2, 2, 1, 1, 1, 2) →
(2, 2, 2, 1, 1, 1, 2) → (2, 2, 2, 2, 1, 1, 2) →
(3, 2, 2, 2, 2, 2, 3) → · · · 2

Theorem 18.For the code in Construction16, if n is even,t =
(n− 4)(q− 1) + 2; if n is odd,t = (n− 3)(q− 1) + 1.

Proof: It is not difficult to see that every rewrite only
raises one cell state by one, unless the rewrite causes the
transition from one layer to the next. During that transition,
if n is even (resp., odd), at most three (resp., two) cells need
to be set to the higher state of the new layer. The conclusion
follows.

We now present the code constructions fork = 5 and 6.
In these two constructions, we use three segments – thehead,
tail, andmiddle part– of the cell array to separately encode
variables.

Construction 19.(Code fork = 5, l = 2, n > 9 and arbitrary
q) We first show the simplified case:q = 2. A valid cell state
vector has at least four cells at state 0. The second and second-
last cells at state0 splits then cells into three parts: thehead, the
tail and themiddle part. The head encodesv1, v2 and the tail
encodesv4, v5. The middle part contains a consecutive segment
of cells at state 1. If the length of the segment is odd,v3 = 1;
otherwise,v3 = 0. (The length can be zero.) We always try to
make the segment stay evenly between the head and the tail; if
the segment gets too close to the head (or tail), we merge it with
the head (or tail) and then create a new middle part.

Whenq > 2, the layer-by-layer method is used.2

Example 20.Let k = 5, l = 2, n = 15, q = 4.

If the variables change as (0, 0, 0, 0, 0) →
(0, 0, 1, 0, 0) → (1, 0, 1, 0, 0) → (1, 0, 1, 0, 1) →
(1, 0, 0, 0, 1) → (1, 1, 0, 0, 1) → (0, 1, 0, 0, 1) →
(1, 1, 0, 0, 1) → (1, 0, 0, 0, 1) → (1, 0, 1, 0, 1) →
(1, 0, 1, 0, 0) → (0, 0, 1, 0, 0) → · · · , the cell
states change as (0, 0, 0,0,0,0,0,0,0,0,0,0,0, 0, 0)
→ (0, 0, 0,0,0,0,0,1,0,0,0,0,0, 0, 0)
→ (1,0, 0, 0,0,0,0,1,0,0,0,0,0, 0, 0)
→ (1,0, 0, 0,0,0,0,1,0,0,0,0, 0, 1,0)
→ (1,0, 0, 0,0,0,1,1,0,0,0,0, 0, 1,0)
→ (1,0,1, 0, 0,0,1,1,0,0,0,0, 0, 1,0)
→ (1,0,1,1, 0, 0,1,1,0,0,0,0, 0, 1,0)
→ (1,0,1,1,1, 0, 1,1,0,0,0,0, 0, 1,0)
→ (1,1,1,1,1,1,1,1,1,0, 0, 0, 0, 1,0)
→ (1,1,1,1,1,1,1,1,1,0, 0, 1, 0, 1,0)
→ (2,1, 1, 1,1,1,1,1,2,1,1,1,1, 1, 1) →
(2,2,1, 1, 1,1,1,1,2,1,1,1,1, 1, 1) → · · · 2

Theorem 21.The code in Construction19 hast > (n− 10−
2 log2 n)(q− 1) + 4.

Proof: There are two cases where a rewrite can increase
the weight of the cell state vector by more than one: (1) The
case where the head (or tail) and the middle part meet, in
which case we need to increase the weight by at most three;
(2) the case where the code transits from one layer to the next
layer, in which case we need to increase the weight by at most
eleven (including six cells at the lower level and five cells at
the upper level). The first case happens at most(q− 1) log2 n
times. The second case happens at mostq− 1 times. So we
get t > (n− 10− 2 log2 n)(q− 1) + 4.

Construction 22. (Code for k = 6, l = 2, n > 12 and
arbitrary q) First, consider the simplified case:q = 2. Same as
the code in Construction19, this code also has the head, tail and
middle part. In the same way as Construction7, theheadstores
two variablesv1, v2, thetail stores another two variablesv5, v6.
The middle partstores the two variablesv3, v4 as follows: In
the middle part, (1) if there is no cell at state 1, or if the cells
at state 1 are consecutive and the number of cells at state 1 is
even,v3 = 0, v4 = 0; (2) if the number of cells at state 1 is
even and there is exactly one cell at state 0 between the cells at
state 1,v3 = 1, v4 = 1; (3) if the number of cells at state 1 is
odd and those cells at state 1 are consecutive,v3 = 1, v4 = 0;
(4) if the number of cells at state 1 is odd and there is exactly
one cell at state 0 between the cells at state 1,v3 = 0, v4 = 1.

The layer-by-layer method is used ifq > 2. 2

Example 23. Let k = 6, l = 2, n = 20, q = 4. If
the variables change as(000000) → (000100) →
(100100) → (100110) → (100010) → (110010) →
(010010) → (110010) → (100010) → (110010) →
(100010) → (100011) → (101011) → · · · , the cell states
change as (0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0) →
(0, 0, 0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0, 0, 0) →
(1,0, 0, 0,0,0,0,0,1,0,1,1,0,0,0,0,0,0, 0, 0) →
(1,0, 0, 0,0,0,0,0,1,0,1,1,0,0,0,0,0, 0, 0,1) →
(1,0, 0, 0,0,0,0,0,1,1,1,1,0,0,0,0,0, 0, 0,1) →



(1,0,1, 0, 0,0,0,0,1,1,1,1,0,0,0,0,0, 0, 0,1) →
(1,0,1,1, 0, 0,0,0,1,1,1,1,0,0,0,0,0, 0, 0,1) →
(1,0,1,1,1, 0, 0,0,1,1,1,1,0,0,0,0,0, 0, 0,1) →
(1,1,1,1,1,0, 0, 0,1,1,1,1,0,0,0,0,0, 0, 0,1) →
(1,1,1,1,1,0,1, 0, 1,1,1,1,0,0,0,0,0, 0, 0,1) →
(1,1,1,1,1,1,1,1,1,1,1,1,1,0, 0, 0,0, 0, 0,1) →
(1,1,1,1,1,1,1,1,1,1,1,1,1,0, 0, 0, 0, 1,0,1) →
(2,1, 1, 1,1,1,1,1,1,2,1,1,1,1,1,1, 1, 2,2,1) → · · · 2

Theorem 24.The code in Construction22 hast > (n− 17−
6 log2 n)(q− 1) + 6.

Proof: There are three cases where a rewrite can increase
the weight of the cell state vector by more than one: (1) The
case where the head (or tail) and the middle part meet, in
which case we increase the weight by at most seven (a weight
increase of at most four for the new head or tail, and a weight
of at most three for the new middle part); (2) the case where
the code transits from one layer to the next layer, in which
case we increase the weight by at most eighteen (including
eleven cells at the lower level and seven cells at the upper
level); (3) the case where we rewrite the middle part for the
first time for a layer, in which case we increase the weight by
at most three. The first case and third case together happen at
most (q− 1) log2 n times. The second case happens at most
q− 1 times. So we gett > (n− 17− 6 log2 n)(q− 1) + 6.

REFERENCES

[1] P. Cappelletti, C. Golla, P. Olivo and E. Zanoni (Ed.), Flash memories,
Kluwer Academic Publishers, 1st Edition, 1999.

[2] G. Cohen, I. Honkala, S. Litsyn and A. Lobstein.Covering codes, North-
Holland, 1997.

[3] A. Jiang, V. Bohossian and J. Bruck, “Floating codes for joint informa-
tion storage in write asymmetric memories,”Proc. IEEE International
Symposium on Information Theory (ISIT), Nice, France, June 2007.

[4] A. V. Kuznetsov and A. J. H. Vinck, “On the general defective channel
with informed encoder and capacities of some constrained memories,”
IEEE Trans. Inform. Theory, vol. 40, no. 6, pp. 1866-1871, Nov. 1994.

[5] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,”
Information and Control, vol. 55, pp. 1-19, 1982.


