Joint Coding for Flash Memory Storage

Anxiao (Andrew) Jiang Jehoshua Bruck
Computer Science Department Electrical Engineering Department
Texas A&M University California Institute of Technology
College Station, TX 77843, U.S.A. Pasadena, CA 91125, U.S.A.
ajiang@cs.tamu.edu bruck@paradise.caltech.edu

Abstract—Flash memory is an electronic non-volatile memory and show the asymptotic optimality of most of the presented
with wide applications. Due to the substantial impact of block ¢odes.
erasure operations on the speed, reliability and longevity of
flash memories, writing schemes that enable data to be modified II. NOTATION

numerous times without incurring the block erasure is desirable. Let o be k variables. Each variable: has an
This requirement is addressed by floating codes, a coding scheme 01,02, , Uk . i

that jointly stores and rewrites data and maximizes the rewriting alphab_et of sizé: {0,1,---, I —1}. (01,02, -+, 0x) is C?‘”ed
capability of flash memories. In this paper, we present several new the variable vector and V denotes the set of all variable

floating code constructions. They include both codes with specific vectors. Letcq,cp, -+ ,c, be the states oh: cells. Each
parameters and general code constructions that are asymptoti- ~q|| statec: has one ofy possible states{0,1,---,q—1}
cally optimal. We also present bounds to the performance of (c1, 02 ...l e, is called thecell state vectq,ra{ndcl denotés

floating codes. -
the set of allg” cell state vectors. Thereightof a cell state
I. INTRODUCTION vector isy ! c;.

Flash memory is a type of electronic non-volatile memonyefinition 1. [3] A floating code is a mappin® : C — V U
(NVM) with wide applications. It stores data in flc_)atlng—gate{J_}_ Fora € C andB €V, if D(x) = B, it means that the cell
cells, where each cell hgsstates0, 1,---,q — 1. Toincrease statesy represent the variable valugsif D(«) = L, it means

or decrease the State Of a Ce”, Charge iS injeCted intO Mat‘x does not represent any value Ofthe Variawes_
extracted from the cell using the hot-electronic mechanism or

the Fowler-Nordheim tunneling mechanism [1]. An interesting bl nitiallv. th I © 0 0 d
feature of flash memories is theiock erasureoperation. variables. Initia 3;] the geblstate vector (8, "'A’ﬂ>’ an
Cells in a flash memory are organized into blocks, with eadiey represent the variable vect@,0, - -, 0). oating
block containing103 or so cells. The state of a cell can becode is for rewriting data between two block erasures; so for
raised individually (callectell programming. But to decrease each rewrite, the state of a cell can only increase or remain

the state of a cell, the flash memory needs to erase the wh g same. A rewrite changes the cgll states so that the new cell
block (i.e., lowering the states of all the cells to the minimurtate vector represents the new variable vectort denote the

value) and then re-program all the cells. Such an operationnﬁémber pf rewrites that are guaranteed to be feasible by us_ing
calledblock erasure/programmingt is well known that block the floating code, regardless of what the sequence of rewrites

erasures can substantially reduce the writing speed, reliabif'fwa' Cllearlyt is a finite ”“T“t_’er- leen the pa_trametars;, k1L
and longevity of flash memories [1], with the benefit of & floating code that maximizesis calledoptimal
lower circuitry complexity. For storage schemes, it is importafixample 2. Three examples of a family of floating codes are
to minimize block erasures, especially for applications wheshiown in Fig.1. This family of codes are for the parameters
data are modified frequently. n =k > 3,1 = 2 and arbitraryy. They achieveé = 2(q —
Floating codes [3] address this requirement by maximizirlg. The codes have eyclic property If the cell state vector
the number of times data can be rewritten (i.e., modifiedy; = a1,cp = ao,- -+, ¢y = a,,) represents the variable vector
between two block erasures. A floating code jointly storg®, = by,v, = by, -+, v = by), then the cell state vector
multiple variables i1 cells and with each rewrite, the cells’(c; = ay,¢c3 = a3,--+,cy,—1 = an, ¢y = a1) represents the
states keep increasing. No block erasure is necessary until theable vectofv, = by, vo = bz, -+ ,Up_1 = by, vx = by).
cell states reach the maximum state value. A floating coder simplicity, for every set of cell state vectors that are cyclic
maps the state of cells to the stored variables and, through #fgfts of each other, only one of them is shown in Rigs their
joint coding approach, the ability to support rewrites can bepresentative.
substantially improved. Take the code in Figl (c) as an instance, which is for
The known results on floating codes are limited. Exist = k = 5,9 = 4,1 = 2. If a sequence of rewrites
ing code constructions are mainly for two to three binarghange the variables 49€,0,0,0,0) — (1,0,0,0,0) —
variables [3]. In this paper, we present several new cod#0,1,0,0) — (1,0,0,0,0) — (1,0,0,0,1) —
constructions based on varied approaches. They include bth0,1,0,1) — (1,0,1,1,1), the cell state vector can
codes with specific parameters and code constructions &drange a%0,0,0,0,0) — (1,0,0,0,0) — (1,0,1,0,0) —
general parameters. We analyze their performance and bouriéds1,1,1,1) — (2,1,1,1,2) — (2,1,2,1,2) —

A rewrite means to change the value of one of the

(2,1,2,2,2). A general code construction for = k,1 = tayer®

2,t = 2(q — 1), including this code as a special example, is @00 @1 GnD

shown in Section 1110 Layer 5
(1,0,0) (1,1,1)

We present an upper bound tdor general floating codes. e (22) @D (2
Theorem3. Fori = 1,2,--- ,k, defines; as follows: (1) If ©00 (@LLO (©L1
| = 2andiisevens; = S qp..; (’J‘.); (2 ifl =2 andi Lyes
i ky. ; i k (0,0 @y
Is 9dd,si = Yj=13,i () B IFL> 2,5 = 35 (j)(l -

1)/. Also, definew; as the smallest positive integer such that *¥*?
("twry — (" > s Letme {1,2,- -+, k} be the integer ° -
Suchthatwﬁg%for]':Lz’...,k,_ Layer1
' n(g=1) : -
For any floating codet < LW | - m + min{m — .
1,n(q — 1) modwy,}. -m(o’o’o)

Proof: s; is the number of values that the variable vector
can possibly take after rewrites. (By symmetrys; does not
depend on the initial value of the variable vector.) Consider
m consecutive rewrites. They increase the weight of the cellLayere Gond) Gazd) (23D (azd)
state vector by at least. For anyx > m, the number of ways 0000 (100 (Lo10 (LLLD
to raise the states of cells such that the weight of the cell
state vector increases by at leastand at mostr is ("1¥) — e (a222) (2221 (0a221)

n (1,0,0,0) 1,1,1,0 (1,0,1,1)
("t™=1). Them consecutive rewrites can change the variable

into s,,, possible values, each of which corresponds to at least®** %jssj %f;;] (2121) (021
one way of raising the cell states. So by the definitionugf @000 GLoo - GoLe LD
there is a sequence a@f consecutive rewrites that increases ‘<3

the weight of the cell state vector by at least,. Choose @000 G110

L%J such sequences of rewrites (one after another), and@«2 (1111) (1100} (1010)

they make the weight of the cell state vector be at ladgt— @oo0 @1e0 (0L

1) — [n(g — 1) mod w,,]. After that, since the weight cannot tae:

exceedn(q — 1), there is a sequence of rewrites that is @000

not feasible due to the lack of room for the weight increase. Laero

Also, each rewrite increases the weight by at least one. So 0000

after the initial LMfT;UJ sequences of rewrites (which consist
of L”(Z]i;nj -m rewrites in total), at mostnin{m — 1, n(q —

1) mod wy,, } more rewrites are guaranteed to be feasible. So
F < LMJ -m~+min{m —1,n(qg — 1) mod wy, }. [

Wm
The bound in Theorem 3 compares favorably with the upper
bounds in [3] whenk or [is relatively large. For example,
whenn = 4,9 = 8,k = 4,1 = 4, Theorem 3 gives < 11, Lyws (22222) (22211 (22221 (o2l

. (4,0,0,0,0) (1,1,1,0,0) (1,1,0,1,0) 1,1,111)
and the bounds in [3] show< 14.

P~

a) k=n=3, g=4

(b) k=n=4, q=4

Layer6 (33333) (33222) (32322 (22221) (02211)
00000 (41000 (10100 (L1LL0 (10,111

tayers (2.2222) (22111) (21211) (11110

I1l. CODE CONSTRUCTION FORn =k 00000 (11,000 (10100 (LLLLO
In this section, we present a floating code foe= k > 3, tyes (21,2,11) (12,100) (11010)
I = 2 and arbitraryg. Codes for more general parameters will *0000 1500 (%1010
be presented in the following sections. It will be proved that taye2 (111,11) (tL1000) (1,0,100)
whenn = k = 3, the code presented here is optimal. Several 00000 (11,000 (10100
examples of the code have been shown in Example 2 and,,
Fig. 1. We now present the general code construction. (Note (1,0,0,0,0)
that the code has@yclic property as explained in Example 2.) Layer

In the following, defines,,;, = min{cy, ¢, -+ ,cy} and (0.0.0,0,0)
Smax = Max{c1,€, -+ ,Cn}-
i i (c) k=n=5, g=4
Construction 4. (Code forn = k > 3, I = 2 and arbitrary
q) The cell state vectorécy,cp,- -+ ,c,) are mapped to the Figurel. A family of floating codes withn = k > 3,1 = 2 andt =
i .. i i . 2(g —1). The numbers inside (resp. beside) a node are the cell state vector

variable VeCtor$Ul' 2, ! Uk) in the fO”OWIng way. (resp., variable vector). The code hagyalic property The layer of a cell
state vector is the number of rewrites it takes for the cells to each that state.
@n=k=3,g=4bn=k=4,g=4.(c)n=k=5g9=4.

e Type lilfci =cp=---=cy, thenv; =0forl <i<k. Here every valid cell state vector (i.e., a cell state vector that

o Type Il If spax = Syin + 1, thenv; = ¢; — s, for 1 < represents variables) has at least three cells at state 0. The seg-
i<k ment of cells before (resp., behind) the second (resp., second-

o Type I If (c1,c2,++ ,¢cn) = (SminsSmin + 2,5min + last) cell at state 0 is called thead(resptail). (For example, if
1,8min + 1, -+ ,smin + 1) — that is, it starts with the cell state vector i§0,1,0,0,1,1), then the head i€, 1),

Smin, Smin + 2 and is followed byn — 2 s,,;, + 1's —then the tail is(0,1,1).) For simplicity of explanation, denote the
v;=1for1 <i<k. cell state vector byay,ay, -+ ,a;,0,- - ,0,bj,- - by, b1).

o Type IV: If (c1,¢2,-+ ,¢n) = (Smin,Smin + 2,5min + Here the head and the tail have lengéndj, respectively. Note
2,8min + 1, Smin + 1, ,smin + 1) — that is, it starts that both of them contain exactly one cell at state 0.

With s,,i0, Smin + 2, Smin + 2 and is following byn — 3 The two variablesvi,v, are determined by the head as
Smin + 1's—thenvy = 0andv; = 1fori #2,1<i<k. follows: (1)vy = v, = 0 if i is odd anda; = 0; (2)

o Cyclic law: If we cyclically shift any cell state vectorv, = v, = 1 ifiis odd andi; # 0; (3)vy = 0,v, = 1 if
mentioned above by positions (< i < n—1), the iisevenand; # 0; (4)vy = 1,v, = 0ifiisevenand; = 0.
corresponding variable vector also cyclically shiftsiby The two variabless, vy are determined by the tail in the
positions.d same way. Note that hebg replacesi, b, replaces,, and so

To explain how the code is used for rewriting, let's firs? nl;:andvg (re.?p ‘U.;}) rep Iacde? (rezp vfh) \ head il
define layer number Every cell state vector has a layer or a rewrite, if we need to modify the head (resp., tail), we

number (see Fig. 1 for examples), which is the number g.fways change the leftmost (resp., rightmost) cell that gives the
’ sired result. A rewrite changes the state of exactly one cell.

rewrites it takes for the cells to reach that state. For notatiorﬁ
e process ends when only three cells at state 0 are left.

convenience, ilC is a cell state vector of type | (resp., II, 1l if 5 h I | byl A I

or IV), then we call a cyclic shift ofC type | (resp., II, I q 3 ,dwle usebt e ?eh states a;;lelr— y/' a{er.dlrzsf ushe ce

or 1V) as well. For this code, the layer number of a cell stagates 0 and 1 as above, then use cell levels and < in the same
way; then use cell levels 2 and-3- Each rewrite raises only

vectora = (c1,¢3,- -+ ,¢y) is determined as follows: .) Y
one cell’s state except during the transition from one layer to

o If ais of type |, it is in layer2c;.

o If ais of type Il, letx denote the number of cells whosethe nexto

states are,,,,, then it is in layer2s,,;,, + x. Example8.Letk = 4,] = 2,n = 7,9 = 4. If the variable
o If ais of type Il it is in layer2s,,;, + n. vector changes &9,0,0,0) — (1,0,0,0) — (1,1,0,0) —
o if ais of type IV, it is in layer2s,,;, +n + 1. (1,1,1,0) — (0,1,1,0) — (0,1,0,0) — (0,1,0,1) —

For a cell state vector in layet > 0, a rewrite al- , the cell states change a8),0,0,0,0,0,0) —
ways changes it into a cell state vector in laye# 1. (1,0,0,0,0,0,0) - (1,0,1,0,0,0,0) -
For example, ifn = k = 5 and the current cell (1,0,1,0,0,0,1) - (1,0,1,1,0,0,1) -
state vector is(0,2,1,1,1) (type lll, layer 5, representing (1,2,1,1,1,1,1) - (1,2,1,1,1,2,1) - --- O
(v1,02,---,v5) = (1,1,1,1,1)), and we want to change theTheorem 9. For the code in ConstructioR, if n is even,t =
variable vector to(1,1,1,0,1), we can change the variable(;, — 6)(g — 1) + 3; if n is odd,t = (n —5)(qg — 1) + 2.
state vector t2,2,2,1,2) (type II, layer 6). It is simple to .])
verify through case enumeration that for any cell state vector in Proof: It is not hard to see that every rewrite raises one
layeri < 2(q — 1), there arek cell state vectors in layer+ 1 cell's state by one, unless th(_a rewrite causes t_he transition
it can change into that correspond to thepossible rewrite from one layer to the next. During that transitionpifis even

requests. So we get: (resp._, odd), at most four (resp., three) cellg need to be set to
) _ the higher state of the new layer. So the first layer supports

Theorem 5. The code in Constructiod hast = 2(q — 1). n — 3 rewrites and every subsequent layer supports at least

Corollary 6. Whenk = 3, the code is optimal. n— 6 (if nis even) orn — 5 (if n is odd) rewrites. []

. The following results summarize the codes fot 3, 5 and
Proof: By the Theorem 2 of [3], for any floating codeg_ \ve present their constructions in the appendix.

W{'}EDf’f)i](’;ﬁ)— D=Lt < fn=kI=D+1Gq=1+ \whenk=3,1=2 135, if nis even, there is a code
| =——5—] Sowhenn =k =3andl =2t < with + = (n — 4)(g — 1) + 2; otherwise, there is a code
2(q —1). That matches the performance of this code. m with t = (n—3)(qg — 1) + 1.

Whenk = 5,1 = 2, n > 9, there is a code with >

. _ _ (n—10—2log,n)(g —1) +3.

In this section, we present a family of codes foK k < 6 « Whenk = 6,1 — 2, n > 12, there is a code with >
and/ = 2. Due to their similarity, we present the code for (n—17 — 6log, n)(q — 1) +5.

k = 4 in detail, and describe the codes for= 3,5,6 only
succinctly.

IV. CoMPOSITECODES WITH3 <k <6 ¢

All the four codes presented here have= n(qg—1) —
o(ng). Since every rewrite raises the cell states (ug to1),
Construction 7. (Code fork = 4,1 = 2, n > 7 and arbitrary the codes are all asymptotically optimal 7 the number of
q) We first show the construction for a simplified cage= 2. cells, and ing, the number of cell levels.

V. INDEXED CODE For every change of the permutation, omge bitin the
binary vector needs to change. (Note that every such change

The codes introduced above are for the joint coding ofafes ifts one number to the end of the permutation.) For in-

?/r?drgbelgséolgﬁlfglrsgseicetrlga’ we introduce a code COI’]Strucnosnt’ance, if the permutation changes(as2,3) — (1,3,2) —

' (3,2,1) — (2,1,3) — (2,3,1), the binary vector can change
Construction 10. (Indexed codepivide thek variables intas as(0,0,0,0) — (1,0,0,0) — (1,0,0,1) — (1,1,0,1) —
groupsgi, 2, - - -, Sa. Forthen cells, set aside a small number0,1,0,1). Use a floating code that stores the four bits in the
of cells asindex cellsand divide the other cells into groups: binary vector (such as the code for four variables in Section V),
hi,hy, - -, hy. Herea andb are chosen parameters, ang a. and this code also records the permutation. By The®@eomly
For1 < i < a, the variables of; are coded using a f/o‘;u‘ingq%1 + o(b) index cells are needed, which is close to one index

code and are stored Iy. Afterwards, every time a cell group cell on average for every— 1 cell groups wheb is large.O

can no longer support any more rewriting (say it St@rgsstore The design of general coding schemes for index cells is
gi In the next unused cell group. The index cells are used Eﬁyond the scope of this paper. In the following, We present
remember which cell group stores which variable group. (Thgjower bound for the number of index cells that are needed
details of the index cells is the topic of study in this section.) sor remembering the permutation (i.e., the mapping between

We first show that the indexed code is asymptoticalj@rtially used cell groups and the variable groups).
optimal in n and g. Let there bey/n — o(y/n) cell groups, Theorem 12. The number of cells needed for indexing is at
each containing/n — o(+/n) cells. At mostlog,a index cells leasté’%% +5—1if (a—2)(q—1) < 2(b—a), and at least
are needed on average per cell group. Apply known floatirg—a) if (a—2)(q—1) = 2(b—a).

. . . —1 =
codes, such as those presented in Section 1V, to each variatfle)]
group. Those codes can suppffi(g — 1) — o(y/nq) rewrites ~ Proof: Assume that an indexing scheme that use®lls
in each cell group. There can be at mogpartially used cell for indexing is given. We first prove that they can only guaran-
groups at any moment, so in the erdiz — o(1/n) cell groups tee the recording of at mogk —a +2)(q —1) + w
are fully used. So the indexed code enabigs— 1) —o(ng) changes of the permutation if > a2 — 2, and at mos@
rewrites. changes of the permutation if< a — 2.

The simplest way to use index cells is to ukeg a Let’s consider the case > a — 2 first. Let (s1,s2,- -, Sx)
index cells for each cell group to remember which variablgenote the states of the cells. Initially, (s1,s2,-- ,sx) =
group it stores. However, whem is sufficiently large, much (0,0,---,0) and the permutation i§1,2,--- ,a). Let A =
fewer index cells are necessary. The best coding strategy(ds, sz, - -+ ,s,_2) denote the first — 2 cells’ states, and let
to remember the mapping between theartially used cell B = (s, 1,54, ,Sx) denote the last — a + 2 cells’ states.
groups and ther variable groups, which is a permutationDefine theweight of A (resp.,B) asz?:‘f s; (resp.,y 7 ,_15i)-

(The unused, partially used, and fully used cell group are The permutation is a permutation @fnumbers; and when
differentiated in the following way. Cells in unused group#& changes, a number is moved to the back. So there aré

are at state 0. Make cells in a fully used group all have stgtessible ways to change a permutation each time. When the
g — 1. Ensure that in a partially used group, at least one cellpermutation changes, some cell states need to be raised. Since
not at state; — 1. The last step costs the support for at moshere are only — 2 cells in A, at any time, if all thes — 1

one rewrite, depending on the used floating code.) ways to change the permutation increase only the weight of

" (not the weight ofB), there must be one way of changing the
Example 11.Leta = 3 andb = 6. Initially, the cell group e rmytation that increases the weightAfby at least two.

h; stores the variable groyp fori = 1,2,3. Assume that as e now choose a sequence of changes to the permutation
rewriting continues, firsty is used to storgs, thenhs is used 5¢ follows. Assume that > 0 changes have been chosen.
to storeg, thenhy is used {o storg%. We use {:1 permu'tation For the (i + 1)-th change, if all thez — 1 ways to change
(71,713, 713) to record the information that theth partially he permutation increase only the weight4f(not the weight
used cell group stores the-th variable group, for =1,2,3. ot B) choose thei + 1)-th change as one that increases the
Then, the permutation changes @s2,3) — (1,3,2) — \yeight of A by at least two (we call such a chang@e);

(3,2,1) — (3,1,2). The index cells are used to remember thgiheryise, choose the + 1)-th change as one that increases
permutation. Note that the permutation changes at imest o weight of B by at least one (we call such a chartype

times. _ _ _1I). Since the maximum weight oA is (a —2)(g — 1) and
We now show a coding strategy for the index cells. Firsfae maximum weight o is (1 —a + 2)(g — 1), there can
build a mapping between the permutations and binary vect%rg at most@=2.a=1)

of length four as follows. changes of type | and at mogt —a +

2)(q — 1) changes of type Il. So the number of changes of
permutation that the indexing scheme guarantees to record is

binary 0000 | 0001 | 0010 | 1010 | (1000 | (1001 at mOSt(x —a+ 2) (q - l) + W
vector ©0119 | 0120 | 0109 | @101 | @1y | @110 The casex < a — 2 is simpler. By the same argument, we
permutation || @23 | (12 | @) | @1y | a3z | @2y can choose a sequence of changes of the permutation such

that every change increasg§s_, s; by at least two. So the It is important for the selected linear covering code to
number of changes of permutation that the indexing schermave a small covering radius, because when the large-alphabet
guarantees to record is at mgg{%l), variable changes, the covering radius of the code equals

Since there ara variable groups and cell groups, there the number of entries in the small-alphabet vector that may
can beb — a changes of permutation. So an indexing scheng&ange.
needs to havedx —a+2)(g — 1) + @2U=D > p 4 jf Let R denote the covering radius of they, ko) covering

-1) . . - code in Construction 13. Lef(n, g,k,1) denote the greatest
x>a—2andhave"(‘7T>b—an‘x<a—2.Thusweget : : L4,k
bea a1 if 5 andy > 200 i <) number of rewrites that a floating code can guarantee to sup-
Xzt - libx>a—2andx > == W x<a—2. ot whenk I-ary variables are stored incells with g states.
So When% < b—a, we must havex > a —2 and (Namely,t(n,q,k,1) is the optimal value of for floating codes
therefore haver > =2 4+ 2 _ 1. When (a-2)(9-1) 5 p, _, with parameterss, g,k 1.) The following theorem compares
Zg=172 : 2 z ’ : .
the coding performance for different alphabets.

we either havex > a—2 > z(qb_’l”), or havex < a—2 and
_ . Theorem 15.
therefore haver > Z(qbfl"). So the conclusion holds. []

t(n,q,k 1) > |t(n,q,kng,ly)/R]

There have been no existing floating code constructions for F10°f Map the variablesy, v, - - - , vy of alphabet sizé
0 kng variables of alphabet siZg with Construction 13. Build

I > 2 (i.e., non-binary alphabets) [3]. In this section, wé)) .
present a new method that converts floating codes with la & opt|ma|_ floating code for the ki vana_bles of alphabet
ely, which guarantees(n, g, kng, Iy) rewrites.

alphabets to floating codes with small alphabets (includi) .
the binary alphabet) by using covering codes. The idea is to':Or the (1o, ko) covering code, every vector of lengtl is

map a variable with a large alphabet to a vector of a smdyfthin Hamming distancek from a codeword. So by theﬁs;(ym-
alphabet such that when the variable changes its value (i8etrY of linear codes, for every vector and each ‘?ﬂﬁqe .
is rewritten), only a few (preferably one) entries in the vectc?r?sets' there is a vector in the coset that is within qummg
change their values. Based on this method, we can obtaifi§fanceR from the former vector. So when we rewritg

series of bounds and code constructions for large alphabetd < ¢ < k), we are correspondingly rewriting at mast/o-
ary variables. S& supports|t(n,q,kng,lp)/R] rewrites for

Construction 13. (Mapping based on linear covering codesy, v,,... ,v.. Sot(n,q,k,1) > |t(n,q,kng,1o)/R]. u
Letov be a variable of alphabet sizeChoose affno, ko) linear By using known results on covering codes [2], we can obtain
covering code of alphabet sidg, Wh;;Ch has lengthy and g number of bounds for floating codes with large alphabets
dimensionk,. The requirement i§°"* > 1. The code has in terms of the performance of floating codes with binary
lgo’k" cosets of the codewords. Among them, choose lanyalphabets. We report some of the results in Fig. 2.

cosets, and map them to thealues ofy. O To show how to derive the results in Fig. 2, we first

Example 14. Let v be a variable that takes its value from ar ced to define a few terms. Lérn, R) denote the smallest

alphabet of sizé — 4: {0,1,2,3}. Choose the simplé3, 1) possible length of a binary linear code with codimension (i.e.,

repetition code. As a result, the mapping fronto bit vectors redunQa_mcy)m and_ covering radng. Let t(n.’ k) d‘?”Ote
)) the minimum possible covering radius @i, k) binary linear
of length 3 is as follows:

codes. (Note that some of the letters here have different
meanings from those used for floating codes. We use these

VI. CONSTRUCTIONSBASED ON COVERING CODES

vector || (0,0,0) | (1,0,0)| (0,1,0)| (0,0,1) notations following the convention of the research on covering
(11)] (0.1,1)| (1.01)| (1,1,0) codes [2].) A list of known results on binary linear covering
v 0 1 2 3 codes are shown in Fig. 3.

To design a floating code for variables,, v, - , vy We show how. to derive the_ inequalitigs in Fig. 2 by. two
of alphabet size 4, we first map them to binary vargxamples. The first exan’;}ple is the 3rd inequality in Fig. 2:
ables {wij|1 < i < k1 < j < 3}, where FOra=b=>1andl <277,
each binary vectofw; 1, w;», w;3) representw;. Then we a—>b
use a floating ccfde for théik)binary variables. Every t(n,q,k,1) > [t(n,q,ka,2)/[——1].
rewrite for (vy,vy, -+ ,vg) maps to e_xactly one rewrite forBy the 3rd inequality in Fig. 3, when > b > 1, t[a,b] <
(w1,1,w1,,- -+, wys3). (For instance, ik = 2 and(v1,v2) %57, So if 1 < 297, we can map the variables of alphabet
changes ag0,0) — (0,3) — (0,2) — (3,2) - (3,1), size] to the cosets of a binarya, b) linear covering code,
the binary vectofws,, w10, w13, Wa,1, w20, Wa,3) Will COMTe- e covering radius is at mogf52]. By Theorem 15, we
spondingly change a9, 0,0,0,0,0) — (0,0,0,0,0,1) - get the 3rd inequality of Fig. 2. ? ’
(0,0,0, 1.’ 0,1) — (0,0,1,1,0, .1) — (0,0, 1.’ 1’0’0)') So if . The second example is the 18th inequality in Fig. 2: For all
the floating code supportsewrites for the binary variables, it > 3 and] < 22+
also supports rewrites for the 4-ary variables,, v;, - - -, vy. '

O t(n,q,k 1) > [t(n,q k@™ +2M —4),2)/2].

1. Form >2,1<2™ t(n,q,k 1) >t(nq k2" -1),2).

2. Forl< 211, t(n,q,k,l) > t(n,q,23k,2)/3].

3. Fora>b>1andl <2°°70, t(n, q,k,l) > |t(n,q,ka,2)/ %52].
4. Forb>4,a>2""%andl <27t t(n,q,k 1) > [t(n,q,ka,2)/([§] —20~H/2)].
5. Forl <27, t(n,q,k,l) > Lt(n,q,23k,2)/2j.

6. Forl <2, t(n,q,k1) > |t(n,q,47k2)/5].

7. Foralla>1andl <271, t(n,q,k 1) > [t(n,q,ka,2)/|5]].

8. Foralla>2andl <22 t(n,q,k1)> |t (n,q,ka,Z)/L%JJ
9. Foralla>3andl < 2”—3, t(n,q,k1) > |t(n,q,ka, 2)/L”‘ 1.
10. Fora > 6 andl <274, t(n,q,k,1) > |t(n,q,ka,2)/| 52]].

11. Fora>7andl <2972, t(n,q,k1) > |t(n,q,ka, 2)/“;“

12. Fora > 14 and! <277, t(n,q,k,1) > |t(n,q,ka,2)/| 52 JJ
13. Fora>19 andl < 2°77, t(n,q,k,1) > [t(n,q,ka, 2)/L“ 21].

14. Forallb>2,a>2% —1andl <2721, (n,q,k 1) > |t(n,q,ka,2)/| 52 .
15. For allb > 2, a even and < 2%°2, t(n,q,k,1) > [t(n,q,ka, 2)/LMJJ
16. For allb > 2, a odd andl < 2972, (n,q,k,1) > | t(n, q,ka,2)/| &=22 21 22” DE-1,
17. Fora > 127 and! < 278, t(n,q,k,1) > |t(n,q,ka,2)/[“5%]].

18. For allm > 3 andl < 22"+1, t(n,q,k,1) > [t(n, q,k(2m+1 +2m —4),2)/2].

19. Forallm >4 and! < 22", t(n,q,k,1) > |t(n,q, k(2" — 4),2)/2].

20. Forallm > 1 andl < 2*", t(n,q,k,1) > |t(n,q, k(22" —2m —1),2)/2].

21. For allm > 2 andl < 24" t(n,q,k, 1) > [t(n,q, k(221 4-22m —2m —2),2)/2].
22. Forallm >2 andl < 24"+2, t(n,q,k 1) > |t(n,q, k(22" 7-2"-2),2)/2].

23. Forallm > 2 andl < 243, t(n,q,k,1) > [t(n, q k(22m+2 +22mF1 _om _ 2y 2)/2],
24. Form >4 andl < 22", t(n,q,k, 1) > |t(n,q,k(27-2"% —1),2)/2].

25. Form >1andl < 2¥"+1 t(n,q,k1) > | k(5-2m1 -1),2)/2].

t(n,q,
26. For allm >4 andl < 22", t(n,q,k,1) < |#(

,q,k(27 2" ~1),2)/2].
27. Forallm > 1 andl <22m+1 t(n,q,k 1) > |t(n,q,k(5-2""1 —1),2)/2].
28. For allm > 6 andl < 23, t(n,q,k,1) > |t(n,q,k(155-2m~6 —2),2)/3].
29. Forallm > 9 andl < 23", t(n,q,k, l) > |t(n,q,k(152-2"% —1),2)/3].
30. Forallm>7andl <23 t(n,q,k1) > [t(n,q,k(3-2" —1),2)/3].
31. Forallm >4 andl <232 t(n,q,k,1) > [t(n,q,k(1024-2"=8 —1),2)/3].
32. Forallm > 8 andl < 2%"+2 t(n,q,k,1) > |t(n,q, k(822 2m=8 _2),2)/3].
33. Forallm > 13 and! < 23m+2 t(n,q,k1) > |t(n,q,k(821-2m=8 —1),2)/3].
34. Form=5o0rm>11andl < 2%, t(n,q,k1) > |t (n q,k(47 -2m=4* —1),2) /4.
35. Forallm > 8andl<z4m+1 t(n,q,k1) > |t(n,q,k(896-2"m—8 —2),2)/4].
36. For allm > 10 and/ < 24m+1, t(n,q,k1) > |t(n,q,k(896-2"m—8 —3),2)/4].
37. Forallm > 15 and/ < 24m+1, t(n,q,k 1) > |t(n,q,k(895-2"=8 —1),2)/4].
38. Forallm > 8 andl < 24"%2, t(n,q,k,1) > |t(n,q,k(992-2"—8 —2),2)/4].
39. Forallm > 10 andl < 2*"+2 t(n,q,k,1) > |t(n,q,k(992 -2"=8 —3),2)/4].
40. For allm > 15 and! < 24"*2, t(n,q,k,1) > Lt(n,q,k(991 2m=8 _1),2)/4].
41. For allm > 10 and! < 24"*3, t(n,q,k,1) > |t(n,q,k(1248 - 2"~8 — 3),2) /4],

(

42. Form =8 orm > 15 andl < 2*"*3 t(n,q,k,1) > |t(n,q,k(1247 - 2"=8 —1),2) /4].

Figure2. The relationship between floating codes with 2 and floating codes witth = 2. Heret(n, g, k,1) denotes the optimal value of(the number of
rewrites) for a floating code with the parameters, k, [.

By the 18th inequality in Fig. 3, whem > 3, 1(2m +1,2) < Since there have been a number of floating code construc-
2mt+l L om 4 So whenm > 3 and! < 22"+l we can tions for binary variables (especially the codes presented in
map variables of alphabet siZeto the cosets of a binary this paper), floating codes with large alphabets can also be
(x,x —2m — 1) linear covering code with covering radius 2puilt. The number of such results that can be obtained is large.
wherex = [(2m 4 1,2) < 2"+ + 2™ — 4, By Theorem 15, We show some example data of the obtainable floating codes
t(n,q,k1) > |t(n,q,kx,2)/2]. Sincex < 2"™*1 + 2™ — 4, in Fig. 4.

t(n,q,kx,2) > t(n,q, k(2" + 2™ — 4),2). So we get the

18th inequality of Fig. 2. VII. CONCLUSION

In this paper, several new constructions for floating codes
The rest of the inequalities in Fig. 2 are derived in the sanve been presented. New bounds for floating codes have
ways. also been shown. Compared to the known results, the code

1. (Hamming code:Form > 2, [(m,1) = 2™ — 1.
2. (Golay code) I(11,3) = 23.

3. Forn>k>1,t[nk < ["55].

4. Fork>4andn >252 t[n k| < [2] —20=4)/2,
5. #(23,16) < 2.

6. t(47,28) <5.

7. Foralln>1,tn1] = (5]

8. Foralln>2 tn2] =%

9. Foralln>3,tn3]=|"%52].

10. Forn>4andn #5, t{n, 4] = | 52].

11. Forn >5andn # 6, t[n,5] = [5> .

CX)

t
12. Forn > 14, t[n,6] < |5 j
13. Forn > 19, t[n,7] < [%52].
14. Forallp >2and forn > 22/ — 1, t[n,2p + 1] < 52].
15. Forallp > 2 and forn even,n > 22P~1, t[n,2p] < LMJ
16. For allp > 2 and forn odd,n > 2%"~1 —1, t[n,2p] < LMJ
17. Forn > 127, t[n, 8] < [518 .
18. Forallm >3,1(2m+1,2) <2m+l 4 2m —4
19. Forallm >4, 1(2m,2) < 2"+ — 4,
20. Forallm > 1, [(4m,2) <22+l _om 1,
21. Forallm > 2, [(4m +1,2) <22+l 4. p2m _om _ 3,
22, Forallm >2, 1(4m+2,2) < 22" -2"2,
23. Forallm > 2, [(4m+3,2) < 22m+2 4 p2m+1 _gm _ 5
24. Form >4,1(2m,2) <27-2"m4 -1,
25. Form>1,12m+1,2) <5-2"71 -1,
26. Forallm >4, 1(2m,2) <27-2"4 1.
27. Forallm>1,12m+1,2)<5-2"1 -1,
28. For allm > 6, 1(3m,3) < 155-2"76 —2,
29. Forallm >9,1(3m,3) <152-2"6 -1,
(
(

5
6
<
<

30. Forallm>7103m+1,3)<3-2"—1.

31. Forallm>4,1(3m+2,3)<1024-2m8 1,

32. Forallm>8,1(3m+2,3) <822-2m8_2,

33. Forallm >13,1(3m+2,3) <821-2"8 1.

34. Form =5 and for allm > 11, [(4m,4) < 47-2"% -1,
35. Forallm>8,1(4m+1,4) <896-2"8 — 2.

36. For allm > 10, I(4m +1,4) < 896-2"~8 — 3,

37. Forallm > 15, 1(4m +1,4) < 895-2"m—8 1,

38. Forallm>8,1(4m+2,4) <992-2m8 2

39. For allm > 10, I(4m +2,4) <992 -2"m~8 3,

40. Forallm >15,1(4m+2,4) <991-2"8 — 1.

41. For allm > 10, I(4m +3,4) < 1248 .28 — 3,

42, Form = 8 and for allm > 15, [(4m + 3,4) < 1247 .28 1,

Figure 3. Existing bounds for binary linear covering codes [2].

constructions presented in this paper are considerably broaderay to encode two variables, respectively. In the same way,
covering general parameters. Several novel coding techniques get the following floating code fdr = 3.

— including indexes based on permutations, code mapping

based on covering codes, etc. — have been presented. As fumastruction 16.(Code fork = 3, = 2, n > 5 and arbitrary
research, the authors will study the further optimization gff We first show the construction for a simplified cage=

these coding techniques. 2. Here every valid cell state vector has at least two cells at
state 0. The segment of cells before (resp., behind) the second
APPENDIX (resp., the last) cell at state 0O is called tiead (resp.,tail).

(For example, if the cell state vector(®,1,0,0,1,1,1), then
In this appendix, we present the constructions of the conthe headis (0,1), thetail is (1,1,1). Theheadencodes the
posite codes fok = 3, 5 and 6. variablesvy, v, in the same way as Constructidn Thetail
The composite code in Construction 7 — a code that encodmgodes the variabte as follows: if the number of cells in the
four binary variables — uses the®adand thetail of the cell tail is even (including zero}; = 0; otherwiseps = 1.

[(n g k Tt Jty|a | If the variables change as(0,0,0,0,0) —
20 8 5 2]49 |126] 0.39 (0,0,1,0,0) — (1,0,1,0,0) — (1,0,1,0,1) —
60 8 5 2| 223 | 406 | 0.55

100 8 5 21 465 686 1 068 (1,0,0,0,1) — (1,1,0,0,1) — (0,1,0,0,1) —

0 8 2 41 49 1221020 (1,1,0,0,1) -— (1,0,0,0,1) — (1,0,1,0,1) —
60 8 2 41 223202 055 (1,0,1,0,00 — (0,0,1,0,0) — ---, the cell

100 8 2 4| 465 6821 0.68 states change as (00,0,0,00,0,0,0,0,,0,0,0,0)

20 8 2 8] 16 | 94 | 017 — (0,0,0,0,0,0,0,1,0,0,0,0,0,0)

60 8 2 8| 121| 374 0.32 — (1,00,0,0,0,0,1,0,0,0,0,0, 0)

100 8 2 8| 265 654 | 0.41 — (1,00,0,0,0,0,1,0,0,0,0, 1,0)

20 8 5 4] 14 J9o1 [015 — (1,00,0,0,0,1,1,0,0,0,0, 1,0

60 8 5 4|8 |371]0.23 — (1,0,10,0,0,1,1,0,0,0®, 1,0

100 8 5 4| 248 | 651 | 0.38 N (1’0,1,10, 0,1,1,0,0,0,M0, 1,0)

Figure 4. Some typical data on obtained floating codes. Hasghe number — (1,0,1,1,10,1,1,0,0,0,00, 1,0
of rewrites gu_aranteed by the obtained cotlg, is an upper bound for _ (1,1,1’1,1’1,1,1’1,@ 0,0, 1’0)
(computed using known results), and= t/t,,. R (1,11171,171'11171’01 1,0, 1’0)
— (2,141,1,1,1,1,1,21,1,1,1, 1) —

(22,11,1,1,1,1,2,1,1,1,1,1) — --- O

Wél%eorem 21.The code in Constructioh9 hast > (n — 10 —
2log,n)(g—1) +4.

If g > 2, we use the cell states layer-by-layer, the same
as ConstructiorT.

Example 17. Letk = 3,1 = 2,n = 7,9 = 4. If th)]
variables change a®,0,0) — (0,1,0) — (0,1,1) — Prc_)of: There are two cases where a rewrite can increase
(1,1,1) — (1,1,0) — (0,1,0) — (0,1,1) — (1,1,1) — the weight of the cell state vgctor by more than one: (1) Thg
(1,0,1) — (0,0,1) — (1,0,1)---, the cell states case where the head (qr tail) and the 'mlddle part meet, in
change as(0,0,0,0,0,0,0) — (0,1,0,0,0,0,0) — which case we need to increase the weight by at most three;
(0,1,0,0,0,0,1) . (0,1,1,0,0,0,1) - @ the_ case where the code trar_13|ts from one quer to the next
(0,1,1,0,0,1,1) _ (0,1,1,1,0,1,1) _, layer,in _whlch_ case we need to increase the welght by at most
(1,2,1,1,1,1,2) . (1,2,2,1,1,1,2) _, ¢eleven (including six c_eIIs at the lower level and five cells at
(2,2,2,1,1,1,2) . (2,2,2,2,1,1,2) N t_he upper level). The first case happens at n(1q;s£ 1)log, n
(3,2,2,2,2,2,3) — -+ O times. The second case happens at mostl times. So we

' o gett > (n—10—2log,n)(q — 1) + 4. [
heorem 18.For the code in Constructiol®, if n is event =]
—4)(g—1)+2;ifnisoddt = (n—3)(g—1) + 1. Construction 22. (Code fork = 6, = 2, n > 12 and

) o) arbitrary q) First, consider the simplified casp= 2. Same as
~ Proof: It is not difficult to see that every rewrite only y,q code in Constructioh®, this code also has the head, tail and
raises one cell state by one, unless the rewrite causes the o part. In the same way as Constructiomheheadstores
transition from one layer to the next. During that transitiory, variablem;, vy, thetail stores another two variables, .
if n is even (resp., odd), at most three (resp., two) cells negde migdle partstores the two variables;, v, as follows: In
to be set to the higher state of the new layer. The conclusig, midadle part, (1) if there is no cell at state 1, or if the cells

follows. _ B at state 1 are consecutive and the number of cells at state 1 is
We now present the code constructions for= 5 and 6. even,o; = 0,04 = 0; (2) if the number of cells at state 1 is

In these two constructions, we use three segments haBe oo and there is exactly one cell at state 0 between the cells at
ta|I3 andmiddle part— of the cell array to separately encode;;,;o 103 = 1,04 = 1; (3) if the number of cells at state 1 is
variables. odd and those cells at state 1 are consecutiyer 1,v4 = 0;
Construction 19.(Code fork = 5,1 = 2, n > 9 and arbitrary (4) if the number of cells at state 1 is odd and there is exactly
q) We first show the simplified casg:= 2. A valid cell state one cell at state 0 between the cells at state & 0,v4 = 1.

vector has at least four cells at state 0. The second and second-he layer-by-layer method is usedjit> 2. O

last cells at state splits then cells into three parts: theead the _ _ - o

tail and themiddle part The head encodes, v, and the tail I;;an:/glﬁazbs;é; ez‘h]iang_e 2{;1000_005511 __> 2(%’06701&)) 4'_’f
encodes,, vs. The middle part contains a consecutive segme(lfoowo) . (100110) — (100010) — (110010) —

of cells at state 1. If the length of the segment is add= 1; ciommo) ~ (110010) — (100010) — (110010) —

e~

otherwiseps; = 0. (The length can be zero.) We always try t 100010) — (100011) — (101011) — -- -, the cell states
make the segment stay evenly between the head and the talf,, nge as (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0 0000)
the segment gets too close to the head (or tail), we merge it W(go 00.0.0 07(’) 1’ O’ 1, 1’ 0’0’ O’O, OCDO) ="
the head (or tail) and then create a new middle part. (E’ 0’0 ’0’010,070,1 ’0'1 ’1 7010,0'0’00_’)6)
Wheng > 2, the layer-by-layer method is used. (10 0: Oz 01 0: Oz O: 1: 01 1: 1101 0: Oz O;(D 0.1
(

)
Example 20.Letk =5, =2,n = 15,9 = 4. 1,00,0,0,0,0,0,1,1,1,1,0,0,0,0 0,1)

Ll

(1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0, 0,1)
(1,0,1,10,0,0,0,1,1,1,1,0,0,0,0,0, 0,1)
(1,0,1,1,10,0,0,1,1,1,1,0,0,0,0,0, 0,1)
(1,1,1,1,1,00,0,1,1,1,1,0,0,0,0,0, 0,1)
(
(
(

1,1,1,1,1,0,0,1,1,1,1,0,0,0,0,0, 0,1)

1,1,1,1,1,1,1,1,1,1,1,1,1 0,00, 0,1

1,1,1,1,1,1,1,1,1,1,1,1,1/ 6,0, 1,0,
(2141,1,1,1,1,1,1,21,1,1,1,1,,221) — --- O

Theorem 24.The code in Constructio®2 hast > (n — 17 —
6log,n)(q—1) +6.

Proof: There are three cases where a rewrite can increase
the weight of the cell state vector by more than one: (1) The
case where the head (or tail) and the middle part meet, in
which case we increase the weight by at most seven (a weight
increase of at most four for the new head or tail, and a weight
of at most three for the new middle part); (2) the case where
the code transits from one layer to the next layer, in which
case we increase the weight by at most eighteen (including
eleven cells at the lower level and seven cells at the upper
level); (3) the case where we rewrite the middle part for the
first time for a layer, in which case we increase the weight by
at most three. The first case and third case together happen at
most (g — 1) log, n times. The second case happens at most
g —1 times. So we get > (n —17 —6log, n)(q — 1) +6.

[|

A A

REFERENCES

[1] P. Cappelletti, C. Golla, P. Olivo and E. Zanomid), Flash memories
Kluwer Academic Publishers, 1st Edition, 1999.

[2] G. Cohen, I. Honkala, S. Litsyn and A. Lobstefbovering codesNorth-
Holland, 1997.

[3] A. Jiang, V. Bohossian and J. Bruck, “Floating codes for joint informa-
tion storage in write asymmetric memorie®toc. |IEEE International
Symposium on Information Theory (ISINice, France, June 2007.

[4] A. V. Kuznetsov and A. J. H. Vinck, “On the general defective channel
with informed encoder and capacities of some constrained memories,”
IEEE Trans. Inform. Theoryol. 40, no. 6, pp. 1866-1871, Nov. 1994.

[5] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,”
Information and Contrglvol. 55, pp. 1-19, 1982.

