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ABSTRACT

This thesis investigates the significance of in-plane floor flexi-
bility on the dynamics of buildings, and develops analytical models for
structures that have flexible floor diaphragms. Experience with past
earthquakes demonstrates that this feature is particnlarly important for
long, narrow buildings and buildings with stiff end walls, In the
method developed in this study, the equations of motion and appropriate
boundary conditions for various elements of the structure are written in

a single coordinate system and then are solved exactly.

One— and two—story buildings with end walls are analyzed by treat-
ing their floors and walls as bending and shear beams, respectively.
The resulting equations of motion and the boundary conditions are solved
to obtain the dynamic properties of the structure. The expected low
torsional stiffness of the end walls or frames is confirmed by analysis
of a single—-story example structure. Study of a similar two-story
building showed that the first two modes, dominated by the floor and the
roof vibrations, make the largest contributions to the total base shear

in the structure,

Floors of multistory bumildings with end walls (or frames) are
idealized as equivalent, distributed beams while the walls or frames are
treated as bending or shear beams, Analysis of a nine-story building
showed that the structure possesses several lower modes in which floors

vibrate essentially as pinned-pinned beams.
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Buildings with large numbers of uniform stories and frames (or
walls) are treated as vertically—oriented anisotropic plates. It is
concluded that the floors inm such buildings can be assumed rigid for
seismic analysis, since the modes involving floor deformations are not

excited by uniform ground motion.

The approach can be gemneralized further to study more complex
structures, An example is the Imperial County Services Building, which
has two end walls in the upper stories and several walls in the ground
story. The analytical model of this building predicts several important

features of the complex dynamic behavior of the structure,
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CHAPTER I

INTRODUCTION

1.1 SCOPE

It is important in seismically active areas to provide safe and
economical protection for life and limb by making adequate provisioms
for earthquake resistance in buildings. For most ordinary buildings, it
is sufficient to provide earthquake resistance in the buildings by means
of a suitable building code. This usvally involves static analysis of
the building for prescribed lateral forces, which take into account in
an approximate manner the effects of building characteristics, soil
characteristics, seismic risk in the area, importance of the building,
etc. However, there are buildings that have some special characteris—
tics which make it difficult to model their dynamic behavior
satisfactorily by a code-type, static analysis. Such buildings warranat
detailed dynamic analyses for satisfactory answers to questions con—
cerning their behavior during earthquakes. Included in this category
are high-rise buildings, buildings with extreme plan dimensions (e.g..
long and narrow buildings), buildings with eccentric centers of mass or
stiffness (this leads to coupled torsional and translational motion),
buildings with vertical set-backs, soft first—story buildings or
buildings with other unusumal characteristics (Arnold, 1980b; Arnold and

Elsesser, 1980).
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Several computer codes are commercially available for dynamic
analysis of buildings. These codes treat a building as a reduced
system, with finite number of degrees of freedom, while the actual
building is a continumm with an infinite number of degrees of freedom.
To keep the computer costs down, it is important to reduce the number of
degrees of freedom involved in the calculations to a relatively small
number, and to achieve this, assumptions have to be made about the
behavior of the building. One such assumption, that is included as a
requirement in almost all of the popular computer programs available for
the dynamic analysis of buildings, is that the floors are rigid in their
own planes. This jimplies rigid body motion in these planes, and thus
the degrees of freedom for lateral earthquake analysis reduce to three
per story: two translational and ome rotational degree of freedom for
every floor. The most common alternative to the assumption of rigid
floors would be to use finite element methods to model the girders,
beams, etc., of the floor system. This approach ;llows for flexibility

of the floors, but involves many more degrees of freedom.

The rigid floor assumption is a valid assumption for many
buildings. However, there are situations where the floor diaphragms
cannot be considered as rigid. In fact, there are buildings which have
exhibited significant in-plane floor flexibility during earthquakes;

some of these buildings are described in Chapter II,
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The flexibility of floor diaphragms can alter the dynamic behavior
of a building, from that obtained assuming rigid diaphragms, in many
ways. For instance, in analysis of <rigid diaphragms, the various
lateral 1load resisting elements, e.g., walls or frames, are assumed to
share the total lateral load in proportion to their stiffnesses. This
is due to the condition that at each floor level the lateral displace-—
ments in all the frames or walls have to be the same (for buildings with
no torsional coupling). However, a flexible floor diaphragm may
distribute the loads in a differeant manmer. This may result in certain
frames receiving much higher lateral 1loads than expected from an
analysis using the rigid—-floor assumption. As another example, the
deformation in the diaphragm may induce torsional moments in frames or
walls in addition to the expected shear. Thus, if the joints of the
structure are not adequately designed for these moments, or if the frame
(or wall) is not ductile enough, torsional damage may occur during

earthquakes,

This study treats buildings for which floor diaphragms should be
considered as flexible. The emphasis of the work is upon developing and
pPresenting continuum models for some important classes of buildings with
flexible floor diaphragms. From these results, it is possible to make
some general conclusions regarding the nature and importance of the
effects of in-plane floor flexibility on the earthquake response of the

structures.



1.2 PAST WORK AND CURRENT STATUS

Blume, Sharpe and Elsesser (1961) seem to have been the first to
report “long natural periods of roof or floor diaphragms” in some omne—,
two- and three-story buildings. Blume (1962) calculates the "diaphragm
period” by considering the roof diaphragm as beams with simply supported
or fixed~fixed boundary conditions. Nielsen (1964, 1566) reported one
*free-free beam mode” with a frequency of 4.9 Hz in his dynamic tests on
a 9~story steel frame building at the Jet Propulsion Laboratory, in
Pasadena. Udwadia and Trifonac (1974) give mode shapes, some of them
involving significant floor—diaphragm deformations, obtained from

ambient vibration tests carried out on the same buwilding.

To obtain the natural periods and mode shapes of multistory
buildings with flexible floors, Goldberg and Herness (19%95), and
Goldberg (1966) have suggested use of the slope-deflection equations,
while Ilumping the mass at the intersections of floors and frames (or
walls). In an another study, Maybee, Goldberg and Herness (1966)
developed a "separable model” for buildings with identical floors and
identic;1 frames. They showed that for such buildings one could obtain
the f¥eqnencies and the mode shapes for the entire building by solving
one typical floor problem and one frame problem. Recently, it was shown
by the writer (198) that for such “separable buildings” the modal
participation factors for mniform earthquake ground motion are zero fqr

modes involving floor diaphragm deformations,
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Two "typical” two-story buildings were studied using lumped-mass
model by Shepherd and Donald (1967), and they have concluded that
neglecting the floor flexibility "does not significantly change the
dynamic properties” of buildings. However, in a study on a single-story
building by lumped-mass approach, Blume and Jhaveri (1969) have shown
that the floor flexibility could indeed be very significant, especially

for the type of buildings they have analyzed.

Other analytical studies on such buildings include one by Ostrom
(1974) where he has modelled the floors by beams and columns or walls by
springs. Irwin (1975) has presented a "stiffness matrix method” to
analyze such "multistory shear wall buildings." Karadogan (1980) has
suggested a "simplified force method” for the analysis of "slab type”
structures. A method for ome type of structures has been presented by
Rutenberg (1980) which allows examination of the flexibility of floor
slabs wusing plage frame procedures. Unemory (1978), and Unemory,
Roesset and Becker (1980) have carried out a parametric study omn
crosswall building systems including floor flexibility using finite ele~-

ment models.

Karadogan, et al. (1980) and Nakashima, Huang and Lu (1981) have
reported the results of in—-plane shear tests on reinforced comncrete flat
plates; and Kolston and Buchanan (1980) have discussed the design

requirements for reinforced concrete diaphragms.



1.3 OUTLINE OF PRESENT WORK

This study develops some continuum techniques for the analyses of
buildings which have the possibility of significant in-plane floor
flexibility. For simple single— or two-story buildings, the floors anad
the walls (or columns) have been treated as beams, and the resulting
beam equations and boundary conditions have been combined to obtain the
characteristic equation of the combined system. This equation can
easily be solved on a small computer or programmable calculator to
obtain the natural periods. Thus, the dynamic properties of the
building can be obtained in an "exact” manner. In addition, to simplify
the numerical work even further inm some instances, perturbation
techniques have been used to obtain the first order correction terms, to
be added to the results of simple standard cases, for example, a pinned—

pinned beam.

Multistory buildings with 1lateral 1load resistance systems con—-
sisting of only two end walls or frames are treated next. For such
buildings, the floors are approximated by a continuous distribution of
thin floors along the height of the building. These thin, distributed
floors have no contact with the a&jacent floors, and have been treated
as beams. The end walls (or frames) are treated as uniform beams (bend-
ing or shear). The resulting system has been solved exactly to obtain
the characteristic equation, From the roots of this equation, it is
possible to obtain the natural frequencies, mode shapes and the partici-

pation factors for the entire building.
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Multistory buildings that have uniformly distributed frames or
walls are treated as vertically—-oriented plates. It has been a common
practice in earthquake engineering to model some features of multistory
buildings by shear beams (e.g., Jennings, 1969; Hoermer, 1971). This
plate concept, introduced in Chapter VI, is a generalization of that
concept, and should give results that are comparable in applicability to
those of the shear beam. This plate model allows ome to obtain closed
form solutions for frequencies, mode shapes and participatioan factors.
These results, though approximate, are sufficiently accurate to allow

various qualitative conclusions about the behavior of such buildings.

The above concepts have been generalized further to study buildings
with some unusual features, such as a soft first story. By adding extra
elements, such as beams, a distributed column system, etc., it is possi-
ble to include the influence of end walls, or a different story height
in the first or the top story in an otherwise uniform building. The
Imperial County Services Bﬁilding, a six—story building with a soft
first story, that sustained severe damage during the October 15, 1979
earthquake is stundied using the concepts developed in this part of the

study.

1.4 ORGANIZATION

This thesis has been divided into eight (8) chapters. Chapter I is
an introduction, while Chapter IY describes the evidence of significant

floor flexibility as seen in past earthquakes, Chapters III and IV
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present treatments on single~ and two-story buildings, respectively.
Chapter V treats multistory buildings with lateral 1load resistance
system (walls or frames) only at the two ends. Chapter VI describes the
"plate concept” developed for multistory buildings with uni formly
distributed frames. Multistory buildings that could be a combination of
the earlier types, are addressed in Chapter VII, and Chapter VIII

presents a summary and conclusions,

Chapter III also contains summaries of beam theories and relevant
boundary conditions, a discussion of the distributed floor concept, and
a note om matching the boundary conditions at junctions of
elements. The concepts are extensively used in subsequent chapters.
Thus, after reading this background material in Chapter III, it should

be possible to read the following chapters independently of each other.

Mathematical notations have been defined where they_ first appear,

and are also listed in the "Notation” sectiona.
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CHAPTER II

EVIDENCE OF FLOOR FLEXIBILITY IN PAST EARTHQUAKES
2.1 INTRODUCTION

Past earthquakes have been a great source of information for
structural engineers about the dynamic behavior of structures. During
an earthquake, when a structure sustains damage of any kind, it tells
something about the structure, An investigation of the extent and
pattern of the damage may uncover the weaknesses that led to the damage,
thereby enabling one to avoid the same mistakes in new buildings. In
fact, the situation can be compared to an actual- full-scale desirnctive
test of a structure, under field conditions. Hence, it is important to
analyze past failures carefully, and to 1learn relevant lessons from

them.

In recent years, because of increased interest in the earthquake
safety of structures, there has been an increased number of installa-
tions of instruments in buildings in order to measure the motion of
various parts of the structure during an earthquake. This provides data
which can be used to interpret the cause of damage in the building,
- should a building suffer damage. Also, even if the building is
undamaged after the earthquake, these records provide valuable insight
into structural modelling and data about the dynamic properties of

buildings, for example, the amount of equivalent damping.
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In this chapter, five buildings are described which have exhibited
significant floor—diaphragm deformations during past earthquakes. The
first four sustained severe damage due to strong shaking, while the
fifth one was undamaged after the earthquake. The later two buildings
were instrumented, and the records obtained from them indicate the
significance of in—-plane floor flexibility in the dymamics of actual
buildings. The five bwildings represent a wide variety of building
types; this indicates that in-plane floor flexibility may be more

significant than it has been acknowledged to be in the past.
2.2 ARVIN HIGH SCHOOL BUILDING

In 1952, Arvin High School consisted of a large group of buildings,
constructed during 1949-51, Because they were new, they met the
requirements of California’s Field Act. During the magnitude 7.7 Kern
County (southern California) earthquake of July 21, 1952, most of these
buildings performed extremely well. The only exception was the two-
story Administrative Building. This long, narrow building had a roof
197 ft long and 46 ft wide. In the transverse direction, the lateral
load resistance was provided by the end walls while the more flexible
intermediate columns took only vertical 1loads. The building was a
"reinforced concrete buiiding with brick veneer on walls except that the
second story wall at the west end was 8-1/2 inches thick reinforced
grouted brick masonry without openings” (Steinbrugge and Moran, 1954).

Figure (2.1) gives some details of the building.
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The second story wall at the west end was extensively damaged as a
result of the main shock. The effect of the earthquake upon this wall
has been described by Steinbrugge (1970):

The damage to this secomd—story wall consisted of x—-cracks

from diagonal tension forces, plus separation at the building

corners due to diaphragm deflections causing torsional

stresses in the damaged wall.

Figure (2.2) shows some of the details of damage to the building.
Besides the flexible diaphragm causing damage by forcing the wall to
twist, poor workmanship in the wall was noted. One— and two—story
models of this building, studied in subsequent chapters of this thesis,
reveal that in the fundamental mode of vibration the flexibility of the
diaphragm was muoch more significant than the flexibility of the end

walls.
2.3 VWEST ANCHORAGE HIGH SCHOOL

During the Aléskan earthquake (magnitude 8.4) of March 27, 1964,
the classroom wing of the West Anchorage High School suffered severe
damage., The building was built in 1952-53, with flat-slab construction
of reinforced, cast—in-place concrete. The building was designed for
zone 2 requirements of 1949 Uniform Building Code. Ihe framing plans of
this two-story building are shown in Figure (2.3). Such buildings,
consisting of two wings joined at an angle (e.g., L- or V-shape plans)

are very susceptible to damage induced by floor flexibility, because the
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fan—-like deformations in the two wings of diaphragm lead to a stress—
singularity at the junction of the two wings. This building provides a

spectacular example of such damage.

Figure (2.4) shows the damage in the building. The damage below
the second floor was 1less than that above; this was attributed to "a
different arrangement of shear walls and the fact that the floor
diaphragm had 2 large stair opening at the intersection of the two
wings”, and "it is believed that this floor opening permitted a partial

hinge to form in the remaining portion of the floor” (Meehan, 1967).

The cause and sequence of the damage in the building has been

described by Meehan (1967) as follows:

One cannot be certain of the sequence or path of distress;
however, it is ©believed that the initial damage occurred in
the roof diaphragm at the vertex of the angle formed by the
two portions of the classroom wing due to torsional moment
developed in this diaphragm. It is also believed that, after
the roof diaphragm separated at this point, each portion of
the classroom wing essentially formed individual buildings,
thus necessitating a redistribution of 1load in the shear
walls, The shear walls were not capable of resisting this
redistribution of load and were apparently damaged next. The
exterior second-floor colmmns were then unable to resist the
total load alone, and damage developed in these.

The above clearly indicates the importance of in—plane flexibility

of floors in this type of building,
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Figure 2.4,
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(c) (d)

DETAILS OF DAMAGE TO WEST ANCHORAGE HIGH SCHOOL BUILDING
(from Meehan, 1967). (a) ROOF DIAPHRAGM DAMAGE.

(b) CLOSE-UP OF DAMAGE TO ROOF DIAPHRAGM. (c) WEST SIDE OF
NORTHWEST WING. (d) DAMAGE IN THE SHEAR WALL AT INTERSEC-
TION OF WINGS.



(a) (b)

(c) (d)

Figure 2.4, DETAILS OF DAMAGE TO WEST ANCHORAGE HIGH SCHOOL BUILDING
(from Meehan, 1967). (a) ROOF DIAPHRAGM DAMAGE.
(b) CLOSE-UP OF DAMAGE TO ROOF DIAPHRAGM. (c¢) WEST SIDE OF
NORTHWEST WING. (d) DAMAGE IN THE SHEAR WALL AT INTERSEC-
TION OF WINGS.
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2.4 FIFTH AVENUE CHRYSLER CENTER

The Fifth Avenune Chrysler Center in Anchorage (Alaska) was a one-
story rectangular building (about 157 ft 1long and 70 £t wide), that
suffered extensively in the Alaska earthquake of March 27, 1964
(Steinbrugge, ot al., 1967; Berg, 1973). This building provides

another good example of significant in-plane floor flexibility in

buildings. The front end of the bu. ~, facing so: . was a showroom.
The lateral load resistance in the 1l ‘nal (nor couth) direction
was provided by two 8 inch concrete bi. alls at e sides along the

length of the building, except in the showroom portiom. In the
transverse direction (east—west), there were 8 inch concrete block
walls, one at the north end of the building, another wall at the center
of the building and two stub walls extending from the sides just to the
rear of the showroom. The roof of the building consisted of 20
prestressed precast reinforced concrete tees, 8 ft wide, that were
placed side by side, spanning the whole width of the building. Sixteen
of these were supported by the side walls, while 4 tees in the showroom
portion  were supported by 12" x 24" concrete block columns
(Figure 2.5a). The flanges of the adjacent tees were connected together
by welding the bar anchors which were embedded in the flanges.,

Figure (2.6) gives the first floor and roof plans of the building.

As a result of the earthquake, the showroom part of the ©building
was extensively damaged, and the roof tees in this portion fell to the

south of the building (Figure 2.5b). There was also significant damage
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in the roof between the showroom and the central wall. The top half of
the west stub wall collapsed (Figure 2.5b) while the east stub wall had

damage at the base (Figure 2.7a). There was also some damage at the

north ends of the side walls (Figure 2.7b).

The canse of damage in the building has been attributed to vibra-
tions in transverse direction. A possible explanation for the damage

has been provided by Berg (1973) as follows:

If we consider the roof as a beam lying om its side and
oscillating in the lateral direction, it would act —— in its
gross behavior —— as a beam on three resilient supports, and
its fundamental mode of oscillation would be approximately as
shown in Figure (2.8). The left support (the stub walls) is
less rigid than the other two supports (the full transverse
walls). At the left support, both shear and bending moment in
the beam would be high., Shear would tend to shear the connec-
tions between adjacent tee flanges, and bending moment would
tend to pull apart the same connections. At the right support
(rear walls) the shear would also be high, tending to shear
the connections between the flange of the end roof tee and the
rear wall, the tee flange connections did indeed fail at these
points. Once the connections between the fourth and fifth
roof tees failed, there would be only nominal resistance to
the southward collapse of the front part of the building.
Because the left support was more flexible than the other two
supports, the distortion in the left part of the beam would be
greater than in the right part. The correspoading behavior in
the building is greater lateral movement to the south of the
middle wall than north of the middle wall, and it was the part
south of the middle wall that collapsed.

A simple calculation will indicate that an assumption of a rigid
floor diaphragm (i.e., a2 rigid beam on three similar springs in
Figure 2.8) will lead to high shear and bending moments in the beam at
the central support rather thanm at the left support. Had this been

true, one would have observed more damage in the connections of roof



Figure 2.7. DAMAGE IN THE FIFTH AVENUE CHRYSLER CENTER (from
Steinbrugge, et al., 1967). (a) DAMAGE AT BASE OF THE EAST
FIN. (b) NORTH END OF THE WEST ELEVATION,
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Figure 2.8, FUNDAMENTAL MODE OF ROOF DIAPHRAGM, FIFTH AVENUE CHRYSLER
CENTER (from Berg, 1973).
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tees near the central wall., Hence, it is evident that roof-diaphragm

flexibility contributed to the damage in this building.

2.5 IMPERIAL COUNTY SERVICES BUILDING

During the Imperial County earthquake (magnitude 6.6) of
October 15, 1979, the Imperial County Services Building, a six—story
reinforced concrete structure, was the only modern building to have
sustained severe damage (Jain and Housner, 1983a). The building was
extensively instrumented under the program of the California State
Office of Strong Motion Studies to record the motion at varioqs loca-
tions should a large earthquake occur in the area. In the Imperial
Valley eartbquake, these instruments provided records which are very
valuable to structural engineering, as they give information concerming
the possible causes of the damage (e.g., Jennings, 1983 ; Pauschke,

1., 1981).

et

Figure (2.9) shows a schematic plan of the building. Note that in
the nupper stories of the building, the lateral load resistance was pro—
vided only by the end walls, Even though the aspect ratio of the
building is not large (length = 136'-10", width = 85'-4"), a study of
the records obtained from the roof; by Pauschke, et al., (1981) reveals
that there was significant floor—diaphragm deformation (Figure 2.10).
This in-plane floor flexibility is not considered to have been responsi-—

ble for the initiation of the damage in the building. However, the fact
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that it was significant, even in a building with a low aspect ratio,

points out the importance of floor flexibility.

Figure (2.10) shows the displacements at the roof and the second
floor in the transverse direction, recorded by instruments at the two
ends and at mid-span. In this figure, tie roof and floor dimensions
have been "disproportionately reduced in order to magnify the relative
displacements.” It is clear that the roof and the second floor indeed
had significant in-plane deformations. Also, one notices that the two
floors show oppbsite curvatures. A model of this building studied in a

later chapter also reveals this feature.

2.6 MAMMOTH HIGH- SCHOOL GYMNASIUM

Strong motion accelerograms obtained from the single~story Mammoth
High School Gymnasimm building, during the May, 1980, earthquakes
provide another good example of significant floor flexibility in 1low
aspect—ratio buildings., This building, 144 ft long and 110 ft wide, has
reinforced concrete exterior walls, The roof is supported by slightly
inclined Warren trusses, spanning the width of the building. These
trusses are braced vertically to prevent excessive lateral deflections.

Also, horizontal steel bracing has been provided in the plane of the

lower chord of the roof trusses.

Again under the State of California'’s program, the building was
instrumented with 10 accelerometers located at various locations in the

structare (Figure 2.11). During the earthquake swarm of May, 1980, they
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Roof

__*
A Ground Installation Notes;:
W-E Section

Accelerometers 1,2,3 and 4 are
installed on the ground floor
slab.

Acce]erémeters 5,8 and 9 are
attached to the roof trusses at
Yﬁj the bottom chord level.

Accelerometers 6,7 and 10 are
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1‘@ ©f the top chord level.
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Figure 2.11. STRONG MOTION INSTRUMENTATION SCHEME, MAMMOTH HIGH SCHOOL
GYMNASIUM (from Turpen, 1980).
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provided very useful sets of records. Three of these sets are shown in
Figures (2.12) through (2.14). Of particular interest to this study are

the records obtained from the roof of the building.

In each figure, a comparison of traces (5), (6) and (8), which
recorded the motion of the roof in the transverse direction, indicates
that the motion of the center of the roof was much more vigorous than
that at the two ends of the roof span. This clearly indicates that the
flexibility of the roof diaphragm cannot be neglected for this bunilding

in the transverse direction.

In the longitudinal direction, the motion of roof was :ocor&ed by
instruments (7), (9) and (10). Despite the fact that the aspect ratio
for this direction is less than one, one ﬁotices the same phenomenon,
i.e., the instrument at mid-span registered a much larger response than
registered by the instruments at the two ends. The high frequency
content in trace (9) is due to the lateral vibrations of the lower chord
segment of the roof truss, at whose mid-span this instrument was
located. However, one can still see, in this trace, a significant
motion at a lower frequency of about 4.5 Hz., This is thought to be the

fundamental natural frequency of the roof and wall system along the

longitudinal direction.

The above observations, which are applicable to the three different
sets of records, . prove that the floor flexibility in this building is

not negligible in either direction despite the low aspect ratios.
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2.7 DISCUSSION

The five buildings discussed in this chapter provide ample evidence
to indicate that in—-plane floor flexibility can be very important in the
earthquake response of some buildings. Three of the examples were
school buildings, which suggests that the architectural layout of school
buildings may make them more susceptible than other structures to

problems caused by flexible floor diaphragms.

Also, three of these buildings had lateral load resistance systems
consisting of only end walls. One of these three had a span to width
ratio of only 0.76, but still exhibited significant diaphragm flexibi~
lity. Tﬁe reason for this is the relative flexibility of the diaphragm
with respect to the end walls., Even though floors with low aspect ratio
may not seem very flexible in their plane, their flexibility may still
be quite significant and may indeed dominate the dymamic response, when

compared to the flexibility of very rigid walls,

The classroom wing of the West Anchorage High School bhad a plan
consisting of two wings joined at an angle, thus forming a 'V’,
Buildings such as this, forming an L, V, T, H, etc., warrant special
considerations. The San Marcos Building, a four-story, reinforced
concrete L-shape building is another example in this category (Dewell
and Willis, 1925%). This building was extensively damaged while the
corner section was "totally destroyed,” during the 1925 Santa Barbara

earthquake. Its damage has been attributed to the shape of the ground



Plan, in additior to poor workmanship in the concrete. The Mene Grande
Building, a sixteenstory H-shaped reinforced concrete structure, was
heavily damaged during the Venezuela earthquake of 1967 (Hanson and

Degenkolb, 1969; Sozen, et al., 1963). Besides other damage, this

building experienced some floor—cracks "especially where the wings

connected with the core” (Hansom and Degenkolb, 1969). Again this

observation indicates a stress concentration at the corner.

.This brief summary of cases of earthquake damage in buildings that
can be attributed to the response of the floors as flexible diaphragms
shows the importance of this phenomenon in the earthquake respomse of
structures, The strong motion records obtained from the two buildings
mentioned in this chapter, and some others (Porcella, et al., 1979),
also lead to similar observations. Hence, the experience in past
earthquakes indicates clearly that floor flexibility can be a potential

problem unless considered in the design.
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CHAPTER III

SINGLE-STORY BUILDINGS WITH FLEXIBLE FLOORS

3.1 INTRODUCTION

There has been considerable interest in the past in the dynamic
analyses of 1long, narrow one-story buildings because this type of
building is commonly adopted for schools, hospitals and offices (Blume,
et al., 1961, Blume and Jhaveri, 1969). Many such buildings have only
two end walls in the transverse direction to provide 1lateral support,
while any intermediate columns share only the vertical loads. This is
largely due to the needs of functiomal flexibility, which requires
movable partition walls, Hence, one has a roof mounted on two end walls
that acts like a beam in the transverse direction due to its large span
to width ratio. In such a situation, it is important to consider the
flexibility of the roof diaphragm in the dynamic analysis of the

building.

Moreover, there are other situations where even though the aspect
ratio (length to width ratio) of the building is not large, the floor
flexibility cannot be neglected. Mammoth High School Gymnasium,
discussed in the previous chapter is ome such example. In this type of
building the roof flexibility, though small in absolute terms, is

significant when compared to that of the stiff end walls.
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It is shown in this chapter that such buildings can easily be
treated analytically, Furthermore, the technique iS general enough to
allow the solutions of more complicated structures, e.g., buildings with
different end walls. The method described in the following sections
consists of treating the roof as a bending beam and the end walls as
shear beams. The dynamic equations of motion for the roof and the walls
can be written, and these equations can be solved for appropriate
boundary conditions, This gives a transcendental characteristic equa—
tion, the solution of which provides the natural frequencies of the
system, With these frequencies known, the mode shapes and the partici-
pation factors for earthquake excitation can be obtaine&. thus enabling

one to calculate the dynamic response of the building.

The method described herein can also be extended to take into
account the flexibility of the foundation. For example, ome could model
the effects of ghe supporting soil by Winkler’s representation, thereby
replacing the foundation by appropriate springs. This only affects the
boundary condition to be satisfied at the bottom ends of the vertical

beams representing the walls.

In the following parts of this chapter, bending and shear beam
theories are discussed first. Next, the concept of "laminae” or
"equivalent distributed beams” is presented. A note on how to match the
boundary conditions between members meeting at a point is also included.
A simple case of a onme—story building with two, identical end walls is

then solved. AA section has been included on the use of perturbation
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theory to obtain an approximate value of the fundamental natural
frequency of the structure. Also, solutions are given for some
interesting but more complex structures. The chapter ends with a
numerical example derived from the top story of the two~-story

Administrative Building at Arvin High School.

3.2 B THEORIES

In this and subsequent chapters, extemsive use will be made of the
equations and properties of both Euler—Bernaulli and shear beams. For
convenience, this section presents the well known theories for these two
types of Dbeams. Also, the concept of “l.minae” or "equivalent—
distributed beams” as applied to the present problem is introduced.
This concept proves to be useful in modelling the floors of multistory

buildings.

3.2.1 Bending Beam (Enler-Bernaulli)

For beams whose length to depth ratio is large, the bending defor—
mations are large compared to those caused by shear, and, therefore, it
is a common practice to neglect the shearing deformatioms for static
analysis And for the analysis of the lower modes of vibration. Also,
for the lower modes of vibration, the effect of rotatory inertia is
small for such beams, and can be neglected. The resulting mathematical

nmodel for a8 beam is termed a beanding beam or Euler—Bernanlli beam.
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Consider the free vibrations of a bending beam. Let vb(x,t) be the
lateral displacement at time t of a point at a distance x from the
origin (Figure 3.1a). From the free body diagram of an element of width

dx, one obtains

32v

dQ = pA —fdx
Jt
dd = ~-Qdx

Hence, the equation governing the free vibrations of the beam may be

written as

2 2%y a’v
'—8‘5 EI(x) Zb + pA(x) ""f‘ = 0 (3.1a)
ax ix it
For beams with uniform cross—section, this becomes
4 2
v av
EI——f+ ;:.ax—fL = 0 (3.1b)

ax at

For beams vibrating due to uniform earthquake excitatiom, ug(t) in the

plane of the beam (Figure 3.1b), the equation of motion is

2 2

2 3 v, (x,t) a°v, (x,t) .o
-3-—2- EI(x) -——*—’-—-5——— + pA(x) -—3’-—5-— = -pA(x)u (t)  (3.2a)
g
ox ax at

If the cross—section is uniform, this reduces to
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X
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M(x,t) = EI(x) oxZ
(a)
*ag(t) ug(t)
(b)

Figure 3.1. VIBRATION OF A BENDING BEAM.

(a) FREE VIBRATION.
(b) EARTHQUAKE MOTION.
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4 2
3 vb(x.t) ] vb(x.t) .

EI + = -pAu (t) (3.2b)
ax? at? 8

In addition to the governing differential equation, the specifica-—
tion of boundary conditions is required to solve the vibration problems
of beams. Table (3.1) gives some of the common boundary conditioms for

a bending beam.

TABLE 3.1. VARIOUS BOUNDARY CONDITIONS FOR A BENDING BEAM

Type of Sketch of L
Boundary Boundary Boundary Conditions
Free End

[EI(x)v"b]end a 0 (moment=0)

[(:»:x(x)v"b>']m1 = 0 (shear=0)

Fized End ; [vb]°nd = 0 (displacement=0)
Z:::::::; [v’b]end = 0 (slope=0)

Pinned End [vb]end = 0 (displacement=0)
Z:::::}<:¥ [EI(x)v"blend = 0 (moment=0)

Spring [EI(x)v"b]end = 0 (moment=0)

Supported
oo [ &

[(EI(x)v"b)'] = Kl[vb] (for right end)

{
$K,
nJ%V [(EI(x)v"b)'] = —Kl[vb] (for left end)
P%nned En§ Ivb]end = 0 (displacement=0)
with Torsional
Spring

[EI(x)v'"b] = —Kz[v'b] (for right end)

Ko [EI(x)v"b] = Kz[v'b] (for left emnd)




3.2.2 Shear Beam

This beam theory is applicable for beams that exhibit bending
deformations that are small compared to shear deformations. In the
theory, the bending deformations are neglected reducing the governing
equation to one of second order. Experience has shown that this beam
models some important features of the dynamic behavior of buildings of

moderate height (e.g., Jennings, 1969; Hoerner, 1971).

Consider the free vibrations of a shear beam as shown in
Figore (3.2a). Let A(x) be the cross—sectional area at x, p be the den~
sity of beam material, and k(x) [=k’A(x)G] be the shear rigidity of the
beam. Let vs(x,t) be the lateral displacement of a point at a distance
x from the origin, at time t., From the free body diagram of an element
dx, one obtainms

azvs(x.t)

dQ = pA?"“E—"ﬂx
gt

Thus, the equation of motion for the free vibrations of a shear beam may

be written as:

]
<o

2
av _(x,t) 3°v (x,t)
J'L<k(::) “é“‘“’>— pA(x) — (3.3a)

ax dx at2

For a beam with uniform cross—section, the shear rigidity k(x) is not a

function of x, and the equation of motion becomes
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=
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Qlxt) = k(x) 2yt
0 x
(a)
(b)

Figure 3.2. VIBRATION OF A SHEAR BEAM., (a) FREE VIBRATION.
(b) EARTHQUAKE MOTION,
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2 2
3%y (x,t) a°v (x,t)
——— - ppA—%—— a2 (3.3b)
2 2 :
ax at

For beams vibrating under ground excitation (Figure 3.2b), these equna—

tions become

2

av (x,t) a°v (x,t) ..
4 —_s ) —_—
a:(%(‘) 3z ) pA(x) at2 = PA(X)ng(t) (3.4a)

and,
azvs 32v (x,t) .
k =5z, t) - pA——i—E—— = pAu (t) (3.4b)
ox it 8

for beams with variable and uniform cross—sectiomns, respectively.
Some of the common bDoundary conditions for a shear beam are

tabulated in Table (3.2).

3.2.3 Eanivalent Distributed Beam Svstem (Laminae)

In the preseat work, floors in buildings have been treated as bend-
ing beams in order to include the effects of in—plane floor flexibility.
For buildings with a 1large onumber of stories and uniform floor
properties along the height of the building, it is sometimes convenient
to replace the floor—beams by én "equivalent distributed beam system.”
This beam system consists of a continnum of independently-acting beams
with infinitesimal thicknesses. The independent action  of the
infinitesimally thkin beams means that an individual beam does not have

any contact with adjacent beams. The stiffness and mass distributions



TABLE 3.2. VARIOUS BOUNDARY CONDITIONS FOR A SHEAR BEAM

Type of Sketch of s
Boundary Boundary Boundary Conditions
’ =
Free End Z::::::] [k(x)v s]end 0 (shear=0)
I
Fixed End / v = 0 (displacement=0
g ; s‘end P eme )

End Supported

[k(x)v' ] = -E_.[v_] (for right end)
s 1%7s
on a Spring

il

[k(X)V’s] = Kl[vs] (for left end)

Note: For a shear beam, there is no counterpart to an end
supported on a torsional spring, since sections
perpendicunlar to the axis before deformation do 1ot
rotate as the beam—axis deforms,

of the system are obtained from the stiffnesses and masses of the actual
floors by distributing the total stiffness and the total mass of all the
floors evenly along the height of the building. These equivalent beams
or laminae have been used in other problems in structural mechanics.
First developed to analyze the deformations of aircraft wheels, this

concept has Dbeen used extensively in civil engineering in the study of

coupled shear walls (e.g., Chitty, 1947; Beck, 1962).

The equivalent system can be defined with the help of Figure (3.3).
Let E be the modulus of elasticity of the floor material. Let I* be the
moment of inertia per unit height of the equivalent, distributed floor
system, and m* be the mass per unit length and per unit height of the
system, Let Ay be width (along the height of building) of a thin beam,

where Ay is very small. With this potation, the equation of motion for
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A
¢ (a)
y
Ay
/@-X
‘ (b)

Figure 3.3. (a) N-STORY STRUCTURE WITH IDENTICAL FLOOR SYSTEM.
(b) EQUIVALENT DISTRIBUTED BEAM SYSTEM OR LAMINAE,
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free vibrations of the system may be writ:en as

2 2 ' 2
Qul(x,y,t)

L(EI*AY LE(L-.L.U.) + m‘AY B t = 0 (3.5a)
2 2 2

ax ax it

or,
82 * azu‘x t b azufg,z,gz
N EI + m = 0 (3.5b)
2 2 2

ax~ \ ax ot

Here u(x,y,t) is the displacement at point x, at time t in an
infinitesimal thin beam located at height y. The common boundary condi-
tions for this system are the same as those of bending beams

{(Table 3.1).

3.3 NOTE ON MATCHING BOUNDARY CONDITIONS

In the rest of this report, extensive use will be made of matching
the boundary conditions at the junctions of two or more perpendicularly—
intersecting beams. Hence, this section reviews some of the concepts
involved. In general, the following situations will be encountered in
this study: two beams joined at a right angle at their ends; three beams
joined at their ends (arising from one beam joining the interior of
another beam at a right angle); and an equivalent distrihuted beam

system joining an ordinary bending or shear beam.
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3.3.1 Two Beams Joined Perpendicularly at Their Ends

Consider two beams that are joined together at their ends such that
they are perpeandicular, Figure (3.4) shows the coordinate system
(x,y,2z), that is common for both beams, Let the two beams be joined at
the point x =L and y = h, and let u(x,t) and v{(y,t) be the displace—
ments in the z-direction, in beams (1) and (2), respectively. The

following boundary conditions apply at the cormer:

(i) The displacements in the two beams are the same at the junction,

i.e.,
u(L,t) = v(h,t) (3.6)

(ii) The end shears in the two beams are equal in magnitude and

opposite in direction.

(a) Both beams are bending beams

2 2
2 au . &y —
["‘ (Elxl ax2> ]st i [6Y<E212 8y2> Lsh - 0678

where E111 and E212 are the flexural stiffnesses of beams
(1) and (2), respectively.
(b) Beam (1) is bending beam and beam (2) is shear beam:

2
a d"u oV
[ax( 171 0 2 )y o [2 ay]yzh
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Figure 3.4. TWO BEAMS JOINED AT.THEIR ENDS.
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where EIII and k, are the flexural stiffness for beam (1)
and the shear stiffness for beam (2), respectively.

(c) Both beams are shear beams:

[x, glxl-]x=L + [x, %]Ph =0 (3.7¢)

where kl and k2 are the shear stiffnesses for beams (1) and

(2), respectively.

The algebraic signs in these equations will be
different when beam (2) is joined at the left end of beam

(1), rather than the right end, as considered here.
The end moment in beam (1) is equal in magnitude and oppogite in
direction to the torsional moment (torque) in beam (2). Assuming
that the other end of beam (2) allows no rigid-body rotation of

beam (2), this condition will be

2

duf  _ _o [

[EIII 2 2] - C2 [Bx]x=L (3.8)
x" lx=L

where C2 is the torsional stiffness of beam (2}, given by the
torque at y = h required to produce a unit rotation at that

point. [%3]:=L is the end rotation (slope) in beam (1), which is

equal to the torsional rotation in beam (2).

For most applicatioms, the walls c¢an be treated as thin
rectangular sections to obtain their torsional stiffness., For

such sections, the torsiomal stiffness C2 is given by (e.g.,
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Timoshenko and Goodier, 1969)

c. = Reg : (3.9)

where
b = Length of wall.
¢ = Thickness of wall.
h = Height of wall.
G = Shear modulus.
(iv) The end moment in beam (2) is equal in magnitude and opposite in
direction to the torsional moment at the end of beam (1). This

case is similar to case (iii) above.

3.3.2 Three beams Joined at Their Ends

Consider three beams meeting at a point as shown in Figure (3.5).
The coordinate systgm (x,y,2) is common for all three beams, and each
beam of the system is vibrating in the z-directiom., Let u(x,t), v(y,t)
and w(y,t) be the displacements in the z-direction, in beams (1), (2)
and (3), respectively. At the point x =L, y =0, the following

boundary conditions must be satisfied:
(i) The end displacements in the three heams'are the same:
u{x = L,t) = v(y=0,t) = wly=20,t) (3.10)
(ii) The resultant of the end-shears in the three beams is zero:

(a) The three beams are bending beams, and EIII' EZIZ' 3313 are
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Figure 3.5. THREE BEAMS JOINED AT THEIR ENDS.
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their flexural stiffnesses, respectively. The condition can

be written as:

2 2
9. du .§_< §_:.v.> ]
E.X + E,1
{a:( 11 ax2> ]x=L [ay 272 3y2 y=0

2
'{a% (5313 3—-’;—)] = 0  (3.11a)
ay y=0

(b) Beam (1) is a bending beam with Elll as its flexural stiff-
ness, Beams (2) and (3) are shear beams, and their shear

stiffness are given by k2 and k3. respectively. The condi-

tion is

2
4 du - v Sw -
[ax (Elll ax2> L=L [x, ay ]y=0 * [ks ay ly=0 =0 (3.11b)

The resultant of end moment in beam (1), torsional moment in beam
(2) and torsional moment in beam (3) is zero at the junctiom

point,

Define positive torsional moment for beams (2) and (3) as
one that oproduces clockwise torsional rotation in the beam with

respect to the bottom end of the beam. Let T2 (y =0,t) and T3

(y = 0,t) be the twisting moments in beams (2) and (3),

respectively, at the junction., The boundary condition can be

written as



where

(iv)
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M1(1=L,t) - Tz(y=0,t) + Ts(y=0.t) = 0 (3.12)
M1(1=L,t) = End moment in beam (1)
=E I QEE (z=L,t)
e S =
b 4
Tz(y=0,t) = C2[92(y-0.t) - 92(y= -hl,t)l
T3(y=0,t) = C,[8,(y=h,,t) = 8,(y=0,t)]

C,,C; = Torsional stiffnesses of beams (2) and (3),
respectively.

hl,h2 = Height of beams (2) and (3) , respectively.

8,,8; = Torsional rotation in beams (2)

and (3), respectively.

However, 92(y=0,t) and 93(y=0,t) are each equal to the end

rotation in beam (1) [= gf (x=L,t)].

It will be shown in a subsequent section that for the
purposes of the opresent work, omne can neglect the torsional
stiffnesses of beams (2) and (3). This results in the much
simplified boundary condition that there is zero bending moment

in beam (1) at x =L, i.e.,

2
EI &%z=1,t) = 0 (3.13)
1h

The torsional moment in beam (1) at x = L, and the bending

moments in beams (2) and (3) at y = 0 have a zero resultant.
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Neglecting the torsional stiffness of beam (1) and assuming

beams (2) and (3) as bending beams, this condition is

2 2
E,I, &2 (y=0,t) - E,1, &¥ (y=0,t) = 0 (3.14)
212 , 2 3's o2

3.3.3 An Eguivalent Distributed Beam System Joined to a Perpendicular

Beam

Consider a distribution of laminae that is joined at ome end to .a
perpendicular beam (Figure 3.6), The coordinate system is shown in the
figure. Let u(x,y,t) and v(y,t) be the displacements in the z-direction
in the distributed beam system and the perpendicular beam (beam 2),
respectively. In this situvation, the shears in the distributed beams
are applying a distributed force on the perpendicular beam, and the

equation of motion for the beam (2) is modified accordingly.

Let El be the modulus of elasticity, I‘1 be the moment of inertia
per unit height and m'l be the mass per unit length per unit height of
the distributed beam system. The equation of motion for free vibrations
of the distributed beams has been given in subsection (3.2.3). The

equation of motion for beam (2) is as follows:

(a) For the case when beam (2) is a bending beam with E212 its

flexural stiffmess and m, its mass per unit height, the equa—

tion of motion for free vibration is:
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Figure 3.6. EQUIVALENT DISTRIBUTED BEAMS JOINED TO A PERPENDICULAR
BEAM,
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22 vty v [af. * a%uz.v.t)
~(E, 1, Dt —m, il o 35 > (3.15a)
ay \ ay at x =L

(b} When beam (2) is a shear beam with stiffness kz and mass m, pér
unit height, the equation of motion for beam (2) is

8/ av(z.t) Buwe) _ [af, » uzy.t)

ayik2 ey T ™ 2~ lax\B1h 2 (3.15)

y at ax x=L
The algebraic sign of the last term in the above two equa-—

tions will be different if beam (2) is joined at the left end

of the distributed beam system.

The following boundary conditions must be satisfied for the system

at the junction of the laminae and beam (2):

(i) The end displacements in the distributed beams are the same as the

displacements in beam (2), i.e.,
w(x=L,y,t}) = v(y,t) (3.16)

(ii) The bending moments in the distributed beams at their ends must be
in equilibrium with the torsional moment in the perpendicular

beam.

This condition can be derived by taking the angle of twist in
. beam (2) equal to the end rotation in a distributed beam, and

applying equilibrium. In mathematical form, the condition is
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3
2 be G 2
E I, &B(z=L,y,t) = —=2 2~ [g—-“ (x=L,7,1) ] (3.17)
171 ax2 3 ay2 x

where b, ¢, and G2 are the length, thickness and shear modulus,

respectively, for beam (2).

It will be acceptable for many applications to neglect the

torsional rigidity of beam (2), This leads to a simpler condi-

tion’ io e.)

2

E I, Q—j‘- (x=L,y,t) = 0 (3.18)
ax
3.4 ONE-STORY BUILDING WITH TWO ID WALLS

In this section, the solution for free vibrations of a one-story
building with two end walls is presented. The walls are assumed to be
identical. As mentioned earlier, this is a frequently wused structural
system for schools, hospitals, offices, etc. Typically, in these situa-
tions the end walls are quite short and wide, and caﬁ be treated as

shear walls, The roof, usually being long and narrow, is modelled as a

bending beam.

Consider a ome—story building with two identical end walls (shear
beams) of height h, and a long, narrow roof (bending beam) of length 2L
(Figure 3.7). The building is being analyzed for motion in the z’'-
direction. Let the following be the roof and wall properties, assumed

to be uniform:
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Figure 3.7. MODEL OF A ONE-STORY BUILDING WITH TWO END WALLS.
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E1 = Young'’s modulus for the roof.

I1 = Moment of inertia about the center—line (parallel to the y’'-
axis) of roof cross-section.

k2 = Shear rigidity of wall cross—section (k2 = k'Asz).

k'’ = Shape factor.

A2 = Area of cross—section of wall.

G2 = Shear modulus of wall.

m, = Mass per unit length of roof.

m, = Mass per unit height of wall,

Let u(x’,t) be the displacement in the z’'—~direction at time t of
point x' of the roo#. Similarly, let vl(y'.t) and vz(y'.t) be the dis—
placements in ;he z'~direction at time t of points y’ in the right and
left end walls, respectively. The equations of motion for free vibra-—

tions for the system comsisting of roof and end walls can be written as:

g1 2ute o aluatn  (3.19)
11 4 1 2 ‘
ax’ at
62 82v (y’,t)

. vl(y',t) . 1

(3.19)
2 2 ) ae2
8272(7",1:) azvz(y'at)
k2 "“"3“- = m, "'“‘;“" (3.19¢)
ay’ at

It will be useful to carry out the further development in terms of

nondimensional coordinates., Letting
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x' v'
X = I- 2 y = 1 (3.20)

and substituting these into the equations of motiom gives

4

4 L
CRLTEIS R L LYo 51 (3.21a)
4 E.I 2 .
ax 111 gt

2 2 .2
3"v, (y,t) m.h” 3°v (y,t)
"'1"5'_”' = —%_' "'1'3"" (3.21b)
oy 2 at
and
azvz(y,t) Eth azvz(y,t)
= (3.21¢)
2 k 2
ay 2 at

Separation of variables is used to solve the problem of free vibra-

tions of the system. Let

w(x,t) = U(x)el¥® (3.222)
v (5, t) = V(pel®t (3.22b)
v, (7.t = V(e (3.22¢)

where w is the natural frequency of the motion. Substitution into equa-

tions (3.21a, b, ¢) gives

4
4—‘;—‘:40 = 0 (3.23a)
dx
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+
w
[ o]
<
[ury
]
o

(3.23p)

]
[=]

(3.23¢)

where

E L k,

The solutions for the above equations can be written as
U(x) = A sin ax + A, cos ax + A; sinh ax + A, cosh ax (3.25a)
Vl(y) = B1 sin By + 32 cos By (3.25b)
Vz(y) = B’; sin By + B’, cos By (3.25¢)

where the A’s and B's are constants to be determined by the governing

boundary conmditions.

Since the structure is symmetric about the y'-—axis, it possesses
symmetric and antisymmetric modes of vibratiomns. It is convenient to
solve for the two types of modes separately, by making use of symmetry

and by analyzing only the right half of the structure.
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(a) Symmetric Modes

For the symmetric modes (or translational modes), there

zero slope and

will be

zero shear at mid-span of the roof. The following are

the boundary conditions for the right half of the structure:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Slope at mid~span of roof is zero:
4u (x=0) = 0
dx

Shear at mid—-span of roof is zero:

3
40 (x=0) = 0
3 !
dx

Displacement at the bottom end of wall is zero:
V,(37=0) = 0
bisplacements at the corner match:
U(zx=1) = Vl(y=1)

The shears at the junction balance

D (z=1) = o T2 =1
dx
k2L3
where, q =
1 E.I.h
171

The moments at the junction balance:

(3.26)
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2
u = = - Q:_U_ =
2 (x=1) 4 3x (x=1)
dx
C.L
where, q, = E—IL (3.27)
171

and, C2 is the torsiomal rigidity of the end walls.
The boundary conditions (i) and (ii) require,

btk =0

Similarly from boundary condition (iii)

From (iv), (v) and (vi), one obtains,
A, cos a + Ay cosh a = B, sin @ (3.28a)
03[A2 sin a + A4 sinh a] = qlﬁ 31 cos B (3.28b)
and
az[—Az cos a + A4 cosh a] = -qza[—A2 sin a + A4 sinh a] (3.28¢c)

The determinant of these three equations can be solved to obtain

the following characteristic equation for the natural frequencies, and
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and the equations can then be solved for the mode shapes:
(a cosh a + 1, sinh a)(a3 sin a sin B - qlﬂ cos a cos B) +

+ (a cos a + 4 sin a.)(a3 sinh a sin B -~ qlﬂ cosh a cos B) =0 (3.29)

U(x) = A[(a cosh a + q, sinh a)cos ax + (a cos a + 4, sin a) cosh ax]

0<x<1 (3.30a)
and
cos a{e cosh a+tq, sinh a) + cosh a(a cos atgg sin a) )
Vl(y) = A{ sin P ]s1n By
04y<1 (3.30b)

where A is an arbitrary constant.

The mode shapes for the left half of the structure can be obtained

by symmetry. Hence, for the whole building, the mode shapes are

U(x) = A[(a cosh a + 4, sinh a) cos ax + (a cos a + 4, sin a) cosh ax]
-1£x41 (3.31a)
cos a{a cosh a + q, simh a) + cosh a(a cos a + 4y sin a)
Vl(y) = A sin B

' sin By 0<y<1 (3.31b)

and
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Vé(y) = A[

cos a{a cosh a + q, sinh a) + cosh a(a cos a + 9, sin a)
sin B

* sin By 0<y«1 (3.31¢)

For a given structure, equations (3.24) provide ¢ and B as func~-
tions of the frequency w. Thus, one can solve the characteristic equa~-
tion (3.29) and obtain natural frequencies of the system. For known
frequencies, the corresponding mode shapes are given by equations

(3.31a, b and c¢).

(b) Antisymmetric Modes

For antisymmetric modes (or torsional modes), there will "be zero
displacement and zero moment at the mid—span of the roof. Thus, the
boundary conditions are

(1) U(x=0) = 0
2

(i) ¥ (x=00 = o

(iid) Vl(y=0) = 0

(iv) U(x=1) = Vl(y=1)

3 av
(v)  EE(z=1) = ¢ = (y=1)
3 1 dy
dx
kst
where, g =
; Elllh
(vi) L0 ) e g & e
vi 2 %9 gx ¥
dx
CzL
where, q2 = E_E—
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These boundary conditions can be applied to equations (3.25a) and

{(3.25b) to obtain the following characteristic equatioﬁ and mode shapes:
(a sin a - q, cos a)(a3 cosh a sin f — 9 B sinh a cos 8) -

- (a sinh a + 4, cosh a)(a3 cos o sin B + 9B sin a cos B) =0 (3.32)
U(x) = A[(a sinh a + g, cosh a) sin ax + (@ sin e - 4, cos a) sinh ax]

0<x<1 (3.33a)

(a sinh a + 4, cosh ¢)sin a + (a sina - g, cos a) sinh a

Vi) = A sin B

sin By 0<y<1 (3.33p)
where A is an arbitrary constant.

The mode shapes for the whole building can be obtained from the

antisymmetry conditiomn, as:
U(x) = A[(a sinh @ + g, cosh a) sin ax + (¢ sin a - q, cos @) sinh ax]

-1<{x<1 (3.34a)

(a sink o + 9 cosh @) sin a + (e sin a - q, cos a) sinh a
sin B

V,(y) = A[

.

sin By 0<y<1 (3.34b)
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(a sinh a + q, cosh a) sin a + (¢ sin a - 4, cos a) sinrh a
sin B

Vy(y) = —A{

sin By 0<y<1 (3.34¢)

Here again, equation (3.32) can bé solved to obtain natural
frequencies, and equations (3.34) give corresponding mode shapes. It is
important to note here that the way this problem has been formulated,
the contributions of any longitudinal walls to the torsional stiffness
of the system are neglected. Also, the polar moment of inertia of the
roof is underestimated. The two effects are small for long and narrow
buildings, and they have opposite influences on the values of the tor—
sional frequencies. Typically, the first effect is more importaat.
There are instances where these factors are important enough to be
included in the analysis for torsional modes. To do so within the
present framework, one can simply increase the wall stiffness and the
floor mass used in the calculation to the values that are appropriate
for the actual building. The new stiffness and mass can then be used

for the analysis of the antisymmetric modes.
Limiting Case

In most applications, it is thought acceptable to neglect the tor-
sional rigidity (CZ) of the end walls. The resulting, simpler solutionms
(characteristic equations and mode shapes) can be obtained by taking the
limit, as 4, apprdaches zero, in the expressions derived above, Hence,

for symmetric modes, the characteristic equation and the mode shapes
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reduce to:
as(tan e + tanh a) - 29, cot B = 0 (3.35)
and
U(x) = A[cosh @ cos ax + cos a cosh ax] (3.36a)
Vl(y) = 2A cos a cosh a cosec B sin By (3.360)
and
Vo(y) = 2A cos a cosh a cosec P sin By (3.36¢)

Similarly, for antisymmetric modes, the characteristic equation and

the mode shapes are:

e3(coth a - cot a) - 294 cot B = 0 (3.37)
U(x) = A(sinh a sin ax + sin a sinh ax) (3.38a)
Vl(y) = 2A sin a sinh a cosec B sin By (3.38b)
Vz(y) = -~2A sin a sinh a cosec P sin By (3.38¢)

Orthogonality of Modes

The following analysis demonstrates the orthogonality of the modes

of vibration. Let w, and Ui(x), Vli(y)' Véi(y) be the natural frequency

th

and mode shape for the i mode . Similarly, @ Ui(x), Vlk(y) and

b

VZk(y) correspond to the k*® mode. Substitution into equations (3.23a,
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and,
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d4Ui(x)

d2V .(y)

dy

2 2
d Vz.(y) . m, b

dy

abr @

2
miUi(x)

2
mivl

dx4 B

2
d Vlk(y)
dyz

2
d Vgg(y) . m,h

dy? ky

From these equations, one obtains

atu.

1
i
!

dx4

Uk -

a%v

¢t

—%y lax

dx4

d2

2 1k ~

1
"
dy

4V

dy

2

m L4
JE A (m%
i Elll

Vit Tk

Ay)

1

1

2
wkUk(x)

2

2
0 Vax ()

1

= 0

2 =

= 0

= 0

0

2
i mk) J; Uidex =

1
{ V1iV1xdy

0

0

(3.39a)

(3.3%)

(3.39¢)

(3.40a)

(3.40b)

(3.40c)

(3.41a)

(3.41b)



- 69 -

! dZV'zi dZV2k 1 m h2 2 2 1
l[ 2 Vor = T Vpildy + T (e - ep) £V21V2kdy 0 (3.41c)
dy dy 2

Next, integrate the first integrals in these eoquatioms by parts, and

apply the appropriate boundary coanditions, to obtain

r.3 3 1x=1 4 1
dUiU—dUkU b (mz-mz)j'uuaxao (3.42a)
ad F a3 4 E;I, Ui % ) Tik
! x=1
[av, . (y=1) dv., (y=1) 1
1i 1k
ay Vi (y=1) - & Vli(Fl)] +
2 1
h
27 2o W2 ;
+ E,1, (w? - udy “; A 0 (3.42Db)
av,, . (y=1) av,. (y=1) 1
2i 2k
[ &y T - T g Vzi(Fl)} *
m2h2 1
E (m - ) £ V21 2k = 0 (3.42¢c)
212
However,
U(x=1) = YV, (y=1)
U(x= ~1) = v, (y=1)

dv
Bhdu L., . -hl —d—l (y=1)

L3 dx3
E.I 3 dav
. 1140 =.._2._._2. _
3 3 (x= -1) b dy (y=1)

L dx
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Hence, equations (3.42a,b,c) can be combined to obtain
1 1

2 _ 2 f ~ -
(W - 62) fm,L ) U0 dx + m,h g V,,Vidy + myh g Vy Vordy| = 0 (3.43)

For i # k, o # Wy,

1 1 1
m L J; U0 dx + myh J V, V5,87 + myh g Vy Uy dy = 0 (3.44)

Thus, the modes are orthogonal, with the orthogonality condition

given by equation (3.44),
Participation Factors for Earthquake Ground Motion

The equations of motiom, including earthquake ground motiom, for

the roof and the walls can be written as:

4 oLt .2 m L4
3 u(x,t) + 1 37w(x,t) _ _ _1 e

u (t) (3.45a)
6:4 EIII at2 E111 g
2 2 .2 2
2 k 2 x, St (3.45b)
ay 2 at 2
and,
azvz(y.t) mzh2 azvz(y.t) m2h2 .
2 - x - 2 = k ug(t) (3.45¢)
dy 2 at 2



..71_

where ug(t) is the earthquake ground acceleration in the z’—direction.

Expanding the response in terms of the normal modes of the system

u(x,t)

1};1 U, (x)T,(¢)

(7t = ) V(T ()
1=1

and

L Yy (9T (6)

v (Y. t)
2 1=1

Substituting these into equations (3.45a,b,c) yields

4 4 4
d Ui mlL .o m!L .e
4 T; + E. I z: UlTl = TE1I, ¢ (t)
i dx 171 i 171
2 2 2
e m, h . m h” ..
) ;Ii— . L VT o= e u ()
1 dy 2 i 2 &
and,
d2Vé. m, h2 .o m h2 .o
L 2T -2V v, = 2=
T dyz i kz T 2ivi k2 g

Substitution from equations (3.39a,b,c) gives

LI L3 2

Plnorm +odnmrm] = o

1

(3.46a)

(3.46b)

(3.46¢)

(3.47a)

(3.470)

(3.47¢)

(3.48a)
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.. ) e
;[vli(yni(t) +miV1i(y)Ti(t)] = o () (3.48b)

and

*e e

L [V, T 0) + ¥y T 0] = —u e (3.48¢)

Next, multiply equnation (3.48a) by m1L U (x), equations (3.48b,c) b-

mzhvlk(y) and myh 2k(y) respectively, integrate and add together st

1 1 1
v (mlL_flUi(x)Uk(x)dx + myh tEvli(wvlk(y)dy + myh t[VZi(y)VZk(y)dy> '
T £

) <.Ti (t) + «ni Ti(t)>

1 1 1
= -|mL _jluk(x)dx + myh l[Vlk(y)dy + myh I[VZk(y)dy u (t) (3.49)

Finally, one applies the orthogonality condition to obtain

1 1 1 :
ayL j(U (x))2dx + m,h l[(v L ey + m, ([(VZk(y))Zdy * 1' + o T )
1 1 1 N

= -|nL __[IUk(x)dx + myh t[Vlk(y)dy + myh t[Vzk(y)dy u () (3.50)

or



- 73 -

2 - -

T, + ”ka = Pkug(t) (3.51)
where Pk is the participation factor corresponding to the kth mode,
given by

1 1 1
mlLJ.Uk(x)dx + mzthlk(y)dy + m2h£V§k(y)dy
=1

2 2 2
mlL_fl(Uk(x)) dx + m2h£<v1k(y)) dy + mynf(V,, (y))%ay

Mode shapes from equations (3.31a,b,c) and (3.34a,b,c) can be
substituted to obtain modal participation factors corresponding to a
particular mode. For antisymmetric modes, substitution from equations
(3.34a,b,c) into equation (3.52) gives zero modal participation factors.
Hence, as could be anticipated, the assumed uniform ground motion does

not excite antisymmetric modes in this symmetric structure.

3.5 PERTURBATION METHOD FOR FUNDAMENTAL NATURAL FREQUENCY

In the previous sectiom, the characteristic equatioms obtained for
the natural frequencies of the building are transcendental in nature,
and have to be solved numerically. Although it is not difficult to
solve these equation; on a programmable calculator, it is of interest to
have a simpler way of solving them, even if the solution is approximate.
In this sectiomn, it is shown that one can use perturbation theory to
obtain the fundamental natural freq;ency of the system without having to

solve the equation numeticaily. In many applications, the fundamental
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frequency may be the only frequency of real comcern, as most one—story

structures are rather stiff and have high frequencies of vibratiom.

For a long, narrow one—story building with only two end walls in
the transverse direction, the fundamental natural frequency of the
building is close to the fundamental natural frequency of the roof when
treated as a pinned-pinned beam. Thus, one can take the simple solutiom
for the simply—supported beam as the unperturbed solution for such
buildings, and seek the first order correction term in order to obtain
an approximate solution for the first natural frequency of the whole

system.

Let 0 be the fundamental natural fregquency of the roof when

treated as a pinned-pinned beam (e.g., Meirovitch, 1975). Thus,

which gives,
x .

Let the correct solution for equation (3.29) be a. Then,



_ 2
a = a, + ay + O(al) (3.54)

where ay is the first order correction term and is small compared to «a.
The analysis then proceeds on the basis that terms containing higher

powers of a, can be neglected. From equation (3.24)

2
2 - 22 hh s
k2 m, L

or,

2
B = p(ao +a1)2 = p(n;+na1) (3.55)

where,

¥%
2
. m25111h

4 (3.56)
mikzL

p

Since a4 is small,
3 =z i 14 = [ 4
sin a sxn(2 + al) cos a 1
cos g = cos(% + al) = =—sin ¢y * - e,

sinh a

sinh (% + a,)

= s pd p1 S
= sinh 5 cosh al + cosh 2 sinh @y

- = 2.,3013 + 2.50920.1

and,

= b1
cosh a cosh (2 + ul)

= 2.5092 + 2.30130.1
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Substitution of these into equatiom (3.29) gives a linear equation in

ay:
2 2
(15.28 + 17.844q,) sin (&= p) + 6.19pq,q, cos (% p)
2 4 1% 4
@ = 2 (3.57)
[(29.18 + 36.48q2 - 19.45p2q1q2) sin (%r p)

2
+ (47.99 - 19.45q1 + 56.04q, + 7.88q1q2)p cos (%r'P)]

Here P,4y,q, are functions of the structural properties and have been
defined earlier, Substitution of these into this equation gives the

correction to be applied to @y, i.e.,

The frequency of the first mode of vibration is found from a via equa-

tion (3.24).

Neglecting the torsiomal rigidity of end walls (q2 -> 0), the equa—

tion (3.57) can be simplified further to

2
15.28 sin (“;; D)

@, = 2 2 (3.58)

29.18 sin (“;— p) + (47.99 - 19.45q )p cos (“4— p)

Similar expressions can be obtained for antisymmetric modes of
vibration. For this, the unperturbed solution (ao) can be obtained from
the natural frequency for the first antisymmetric mode of the roof when

treated as a pimned-pinned beam,
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3.6 OTHER CASES OF SINGLE—-STORY BUILDINGS

A particularly simple structure was chosen in section (3.4) to
demonstrate the method. However, the technique is more general and can
be applied to other single—story buildings. This section explains how

some of the more gemneral problems can be formulated and solved.

3.6.1. Symmetric Buwjldings with Shear Wal and Distrjbuted
Column

In the previous section, any columns between the end wall; were
assumed to take only vertical loads. However, ome can easily include
the lateral stiffness of these colummns in ic analysis. In this case,
the roof and the end walls can be treated as bending and shear beanms,
respectively, as was done in section (3.4). The columns between the end
walls can be modelled by uniformly distribmted, thin columns with only
bending flexibility, provided the spacing between adjacent columns along
the x’~axis is not large., This leads to boundary conditions at the top

end of the colummns similar to those discussed in sectiom (3.3.3).

Consider one such building (Figure 3.8). Let w(x’,y’,t) be the
displacement at time t, in the z'~direction, of a point (x’,y’) in the
continuum modelling the colummns. Let E3 be the moduolus of elasticity,
1‘3 be the moment of inertia per unit width and m‘3 be the mass per unit
area (in elevation) of the  column continuum. Properties for the walls

and the roof are the same as defined in section (3.4). The governing

equations for free vibrations in the nondimensiomal coordinates are:
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Figure 3.8, (a) ONE-STORY BUILDING WITH END SHEAR WALLS AND DISTRIBUTED
COLUMNS. (b) DISTRIBUTED IDEALIZATION.
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4 * 4
a4n§x.t! + m1L azu t) _ E313L asw(x,v=1.t) (3.59a)
ax? Ej I ol E I, ay°
171
62v {y,t) m2h2 82v (y,t)
AT o (3.59)
ay 2 ot
2 2 .2
9 v, (y,t) h° v, (y,t)
"'ELTE"" - E%‘— "'2'3"" = 0 {3.59¢)
0y 2 at
and
* 4
4 m,h” .2
g w(z.y,t) 3 ‘a_w_(s.,.z.z.._u. = 0 (3.59d)
ayt E,I, ot

Considering only the right half of the structure, the following are
the boundary conditions:
(i) vl(y=0,t) = 0
(ii) W(X)Fojt) = 0
‘.. aw -
(iii) oy (x,y=0,t) 0

2
(iv) i-;‘(x.y=1.t) = 0
y

(v) w(x=1,t) = vl(y=1,t)
(vi) o'’ (x=1,t) = 0

(vii) vt (x=1,t) = qlvi'(y=1.t)

(viii) u(x,t) = wix,y=1,t)
(ix) n'(x=0,t) = 0 (for symmetric modes)’
u{(x=0,t) = 0 (for antisymmetric mode)

(x) w' ' (x=0,t) = 0 (for symmetric modes)
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uw'’(x=0,t) = 0 (for antisymmetric modes)
Here condition (iv) is valid if the columns are free to rotate at their
top ends. However, when there are rigid beams connecting the columns
along the z'—axis, this cannot be applied; such a case is discussed in
the next sub—section. Condition (vi) corresponds to zero torsional

stiffness of the end walls,

The above differential equations and the boundary conditions can be
combined together and solved. The resulting characteristic equations

and mode shapes are given below:

(a) Symmetric Modes

The characteristic equation is given by

4

(i) For o~ > O:

«3(tan o + tanh a) - 2q4f cot B = 0 (3.60a)

4

(ii) For a < 0

—{cosec 2% + cosech 2&)
4€3 sec 28 + ¢ c

(tan & tanh & + cot & coth &) * 4B cot p =0 (3.600)
where
4 4
4 m1L 2 E31‘31‘ 73(1 + cos ¥y cosh ¥v)
a = 0" - : . : (3.61a)
E. I 3 (sin v cosh v — sinh y cos ¥y)
171 Elllh
2
m.h
p2 = 22 (3.61b)
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* 4
A - msh o2
4 _ _gt
T Ty

The mode shapes are

= cos cosh ax 4

U(x) afsosex cosh_ox 2] for a0

O(x) = Alsin &x sinh &x + cot & coth £ cos &x cosh &x]
for a4<0

]

Vl(y) = Vé(y) 2A cosec B sin By for a4>0

V,(y) = V,(y) = A cosec B cos § cosh & (tan § tanh §
+ cot & coth &) sin By for a4<0
- sin vy — sinh yv _ cos yy - cosh vy
W(x,y) C(x)[ sin y + sink v cos v + cosh v }
where
C(z) = U(x) {siny *+ simh y)(cos ¥ + cosh v)

2(sin y cosh vy — cos y sinh 7)

and A is an arbitrary constant.

(b) Antisymmetric Modes

For the antisymmetric modes, the characteristic equation

by

4

(i) For o > 0:

is

(3.61c)

(3.61d)

(3.62a)

(3.62b)

(3.62¢)

(3.62d)

(3.62e)

(3.63)

given
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a3(coth a - cot a) - 2q,B cot B = 0
. 4 .
(ii) For a < 0O:
§3 se = se - tB = 0
(tan & coth & + cot & tanh &) 448 co

where a, B and & are given by equations (3.6l1la,b,c,d).

The mode shapes are given as follows:

U(x) = A[i%?*-%ﬂ‘%] for a4>0
U(x) = Alsin &x cosh £€x + cot & tanh & cos &x sinh &x)
for a*<0
Vily) = =V,(y) = 2A cosec B sin By for a4)0
Vl(y) = -Vz(y) = A cosec f§ cos & sinh £ (tan & coth &
+ cot & tanh &) sin By for a4<0
e - o[ e s o
where,
C(x) = TUlx) si + si os + cos

2(sin y cosh y ~ cos y sinh y)

and A is an arbitrary constant,

(3.64a)

(3.64b)

(3.65a)

(3.65b)

(3.65¢c)

(3.65d)

(3.65e)

(3.66)

The orthogonality condition and the modal participatiom factors can

be obtained following a procedure similar to the one used in section
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(3.4). Again it will be found that all antisymmetric modes have zero
participation factors for uniform ground motion.

3.6.2 Symmetric Buildings with End Shear Walls and Distributed

Portal Frames

This situation is similar to the previous case, except that now
there are transverse beams (along the z’—~directiomn) that comnect the
columns at the roof level, Thus, the columns aligned withk the z’—axis,
along with the corresponding beam on top, act as a portal frame and the
top end of the column is not free to rotate. Therefore, the boundary
condition (iv) of section (3.6.1) is no longer applicable. Instead,
another boundary condition can be found from the analysis of portal
frames that gives a relation between the moment and the angle of rota—
tion in the colummn at y = 1, For instance, if the beam is much more
rigid than the columns, no end rotation will be allowed at the top end.

In that case, condition (iv) in the previous section will be replaced by
a¥ =
ay (x,y=1,t) 0

The rest of the boundary conditions of the previous case are the same,

and hence, the problem can be solved following a similar procedure.

However, in this type of building, another complication may arise
if there are longitudinal roof beams as well, and the junctions between
the longitudinal and transverse beams are designed to resist moment., In
that case, the beam grid at the roof level acts as a shear beam, and

hence, it becomes necessary to treat the roof as a bending—shear beam.
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On the other hand, such a beam grid tends to make the roof diaphragm
quite stiff, and it may be possible to treat the roof as a rigid

diaphragm, This makes the problem comsiderably simpler,

3.6.3 Buildings with Two Similar End Walls and One Wall in the Center

One-story bniidings with only end walls may have very large laferal
displacements at the mid—-span of the roof during an earthquake. One
effective and convenient way to control this is to add another wall in
the center. Consider ome such structure (Figure 3.9). Let k3 (=k'A3Gs)
and m, be the shear rigidity and the mass per unit height, of the wall
in the center. The properties for the roof and the end walls are the
same as in section (3.4). The dynamic equations of motion for the free

vibrations, in terms of dimensionless coordinates x and y, are:

4 m L4 2
d u(x, t) s 2 ulx,t) _ 0
4 E.I 2 = (3‘678)
ax 171 at
2 2 .2
3 vl(y,t) mzh 3 v!(y,t) - o
) T T ) = (3.67b)
ay 2 at
azvz(y,t) mzh? azvz(y,t)
- =0 (3.67¢)
2 k 2
oy 2 at
and
2 m3h2 2
aowiv, t) _ a-w(y,t) 0 (3.67d)

2 k 2

dy 3 at
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T

Figure 3.9. MODEL OF A ONE-STORY BUILDING WITH TWO END WALLS AND ONE
WALL IN CENTER,



..86_
where w(y,t) is the displacement in the center wall.

Since the structure is symmetric, the symmetric and antisymmetric
modes can be analyzed separately, and only the right half of structure
need be considered. Following are the boundary conditions applicable to
the right half of the structure:

(1) vl(y=0,t) = 0
(ii) w(y=0,t} = 0
(iii) u’(x=0,t) = 0 (for symmetric modes)
u(x=0,t) = 0 (for antisymmetric modes)

(iv) o'’ (x=0,t) = % ;%' (y=1,t) (for symmetric modes)

u''(x=0,t) = % quu’(x=0,t) (for antisymmetric modes)
3
kL
where, q3 = EJ%-;
11
4 E111

and, C3 is the torsiomal rigidity of the center wall.

(v) u(x=0,t) = w(y=1,t)

(vi) a(x=l,t) = vl(y=1.t)
(vii) ' (x=1,t) = q,v'(y=1,t)
(viii) w/ ' (x=1,t) = -q,u’(x=l,t)

Equations (3.67) and the boundary conditions, as above, can be
combined and solved to obtain the governing characteristic equations for
the symmetric and antisymmetric modes as was dome in section (3.4).

However, this involves a considerable amount of algebra.



- 87 -

The method developed in this chapter can be applied to even more
complex structures than those analyzed herein. The principal limitation
is that as the structures get more complex, the algebra gets consider—
ably more involved; and as a result the method loses the advantage of
being simple. Even under these circumstances, there may be instances
when the method is preferable to the finite element or lumped—mass

methods.

3.7 NUMERICAL 1LE

In order to illustrate the method described in this chapter, a
single—story building with two identical end walls has been analyzed
numerically to determine natural freguencies and mode shapes. The solu—
tion also allows comparison of natural periods obtained using several
assumptions, e.g., neglecting the torsional stiffness of the eand walls,

etc.

For convenience, the properties for the example structure have been
derived from the top story of the two—story Administrative Building at
Arvin High School, discussed in the previous chapter. The appropriate
data have been obtained from Steinbrugge and Moran (1954), Blume, et al.
(1961), and Blume and Jhaveri (1969). The following are the building

properties taken for the analysis:

Roof: span (2L)

197.0 ft

weight (mlg) 3770 1bs per ft

modulus of elasticity (El) 2.0 X 106 psi
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6

66.2 X 10 (in)4

[}

moment of inertia (Il)

End Wall: ' height (h) = 14'-11"
weight (ng) = 3300 1bs per ft
shear modulus (Gz) = 0,855 X 106 psi
area of cross section (A2) = 3160 sq in

shape factor (k') = 0.833

1

width of wall (b) 352 in

thickness of wall (¢) = 9.0 in

The characteristic equations (3.29) and (3.32) for symmetric and
antisymmetric modes, respectively, were solved for these ﬁrop;rties.
The roots give the natural frequencies for the example structure, In
addition, characteristic equations (3.35) and (3.37), which correspond
to zero torsional stiffness of the end walls, have been solved.
Finally, equation (3.57) was used to approximate the fundameantal
frequency using the perturbation method. The natural periods obtained
as indicated above and from modelling the roof by a pinned-pinned beam
are given in Table (3.3). A comparison of these periods indicates that
neglecting the torsional stiffness of the end walls does not introduce
any significant error in the calculation of the 1lower frequencies.
Also, in this example the perturbation method gives a very good estimate
for the fundamental period, while avoiding the mneed to solve the

transcendental characteristic equation.
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TABLE 3.1, NATURAL PERIODS FOR THE SINGLE-STORY BUILDING
Torsional |{Torsional Roof Perturba-
Stiffness |{Stiffness Modelled tion
of Wall of Wall &8s Pinned- Me thod
Included |[Neglected |Pinned Beam etho
(Sec) (Sec) (Seec) (Sec)
First symmetric mode 0.283 0.283 0.279 0.284
First antisymmetric mode 0.0743 0.0744 0.0697 -
Second symmetric mode 0.0367 0.0367 0.0310 -
Second antisymmetric mode | 0.0246 0.0246 0.0174 -
Third symmetric mode 0.018S5 0.0185 0.0111 -
Third antisymmetric mode 0.0135 0.0135 0.0077 -
The mode shapes have been obtained using equations (3.31) and

(3.34) and the first six are given in Table (3.4), while the first four

are plotted in Figure (3,10), It is obvious from these mode shapes that

the floor flexibility dominates the dynamic response of this example,
For instance, in the fundamental mode, the center of the roof moves 4§
times as much as the ends of the roof.

The modal participation factors for the symmetric modes were
obtained from equation (3.52), and are given in Table (3.4). They are
normalized by the displacement of the top of the end walls. The 1low

numerical value for the participation factor for the first mode does not

imply a relatively small contribution from that mode, because the

participation factors depend on the way the mode shapes are normalized.
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Figunre 3,10,

MODE SHAPES FOR THE SINGLE-STORY BUILDING.
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TABLE 3.4; MODE SHAPES AND PARTICIPATION FACTORS FOR THE ONE-STORY

BUILDING
First First Second Second Third Third
Symmetric {Torsional [Symmetric Torsional Symmetric {Torsional

Mode Mode Mode Mode Mode Mode
U(x=0) 45.36 0.00 -1.32 0.00 ¢.51 0.00
U(x=0.1) 44.81 1.51 -1.20 -0.30 0.42 0.44
U(x=0.2) 43.19 2.88 ~-0.85 -0.51 0.18 0.66
U(x=0.3) 40.53 3.99 -0.33 -0.58 -0.12 0.56
U(x=0.4) 36.89 4.76 0.25 -0.49 -0.37 0.20
U(x=0.5) 32.37 5.09 0.80 -0.25 -0.48 -0.26
U(zx=0.6) 27.08 4.98 1.23 0.08 -0.40 ~-0.58
U(x=0.7) 21.15 4.43 1.47 0.42 ~-0.14 -0.58
0(x=0.8) 14.71 3.52 1.48 0.70 0.23 -0.24
U(x=0.9) ©7.94 2.33 1.30 0.89 0.63 0.34
U(x=1.0) 1.00 1.00 1.00 1.00 1.00 1.00
V,(y=1.0) 1.00 1.00 1.00 1.00 1.00 1.00
Viy=0.9) | 0.9 0.90 0.91 - 0.91 0.94 0.98
Vl(y=0.8) 0.80 0.80 0.81 0.83 0.86 0.93
Vl(y=0.7) 0.70 0.70 0.72 0.74 0.78 0.86
vi(y=0.6) | 0.60 0.60 0.62 0.64 0.68 0.78
Vl(y=0.5) 0.50 0.50 0.52 0.54 0.58 0.68
Vl(Y'0.4) 0.40 0.40 0.42 0.44 0.47 0.56
viy=0.3)| 0.30 0.30 0.31 0.33 0.36 0.43
Vl(y=0.2) 0.20 0.20 0.21 0.22 0.24 0.29
Vl(y=0.1) 0.10 0.10 0.11 0.11 0.12 0.15
Vi(y=0) 0.00 0.00 0.00 0.00 0.00 0.00
Partic—
ipation 0.0283 0.00 0.412 0.00 0.650 0.00
Factor

The antisymmetric modes, as expected, have zero modal participation fac-

tors for uniform ground motion.
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CHAPTER TV

IWO-STORY BUILDINGS WITH FLEXIYBLE FLOORS

4.1 INTRODUCTTON

The dynamic behavior of two-story, 1long, narrow buildings, 1like
similar single~story buwildings, is of significant interest to structural
engineers due to their frequent use as office, school or hospital
bnildings. One such two-story school building was damaged during the
1952 Kern County earthquake, and has been discussed in Chapter II. The
discussion in Chapter III about the dynamic behavior of single~story
buildings is also valid for similar two—, three-, or more-story

buildings and is not repeated here.

It will be shown in this chapter that the techniques developed for
the single-story buildings can be applied to these buildings as well.
The problem that arises in treating the multistory structures with tke
previously discussed methods is that the algebra tends to get very
complicated with the increased number of stories. Hence, beyond a cer—
tain number of stories, this method loses the advantage of simplicity.
For such situations, less accurate but simple and economic, methods are

presented in the following chapters.

A two—story building, with identical end walls and no other lateral
load resistance element, is the structure treated in this chapter. A
characteristic equation for the natural frequencies, and expressions for

the mode shapes and the participation factors are given in general form.
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A numerical example, bﬁsed on the Arvin High School Building, described

~in Chapter II, is used to illustrate the use of the method.

4.2 TWO-STORY BUILDINGS WITH TWO IDENTICAL END WALLS

Consider a two—story building that is long, narrow and has two
identical end walls (Figore 4.1). Intermediate columns, if any, are
assumed to take only vertical loads and provide no lateral resistance.
The roof and the floor, having large span to width ratios, are treated
as bending beams. The end walls are presumed to have small height to

width ratios and are modelled as shear beams.

Although it is possible to consider different story heights and
different wall properties in the first and the second story, for
simplicity of analysis it has been assumed that the two story heights
are the same, and that the walls are uniform throughout the building
height. Let 2L be length of the roof and the floor, and h be the story
height. Let the following be the roof, floor and wall properties,

assumed to be uniform.

El,E2 = Young's modulus for the floor and the roof, respectively.
1.12 = Moment of inertia of floor and roof cross sections,

respectively.

h‘
"

3 k'AB'G3 = Shear rigidity of wall cross—section.

"
0

Shape factor

.
]

3 Area of cross—section of the wall.

(]
I

3 Shear moduluns of the wall.



- 94 -

- 2L -
/ T
Fv(x',t) / h
' w, (y',t)
w4(y|,f) / yl 2 /
/| x'
/7
Z‘/ - Aulx, ) h
wyly' 1))/ // _1.
o w (y't)

Figure 4.1. MODEL OF A TWO-STORY BUILDING WITH TWO END WALLS.
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m, ,m,,my = Mass per unit length of flodr, roof and wall,

respectively.

Since the structure is symmetric about the y’—axis, it is possible
to separate the vibrational modes into symmetric and antisymmetric
modes. It is convenient to consider only the =right half of the
structure, and to treat the symmetric and antisymmetric modes
separately. Let u(x’,t), v(x’,t), wl(y',t) and wz(y'.t) be the dis-
placements in the z'~direction in the floor, roof, and the first and the
second story of the right end wall, respectively. The equations of

motion for free vibrations of the right half of the structure are:

4 2
d ulx’,t) - - 3 oi{x',t
Ei I Toxra ) 2 (4.1a)
at
§4v(x’.t2 - aszx'.;l
272 ax'4 2 2
at
32w (y',t) azw (y',t)
k _ . m i (4.1c)
3 g2 3 3¢
and
22w, (y',t) 22w, (3" ,1)
k, 2 = m, 2 (4.14)
ay’ at

It is useful to perform the further analysis in terms of dimensionless

coordinates, x and y, defined as
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x' = Il
b4 = L » y = h (4.2)

Using these coordinates, the equations of motion can be rewritten as

4n x, t = - mlL azu t (4.32)
4 E, I 2 -0
ax 171 at
4
dolat - _f‘_z_l‘_azv t (4.35)
ax? B Ly ae?
azw!(y,t) m3h2 ézwl(y,t)
2 - k. 2 (4.3¢)
iy 3 ot
and,
2 2 .2
9w, (y,t) m,h° 3°w,(y,t)
- = (4.3d)
3y 3 at

The analysis uses the method of separation of wvariables to solve

the problem of free vibrations of the system. Let

w(x,t) = U(x) et (4.4a)
vz, t) = V(z) et (4.4b)
w (7,8) = W (y) ' (4.4¢)
w(y.) = Wyly) o' (4.44)

where w is the natural frequency of the motion. Substitution into equa-

tions (4.3a,b,c,d) gives



) ~-al =0 (4.5a)

= 0 (4.5b)

(4.5¢)

y = 0 (4.5d)

where,

") (4.6)

The solutions for the above equations are:

U(x) = A; sin ax + A, cos ax + A; sinh ax + A, cosh ax (4.7a)
V(x) = B1 sin Bx + 32 cos PBx + 33 sinh Bx + B4 cosh Bx {(4.7b)
Wl(y) = C1 sin vy + C, cos vy (4.7¢)
Wz(y) = D1 sin yy + D2 cos vy (4.74)

Here, the A’s, B’s, C’'s and D's are constants to be determined from the
boundary conditions of the problem. The appropriate boundary conditions
and solutions for the symmetric and the antisymmetric modes of the

structure are listed below.
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(a) Symmetric Modes

For the symmetric (i.e,, translatiomal) modes, the boundary condi-
tions are:
. 4au =
(i) iz (x=0) 0
4’
(ii) (x=0) = 0
3
dx

& (1-0)

(iii) dx = 0

3
¥ (x=0) = 0

(iv)

(") W(y=1) = 0

(vi) W (y=0) = U(x=1)
(vii) Wz(y=0) = U{x=1)
(viii) WZ(Y=1) = V(x=1)
e S | WO w0
x e - 9 " ay
X
where,
k3L3
gy = (4.8)
1 ElIlh
3y (z=1) aW, (y=1)
(x) a4,
d13 dy

where,
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3
kL
-3
q4, = (4.9)
2 EZIZh
a*y
(xi) 2 (z=1) = O
dx
av
(xii) 2 (z=1) = 0
dx

The last two conditions correspond to zero torsional stiffness of the
end walls, One can write the boundary conditions for finite torsional
stiffness of the end walls, as shown in section (3.3.2), but the example
problem in the previous chapter suggests that this complexity is not

required.
The boundary conditionms (i) and (ii) require:
A, = A3 = 0 (4.10)
Similarly, from (iii) and (iv),
B, = B, = 0 (4.11)

From (xi) and (xii), respectively,

it

A2 cos a A4 cosh a (4.12)
and,

B, cos § = B, cosh B 1 (4.13)

Thus,
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O(x) = A2 (cos ax + 2% op ax)

cosh a

Vix) = 32 (cos Bx + ﬁ%ﬁ%J% cosh Bx)

From (vi) and (vii), respectively

C2 = 2A2 cos a
and,

D2 = 2A2 cos a
From (v) and (viii), respectively

-C1 sin vy + C2 cos y = 0
and,
D1 sin y + D2 cos y = 232 cos B

Conditions (ix) and (x) give,

A2a3[sin a + -S0S G

cosh g Sinh al + q,¥D; - ;7€) =0

and,

Bzﬁs[sin B + jfi%J% sinh B] = 4,7(D; cos y - D, sin y)

These equations can be combined to obtain the

characteristic equation:

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

following
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3 3
L 2 - =%— (tan ¢ + tanh a)tan y|{(tan B + tanh B)sin ¥
2qy7 2q,7

+ 2a (tan o + tanh a)sin y + tan y sin y ~cos vy =0 (4.22)

Here, @, B and y are known functions of w (equations 4.6), and 4
and q, are known parameters for a given structure (equations 4.7, 4.8).
Thus, equation (4.22) can be solved to obtain the natural frequencies of

the symmetric modes of vibration of the structure. The mode shapes are

given by
- cos g .. |
U(x) Az(cos ax + o o cosh ax) 0<x<1 (4.23a)
= cos B
V(x) Bz(cos Bx + cosh B cosh fBx) 0<x41 (4.2306)
W,(y) = C, sinyy + C, cos vy ~-1£y<0 (4.23¢)
Wz(y) = D1 sin yy + D2 cos vy 0<y41 (4.234)
where,
A2 =¥ Cl sec a tan vy (4.24a)
o 1
B2 =¥ sec B sin v|2 - 2q17 (tan a + tanh a)tanvlcl (4.24b)
C, = C1 tan v (4.24¢)
o
D1 = - 2q17 (tan ¢ + tanh a)tan v C1 (4.244d)
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D, = C, tan vy (4.24e)

The mode shapes for the left half of the structure can be obtained

from the conditions of symmetry.

Uz) = A,(cos ax + 222% cosh ax) -1¢x<1 (4.25a)
Vix) = Bz(cos Bx + ﬁfE%J% cosh Bx) -1{x<1 (4.25b)
W, (y) = W(y) = C; sin vy + C, cos vy -1<y<0 (4.25¢)
Wz(y) = W4(Y) =D, sin vy + D, cos 7y 0<y<1 (4.25d)

where Ws(y) and W4(y) correspond to the displacements in the 1left end

wall in the first and the second story, respectively.

Thus, for a given natural frequency (obtained from equation 4.22),

the symmetric mode shapes can be obtained from equations (4,24) and

(4.25).

(b) Antisymmetric Modes

For antisymmetric (i.e., torsional) modes of vibration, the
boundary conditions are:

(i) U(z=0) = 0

d2
dx2

=]

(ii) (z=0) = 0

(iii) Viz=0) = 0
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(iv) )y (x=0) = 0

(v) Wy=1) =0

(vi) Wl(y=0) = TU(zx=1)
(vii) Wz(y=0) = U(x=1)
(viii) Wé(y=1) = V(z=1)
S, | M0 e
ix P 9 dy Y dy
X
$3v(xet av, (y=1)
(x) = q
dx3 dy

2
(xiy Sz,
dx

(xii) 4y ‘;1 = 0
- d
X

where q, and q, are given by equations (4.8) and (4.9), respectively.
The last two conditioms correspond to zero torsional rigidity of the end

walls,

These boundary conditions can be applied to the solutions of the

differential equations (equations 4.7), to obtain the following
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characteristic equation and mode shapes:

3 3
L [ﬁ - =&— (-cot a + coth a)tan y](-cot B + coth B) sin ¥

24, 2q,7
3
+ Ei—; (-cot a + coth a)sin y + tan y sin y —cos y = 0 (4.26)
1
Ulx) = A (sin ax + —sillnﬁ sinh ax) ~1<x<1 (4.27a)
V(z) = B (sin Bz + ﬁﬁ sinh Bx) ~14x<1 (4.27b)
Wl(y) = C1 sin vy + 02 cos Yy ~1<y<0 (4.27¢c)
Wz(y) = D1 sin vy + D2 cos vy 0{y<1 (4.274)
W3(y) = —C1 sin yy - C2 cos vy -1<y<0 (4.27e)
W4(y) = -D1 sin yy - D2 cos yy 0{y<1 (4.27£)
where,
A = ¥ C1 cosec a tan y (4.28a)
3 1
B, = % cosec B sin y|2 - ~&— (—cot a + coth a)tan riC (4.28b)
1 2q17 1
C2 = C1 tan v (4.28¢)

3 .
I ]
D1 [1 2q17 (-cot a + coth a) tan yJCl (4.284)
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D2 = C1 tan vy (4.28e)

The roots of equation (4.26) produce the natural frequencies for
the antisymmetric modes of the structure. For a particular natural
frequency, equations (4.27) and (4.28) give the corresponding mode shape

of the structure.

Orthogonality of Modes

The following analysis demonstrates the expected orthogonality of
the modes of vibrationm, Let 0, and Ui(x). Vi(x), Wli(y). W2i(y),
W3i(y)’ W4i(y) be the frequency and the mode shape for the ith mode .
Similarly, Wy U&(x). Vk(x). wlk(y)f Wﬁk(y). Wék(y) and W4k(y)

correspond to the kth mode. Substitution into equatioms (4.5) gives,

4 4
d Ui(x) mIL 2

- 0.0.(x) = 0 (4.29a)
dx4 EIII ii
4 4
d V. (x) m, L
—_t 2 2y () = 0 (4.29b)
4 E.I ii
dx 272
AW (y)  ma’
2 + X miwli(y) = 0 (4.29¢c)
dy 3
dzwzi(y) m3h2 »
5 * I miWZi(y) = 0 (4.294)
dy 3
d2w31<y) m3h2 5
5 * 3 uiwsi(y) = 0 (4.29¢)
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aW, () mp’
2 * miwﬁ_(y) = 0 (4.29¢£)
dy 3
Similar equations can be written for vibrations in the kth mode. The
two sets of equations can be combined to obtain
ir d4Ui d4Uk m1L4 - 1
LU, - —F Ul -2 wi-ed) [ vuar=o (4.30a)
-1} dx dx 171 -1
ir.4 4 ] 4 1
4V, a'v L
ly - —Lkvy lax - L(wz-—mz) J' V.V, dx = 0 (4.306)
4 'k 4 i E.I i
-1} dx dx 272
or 2w 2 1 2
d dVw m,h
i 1k 3
—-1'—2 W, e w2) _[ W W dy =0 (4.30¢)
-1} dy dy
ir.2 2
4V avw
S 2 Bl 3 -
J(: L 2k W, ey (-0 )j(; 5 iVpydy = 0 (4.30d)
dy d
J? a’w, . atw, myh” h2 J.
Vv, - W,.ldy + ) W dy = 0 (4.30e)
2 dyz 3k dyz 3i 3i 3k
and,
1r.2 2 2
avw, . 4w n, h
4 _ 4k
g-——-—*dyz W, = W, ldy + wl) f Wy W, dy =0 (4.30£)

Integrate the first integrals of these equations by parts, and

apply the appropriate boundary conditions. This gives,



=
.3 3 ] 4 1
d" U, d"U m,L
g - —k U, - (m?—mz) j' U.U.dx = 0
3 'k 3 i E. 1 ik ik
dx dx 171 -1
| Jx=-1
x=
.3 3 ) 4 1
a7V, d-v m.L
31 v, ——--’—‘*3 v, - EZI (mi—mi) V.v.dx = 0
dx dx 272 -1
. Jx=1
[dW dw
__La
L (y*O)Wlk(y-O) (y=0)Wli(y=0)]
m h2
+ (u —wy ) J. Wl lk 0
. =1
dw, . daw
'Ez_lwzk'_&'&wzi] + )1["2 ndy = 0
. ¥ ¥ =0
AW avw
33 _ 3k
p (y=0)wsk(y=0) iy (y=0)W3i(y=0)
+ ﬁ (wz-mz) j-) v,.W,.dy = 0
k, Uik J "3t T
y=1 2 1
dw , . avw m. h
[—dﬂwn"'ﬁﬂwu] "—3{—“"‘")1{"4141: =0
y y 7=0 3
However, from the boundary conditionms,
Wl(y=0) = 0O(x=1), W3(y=0) = U(x=1)

(4.31a)

(4.31b)

{(4.31¢)

(4.31d)

(4.31e)

(4.31£)
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WZ(Y-‘-‘I) = V(x=1}, W4(y=1) = V(x=-1)
3 kL3 aw kL3 aw
SE PR T o0 s gy o0 = o
dx 1110 dy 11;0 &y
3 k.13 aw
av 3 _2
3 =0 = g =t e
dx 215
3 e1® v kL3 aw
e g 00 g i 0 = 0
dx 11ik dy 1112 dy
and,
3 k1’ aw
av = . -3 _4
3 (x=-1) EI (y=1)
dx 210 dy

Equations (4.31) can be combined such that the boundary terms

cancel, and the following is obtained,
1 1 0

22
(@3-u) [, L jl U,Udx + m)L -1.1 V.V dx + mgh -J.1 W, ¥ dy

1 0 1
+ mgh z[ Wy, W, dy + mh -1[1 Wy ¥y dy + mgh ([ Wy W, dv| =0 (4.32)
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for i#k, ui#mk. From equation (4.32), it follows that

1 1 0

Lf Ude+m2LI Vde+m3hJ‘ W, ¥, dy

1 0 1

* mg ![wzwzkdy*“‘h.[ ¥3i¥3,dy + mgh l[wc& 4x%Y

Hence, the modes of vibration are orthogonal and

gives the orthogonality condition.

Participation Factors for Earthquake Ground Motion

= 0 (4.33)

equation (4.33)

The equations of motion due to uniform, transverse earthquake exci-—

tation can be written as:

4
L.,
dfux,t) | _.1_3_9_(;.._). e il ¥ o)
ac? ElIl 5¢2 E L
4 4
vix, t Q,xiz;il. EZ__
3 + B I 2 v (t)
ax 7' Bt 1,
2 2 .2 2
d wl(y,t) m3h '} wl(y,t) _ Eih oo
2k 2 = T, %(®
dy 3 at 3
2 2 .2 2
3 w;(y,t) _ msh ] lz(y.t) Sh .o
2 x 2 r, %5t
oy 3 at 3
2 2 2
] wg(y,t) _ 43h a (y,t) _ mah .e
2 K 2 x, °gt
oy 3 at 3

and

(4.34a)

(4.34b)

(4.34¢)

(4.344)

(4.34e)
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2 2 .2 2
] w4(y,t) _ m3h ] w4(y,t) B m h” ..
2 ” %y = -%—— ng(t) (4.341)
dy 3 at 3

where ug(t) is the earthquake acceleration in the z’—direction, w3(y,t)
and w4(y.t) are the displacements in the first and the secomd story of

the left end wall. All other terms have been defined earlier.

First, expand the response in terms of the mnormal modes of the

system. Let

a(x,t) = 12;1 U, (x)T, (¢) (4.35a)
vix,t) = V.(x)T.(t) (4.35b)
1 1
1=1
v (y,t) = 121 ¥ (DT () (4.35¢)
w,(7.t) = 1);1 W, ()T, (¢) (4.35d)
woly,t) = ;1 Wy, (9)T, (¢) (4.35¢e)
w,(y.t) = L ¥, ()T, (£) (4.35F)

Next, substitute these and equations (4.29) into equations (4.34) to

obtain
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L [0,(0T,(t) +oiU (0T, ()] = - ()

i

; [V, (0T (8) + 0V, (DT (5)] = -u_(¢)

S I o

.

1

¥, (T, (6) + ¥, ()T, (0)]
i

These equations can be combined to yield

1

1 0

+ mgh £ W, W, dy + mih f Wy Wy dy + mih {{

o f - 2
<Ti(t) + miTi(t)) ]

1 1

= ~[mL -J-1 U dz + m,L _J’l Vdz + mjh .j'l Wy dy + mgh ‘[ LA

0 1
+ mgh Jl W, dy + mgh ![ Wty | (8)

Finally, apply orthogonality comdition {equation 4.33) to obtain

.o ’
[Wli(y)Ti(t) + “iwli(y)Ti(t)]
[Wu(y)'ri(t) + o) W (y)'r (t)]

[Wsi(y)Ti(t) + o) W 4T, (t)]

0

1

..

—ug(t)

-z (t)
8

-ng(t)

LR

—us(t)

1
IR ER? Jl U0 dx + m,L __L V,V,dx + mh _jl W W dy

4“’41;)

1

(4.36a)

(4.360)

(4.36¢)

(4.364)

(4.36e)

(4.361)

(4.37)
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L IR 3 2 _
Tk(t) + wka(t) = -Pkng(t) (4.38)

h

where Pk' the participation factor for the kt mode, is given by

1 1 0 1 0 1
m L _:['1 dexmzLJIdexﬂnsh -J; Wlkdy+m3ht[W2kdy+m3h —f1 wskdymshjo'w &7
1 1 0
2 2 2
mlL-Il(Uk) dx+m L _j’l(vk) dxmahjl(wlk) dy

1 0 1
2 2 2
smgh[ (W, ) dy+m3h_j'1(w3k) dy+m3hg(W4k) dy

For a particular mode, substitution of the expressions for the mode
shape into equation (4.39) gives the corresponding modal participation
factor. When antisymmetric mode shapes (equations 4.27) are used in
this expression, they yield zero modal participation factors. Hence, as
anticipated in this symmetric structure, a uniform ground motion does

not excite torsional modes.
4.3 NUMERICAL EXAMPLE

As an illuostration of the method described imn this chapter, the
Administrative Building of the Arvin High School has been modelled and
analyzed in this section. The results of this approximate analysis
include the natural frequencies, the mode shapes and the modal partici-

pation factors for uniform grouwnd motiomn.
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The properties for the structure
Steinbrugge and Moran (1954), Blume,
Jhaveri (1969).

have

The shear wall near the center in the first

a_l.

been

obtained

from
(1961), and Blume and

story has

been neglected because of its small size and the complexities it causes

in the analysis.

second

story have

been

left end walls are taken to be identical.

assumed to be the same,

The

The properties of the end walls in the first

story height

first and second story has been taken to be the same.

The building properties

follows:

Floor:

modulus of

moment

Roof:

modulus of

moment

Walls:

area

used for

span (2L)
weight (mlg)
elasticity (El)

of inertia (Il)

weight (ng)
elasticity (Ez)

of inertia (IZ)

story height (h)
weight (m3g)

shape factor (k')
shear modulus (G3)

of cross—section (A3)

this

example problem

197.0 £t

7330.0 1b per £t

2.0 X 106 psi

6

41.0 X 10 (in)4

3770.0 1b per ft

2.0 X 106 psi

6

66.2 X 10° (im)*

14.0 £t
3710.0 1b per ft
0.833

6 .
0.855 X 10 psi

3560.0 sq in

for

are

and the
and the right and the

the

as
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The characteristic equations (4.22) and (4.26) for the symmetric
and the antisymmetric modes, respectively, were solied to obtain the
natural frequencies of the structure. For these frequencies, the mode
shapes were obtained using equations (4.23, 4.24) and (4.27, 4.28), and
equation (4.39) gave the corresponding modal participation factors for
wniform earthquake ground‘motion. These results are tabulated in Table

(4.1), and the first four mode shapes are plotted in Figure (4,2).

A comparison of the natural frequencies indicates that the first
natural frequency is close to the fundamental frequency of the second
floor vibrating as a pinred-pinned beam. Similarly, the second =natural
frequency is approximately equal to the fundamental frequency of the
roof when treated as a pinned-pinned beam. This second mode period
(0.29 sec) is in good agreement with the 0.25 sec "horizontal roof-
diaphragm period” reported by Blume, et al. "~ (1961) during their forced-
vibration tests on the same building. The third symmetric mode period
for the structure is 0.061 sec and probably corresponds to the mode
reported by Blume, et al. (1961) as “fundamental translation mode” with

a measured period of 0.10 sec.

Table (4.2) gives the base shear in the structure in various modes
of vibration under earthquake motion characterized by a constant
acceleration spectrum valume of 0.20g. As expected, the antisymmetric
modes do not get excited by this type of ground motion and thus

contribute mnothing towards the base shear. It is obvious from Table

(4.2) that the first two modes, dominated by floor or roof vibrationms,
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TABLE 4.1. PERIODS, MODE SHAPES AND PARTICIPATION FACTORS FOR THE
TWO~-STORY BUILDING

First Second First Second Third Third
Transl. Transl. Tors. Tors, Transl. Tors.
Mode Mode Mode Mode Mode Mode
Period 0.498 0.286 | 0.128 | 0.078 | 0.061 | 0.040
séc secC sec seéec seéc secC
U(x=0.0) | 76.17 —0.46 | 0.00 0.00 | -1.68 0.00
U(x=0.2) | 72.49 -0.41 | 4.75 | -0.25 | -1.05 | -0.54
U(x=0.4) | 61.81 -0.27 | 7.17 | -0.33 0.3 | -0.47
U(x=0.6) | 45.18 -0.06 | 7.98 | -0.20 1.58 0.15
U(x=0.8) | 24.22 0.21 | 5.34 0.12 1.71 0.72
U(x=1.0) 0.98 0.50 | 0.92 0.52 0.83 0.82
V(x=0.0) 1.58 24.93 | 0.00 0.00 | -0.48 0.00
V(x=0.2) 1.55 23.76 | 0.35 1.63 | -0.36 | -0.42
V(x=0.4) 1.47 20.37 | 0.65 2.713 | -0.05 | -0.54
V(x=0.6) 1.34 15.08 | 0.86 2.95 0.35 | -0.26
V(x=0.8) 1.18 8.40 | 0.96 2.26 0.71 0.33
V(x=1.0) 1.00 1.00 | 1.00 1.00 1.00 | 1.00
W, (y=-1.0) 0.00 0.00 | 0.00 0.00 0.00 0.00
W (y=—0.8) 0.20 0.10 | 0.19 0.10 0.17 0.17
W (y=0.6) 0.39 0.20 | 0.37 0.21 0.34 0.34
W (3=-0.4) 0.59 0.30 | 0.56 0.31 0.51 0.50
Wi(ys-o.z) 0.79 0.40 | 0.74 0.41 0.67 0.66
Y, (y=0) 0.98 0.50 | 0.92 0.52 0.83 0.82
W, (§=0.2) 0.99 0.60 | 0.94 0.62 0.87 0.87
W2 (y=0.4) 0.99 0.70 | 0.96 0.71 0.91 0.92
¥2 (y=0.6) 0.99 0.80 | 0.97 0.81 0.94 0.95
W2 (y=0.8) 1.00 0.90 | 0.99 0.91 0.97 0.98
wg(y=1.0) 1.00 1.00 | 1.00 1.00 1.00 1.00
Partici-
pation 0.0178 | 0.0518 | 0.00 | 0.00 0.474 | 0.00
Factor

make the largest contributions to the total base shear for the
_structure, The third symmetric mode, with less pronoumnced floor and

roof motioms, gives a base shear only about 1/3 that of the second mode.

The numerical results suggest another interesting feature that may
occur in multistory buildings that are relatively uniform and have

flexible floors. In the example, the first two natural frequencies are
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TABLE 4.2. MAXIMUM BASE SHEARS FROM SYMMETRIC MODES IN THE TWO-STORY
BUILDING (SA = 0.20g)

Base Shear
Symmetric | Period | Base Shear* (percentage
Mode (sec) (1) of total
weight)
1 0.50 13.6 X 10% 6%
2 0.29 24.3 X 104 11%
3 0.061 | 7.0 x 10* 3%
4 0.042 6.4 x 104 ey
4

*The total weight of the structure is 230 X 10" 1b,

close to the natural frequencies of the floor and the roof when treated
as independent, pinned—pinned beams. Therefore, for multistory
buildings that have nearly identical floors and stiff end walls, some of
the 1lower frequencies may correspond to floor motions. It can be
expected that such frequencies may be very nearly equal, leading to

additional complications in the analysis and response of the buildings.
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CHAPTER V
TISTORY BUILDINGS WITH WALLS

5.1 INIRODUCTION

This chapter deals with multistory buildings whose lateral 1load
resistance system consists only of two walls or frames at the two ends
of the building. The one~ and two-story counterparts of such buildings
have been studied in Chapters III and IV, respectively. It was noted in
Chapter IV that the approach developed in Chapter III could be applied
to buildings with more stories but that the algebra was increasingly
complex as more stories are comsidered. Although the approach allows
one to analyze-the system "exactly,” it loses its simplicity for mmnlti-
story buildings. In this chapter, a simpler approach has been developed
that allows the analysis of such multistory buildings. However, the

approach requires some additional assumptions about the building.

In this new approach, the end walls or frames are represented by an
appropriate beam (bending beam or shear beam). The floors, treated as
separate beams in the previous chapter, are now modelled as an
equivalent distributed beam system, discussed in section (3.2.3). The
distributed system is attached uniformly along the height of the verti-
cal end beams. Thus, the floors are no longer assumed to be attached to
the end walls (or frames) at discrete points, and a single differential
equation applies to the whole wall. Similarly, only one differential

equation is needed to represent the floors. However, for practical
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purposes, ome has to assume the distribution of mass and stiffness in
the floors and in the end walls to be uniform (or some simple variation)

along the height of the building.

5.2 BUILDINGS WITH END WALLS MODELLED AS BENDING BEAMS

As the height to width ratio of an end wall increases, the wall
tends to behave more like a bending beam and less like a shear beam. In
this sectiom, it has been assumed that the building has two identical
end walls, that have a height to width ratio large enough that the bend-
ing flexibility is much larger than the shear flexibility. Consider ome
" such building as shown in Figure (5.1). The building height is h and
the length of the floors is 2L. The following list gives the properties
of the end walls and the distributed floor system. They are assumed to
be uwniform along the height of the building. In additiom, the floor—

system properties are uniform along the length of the building.

El.EZ = Young's modulus of elasticity for the floor system and the
wall, respectively.

I"'1 = Moment of inertia of floor—system cross—section per unit
height.

12 = Moment of inertia of the end wall cross—section.

m*l = Mass per unit area (in x’-y’ plane) of the distributed floor
system,

m, = Mass per unit height of the end wall.
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Figure 5.1. MODEL OF A MULTISTORY BUILDING WITH END WALLS OR FRAMES,
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Let u(x’,y’,t) be the displacement in the z’~direction, at point
(x',y') of the floor system at an instant t. Similarly, vl(y',t) and
vz(y',t) are the displacements in the z'’-direction, in the right and the

left end walls.

The equations of motion for free vibrations of the system can be

written as,

4 2
a u‘!l zl E! o 14 ? t
E.I>» = —-m¥*
1 4

(5.1a)
1 ax ! 1 at2
84v (Y‘:t) azv (Y',t) [ 311 ' ot 1
E.I —l o —i L |E.I* (5.1b)
272 6y'4 2 atl 171 ax,s £'=L
and,
a4v (y',t) azvz(y',t) 33!(1' v .t)
EZIZ "—2—“:'—— = -m, 2 - ElI*1 3 (5.1¢)
ay’ at ax' x'=-L

Let x and y be the nondimensional coordinates defined by:

b4

= e = L:-

Equations (5.1) can be written in the new coordinate system as

4 a1 2
2ln(x,v.t) 1" 37ulx,yv.t)
y - -4 s (5.3a)
ax 171 at
4 4 2 * 4
3 vl(y,t) L mh” 37V, (y,¢) . E 1% ﬂiﬂi&fl&!;&l (5.3b)
sy B2 Iy ae? E,I,L} ax°
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4 4 2 4
3 vz(y,t) mzh 3 vz(y,t) Ell*lh a3u{ -1 J
4 * TETI 2 3 3 (5.3¢)
9y 272 ot EZIZL ax

Separation of variables is used to analyze the free vibration

problem of the system. Let,

a(z,y,t) = T(x,y)el?t (5.42)
vl(y.t) = Vl(y)elmt (5.4b)
vy(7.t) = Vy(y)e't (5.4¢)

where w is the natural frequemcy of the motion. Substitution into equa-

tions (5.3) produces

4
4 m*_ L
P L 2 ge,y = 0 (5.5a)
ax 171
4 4 4
d'V, (y) h I* h 3 . :
—-1-2-—- - %31— w? ¥, (3) 5—-—1—3— 3—‘31 (x=1,7) (5.5b)
dy 21s E,IL° ax
272
d4V () =n h* E, I* hﬁ 3
2 2t 2 11t 3°u
2 "EL©® Vz(y) = - (x=-1,y) (5.5¢)
dy 272 EZIZL ax

Because of the symmetry in the structure about the y’—axis, it is
convenient to treat the symmetric and the antisymmetric modes of vibra-—

tion of the structure separately.
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Symmetric Modes

The

following

symmetric modes of vibration:

(i)

(ii)

(iii)

{iv)

(v)

(vi)

(vii)

(viii)

Here,

(iii) assumes that the end walls have

are the ©boundary conditions

U (x=0,y) = 0
x
2’

3 (x=0,y) = 0
ox

2
20 (zo1,y) = o0
8x2
Vl(y=0) = 0
av
-1 =

iy (y=0) 0
a’v,
— (y=1) = 0
dy

3
a7V
—1 (y=1) = 0
d 3

y
Wx=l,y) = Vl(y)

zero

The solution of egquation {(5.5a) can be written as:

torsional

applicable

to

the

stiffness.
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U(x,y) = Al(y) sin ax + Az(y) cos ax + Ag(y) sinh ax

+ A4(y) cosh ax (5.6)
where,
4
m*_ I
4 = —l—E — 2 (5.7)
1%

and A, (y), A,(y), A;(y) and A4(y) are some functions of y.
From boundary conditions (i) and (ii),

A =0 , Ay(y) = 0 (5.8)

Boundary condition (iii) gives:

= £98 @
Thus,
U(x,y) = Az(y)[cos ex + ﬁfﬁ%Jt cosh ax] (5.10)
From boundary condition (viii)
v, (y)
e =
Az(y) 2 cos a (5.11)

Next, substitute (5.10) and (5.11) into equation (5.5b) to obtain

d4V1(y)

dy4

-8fv i = o (5.12)

where,
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4 4

h E,I*.h" 3
B4 = 2 R (tan a + tanh a) (5.13)

E, L 3 2

272 E,I,L
272

The solution for equatiom (5.12) is

Vl(y)- = By sin By + B, cos Py + B; sinh By + B4 cosh By (5.14)

where the B's are constants to be determined from the boundary condi-

tions of the system. From (iv) and (v),
B4 = _BZ ’ B3 = -B1 (5.15)
Therefore,
Vl(y) = Bl(sin By - sinh By) + Bz(cos By - cosh By) (5.16)
From (vi) and (vii),
(-sin B - sinh B)B1 + (~cos B - cosh B)B2 = 0 (5.17)
and,
(~cos B - cosh B)B1 + (sin B ~ sinh B)B2 = 0 (5.18)

From these equations, the condition for a nontrivial solutiom is

obtained as
cos Bcosh B +1 = 0 (5.19)

and, for each B satisfying equatiom (5.19)



- 126 -

- - Sin B + sinh B
B, = cos p + cosh B By (5.20)

Hence, equation (5.19) is the characteristic egquation for the problem,*
where B is related to the natural frequency w through equations (5.7)
and (5.13). These equations can be solved to obtain the natural

frequencies of the symmetric modes of the structure.

The translational mode shapes for the building are given by,

= = nl8in By = sinh By _ cos Bv - cosh fv
Vl(y) VZ(Y) B[ sin § + sinh B cos B + cosh B ] 0<y<1 (5.21a)
and
= B [cos ax _ cosh gx].
Uix,y) 2 [cos a + cosh a]
.[sin By - sinh By _ cos By -~ cosh ﬁx] ~1gx¢l (5.21b)
sin B + sinh B cos B + cosh B 0<y<1 *

Here B is an arbitrary constant,

Antisymmetric Modes

The following boundary -conditions apply to the antisymmetric modes

of vibrations:

(i) U(x=0,y) = 0
a2y
(ii) 2 (z=0,y) = 0
ox

* This is the same characteristic equation with different definition
of B that governs the vibrations of a cantilever bending beam.
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(iii) i'g (z=1,y) = 0
ax
(iv) Vi(y=0) = 0
4av
% =
(v) dy (y=0) 0
a®v,
(vi) — (=) = 0
dy
a’v,
(vii) —=(y=1) = 0
d 3
Y

(viii) U(x=l,y) = Vi(y)

Equations (5.5) can be solved for these boundary conditioms in a
manner similar to that for the symmetric modes. The characteristic

equation for these modes is again

cos Bcoshfg +1 = 0 (5.22a)

with § now defined by

E.I 3 2 (—cot o + coth a) (5.22b)

e’ = Fis @ (5.22¢)
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Equations (5.22) can be solved to obtain the natural frequencies for the

antisymmetric (torsional) modes. The mode shapes are given by

= - = p[8in By — sinh By cos By - cosh By
ACEEACES re sarw sy sy o (U CRIICEETY
and,
= 3Bfsin ox , sinh ox].
Ulx,y) 2[sin @ © “sinh u]
.[sig By ~ sinh By _cos By - cosh ﬂz] 1441 (5.238)
sin B + sinh B cos B + cosh B 0¢yg1 °

where B is an arbitrary coastant.

Orthogonality of Modes

Beginning with the differential equations of the two walls and the
distributed beam system modelling the floors, integratiom by parts and
use of the boundary conditions produce the expected orthogonality comdi-
tiom, For w, # mj. where i and j demote two modes of vibratioa, the
condition is

11 1
me.L t[ jl U,(x,7) 0, (x,y)dxdy + m, ‘E v, (D, (Pdy

1
+ m g VIV dy = 0 (5.24)
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Participation Factors for Earthguake Ground Motion

The equations of motion due to uniform ground motion may be written

as:
4 4
§4u(x £) m‘lL §2u[ £) m‘lL .o
ax 171 at 1471 8
4 4 .2 4 4
3y 272 at E,I,L ax 272 8
and,
4 4 .2 .4 4
3 vz(y,t) mzh 3 vg(y,t) EII*lh §3u{ —1 ) Ezh .
4+ TET 2 " 3 3 =T E 1, ug(t)(5:25¢)
oy 272 at EZIZL ax 272

Here ug(t) is the earthguake acceleration in the z'—direction.

The normal modes of vibration are used to expand the response of

the structure. Let

u(x,y,t) = U, (x,7)T, (¢) (5.26a)
1=1

v (7. t) = Vi (T, (8) (5.260)
i=1

vyly,t) = 1;1 Vo (DT, (1) (5.26¢)

Next, substitute equations (5.26) into equations (5.25) to obtain
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L [riemmT 0 + 20 @nt ] = - @

i

o0

21: [7, 0T (0 + W}V T 0] = —u)

. g 2
zi: [Vu(y)'ri(t) + mivzi(y)'l‘i(t)] = —u ()

These equations can be combined to yield,
11
£ m*,L JJ; U;Updxdy + m, g 137187 t oy & 2172x%Y
11 1

«po 2
(Ti + miTi)] = —|m*,L J}; U dxdy + my g Vi49y

1
+ m, g Vzkdy ug(t)

Applying the orthogonality condition (equation 5.24), equation

becomes

x kak = —Pk ng(t)

where Pk' the participation factor for the kth mode, is given by

11 1 1
s L i J; U dxdy + m g V, dy + m g V, 8y
11 1 1 |
2 2 2
ms L g J; (v,)%dxdy + m, g_(vlk) éy + m, g (V,,) “dy

(5.27a)

{5.27b)

(5.27¢)

(5.28)

(5.28)

(5.29)

(5.30)



- 131 -

Thus, the mode shapes obtained earlier can be substituted into
equation (5.30) to obtain the corresponding modal participation factors.
As expected, the participation factors are zero for the antisymmetric

modes of vibratiom.
5.3 BUILDINGS WITH ¥ S (OR S) _MOD ED AS SHEAR BEAMS

Walls yith low height to width ratios and moment—resisting frames
of 1low to moderate height, can be modelled as shear beams. Hence,
buildings whose lateral load resistance system consists of only two such
end walls or end frames can be treated in a manner similar to the pre—
vious section. The only difference is that the walls (or £frames) now
have to be modelled as shear beams rather than as bending beams. As
shown in Figure (5.1), let the building height be h and the plan length

be 2L.

The two end walls are assumed to be identical and uniform
throughout the height of the building. The floors are taken as uniform
along the length and are identical along the height of the building.
Let the following be the mass and the stiffness properties of the

structure:

El = Young's modulus of elasticity for the floor system.
I*1 = Moment of inertia of the floor system cross—section per unit

height,



- 132 -

k2 = k'A262 = Shear rigidity of the shear beam that models the exnd
frame or wall.

k' = Shape factor

A2 = Area of cross—section of the end wall,

G2 = Shear modulus of elasticity for the end wall.

Mass per unit area (in x'~y’ plane) of the distributed floor

%
[y
]

system,

n, = Mass per unit height of the end beam.

Let n(x’,y’,t) be the displacement in the z'~directiom, at point
(x',y') of the floor system at an instant t. Similarly, vl(y',t) and
vz(y'.t) are the displacements in the z’-direction, in the right and the
left end beams. Let x and y be the nondimensional coordinates defined

as:

- = I

The equations of motion for free vibrations of the structure can be

written in terms of these nondimensional coordinates as

4

4 m* L .2
g m(x,y,t) _ _ _1. 3wm t (5.32a)
4 E I* 2 '
ax 171 at
2 2 .2 2
3 vl(y,t) Egh a vl(y.t) EII‘lh a3 ~
oy 2 Jt kL ax"

and,
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2 2 .2 2

3 v, (y.,t) 2" 3%v,(y,t) E.I* %1 3

--2-5——- - 3%—- 2 — 1 %; 9 2 (x=1.7.0) (5.32¢)
oy 2 3t kL ox

As in the previous case, let

a(z,y,t) = U(x,y)e et (5.33a)
v (y,t) = vl(y)eimt (5.33b)
v, (3,8) = Vy(petet (5.33¢)

where o is the natural frequency of the motion. Equations (5.33) can be

substituted into equations (5,32) to obtain

atue,y) f:LEi 2
- U(x,y)

o = 0 (5.34a)
8:4 ElI*l
dzv!(y) mn E,I* b’ 23y
+ o V(y) = - e (z=1,y) (5.34b)
2 k 1 3 .3
dy 2 k2L ax
2 2 2
a“v,(y) h _ E.I*.h 3
-——2;—— + f%—- uZVQ(y) = ‘l"%;"i'g'(x=-1.y) (5.34¢)
dy 2 kL7 ox

These equations can be solved separately for the symmetric (transla—
tional) and the antisymmetric (torsional) modes of vibration by comsid-

ering only the right half of the structure.
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Symmetric Modes

The boundary conditions applicable to the symmetric modes of vibra-—

tion are as follows:

) La=0,p = o0
a’u
(ii) 3 (xz=0,y) = 0
dx
a2
(iii) > (x=1,y}) = 0
ox
(iv) V1 (y=0) = 0
dav
—1 =
(v) dy (y=1) 0
(vi) O(x=1,y) = V(y)

As in the previous sectiom, (iii) assumes zero torsional stiffness of

the end walls. Equations (5.34) can be solved for these boundary condi-

tions, in a manner similar to the previous section.

obtain the following characteristic equationm:

mzhz ) EII‘lhz 3
T o +——Tnz"(tana+tanha.)
2 kL

2

where

This enables one to

(5.35a)
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4
»
4 _ oL o,
a = E.I* [0}
11%4
p = 2L i=1,2,3,...

From these equations, the natural frequency w, for the ith mode

obtained. The corresponding mode shape is given by,

-14x41
= Blcos ox . cosh ax]._. =
Uz, y) 2L cos @ ' cosh a4%i® By 0<y«1

and,
Vl(y) = V,(y) = B sinfy 0gy<1
where B is an arbitrary constant,
Antisymmetric Modes
The boundyry conditions for these modes are:

(i) U(x=0,y) = 0

) =0,y = o
2
ox
2%y
(iii) 2 (x=l,5) = 0
ax
(iv) V1 (y=0) = 0
av
(v) —=(y=1) = 0

(5.35b)

(5.35¢)

can Dbe

(5.36a)

(5.36b)
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(vi) U(x=1,y) = V(y)

These boundary conditions and the equations (5.34) can be combined to

obtain the following characteristic equation for antisymmetric modes of

vibration:
mi o, BRI 3 )
0w + & (-cot a + coth a) = B (5.37a)
k 3 2
2 kzL
where
4
m* I .
ot = E—%;—«»z (5.37b)
171
p = 281 i=1,2,3,... (5.37¢)
The corresponding mode shapes are:
. . -1<x<1
= B[sin ax _ sigh ex] . =
U(x,y) Z[Sin e * sinh a]sxn By 0<y<1 (5.38a)
and,
Vl(y) = B sin By 0{yL1 (5.38b)
Vz(y) = =B sin By 0<y«<1 {5.38¢)

where B is an arbitrary constant.
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Orthogonality Condition

As in the previous case, the following orthogonality condition can

be obtained:

11 1
mlL J g Ui(x.y)Uk(x.y)dxdy + m, g Vii(y)Vik(y)dy

1
+ m £ Vo (V,y (May = 0 for ik (5.39)

Participation Factors for Ground Motion

Similarly, it can be shown that the modal participation factor for

the kth mode for earthquake ground motiom is given by,

11 1 1
m1L J J; dexdy + ) & Vlkdy + m, £ Vékdy
x 11 1 1
m L g J; (Uk)zdxdy + m, { (Vlk)zdy + m J (V2k)2dy

(5.40)

5.4 NUMERTCAL EXAMPLE

In this section, a multistory building with two end walls (modelled
as bending beams) has been analyzed. Using the method described earlier
in this chapter, the natural periods, the mode shapes and the modal

participation factors have been obtained.
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The example structure has been derived from Building 180 at the Jet
Propulsion Laboratory in Pasadena. This long and narrow building (220’
X 40’ in plan) has 12 uniformly distributed moment—~resisting frames to
resist the lateral loads in the transverse direction. However, in the
example structure, the frames are assumed to be capable of providing
only the vertical support, while two 12; thick reinforced concrete walls
have been added at the two ends of the building to provide all the

lateral load resistance in the transverse direction.

The actual building is ten stories high with basement walls, The
story heights are 14 ft except in the top story amnd in the basement and
first stbries where they are 16 ft. The lumped weight of the =roof is
1517 kips while that of the typical floor is 1270 kips (Wood, 1972). 1In
the example structure, the building is assumed to be rigidly held at
ground level, thus neglecting the basement story. The nonuniformities
in the story height and in the lumped masses have been neglected, and an
average story height and average lumped weights have been taken. The
floors are 5 in thick and made of light-weight concrete. Since the end
walls are 40 ft wide and 130 f :igh, it is reasomable to neglect their
shear flexibility and treat tk. _ - as bending beams. Similarly, the
floors, vwhich are 220 ft long and 40 ft wide, behave like bending beams
and were treated as such., The following building properties were used

for the analysis of the example structure:
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Uniformly distributed floor system:
weight (m* g) = 409 lbs/ft’
moment of imertia (I%;, = 154 (££)/ £t height
modulus of elasticity (El) = 2.0 X 106 psi
length of the floors (2L) = 220 ft

Walls:

L}

weight (ng) 6000 1lbs/ft

moment of inertia (IZ) = 5330 (ft)4
modulus of elasticity (Ez) = 2.9X 106 psi

building height (k) = 130 ft

As noted, an examination of equation (5.19) reveals that it is the
same as the characteristic equation for the free vibration of a canti-
lever bending beam. The roots of this equation (i.e., values of B) are
1.875, 4.694, 7.855, 10.996, 14.137, 17.279, etc. (e.g., Timoshenko, et
al., 1974). Here, $ equal to 1.875 corresponds to the end wall
deforming as the first mode of a cantilever beam. Similarly, the higher
values of B correspond to the end wall deforming in higher cantilever

modes.

For various values of B, equations (5.7 and 5.13) were solved to
obtain the " natural frequency (w) for the symmetric modes of vibration.
Also, equations (5.22b,c) were solved to obtain the frequencies for the

antisymmetric modes.
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For the appropriate natural frequencies, equations (5.21) and
(5.23) gave the symmetric and the antisymmetric mode shapes, A few of
the more important mode shapes are plotted in Figure (5.2). Eguation
(5.30) was used to calculate the modal participation factors for the
various modes of vibration. The maximum base shear in various modes due
to an earthquake motion assumed to have a constant acceleration spectrum
value of 0.20g, was then calculated using these participation factors.

Table (5.1) gives natural periods and maximum base shear for some of the

lower modes.

TABLE 5.1. PERIODS AND MAXIMUM BASE SHEARS FOR SYMMETRIC MODES OF THE
EXAMPLE STRUCIURE

Period Maximum Base

{sec) B Shear (Kips)
0.929 1.875 1590
0.533 4.694 369
0.523 7.855 126
0.522 10.996 ' 14
0.522 14.137 0.03
0.243 1.875 38.5
0.078 4.694 112
0.060 : 7.855 20
0.058 10.996 1.7
0.049 1.875 0.03
0.043 4,694 18,0

As expected, the antisymmetric modes have zero modal participation
factors and do not contribute to the b#se shear, The natural periods
for the lowest few antisymmetric modes of vibration were obtained as
0.524 sec (B = 1.875), 0.144 sec (B = 4.694), 0.132 sec (B = 7.855),

0.131 sec (B = 10.,996), ... , 0.097 sec (B = 1.875), 0.059 sec (B

4.694), and 0.035 sec (B = 7.855).
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If one treats the floors as rigid and the end walls as bending
beams, the fundamental period is obtained as 0.806 sec, while that for
the model with floor flexibility is 0.929 sec. Thus, the floor flexi-
bility makes the structure more flexible and increases its fundamental
natural period. The fundamental period of the floors when treated as
pinned-pinned beams is 0.522 sec. It is interesting to note that the
use of Dunkerley's equation (Dunkerly, 1895; Thomson, 1965) gives a
period of the combined system as 0.960 sec (T° & 0.8062 + 0.522%) which

is a reasonably good estimate of the actual period.

One notices from Table (5.1) that there are several modes with
periods nearly equal to 0.522 sec, but with variouns values of B. Also,
as noted above, the fundamental period of the floors when treated as
pinned-pinned beams is 0.522 sec. Since the method of this chapter
treats the floors as an infinite number of independently acting beams of
infinitesimal thickness, it is reasonable to see many modes with periods
close to 0,522 sec, for different values of B. Fortunately, one has to
consider only the first few of these 0.522 sec modes since, as the value

of B increases, the modes contribute less and less to the base shear.

The mode with period 0.243 sec is onme in which the end walls deform
in the first cantilever mode (since B = 1.875), while the floors deform
in the second symmetric mode of a pinned~pinned beam. Some of the other

periods can be interpreted in a similar manner.
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CHAPTER VI
MULTISTORY BUILDINGS WITH UNIFORMI.Y DISTRIBUTED FRAMES OR WALLS

6.1 INTRODUCTION

Some of the earliest forced vibration tests on multistory buildings
that indicated floor deformation modes were performed on Building 180 at
the Jet Propulsion Laboratory in Pasadena (Nielsen, 1964,1966). The
lateral 1load resistance in transverse direction in this long and narrow
building (220’ X 40’ in plamn) is provided by 12 moment-resisting frames
that are uniformly placed along the length of the bdbuilding. Thus, even
though the span to width ratio of the floors is not large, the overall
floor length to width ratio is quite large and, it is of interest to see
how such floors affect the dynamic behavior of the structure. This
chapter presents treatment on such buildings, i.e., multistory buildings
with a large number of transverse frames or walls that are placed at

equal intervals along the length of the building.

The floors, due to their large aspect ratio, can be treated as
bending beams, The moment resisting frames are modelled as shear beams,
due to the similarities in the mode shapes and in the spacing of
frequencies. Thus, for transverse vibrations the building can be
idealized as a grid consisting of vertical shear beams and horizontal
bending beams. Similarly, a building that has a uniform distributiom of
walls with a large height to width ratio can be modelled as a grid

consisting of ©bending beams in both directions. The vibration problem
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of such grids can be solved by the finite element model or by the finite
difference method, using slope deflection equations (é.g.. Wah, 1963;

Goldberg and Herness, 1965; Goldberg, 1966).

Moreover, grids that have a large number of ouniform, identical
beams in both the vertical and the horizontal directions can also be
modelled as vertically—oriented anisotropic plates by averaging the uass
and the stiffness properties of the beams over the entire length and
height of the grid (e.g., Timoshenko and Woinowsky—Krieger, 1959). It
is proposed in this chapter to analyze buildings whose floors and frames
are sufficiently uniform and numerous as vertically—oriemted plates.
For buildings with moment-resisting frames, the plate is such that a
thin vertical strip cut from the plate has omly shear flexibility, and
thus behaves 1like a shear beam, while a thin horizomtal strip cut from
the plate behaves like a bending beam. Such plates will be referred to

“as '"bending-shear” plates. Similarly, buildings with walls that behave
like bending beams are treated as anisotropic plates, with only the
bending deformations important along the two coordinate directions; such

plates are referred to as "bending-bending” plates.

In the following parts of this chapter, equations of motion for
these plates are discussed. Then, expressions for the natural
frequencies, the mode shapes and the modal participation factors are

obtained for buildings with moment-resisting frames. Buildings with
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slender walls, idealized as bending-bending plates, have similar solu-
tions. Some conclusions based on these results are presented at the end

of the chapter.

6.2 PLATE EQUATIONS

This section describes the equations of motion for the '"bending-

bending” and the "bending—shear” plates,

6.2.1 Bending-Bending Plate

The equation, for static loads, describing a plate that models a
grid consisting of bending beams can be found in Timoshenko and

Woinowsky-Krieger (1959):

E.I I
111 a*wzw) | [?_1. . Ez]aiﬂm). s 22 atwaw (6.1)
3 ax4 23 23] 552392 3 ayt

where,

5111 = Flexural rigidity of horizomtal beams.

EZI2 = Flexural rigidity of vertical beams.

C1 = Torsional rigigity of horizontal beams.

C2 = Torsional rigidity of vertical beams.

a8, = Distance between two consecutive horizontal beams.
a Distance between two consecutive vertical beams.
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f(x,y) = Load at (x,y) acting perpendicular to the plane of the

grid.
w(x,y) = Displacement at (x,y) in z-direction.

The coordinate system (x,y,z) is shown in Figure (6.1). As discussed
earlier, the torsional stiffness of the floors and the walls can be
neglected in the present application. Thus, replacing £(x,y) by the
inertial force term and neglecting the torsional stiffness terms, the
equation of motion for free vibrations of a "bending-bending” plate may

be written as

- a4 — a4 2
D?.!.is..zn_t).+nzé_ﬂ;‘.zﬁl,_m§_ﬂm (6.2)

1 5 ay? at?

where

D1 = Flexural stiffness of a horizontal strip of the plate, of unit

E,I
width [ = ‘%';1 .

1

D2 = Flexural stiffness of a vertical strip of the plate, of wunit

E, I
width [ = ‘Z'Z] .
3, |

m = Mass per unit area (in x—y plane) of the plate.

Equation (6.2) can easily be solved using the method of separation of-

variables.
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1y ™

Figure 6.1. CONTINUOUS MODEL FOR BUILDINGS WITH UNIFORMLY DISTRIBUTED
FRAMES OR WALLS, ' .
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6.2.2 Bending—Shear Plate

The equation of motion for free vibrations of a plate, modelling a
grid that consists of bending beams in the x-direction and shear beams
in the y~direction, can be derived from energy principles or obtained in
analogy to equation (6.2) as

= vy g Pwnww | o lwayn
1 4 2

ax | 3y° at?

(6.3)

where Ez is the shear stiffness of a vertical strip of the plate of unit
width., All other terms have been defined earlier. Equation (6.3) can

also be solved by the method of separation of variables.

6.3 MULTISTORY BUILDINGS WITH UNIFORMLY DISTRIBUTED FRAMES

Consider a multistory building with uniform and identical moment-
resisting frames and uniform and identical floors. The spacing of the
frames is uniform and all the story heights are the same, Such a
structure can be modelled as a vertically—oriented "bending-shear”
plate. Let 1 be the length and h be the height of the building. The

coordinate system (x,y,z) is shown in Figure (6.1).
The equation of motion for free vibrations of the structure is
given by eguatior (6.3). The assumed form of the solntiom is

wiz,7.t) = Wx.pet = X(x)T(pel®t (6.4)
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where @ is the natural frequency of the system. Substitution of equa—

tion (6.4) into equation (6.3) yields

4
4 - a1 = (6.5a)

dx

|
o

2
i;lgzl + ﬂZY(Y)
dy

i
(=

(6.5b)

where a and § are constants to be determined from the boondary condi-

tions of the problem, they satisfy the condition
D,a + Kzﬁ = mw (6.6)
Solutions of equations (6.5) can be written as
X(x) = A1 sin ax + A, cos ax + A; sinh ax + A, cosh ax (6.7a)
I(y) = B, sin fy + B, cos fy | (6.7b)

where the A's and B's are constants to be determined from the boundary

conditions.

The boundary conditions for the plate in this case are fixed at
(y=0) and free at the other three sides. In mathematical form, these

can be expressed as

(i) Y(y=0) = 0

.. dY¥(y=h _
(ii) dy = 0
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(1ii) d_l_(zf_))_ = 0
dx
3

(iv) QJ.!AS?;O_L = 0
dx

oy dxG=D

]
o

(vi)

and,
BBI cos §h1 = 0

Thus, for a noantrivial solution

. 2i-Din o
Bj 2h J 1,2.3;..0

From boundary conditioms (iii) and (iv), one obtains

4 = 4 ’. A = 4

and, boundary conditions (v) and (vi) yield

Al(—sin al + sinh al) + Az(—cos al + cosh al)

0

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)
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AI(—cos al + cosh al) + Az(sin al + sinh al) = 0 (6.13)

This gives the condition for nontrivial solution as

cos al cosh al -1 = ¢ (6.14)
and
AZ cos al — cosh al 71 *

The first few roots of equation (6.14) are given as (e.g., Timoshenko,

et al., 1974)

all GZI a31 a41 asl a61 a71

0 0 4.730 7.853 10.996 14.137 17.279

or,

a, = 0 i=1,2 (6.16a)

U

[1-2]2 i=3,4,5,... (6.16b)

The natural frequencies of the system can now be obtained using

equations (6.6), (6.10) and (6.16) as

| e
i=1,2 .
e [ B =1,

®ij i=1,2,3,...

(1 - %)4n D, (2j-1)%’K, i=3,4,5,...
0, L] 3 + 2 =1.2.3 (6.17b)
J ml 4mh J 239 2000
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For i = 1 and 2, a vanishes and equation (6.5a) and the appropriate

boundary conditiomns give
X(x) = A1 + A2x (6.18)

where A1 and A2 are arbitrary constants, This represents a rigid body
translation and a rigid body rotation of floors. Thus, the mode shapes

for i=1,2 are

¥, .(x,y) = A sip 2iZHI o i=1,2,3,... (6.19a)
1j 2h
= ..—]= 1 ‘—1 im
sz(x,y) A(x 2) sin Lzéﬁrla vy j=1,2,3,... (6.19b)

where A is an arbitrary constant. The modes represented by equation
(6.19a) are translational modes that involve no floor deformatioms, with
frequencies given by equation (6.17a). Similarly, equation (6.19b)
gives the torsional mode shapes of the structure, again with no floor
deformations. These mode shapes and the corresponding frequencies are
the same as obtained from an amalysis based on the assumption that the

floors are rigid in their own plane.

The mode shapes that correspond to the higher values of a are

sin a.x + sinh a.x cos a.x + cosh a.x
i i . i i {.

Wij(x,y) = A[sin ail - sinh uil " cos ail + cosh ail

, i=3,4,5,...
*sin 2i-1)ny

2h j=1,2,3,... (6.20)

where A is an arbitrary comstant. The modes represented by equation
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(6.20) involve floor deformations. These mode shapes are simply the
superposition of mode shapes of the floors when treated as free—free
beams and those of the frames. Also, the corresponding frequencies,
given by equation (6.17b), are the square root of the sum of the squares
of the floor frequencies when treated as free—free beams and the frame
frequencies, Thus; the dynamic analysis of such buildings can be
carried out by separately analyzing a typical frame and a typical floor
with free—free end conditions. This result sﬁpports similar observa—

t al. (1966), who treated the buwilding as

tions made earlier by Maybee,
g8 discrete system, lumping the mass at the intersections of the floors

and the frames.

Orthogonality of Modes

It can be shown that the modes of vibration of the structure are

orthogonal and, that the orthogonality condition is given by

hl
l[l[wij(:.:.y)wts(x,y)dxdy = 0 (6.21a)
or

hl _
“;xicx)xr(x)zj(y)rs(y)dxdy =0 (6.21b)

where i#r, andfor j#s.
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Modal Participation Factors for Earthquake Ground Motion

The equation of motion for the bending~shear plate under uniform

earthquake excitation can be written as

4 2 2w(z,v.t)
_ - L2 ]
D, 8 w(;.4z.t2 -k, g w(x,v,t) x2 £, i > - m (t) (6.22)
dx oy at &

where us(t) is the ground acceleration in the z-direction.

To solve, expand w(x,y,t) in terms of the mnormal modes of the

system. Let

8
8

w(x,y,t) = k£ xi(x)Yj(y)Tij(t) (6.23)

W
U]

and substitute this into equation (6.22) to obtain

5T T a'x, e T a2y
D Y - K x, —+ T
1 I dx4 jTij 2 T 5 i dy2 ij
a’r. ..
+m Z Z Xin —-—u'z = —mng(t) (6.24)
i ] dt
This gives
Y ¥ KT, +uXYT.) = -u_(t) (6.25)
T 5 1] 1] 1] 2] 1) -4 .

Next, multiply equation (6.25) by XrYs' integrate and apply the

orthogonality relationship (equation 6.21) to obtain
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T 27

Is * Crs rs -Prsng(t) (6.26)

where Prs’ the participation factor for the rsth mode, is given by

Xrstxdy

P 2=

s (6.27)

Sy 1+ ey,

|

For i=1, Xi(x) = A (rigid body translation) and the orthogonality

X X Y Y dxdy

condition yields

1
g X (x)dx = 0 for rAl (6.28)

Therefore, the numerator in equation (6.27) vanishes for all =#1, and
the participation factors are zero for all the modes that involve floor
deformations. This is a very useful reswult and shows that uniform
ground motion excites only those translational modes that do not involve_
floor deformations. However, as noted earlier, such modes are the same
as obtained by an analysis based om the rigid floor—diaphragm assump—
tion, Therefore, in the dynamic analysis of such buildings for uniform
earthquake ground motion, one need not take into account the in—plane

flexibility of the floors.

However, this conclusion is valid only for the uniform ground

motion and cannot be applied to other types of loading, e.g., spatially
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varying ground shaking. Also modes involving floor diaphragm deforma—

tions can be excited by forced vibration tests, as was done on Building

6.4 BUILDINGS WITH UNIFORMLY DISTRIBUTED WALLS

Multistory buildings that have a uniform distribution of identical
walls with 1large height to width ratio, and satisfy other uniformity
conditions discussed earlier in the chapter, can be modelled as
"bending-bending” plates. The equation of motion for free vibrations of
such structures is given by equation (6.2). This equation can be solved
by the method of separation of variables in a manner similar to that
followed in the preceding sectionm. All the discussion in the previous
section about the nature of the frequencies, the mode shapes and the
modal participation factors is also valid for these buildings and is not

repeated here.

6.5 DISCUSSION AND CONCLUSIONS

It has been shown that long and narrow buildings with a uniform
distribution of identical frames (or walls) can be analyzed as
vertically-oriented plates. This model is a two~dimensional analog of
shear beam models for multistory buildings that have been extensively
used in the past (e.g., Jennings, 1969; Hoerner, 1971). Based on this
plate idealization, it has been shown that such buildings possess all
the modes of vibration that one obtains by analysis based on the assump—

tion of rigid floor diaphragms, plus additional modes that involve floor
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deformations similar to those of free—free beams., The mode shapes and
the natural frequencies of the structure can be obtained by analyzing a
typical floor and a typical frame, However, in doing so, care must be

taken to include the flcor masses in the frame analysis and vice—versa.

Also, it is seen that none of the modes that involve floor deforma—
tions are excited by uniform ground motion. Thus, there is no need to
treat the floors of such buildings as flexible, when analyzing them for
miform seismic forces. This result has also been shown using discrete,
lumped-mass models for such buildings (Jain, 1983)., In addition, in a
parametric study on & building with five cross walls, Unemori, et al.
(1980) have found using finite element approach that the modes with

floor deformations have very small modal participation factors.

It was assumed in this chapter that the number of frames (or walls)
and the number of stories in the building are large. When this condi-
tion is not met, the proposed model may not be a good idealization of
the structure. From a practical viewpoint, it seems that the building
should have five or more floors and frames for the method to give reli-

able results.
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CHAPTER VII
MULTISTORY BUILDINGS WITH MORE GENERAL FEATURES

7.1 INIRODUCTION

Using the tools developed in the previous chapters, it is possible
to analyze multistory buildings with some nonuniformities as well. For
instance, a multistory building that has a uniform distribution of
frames along with two rather stiff end walls can be modelled as a plate
with two end beams. The differential equations of motion for the plate
and the end beams can be written and the system can be solved for the
appropriate boundary conditions. Similarly, the problem of an otherwise
uniform building with a more flexible, "soft " first story can be
analyzed using these modelling techniques. For this situation, the
columns or the walls in the first story can be modelled as a uniform
distribution of infinitesimally thin vertical bending or shear beanms,
with the plate modelling the rest of the building joined to the top of
these beams. Again the equations of motion and the boundary conditions
can be solved to obtain a characteristic eqmation for the frequencies

and expressions for the mode shapes.

In this chapter, an a2nalysis is given for a multistory building
that has two end walls in the wupper stories to provide lateral
resistance to the structure while in the first story the lateral support
is provided by several uniformly distributed walls., Finally, the

Imperial County Services Building which can be modelled approximately by
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this type of approach for transverse response is analyzed as an
illustrative example, |
7.2 TISTORY BUILDINGS WITH TWO WALLS PER STORIES

AND SEVERAL WALLS IN THE GROUND STORY

Consider a long and narrow multistory building whose lateral 1loads
in the transverse direction are resisted by two end walls in the upper
stories and by several uniformly placed walls in the first story. Thus,
the upper floors transfer all the lateral loads to the end walls, which
in tnrg transfer this load to the ground story walls through the second
floor slab. It is of interest to see how this rather complex structural

system can be analyzed by the methods developed in the previous

chapters, while treating the floors as flexible.

A structure of this type can be modelled as shown in Figure
{(7.1). It is assumed that the floors, with their large aspect ratio,
behave like bending beams. Hence, the floors above the second floor can
be modelled as a uniformly distributed bending beam system, while the
second floor is treated as a separate bending beam, due to its important
role in transferring the loads from the end walls to the walls below.
The upper story walls are assumed to have small height to width ratios
and to behave as shear beams. The walls in the first story also have
small height to width ratios and have been treated as a vertically—

oriented uniform distribution of shear beams.
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Figure 7.1. MODEL OF A MULTISTORY BUILDING WITH TWO END WALLS IN THE
UPPER STORIES AND SEVERAL WALLS IN THE GROUND STORY.
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Let the following be the mass and the stiffness properties of the

various elements in the structure, assumed to be uniform:

El = Young'’s modulus for the distributed floor system.

E3 = Young'’s modulus for the second floor.

I*1 = Moment of inertia of the floor system cross—section per unit
height.

I3 = Moment of inertia of the second floor,

k‘2 = Shear stiffness of the first—story wall system per unit
lengtk,

k4 = Shear stiffness of the end walls,

m‘l = Mass per unit area (in x—y plane) of the distributed floor
system.

m"2 = Mass per unit area (in x—y plane) of the ground wall system.

m, = Mass per unit length of the second floor.

m, = Mass per unit height of the end wall.

Let 2L be the length of the building, h1 be the height of the

building from the second floor level and h, be the story height of the

2
first story. The ccordinate system (x,y.,z) is shown in Figure (7.1).
Let u(x,y,t), v(x,t), wl(y,t), wz(x.y.t) and wa(y,t) be the displéye—
ments in the z—direction in the distributed floor system, the second
floor, the right end wall, the ground story wall system and the left end

wall, respectively. The equations of motion for free vibrations can be

written for each element in the structure as:
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4 2
EII; g u(x,v,t) + me 3 uv(x,v,t) = 0
1 ax4 1 at2
azwz(x,y,t) azw (x,y,t)
ks, —=——— . p* —_— = 0
2 ayz 2 atz

40yt 2 . awz(x,y=0.t)
E, I Q——LEL"L + m, 2wz, t) = =%

373, ) 2 dy
3w (7, t) 32w, (v, t) 3
1'\7 17’ 3°u(z=L,v,t
k, 2 2 = -EIY 3
ay ot ax
azw (y,t) azw (y.t) 3
x —_— o 3 . E s u(x=L,v.t)
4 2 4 2 1571 3
3y ot ax

These equations can be solved using the method of separation

ables. Let
u(x,y,t) = U(x.y)eimt
v(x,t) = V(x)e™®
v (y,t) = Wl(y)eimt
wz(x.y.t) = Wz(x,y)eimt
and

iwt
wily.t) = Wy(y)e™®

of

(7.12)

(7.1b)

(7.1¢)

(7.1d)

(7.1e)

vari-

(7.2a)

(7.2b)

(7.2¢c)

(7.24)

(7.2e)
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where w is ‘the natural frequency of the motion. Substitutior into equa-

tions (7.1) gives

4 m*
QJ_(.!;.ZL - 'E"i'i“ o U(z,y) = 0
ax 171
azwzu.y) me,
%) e o W(xy) = 0
9y
4 n k*, W, (x,y=0)
dv4 E,I ?V(x) = - EI2 3
dx 343 3°3 y
d"wl(y) m EyT*) 23psa
2 FA“ “'zwl‘y’ = - 1k . 3L
dy 4 4 ax
and,
¥, (y) m E I+, .3
37" 2197 U(zx=L,v)
2 'ii “’2w3<y) = Tk 3
dy 4 4 ax

Since the structure is symmetric, only the right half of

(7.3a)

(7.3b)

(7.3¢)

(7.34)

(7.3e)

it needs

to be considered. The following are the boundary conditions that apply

for the translational modes of the structure.

, 3U(x=0 -
(1) ox 0
oy Ex=0,7) _

(ii) 3 0
ax
2
(iii) aszL = 0

ax



- 164 -

(iv) dx = 0
3
(v) Q_Ylifgl = 0
dx
2
(vi) Q_lele = 0
dx
dw, (y=h_)
(vii) —A'T—h—l— = 0
y
(viii) Wé(x,yﬂ—hz) = 0

(ix) U(x=L,y) = Wl(y)
(x) V(x=L) = Wl(y=0)

(xi) Wz(x.y=0) = V(x)

34, aw_ (y=0)
(zii)  E,I, 9—-‘“%’-+ k4——lj‘——— = 0
dx y

The solution of equation (7.3a) that satisfies the boundary condi-

tions (i, ii, iii and ix) is:

W, {y)
= 1 cos gx cosh ax
Uiz, y) 2 [cos oL + cosh aL] (7.4)
where,
n*
ot = g (7.5)
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Equation (7.3b) when solved for the boundary conditions (viii and

xi) yieldé
W2(1.y) = V(x)(cot th sin By + cos By) (7.6)
where,
p? = %uz (7.7

Substitution of equation (7.6) into equation (7.3¢c) gives

4 m k*
aty [_4_ ol - 2 ]
- - B cot Bh, |V = 0 (7.8)
ax*  1Esl3 Ey1s 2

The solution for this equation satisfying boundary conditioms (iv, v and

vi) is

'cOS YX . cOS
Viz) = C[cos yL cosh YL] (7.9)

for positive values of 74 where,

k*
74 = *Ei“ mz —2Z B cot Bh (7.10)
E313 E313 2

For negative values of 74. equation (7.9) is replaced by
V(z) = Clsin &x sinh &x + cot £L coth EL cos &x cosh £x] (7.11)

where,



4 vt
g = -9 (7.12)
and C is an arbitrary constant,
Substitution of equation (7.4) into equatiom (7.3d) yields
v, m E,I*, 3
—L -Am2+—l‘49—(tanaL+tanhaL)w = 0 (7.13)
2 k k 2 : 1
dy 4 4
This equation can be solved for boundary condition (vii) as
Wl(y) = D(sin Ay + cot khl cos Ay) (7.14)
. 2 2. .
for positive values of A~, where A" is given by
m E I* 3
kz = 4 w? + A (tan oL + tanh al) (7.15)
k4 k4 2

For negative values of lz, the following equation replaces equation

(7.14)

Wl(y) = D(sinh py - coth uhl cosh puy) (7.16)

where D is an arbitrary constant and p is given by

gm = A (7.17)

Boundary conditions (x) and (xii) can now be used to obtain the

condition for a nontrivial solution, i.e., a characteristic equation for

the natural frequencies given by
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(i) For v+ > 0, 22 5 o:

E313 %; (tan yL + tamh yL) + k4x tan xhl = 0 {(7.18a)
(ii) For v < 0, 22 > 0:
4E31,2° (tan §L,T:;£Z§£:?;t EL coth gL) ~ F4h tam Ay =0 (7.18b)
(iii) For y* > 0, 22 ¢ 0:
3
E313 %r (tan yL + tank yL) - k4p tan phl = 0 (7.18¢c)

(iv) For y* < 0, 2% ¢ o:

2 (cosec 2&L+cosech 2EL) _
4B3138" Ttam EL tamh fL+cot EL coth gL) & Kgh tamh phy =0 (7.184)

An approach like Holzer’s method (Thomson, 1965) is used to obtain
the mnatural frequencies of the translational modes of the system. That
is, one chooses an initial value of w and substitutes it into equations
(7.5), (7.7), (7.10) and (7.15) to obtain 0.3,74 and xz. Next, one
substitutes these into one of the equations (7.18), depending upon the
signs of 74 and xz, to see if the equmation is satisfied. If that is the
case, that value of w is the natural frequency of the structure. How—
ever, if it does not satisfy the equation, another valme of w is chosen

and the process is repeated. This search for the roots can, of course,

by systematized.
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The mode shapes of the structure are given by:

V. (y)
_ 1 cos ax cosh ox
Ux,y) = 2 [cos ol * cosh
Wz(x,y) = V(x)(cot Ph, sin By + cos fy)
- cos yx . cosh vx 4
Vix) C[cos YL * cosh yL] for v >0
V(x}) = C(sin &x sinh &x + cot ¢L coth L cos &x cosh &x)
for 74(0

W (y) = Wy(y) = 2C(tan Xh, sin Ay + cos Ay)  for v 0, %50

N 2 sigh? £L + cos’ 2 .
1 3\’ = sin EL sinh EL

‘{tan Ab, sin Ay + cos iy) for 74<0, 2250

4 2
Wl(y) = WS(Y) = -2C(tanh ph, sinh gy - cosh py) for v >0, A

. 2 EL si I2 L + cos2 £] 12 £l
W) =W,y =-C sin EL sinh EL
. . 4 2
(tanh uhl sinh py - cosh ny) for v <0, 1°<0

(7.19)

(7.20)

(7.21a)

(7.21b)

(7.22a)

(7.22b)

(7.22¢)

(7.224)

Similar expressions can also be obtained for the antisymmetric

modes of vibration. It can be shown that all the modes satisfy the

following orthogonality condition:
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1L 0
ue U,U, dxdy + us, £ ;' W, ¥,y dxdy + mg 3' AR TS
“L -L
b, hy
+m, [[ W ¥ dy +om, t[ Wy Wady = 0 for i#k (7.23)

Also, the following expression can be obtained for the modal

participation factors for uniform ground motion:

k
b1 0 L
m"l £ J- dexdy + m"2 £ f W2kdxdy
-L -h, -L
L B By
+ m, _IL dex + m, '[ Wlkdy + m, g Wskdy
1L 0 L L
‘l I Ulz‘dxdy + m*2 “; I dxdy + m, I Vidx
-L -L ~-L
By By
+omy g Wigdy *+ m, g Woydy

7.3 NUMERICAL EXAMPI,

The Imperial County Services Building, also discussed in Chapter
II, was a six—story reinforced comcrete structure. During the Imperial
Valley earthquake of October 15, 1979, it was severely damaged and was

eventually taken down. Some of the structural features and the lateral
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load transfer scheme of this bunilding closely resemble those of the
structure analyzed in the previous section. Hence, to illustrate the
method developed in that section, this building has been modeiled and

solved for its dynamic properties.

Figure (2.9) shows the structural plan of the building. In the
upper stories the 1lateral 1loads in the transverse direction were
resisted by two end walls. However, the west wall was different from
the east end wall since it had “smoke tower” openings in all the
stories. At the second-floor level, the lateral shear was transferred
to the four shear walls in the ground story through the second-floor
slab, while the overturning moment was transferred to the four columns
located just inside the end walls, The ground shear walls were not
symmetrically placed. In order to use the model developed in the pre-
vious section, the 'smoke tower” openings in the west end wall were
neglected. Alsé. the asymmetry in the grﬁnnd story walls was neglected;
they were idealized as a uniformly distributed, equivalent shear beam

system,

The aspect ratio of the floors was about 1.8 and, therefore, shear
deformations in the floors cannot be neglected in comparison to bending
deformations. To approximate the effects of the shear deformations and
the rotatory inertia, the moment of inertia of the floors was multiplied
by a factor of 0.47. This factor introduces enough bending in the
floors to give the same fundamental period that would occur in the floor

if the effects of shear deformation and the rotatory inertia were
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included (Timoshenko, et al., 1974). The adjusted stiffness of the roof

and the upper floors, and the 1lumped mass at these levels, were

uniformly distributed between the roof and the second floor level to

represent the floors as equivalent, distributed bending beams. The

following properties of the various elements were used in the analysis:
Equivalent

distributed
floor system:

weight (me.g) = 1020 1bs/ft>

moment of inertia (I‘l) = 1890 (ft)4/ft height
modulus of elasticity (El) = 3,60 X 106 psi
length of the floors (2L) = 136'-3"

Equivalent

distributed
shear wall

system:

woight (m%,g) = 137 Ib/ft

shear stiffness (k* = 1,69 X 108 1b/ft

2)

height (hz) 16'-8"

Second floor:
weight (mag) = 14100 1bs/ft

moment of imertia (13) 33000 (ft)4

[

modulus of elasticity (ES) = 3,60 X 106 psi

Upper story
end walls:

8600 1b/ft

weight (m4g)
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1.00 X 102 1v

shear stiffness (k4)

height (hl) 672"

The appropriate equations given in the previous section were solved
to find the translational frequencies of the building. The corres—
ponding mode shapes were obtained from equations (7.19) through (7.22);

the first four are plotted im Figure (7.2).

The natural periods for the four lowest modes were found to Dbe
0.23 sec, 0.11 sec, 0.10 sec and 0.099 sec. The first mode period is
higher than tﬂ;t obtained by treating the floors as rigid, while model-
ling the walls as shear beams, which is 0.17 sec., Thus, the floor—
flexibility does have a significant effect on the dynamic properties of
the building. However, the 0.23 sec period is not in close agreement
with the 0.38 sec period found from the strong-motion <records obtained
from the building during a small earthquake on March 28, 1978 (Jain and
Housner, 1983b) or the 0.45 sec period observed during the ambient
vibration tests performed om the building (Pardoen, et al., 1981),
Foundation flexibility is thought to have coantributed significantly to
this discrepancy (Jain, et al., 1983). This effect can be included by
representing the foundation by translational and rotational springs.
Also, in the model the end walls transfer the overturning moment to the
ground story walls, which are assumed to have negligible bending flexi-
bility, while in the actual structure the overturning moment is
transferred to the columns below. This makes the actual system more

flexible than the model by allowing rotation of end walls as rigid



- 173 -

bodies. The proposed model needs to be improved for application to this
structure in order to incorporate this flexibility. In addition, the
end walls could be treated as Timoshenko beams to include the bending
flexibility, mneglected in the analysis. Hence, in order to model this
building more accurately, the above factors should be included in the
model, However, this was considered to bé beyond the scope of this

thesis.

The fundamental mode shape, plotted in Figure (7.2), shows an
interesting feature, It can be seen in the figure that the second floor
bends in the opposite direction from the other floors. This is dume to
the role the second floor plays in transferring the loads. Tho.lateral
forces of all the upper floors are transferred to the second floor at
its two ends through the upper story end walls., The floor, in turn,
transfers them to the uniformly—distributed shear walls in the ground
story. Thus, the second floor acts like a free—free beam on an elastic
foundation, with two concentrated end loads. For such a system, the
beam curvature will be as observed for the second floor. A beam loaded
this way can actually experience uplift near the center (e.g., Hetenyi,
1946). This explains why in the fundamental mode, a portion of the
second floor near the center is displaced in the opposite direction from
the rest of the structure, This behavior is rather unusual, For most
buildings, the fundamental mode has the property that the whole

structure is displaced in the same direction.
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The opposite curvatures of the second floor and the upper floors
are also confirmed from the strong-motion records obtained from the
building. The relative displacement plots of the second floor and the
roof, given by Pauschke, et al. (1981) and reproduced in Figure (2.10)
of this thesis, clearly indicate this trend, although it is not clear in
this figure as to whether or not the second floor actpally has a
negative displacement near the center. Gonzalez, ot al. (1980) have
subjected a finite element model of the building to the code-prescribed
static lateral forces in the transverse direction. Their plots of the
deformed shapes of the fourth floor and the second floor also show

opposite curvature,

The second, third and fourth mode periods are nearly equal to the
fundamental mode period (0.098 sec) of the upper floors when these are
treated as pinned—-pinned beams. This is similar to what has been

observed in the example structure of Chapter V,
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

This study investigates the significance of in-plame floor flexibi-
lity on the dynamic behavior of buildings and develops new analytical
methods to apnalyze buildings with flexible floor diaphragms. A study of
the literature on past earthguakes revealed that there have been several
buildings that were damaged during strong ground shaking due to
significant in-plane floor deformations. Also, stromg-motion records
obtained from some undamaged buildings have shown that floors cam indeed
be quite flexible in their plane., Some of the evidence that indicates
the important role floors play in the dynamics of buildings is presented
in Chapter II. It is observed there that long, narrow buildings are
particularly susceptible to this phenomenon, although it can happen also
in buildings with small aspect ratios, if stiff end walls are present.
Buildings that consist of two or more wings joined at an angle (e.g., L~
or V-shape plans) also warrant special attention to floor flexibility
and the resulting stress concentration at the corners whers the two
wings meet. Three of the example structures discussed were school
buildings, which suggests that the architectural 1layout of school
buildings may make them more susceptible than other structures to

problems caused by flexible floor diaphragms.

As preliminary information for later work, the mechanics of bending

and shear beams are reviewed in Chapter III. In addition, the concept
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of eguivalent, distributed beam systems, such as are used in the
analysis of coupled shear walls, is presented. Also, a note is included
on matching the boundary conditions at junctions of various elements.
The first building studied is a ome-story building whose lateral load
resistance in the transverse direction is provided by two end walls.
The structure is analyzed by tr;ating the roof as a bending beam and the
walls as shear beams. The equations of motion for these elements and
the boundary conditions are combined to obtain the characteristic
frequency equation, roots of which give the natural frequencies of the
system, Also, expressions are obtained in general form for the mode
shapes and the participation factors. Once the natunral frequencies and
the mode shapes are known for the structure, the complete dynamic
response can be calculated. However, the characteristic equation is
transcendental in nature, and must be solved nmmerically. For con—
venience, a perturbation techmique is applied to obtain the fundamesntal
natural frequency in an approximate but much simpler manmer. Solutions

are also discussed for some more complex single~story buildings.

As an illustration of the technique described in Chapter III, the
top story of the Administrative Building in Arvin High School is
modelled and its dynamic properties obtained. In this example, the
perturbation method gives a very good estimate of the fundamental
natural frequency. The low torsiomal stiffness expected for walls and
frames was confirmed in this example and in all subsequent chapters the

torsional stiffness of the walls or the frames is neglected.
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The method developed in Chapter III is applied to two—story
buildings with identical end walls in the subsequent cﬁapter. Results
include the characteristic frequency equation and expressions for the
mode shapes and the participation factors. As an example application,
the two-story Administrative Building at the Arvin High School has been
modelled with this method and its dynamic properties are obtained for
the first few modes. It is noted that the first two translational
frequencies of the structure are close to the fundamental frequencies of
the second floor and the roof, when treated as pinned-pinned beams. It
is seen in this example that these first two modes, dominated by floor
or roof vibrations, make the largest contributions to the total base
shear for earthquake response of the structure. The third symmetrical
mode, with less pronounced floor and roof motiomns, gives a base shear

only about 1/3 that of the second mode.

The study of the two-story buildings also showed another
interesting phenomenon. It was seen that some of the lower frequencies
.of multistory buildings that have nearly identical floors and stiff end
walls may be very nearly equal. Besides finding the properties of such
closely spaced modes, this technique can also be used to coalesce such

modes into a single mode such that all the floors vibrate in phase.

Multistory buildings with two end walls or frames are treated in
Chapter V by modelling the floors as an equivalent, distributed system
of bending beams and the end walls or frames as bending or shear beams.

As an illustration of the analysis, a long, narrow 9-story building with
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two slender end walls has been analyzed. As anticipated, the fundamen-
tal frequency of the structure was lower than that based on the assump-
tion of stiff floors. It was noted that the fundamental period could be
approximated closely by the use of Dunkerley’s equation. The second
mode frequency was found to be close to the fundamental frequency of a
floor when treated as a pinned—pinned beam. Also, there were several
other modes with nearly the same frequemcy, in which the floors essen—
tially vibrate 1like the first mode of pinned-pinned beams. This is
partly a consequence of the use of the equivalent, distributed system,
which allows an infinite anumber of such modes, and the fact that at
least n such modes are significant for the dynamics of an a~story

building with flexible floors.

Chapter VI treats multistory buildings with sniformly spaced
moment—resisting frames or walls. If the numbers of frames and stories
are sufficiently large, such structures can be idealized as vertically-
oriented anisotropic plates. A study of this type of model leads to the
conclusion that the dynamic properties of such buildings can be obtained
by separately analyzing one typical frame and one typical floor. The
frequencies of the whole structure are simply the square root of the sum
of the squares of the floor freqnencies; when treated as free—free
beams, and of the frame frequencies, Also, the mode shapes can be
obtained by superposition of the floor modes and the frame modes. It is
shown that such buildings possess all the modes of vibration that one

obtains by an analysis based on the assumption of rigid floor diaphragm,
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plus extra modes that involve floor deformations similar to those of
free—free beams. However, the modes that involve floor deformations
have zero modal participation factors for uniform ground motion. BHence,
it is concluded that the floors in such buwildings can be treated as

rigid in their own plane in earthquake analysis without introducing an

additional approximation.

It is shown in Chapter VII that the concepts preseated in the
earlier chapters can be applied to study even more complex structures.
As a specific case, the characteristic frequency equation and expres—
sions for the mode shapes and the participation factors are obtained for
a long, narrow building that has two end walls in the upper stories and
several uniformly placed walls in the ground story. Thus, the lateral
loads are resisted by the end walls in the upper stories, but are
transferred to the ground story walls through the second-~floor slab,
The Imperiai County Services Building, which has a similar structural
system, is then analyzed using this model to obtain the first few
frequencies and mode shapes. The fundamental mode shape displays some
interesting features. First, the second floor deforms with opposite
curvature from that of the upper floors. Also, a portion of the second
floor near mid-span is displaced in the opposite direction from the rest
of the structure. This is unusual, but is consistent with the mechanism

of shear transfer from the upper walls to the ground shear walls.
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All of the work has been carried out on symmetrical structures,
although structures with asymmetry can also be analyzed using these
methods., Even though the antisymmetric (torsional) modes of the
symmetrical structures are not excited by uniform ground motion, results
for these modes are presented. However, caution is needed in using
these results, since the contribution of longitudinal frames or walls to
the torsiomal stiffness of the structure is neglected in the way the
problem has been formulated. Also, the polar moment of inertia of the
floors is underestimated in this approach because the floors bave been
modelled as beams, The two offects are small in long, narrow buildings
andlhave opposite, compensating effects on the dynamic properties of the
structure, However, there may be situations where they cannot be
neglected. To include these effects one can increase the end wall
stiffness and the floor mass so as to obtain the same torsiomal stiff-
ness and rotational imertia of the floor, that would actmally occur in

the building.

From this thesis, it is seen that the problem of significant in-
plane floor deformatioms, importaant in the earthqunake response of cer—
tain types of buildings, is amenable to analysis in many cases. It is
hoped that the results of this study lead to better understanding of
this phenomenon, and that the analytical methods presented will prove

useful in the dynamic analyses of buildings.
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As further areas of research, the present work can easily be
extended to include both bending and shear deformatiomns of the floors
(or walls). The approach may also have application to buildings that
consist of more thamn ome wing joining at an angle (e.g., L-, V-, T-
shape plans). Such structures need to be studied to learn the effects
of floor-diaphragm deformations., Also, the method has potential for use

in the study of buildings with vertical offsets.
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NOTATION

Mathematical symbols have been defined where they first appear.
They 'are summarized here in alphabetical order. Some symbols are given
more than one meaning, when there is no question of confusion.
A = area of cross—section; constant of integration;

arbitrary constant

A = area of cross—sectiom per unit width

a, = spacing of floors

a, = spacing of frames

B = constant of integration

b = width of a wall

C = torsional stiffness; constant of integration;

arbitrary constant

c = thickness of a wall

D = constant of integration

D = flexural rigidity of plate strip of umit width

E = Young's modulus

£ = intensity of a continuously distributed static load
G = shear modulus

g = gagceleration of gravity

h = height of building; story height

h1 = height of roof from second floor

hz = first-story height

I = moment of inertia
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moment of inertia per umnit width or height
spring constant

shear stiffness of plate strip of unit width
shear stiffness

shape factor

half length of building

length of building

bending moment

mass per unit length

mass per unit area

modal participation factor
coefficient (dimensionless)

shear force

coefficient (dimensionless)
acceleration spectrum value
twisting moment; period

function of time

function of x; function of x and y
displacement

ground acceleration

function of x; function of y
displacement

function of y; function of x and y
displacement,

function of x
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Y = functionm of y

x',y',z' = cartesian coordinates

x,¥,2 = dimensionless cartesian coordinates; cartesian coordinates
o = coefficient (function of frequency)
B = coefficient (function of frequency)
Y = coefficient (function of frequency)
] = angle of twist

A = coefficient (function of frequency)
I = coefficient (function of frequency)
& = coefficient (function of frequency)
p = density

o = frequency

Subscripts

b = bending

i,j.k = integers

s = ghear; integer
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