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A nonlinear optical technique is described that performs, essentially instantaneously, the functions of spatial corre-
lation and convolution of spatially encoded waves. These real-time operations are accomplished by mixing spatial-

ly dependent optical fields in the Fourier-transform plane of a lens system. The use of a degenerate four-wave mix-

ing scheme eliminates (in the Fresnel approximation) phase-matching restrictions and (optical) frequency-scaling
factors. Spatial bandwidth-gain considerations and numerical examples, as well as applications to nonlinear mi-
croscopy, are presented.

In recent years, coherent and incoherent image pro-
cessing has been demonstrated in a variety of applica-
tions, including pattern recognition, guidance systems,
and other data-processing techniques. Present meth-
ods used to generate convolution and correlation oper-
ations of spatially encoded optical images include digital
processing and Van der Lugt-type holograms.1' 2

It has been proposed by one of the authors (A. Yariv)
that nonlinear optical techniques can be used to per-
form real-time holographic functions.3' 4 The specific
application of nonlinear three-wave mixing to perform
the operation of convolution and correlation has been
proposed by Eremeeva et al. 5 The proposed scheme
was demonstrated in the case of simple (luminous spot)
images. These schemes, as well as that proposed in
Refs. 3 and 4, suffered from restrictions on the spatial
bandwidth of the information, which were due to the
need for phase matching. Second, the use of multiple
wavelengths introduces spatial scaling that may be
objectionable.

In the analysis that follows we propose the use of
four-wave mixing for real-time correlation and convo-
lution operations. The process of four-wave mixing,
which has recently been applied to the problem of
"time-reversed" propagation, 6 37 is shown to be free of
the phase-matching problem and to require a single
frequency.

Consider the nature of the field produced as a result
of the simultaneous mixing of three optical fields, all of
radian frequency co, incident upon a thin medium pos-
sessing a third-order nonlinear optical susceptibility,
XNL 3 ), centered at the common focal plane of two
identical lenses (or mirrors) of focal length f. The ge-
ometry is illustrated in Fig. 1. Each field is specified
spatially at the front focal plane of its respective lens
with the following amplitudes:

El= Al(x,y,z) exp[i(kz - cot)] + c.c.,
2

2 -IA 2 (X,Y,Z) exp[-i(kz + cot)] + c.c.,
2

E4 =- A4 (XYZ) exp[i(hz - Cwt)] + c.c.,
2

(1)

where A1,4(XYO) -U 1 ,4(XY) and A 2(XY,4f) U2 (XY).
Fields E1 and E2 are essentially counterpropagating,
with E4 being parallel to these fields and separated ei-
ther spatially [e.g., shifted by (x3,y)] or via orthogonal
polarizations. The ui contain the input information to
be convolved or correlated, which can, for example, be
in the form of phase and/or amplitude transparencies.
The ui are assumed to be illuminated by plane waves,
all of the same frequency, co.

After propagating through lens LI, A1 has the fol-
lowing form (in the Fresnel approximation),

Al(xy; f < z • 3f) = exp(iknA) exp(ikz)
i Xf

X Y julx',y') exp[yf (2- (x'2 + 

where 7ja} = & is the Fourier transform of a, and

exp(iknA) exp[- i (X2 + y2)J

(2)

(3)

is the transmission function of a thin lens.2 The argu-

Fig. 1. Convolution/correlation geometry. All input optical
fields are at frequency a. BS is a beam splitter necessary to
view the desired output, E3 , which is evaluated at a plane lo-
cated a distance f from the lens L1 .
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ments of the Fourier transform are [x = x/Xf and fy =
y/Xf, where f, and fy are the spatial frequencies in the
x and y directions, respectively; in Eq. (3), A corre-
sponds to the thickness of the lens. Similarly, the
complex amplitude of E2 has the form (after propa-
gating through lens L2),

A2(XY; f ` Z < 3f) = exp(iknA) exp [ik(4f - zA2(x~~y~f~z•3f)- ixf

X 57 {u2(X',y') exp[- 2f (2 -z (X12+Y'2)]}. (4)

Anticipating the mixing process of interest, we ex-
press the complex conjugate amplitude of E4 (after
propagating through lens L1) as

A4* (Xy; f • Z • 3f) = exp(-iknA) exp(-ikz)
-iXf

X (YJu4dX',Y') exp[f (2 - ) (X2 + y/2)] })* (5)

The fields Ai in Eqs. (2), (4), and (5) become directly
proportional to the Fourier transforms of their respec-
tive ui if the terms inside the square brackets of the
exponents can be neglected. This happens when

I z -2f I << 2f
2 X/ri 2, (6)

where ri is the spatial extent of ua.
We now place a medium centered at the focal plane

ft of thickness z0 [satisfying the constraint (6)], which
possesses a third-order nonlinear optical susceptibility,
XNL 3 -. Without loss of generality, we assume a trans-
parent, lossless medium and neglect linear refractive
effects.

The complex amplitude of nonlinear polarization at
o = c + c - co generated by the mixing of the three

waves is8

PNLI = Xijkt(3) A 1jA 2 ,A 41 *, (7)

where repeated indices are summed over the field po-
larizations. The resultant field, E3 , which satisfies both
photon energy and momentum conservation, is given
by

47wc 2

A3 (X) = c 2 S PNL(x')G(x,x')d 3 x', (8)

where

G (X, X' = _ exp(ikr)
47r r

is the Green's function that satisfies the wave equation.
Using Eqs. (2), (4), and (5) in Eqs. (7) and (8), as well as
condition (6), integrating over the volume of the non-
linear medium, and "propagating" back to z = 0 through
lens LI, we get

A3(Xoy0,) = -i2---- zo exp(2iknA) exp(4ikf)

X 5'ICa(X,y)a2(x,y)a4*(xy)xNL(S)(xy)t, (10)

where xNL 3 ) (x,y) is the proper tensor element in Eq.
(7) connecting fields 1, 2, 3, and 4.

If XNL 3) is spatially homogeneous, the output field
can be written in the form

A 3 (Xo,yo, O)

= #ul(-X, -Y) * U2(-X, -Y) * U4(-X, -y\ (11)

where

= 2-ircXr 4f exp(2iknA) exp(4ikf)xNL( 3 ).

(12)

In Eq. (11) the symbols * and * denote the standard
operations of convolution and correlation, respective-
ly. 2

Equation (11) is our primary result. We obtain the
spatial convolution of a1 and U2 by taking U4 as a point
source. This leads to

A3(Xoyo,0) = 'U1 * U2. (13)

Similarly, the correlation operation is performed by
placing information on fields u1 (u 2 ) and i 4 , with a point
source for U2(u2 ) yielding

A 3 (XOYO,0) = iU 1 * U4, (14)

where the ui in Eqs. (13) and (14) are the inverted im-
ages of the input fields [compare Eq. (11)].

We can now appreciate the advantage of using a de-
generate four-wave mixing approach to real-time op-
erations. The third field (which corresponds to the
point-source input mentioned above) provides an op-
tical carrier frequency upon which the convolution or
correlation information is placed. No frequency-scaling
factors are present (compare Ref. 5), the entire system
requires only a single frequency source, and within the
Fresnel approximation the phase-matching condition
is satisfied. Finally, the "degenerate" operations of
autoconvolution and autocorrelation can be performed
with a single optical frequency.

The approximations used in the above discussion
place upper limits on both the resolution (or spatial
frequency bandwidth) and the efficiency (or nonlinear
gain) of the interaction. The Fresnel approximation
is related to fma, the greatest spatial frequency present,
by

[max < (4/rX3f) 1/4, (15)

This same approximation also places an upper limit on
(9) the input field spot size, which is given by

d < (4Xf 3/wY)1/4 (16)

Hence, the maximum number of resolution elements
possible is derivable through Eqs. (15) and (16), yield-
ing

Nmax = 16f/rxX. (17)

Using values of 10 cm and 0.5 am for f and A, respec-
tively, leads to a value of 103 cm- 1 for fmax, which cor-
responds to a grid of 1000 X 1000 resolution elements.
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Therefore, since the phase-matching condition is sat-
isfied for all the field momentum components in the
Fresnel approximation, this technique can be useful for
complex spatial-information processing.

The second constraint, (6), yields an upper limit to
the nonlinear gain of the interaction. From (6), we
obtain

zo << bo = 27r 2wo2 /x, (18)

where co is the spot size in the focal plane. For
Gaussian beams, the value of bo corresponds to 2-7r times
the confocal parameter.9 The spot size in the focal
plane of the Gaussian "point source" (or the field cor-
responding to the optical carrier frequency) determines
the maximum spatial frequency of the convolution or
correlation operation. It can be shown that the number
of resolution elements is

N - (dl/d2)2, (19)

where d, is the spatial extent of the input field and d2
is the input-aperture size of Gaussian "point source,"
assuming that both are satisfying the Fresnel approxi-
mation, Eq. (16). It follows that, for a given input
power and choice of lens focal length, the output power
with information present in the two input fields is re-
lated to that for no information present by

Pout info Pout no info IN. (20)

Thus we see that there is a tradeoff between the
spatial bandwidth product, N, and the output power (or
nonlinear gain) of the interaction. For the lens and
optical wavelength used above, we find for CS2 (using
a value of X(3) 1.8 X 10-12 e.s.u.) that Pout info 200 W
for P1,2,4 - 0.5 MW, with d, = 1 cm and d2 = 0.01 cm.
This corresponds to N - 104.

We note that the output efficiency increases nonli-
nearly7 as

Pout - Pin tan2 ( I KIL), (21)

which has been recently verified experimentally.' 0

However, since the desired convolution or correlation
operations necessarily require an output field given by
Eq. (10), the small-angle approximation to tan(IKIL)
must be valid, which has also been verified experi-
mentally. 10 '1 ' Hence, as the nonlinear gain, I KIL, be-
comes larger, and the higher-order terms contained in
the power series expansion of Eq. (21) become appre-
ciable, distortions in the desired output operations re-
sult. We are thus limited to a nonlinear interaction
where the amplitude changes for all the input fields are
minimal (which is satisfied in the above numerical ex-
ample).

This interaction operationally corresponds to a
real-time holographic analog12 of a Van der Lugt filter
system. The extension of these concepts to real-time
matched filters, pattern recognition, and other forms
of image processing follows directly. The implemen-
tation of this scheme to integrated optics using geodesic
lenses 13 or graded fibers 4 is a viable possibility, con-
sidering the increased intensities present in optical
waveguides. We have recently 14 proposed and analyzed

the possibility of performing real-time holography by
four-wave mixing in optical waveguides. The extension
of that analysis to the present set of operations easily
follows. Further, this method can be applied to the
field of nonlinear microscopy.15 Consider a substance
possessing a nonlinear susceptibility with a spatial de-
pendence. In this case, the output field, assuming
"point sources" for the us and using Eq. (10), is

A 3 (xoyoO) a: 'IXNL( 3 )(X,y)}. (22)

We thus have an output field that maps the spatial
periodicities of the nonlinear optical components in a
material. Hence the nonlinear structure of a medium
(which, for example, might be homogeneous in its linear
susceptibility) can be revealed.

In conclusion, the application of real-time image
processing can be utilized both as a material probe and
as a data-processing device. The use of four-wave
nonlinear mixing in real-time convolution and corre-
lation has been proposed and analyzed.
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