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ABSTRACT

This study of the stationary random vibration of single degree
of freedom bilinear hysteretic oscillators consists of both experimen-
tal investigations and approximate analytical investigations. The
experimental results are obtained from a differential analyzer elec-
trical analog computer excited by an approximately white, Gaussian
source. Measurements of mean squared levels, power spectral
density and probability distribution of oscillator response are re-
ported. The applicability of certain approximate analytical techniques
is investigated by comparing analytical predictions and experimental
meas-urements of the statistics of the response.

The analog computer results indicate that for a system con-
taining viscous damping, yielding may sometimes act to increase the
rmas level of displacement response. In addition, Lhe experimental
results show that yielding has a marked effect on the response power
spectral density, and in some instances this statistic has the general
character of that for a two mode linear system. The response proba-
bility distribution is also affected by yielding and is generally not
Gaussian.

An extension of the Krylov-Bogoliubov method of equivalent
linearization and a method based on defining an approximately equiva-
lent nonlinear nonhysteretic system are considered. The Krylov-

Bogoliubov method gives a reasonable estimate of the rms velocity
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response for all cases considered but gives meaningful information
about the rms displacement response only for cases of moderate non-
linearity. The second approximate method is shown to be quite good
for predicting rms levels of response for cases of hi.gh yield level
where the Krylov-Bogoliubov method is less successful. The appli-
cation of the second method to other cases and to the problem of

predicting probability distributions is also discussed.
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SUMMARY OF NOMENCLATURE

Symbol Explanation or Definition
A amplitude of vibration
B filter bandwidth, cps
C capacitor
C(A) see expression (3. 14) or (4. 6)
E. D. energy dissipated during one cycle
E.D.Y. energy dissipated due to yielding during one cycle
F(H) J'Hf(h)dh
Ox
G(x) . £ gly)dy
H(x, %) %%/2+G(x), energy
II(iw) complex transfer function
Kiv oo K.4 see expression (4.31)
N(t) white, Gaussian excitation
P Prob. (x> X)
Q transistor
R resistor
S(A) see expression (3. 14) or (4.7)
S(w) power spectral density
T sampling time
Y yield level
b half the distance between half-power points,

rad/sec
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viii

Explanation or Definition

constant dashpot coeffecient
nonlinear dashpot coefficient
nonlinear restoring force
ST

constant spring coefficient
mass

random excitation

probability density function
see expression (4. 39)

time

A/ZH/wOZ

voltage

displacement

gamma function

slope ratio in bilinear system
fraction of critical viscous damping
Dirac delta function

deficiency term in equivalent linearization,
normalized standard error in error analysis

phase angle
20 2/Y2

xX
rms level

normalized nonlinear restoring force
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Symbol Explanation or Definition

W circular frequency

Dots over variables denote derivatives with respect to time.

over a term denotes a time average.

A bar



I. INTRODUCTION

Problems of mechanical vibration induced by random excitation
have received considerable study in recent years. One major motiva-
tion for such study has been the problems which arise in the fields of
aircraft and space travel. Another problem which has also particularly
motivated study of random vibrations is that ot structural response to
earthquakes. This latter problem is certainly ancient but only in fairly
recent times has enough information about the nature of earthquakes
been accumulated to allow any scientific analysis of the subject.

To describe a process as random simply means that insufficient
information is available to allow one to completely describe its time
history. Rather, various statistical measures are used to character-
ize a random process. Of course, records of actual excitation by jet
noise or carthquake are available, but the randomness of the problem
arises from the fact that future excitations by the same type of source
cannot be expected to have the same time history. Analysisofalarge
number of individual records of a random process permits determina-
tion of the statistical measures which can be expected to also character-
ize future records. The earthquake problem is particularly complicated
by the scarcity of time history records of past strong-motion earth-
quakes. To date the ground acceleration has been recorded for only
about twenty strong-motion earthquakes.

The theory of the stationary response of linear systems to



random excitation is quite well developed and is available in common

reference books( 1- 3).

In particular, given the power spectral density
of the excitation one can compute the power spectral density and mean
squared level of the linear system response. If the excitation has a
Gaussian or normal probability distribution then the linear system
response is also Gaussian. Other statistics such as number of zero
crossings and peak distributions can also be obtained for a Gaussian
process.

For systems subjected to random excitation of relatively short
duration the statistics of the response may be strongly time dependent
rather than stationary and appropriate measures of response must be
used. In earthquake engineering the most commonly used measure of
response is the maximum response of the system due to the transient
excitation. Curves of these maxima for single-mass linear oscillators
of various natural frequency and f:action of critical viscous damping
are called response spectra and are available for past strong-motion
earthquakes(4). The probability distribution of the maximum response
of a single mass linear oscillator excited by an earthquake-like random
process has also been studied(5;7). |

The response of nonlinear systems to random excitation is a
much broader and more complicated subject than the response of linear
systems. Virtually all real physical systems exhibit some form of non-

linearity for sufficiently large motions, and various forms of nonline-

arity result in greatly varied effects on system response.



One method of studying the random response of a nonlinear
system is to find an approximate equivalence between the nonlinear
system and some linear system so that the linear theory can be applied.
Probably the most common such method is an extension of the well
known Krylov-Bogoliubov technique to problems with random exci-

(8)

tation Using a somewhat different approach other authors have

characterized the effect of certain types of nonlinearities solely by an

(9 10). Predictions of the re-

amount of equivalent viscous damping
sponse of nonlinear systems based on the results of linear theory can
normally be expected to apply only to systems with small nonlinearities.

Perturbation techniques have also been used to investigate the
random vibrations of nonlinear systems(“). Here again it is required
that the nonlinearity be small so that an initial approximation to the
response of the nonlinear system can be found by neglecting the non-
linearity.

Solution of the general Fokker-Planck equation appropriate to a
nonlinear system gives the exact transitional or conditional probability
density function of stationary response to a Gaussian excitation with a

(12)

white frequency spectrum From the transitional probability den-
sity one can obtain the common measures of a stationary random
process, such as power spectral density, mean squared level and
ordinary probability distribution. As yet, however, no one has suc-

ceeded in solving the general Fokker-Planck equation for any second-

order nonlinear system such as a spring-mass oscillator.



The stationary probability density function for the response of
a nonlinear system to white, Gaussian excitation is the solution of a
reduced form of the Fokker-Planck equation for the system. The most
general class of nonlinear second-order systems for which such a sta-
tionary solution has been obtained includes systems with nonlinear
nonhysteretic springs and nonlinear damping which is a function of the
amount of energy in the system(l3). This class of nonlinear systems
contains all the particular examples for which stationary solutions
have been obtained to date.

Exact analytical results from solution of the Fokker-Planck
equation are thus limited to a class of nonlinear systems which excludes
all hysteretic systems. Further the approximate results obtained by
perturbation methods or methods usirig the results of linear theory are
limited to problems with small nonlinearities, although the exact mean-
ing of small is normally not specified. Particularly in carthquakc
engineering the nonlinearities of principal interest are hysteretic and
not necessarily small., Many researchers have thus taken recourse to
various experimental techniques wherein some mathematical or physical
representation of the nonlinear system is subjected to the desired exci-
tation and the resulting system response is analyzed., Digital andanalog
computers have been the primary tools in such investigations.

Bilinear hysteresis has been the most widely studied type of

hysteretic nonlinearity. Figure 1 shows a plot of restoring force versus

displacement (or restoring moment versus angle) for a bilinear hyster-
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Figure 1. Bilinear Hysteretic Restoring Force.



etic spring., The steady state response to harmonic excitation of a
single-mass oscillator with such a bilinear hysteretic spring has been
thoroughly investigated by exact and approximate techniques(14’ 15).
Also the stationary response of the system with white, Gaussian exci-
tation has been investigated by the approximate method of equivalent
linearization(16). The applicability of these latter results is presum-
ably limited to situations where the two slopes of the restoring force
curve are nearly equal.

Analog and digital computers have been used to obtain response
spectra for bilinear systems excited by the ground acceleration record-
ed for past earthquakes. Such response spectra are available for the
elasto-plastic system excited by at least five different strong-motion

(17-21)

earthquakes and for some other bilinear systems forat least two

strong-motion earthquakes(ZU. The elasto-plastic system is, of
course, simply the particular bilinear system with the second slope
equal to zero. In addition to the studies of the single mass oscillator,
several investigators have studied the earthquake response of buildings
using multi-mass models with bilinear hysteretic springs(22_24).

The specific objectives of the present study are:

1. By use of an analog computer, to experimentally investigate
the stationary response of bilinear hysteretic single-mass oscillators
to random excitation, and

2. To investigate the applicability of some approximate ana-

lytical techniques to such nonlinear systems.



The results of such a study of stationary response will, of
course, be directly applicable only to problems of stationary vibra-
tion. In addition, however, an investigation of the stationary response
of a nonlinear system should also give some indication of how the non-
linearity may effect transient vibrations of the system. In particular
for problems where the excitation persists only for a set time interval
and where the statistic.s of the excitation are stationary over that time
interval the system response should approach stationary vibration as
the time interval of excitation is increased. Further, the general
effects of a particular type of nonlinearity on a system response to any
random excitation should be somewhat similar to the effecis on station-
ary response, provided that the excitation persists for several periods
of vibration of the system. This condition can be seen to apply to many
earthquake engineering problems since the strong motion of the ground
due to an earthquake may persist for about thirty seconds whereas the
longest natural period of vibration of a tall building may be about two
seconds.

Chapter II describes an analog computer investigation of random
vibration of a bilinear hysteretic system. The excitation used was
approximately Gaussian and white. Mean squared levels of displace-
ment and velocity response, power spectral density, and probability
distribution determined for the system response are presented in graph-
ical form. The two particular bilinear systems with the slope parameter
n equal to 1/2 and 1/21 were investigated. Systems with and without

viscous damping are both included.



Chapter III discusses the approximation of the bilinear hyster-
etic system by a linear system with both spring constant and damping
constant chosen for equivalence. An application of the Krylov-
Bogoliubov method to the problem of random vibration is discussed
with particular emphasis on the assumptions involved. Basically, it
is assumed that the effect of the nonlinearity is small. The response
determined frum the analog computer results of the second chapter is
compared with that predicted by direct application of the Krylov-
Bogoliubov method.

The approximation of a bilinear hysteretic system by a nonlinear
nonhysteretic system is discussed in Chapter IV. A study is made of a
particular nonhysteretic system which belongs to the class of systems
for which the stationary solution of the Fokker-Planck equatidn is known.
For the limiting case of a high yield level the results predicted by this
approximation are evaluated and compared with the analog computer
results. The amount of energy dissipated due to yielding is discussed
and a comparison is made between the amounts predicted by two dis-
tinctly different nonhysteretic approximations of an elasto-plastic
system with a high yield level.

Chapter V discusses the general characteristics experimentally
determined for the stationary response of bilinear hysteretic oscillators
with random excitation. A comparison of these characteristics with
those for systems for which analytical solutions are available gives
some indication of the advantages and limitations of various analytical

techniques for approximating the response of bilinear hysteretic systems.



II. ANALOG COMPUTER INVESTIGATIONS

2. 1. Description of System

A mechanical system which exhibits a bilinear hysteretic re-
storing force is shown in Fig. 2. The equation of motion can be
written as:

mX+ cx + (ky+ k) 9(x) = n(t)

n(t)

m

k]+ k2
where Wo = —— - small amplitude undamped natural

circular frequency

or %+ 2B, w %+ wiqo(x) = (2. 1)

c
ﬁo_Zwm
o

, small amplitude fraction of critical
damping
®(x) is bilinear hysteretic restoring force as shown in

Fig. 1 for o =k,/(k+k,).

No exact solutions for the statistics of the response of such a
hysteretic system to random excitation have yet been obtained by
" analytical techniques. Thus, it is necessary to use some form of
experimental technique, wherein some system described by equation
(2. 1) is subjected to a forcing function, n(t), of certain statistics and
the statistics of the response are experimentally measured. Several
such experimental techniques are:

l. mechanical model, as shown in Fig. 2,
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2. passive electrical analog of the system shown in Fig."Z,

3. differential analyzer electrical analog of equation (2. 1),

4. numerical integration of equation (2. 1).

Method 3, using a conventional electrical analog computer, was
chosen for this study because it is economical, has flexibility with
respect to choice of parameters, and allows an accurate description
of the bilinear hysteretic restoring force.

The basic analog circuit used is shown schematically in Fig. 3.
The bilinear restoring force was developed by adding a linear and an
elasto-plastic restoring force. Figure 4 illustrates the general tech-
nique used to obtain an elasto-plastic function by modifying a conven-
tional analog integrator. In this study the nonlinear function was
obtained by using flip-flop circuits to bias switching transistors. The
details of the analog circuit are included in Appendix A. 1. The small-
amplitude, undamped natural circular frequency used was w = 3,120
radians per second.

Photographs of oscilloscope traces of the elasto-plastic func-
tion cpp(x) versus x for several frequencies of periodic motion are
reproduced in Fig. 5. These photographs show that the restoring
force function was essentially independent of frequency over the range
from 5 cps to 1000 cps and was, in fact, a good approximation to the
ideal elastoplastic function. Curvature of the sides of the hysteresis
loop is detectable at 1 cps and lower frequencies. The relative levels

of error introduced by this curvature at low frequencies and by the
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1 cps 0.5 cps

Figure 5. Oscilloscope Traces of 5Cpp(x) versus X.
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overshoot at initiation of yield apparent at 1000 cps are discussed in
Appendix A.1l. Both of these errors were considered to be negligible
in this study.

A General Radio Random Noise Generator, Type 1390-B was
used to furnish the random exciting signal. The output from this
equipment is an approximation to a white, Gaussian source. In the
modc of opcration which was uscd the powcr spcctral density is
essentially independent of frequency from about 20, 000 cps down to
near 100 cps. The gas discharge tube which provides the basic ran-
dom signal in the noise generator failed during the course of the
experiments, hence some results were obtained using a replacement
tube. Figure 6 indicates experimental measurements of the spectral
density of the random signal for both the original and the replacement
tubes with On, the rms value of the signal, at 5. 0 volts in both in-
stances. The results are plotted as square root of power spectral
density, i.e., rms voltage passing through a filter with a one
radian/sec pass band. The results were actually obtained using a
wave analyzer which has an effective bandwidth of 28. 4 rad/sec; thus
the measured rms voltage was divided by V28.4, assuming the spec-
tral density to be flat across the band.

The output from the noise generator was found to have a some-
what unsymmetric probability distribution. For example, Fig. 7 re-
veals that the unfiltered output using the original gas discharge tube

had a probability of being more negative than -2.5 0 of 1.2%; but the



-15-

000l

"I0jeIDUSY) 9SION wWopury jo Ajrsua( [eI3oadg Iemodg -9 san3ig

Sd3 ‘AONINDIHL
008 Q0% 002 00! 09 ob 02 ot

IR

38NnL 39¥VHOSIO SVS LN3W3OV1d3H -8B-
3dNL 3I9HYHOSIA SYO IYNISIHO -V-

SLIOA 0°S = LNdLNC SWY
3JOKW OM 02
g8-06€! 3dAL ‘OlQvd TYH3IN39
HOLVY¥INID 3SION WOAONVY 1000
=2
£
8000 §
S
o N
8 . Lo m
4 - [ " |
S f——= Y6000 &
S 8l ¥ _—1 &
L PO =8— =" \ v 4‘4‘ v v
¥
H 0100




-16-

10jBIDUSN) OSTON wopury jo UomNqrIISIg 4A3iriqeqoxd ) eandtg

% *73A37 Q3ZITVYWHON
g 2 | 0 I- 2- ¢ L PR
. 6'66
ol
38N1 3IOUVHOISIQ SVO TVYNIDINO X ce
300N 2 02 \w\
8-06€! 3dAL ‘OlIOVY TYHINID i ce
¥OLVH3IN3O 3SION WOONVY <.\%
o
D
Vud 08 M
e &
\u. 0s \nuw ,
adt <
a\ UD
02V
A =
7z .
4 440103 O% 1 -»- ¥ g
LS 440100 9N 01 =3~ ¢
” 3NON -v- “
A d3Ld SSVd MO
‘o \( _-o
00




-17-

‘I0jBIDUOD) 9STION Wopury JO uornqrilsig L3rjiqeqord g 2andiyg

% ..._,u>m._ DWNZquO_z

% * (1<Yrs@v) 8oud

v £ 2 2= & L
i 666
\O
| 380l 3I9¥VHOISIO SO LN3W3IVd3Y o\ 66
3Q0W 2% 02 v
8-06€I 3dAL ‘OlQVY TYY3INID iy g6
HOLVHMINID 3ISION WOANY M \o
o\ 08
\ \ os
\\0 ON
L9 <
pd
o {
\ ¥3L7ld SSVd MO 440LND 2% Ol
=9 o
/
10’0




-18-

probability of being more positive than +2.57, was only 0. 08%. Ex-
perimentation showed that passing the signal through a low pass filter
greatly improved its probabvility distribution. This indicates that the
lack of symmetry was due to the higher frequency components of the
signal. When the cutoff frequency was set at 1,000 cps the proba-
bilities of exceeding +2.50 were 0.6% and 0. 7%. The scales in
Figures 7 and 8 are such that the probability distribution of a Gaussian
signal plots as a straight line.

The resonant frequency of the analog system tested never ex-
ceeded 500 cps and thus the part of the excitation above 1000 cps
contributed relatively little to system response to nearly white exci-
tation. (This fact of small response above 1000 cps will be quitc
evident when power spectral density of response is examined in a
later section.) Since the analog system itself acted to filter out high
frequency components of the excitation, the output of the noise gener-

ator without filtering was used to excite the system in this study.

2.2. Mean Squared Level of Response

The mean level is the simplest measure of a random signal,
but it tells nothing of the variability of the signal. In fact, in the
present study the mean levels of both excitation and response were
zero. One simple measure of how much a signal of zero mean value
varies from that mean value is the mean squared level of the signal.

For a Gaussian signal knowledge of mean level and mean squared
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level is sufficient to completely determine all probability density
functions of that signal.

In this study rms levels were measured using a Briiel and
Kjaer Random Noise Voltmeter, Model 2417, which has an averaging
time which is adjustable from 0.3 to 100 seconds. Due to the well
known beat effect resulting from summing signals of nearly the same
frequency, the amplitude of a narrow-band random signal tends to
vary with a much lower frequency than the center frequency of the
process. This low frequency variation necessitates using relatively
long averaging times in order to measure the true rms level. This
is illustrated in Appendix B. 1, where it is shown that for a narrow-
band random signal with mean zero and a bandwidth of 2b radians per
second between half-power points the normalized standard error in

/2

measuring mean squared level is approximately (bT)_1 when an
averaging time of T seconds is used. It is shown that the equipment
used was capable of determining the rms response levels reported in
this chapter within an accuracy of about 2% except for two particular
instances where the accuracy was limited to about 3. 5%.

The rms levels of both the displacement, x, and the velocity
of the response of the bilinear system were measured. For a linear
oscillator the rms velocity is the product of the rms displacement
and the undamped natural circular frequency, but this simple relation-

ship does not hold true for the bilinear system.

The response of a linear system governed by the differential
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equation

n(t)
m

'}&+2{31w1>'<+ w‘?l'x = (2.2)

can be obtained by using the complex transfer function of the sytem:
1

2
mwzl (1 v

H (i) = (2.3)

z
®

”(Zﬁl%)

This transfer function is merely the steady-state response, x, to a
unit amplitude harmonic excitation. The real part of Hx(iu)) is the
component of response which is in phase with the excitation, and the
imaginary part is the component which leads the excitation by a 90°
phase angle. The power spectral density of the response of such a

linear system is given by
. 2
Sy(w) = |H (iw) |"s_(w) (2.4)

where Sn(u)) is the power spectral density of the excitation. For any
signal the mean squared value is obtained by integrating the power

spectral density:

(e 8]
0% = jS(m)dm : (2. 5)
-00

For a system described by equation (2. 2) and with a white
excitation with power spectral density
0 if w<oO

s, (w) = (2. 6)

S “if w=0
o

performing the integration of the power spectral density of the
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response yields

2 Trso
o‘x = 3 (2. 7)

4mp 0]

Similarly for the response velocity, the transfer function is

given by
H. (i) = = (2. 8)
: 1- 20+ if2p, o
muw,y - -(;2— 1 F}l Tl-
i
and the mean squared response to white excitation is
2 ™S
U}.{ = __TO__ . (2.. 9)
4mB, ¥y

One notes from (2. 9) that the rms velocity response depends on the
mass, m, and the dashpot coefficient, Zmﬁlwl, but is independent of
the stiffness, mw%, of the linear oscillator.

In this study the yield level of the bilinear system is treated
as the principal independent variable. Thus Figures 9-12 are pre-
sented in the form of rms response levels versus yield level for bi-
linear systems with a constant level of excitation. The terms O
q}.(/ w,and Y are all normalized by dividing by /W/mwi. For a
constant excitation power spectral density So’ this normalization
factor is like a measure of the effective amplitude of the excitation
force divided by the small-displacement spring constant, rnu)f'J .
(Figure 6 shows that the experimental Sn(u)) closely approximated a

constant value So, particularly above 100 cps.) Normalized in this
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way the yield level and the response levels are nondimensional and the
results presented can be used for any level of excitation of the bilinear
system with the given value of a.

In some mechanical systems where yielding corresponds to
straining of ductile members the ratio UX/Y may be an important
factor in failure criteria, since it is a measure of how much yielding
is taking place. Grid lines for UX/Y are presented in Figs. 9 and 11
for convenient reference.

As mentioned in Appendix A. 1l the system with nominally zero
viscous damping actually acted as though it had about 0. 05% negative
damping. Because of the small magnitude of this term the curves
obtained under this condition are labeled [30= 0. In a few instances,
however, the effect of this negative damping can be detected. In
particular, in Figs. 9 and 11 one can observe that the ratio UX/Y
begins to increase when mei/\/w is increased beyond about 30.
This means that in this range a reduction of the level of excitation
So while keeping Y constant resulted in an increase in the level of
response. Such an effect must be due to negative damping. When So
was reduced to zero the ratio GX/Y tended upward to 0. 707 since the
system then oscillated with harmonic motion of amplitude Y.

The two limiting cases of the bilinear system for infinite and
zero yield levels are linear systems governed by equation (2. 2) with
w% = w(Z) and w% = awi respectively, and with ﬁlwl = [30{1)0 in both cases.
For the linear system described by equation (2. Z) and with white

excitation, expressions (2.7) and (2. 9) give
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- N

mu

v Sowl

mwl_l ™

/sowl 2 ﬁ'1

o o (2. 10)

The response to white noise for the linear limiting cases of the
bilinear systems presented in Figs. 9-12 have been calculated from
expression (2. 10), and are presented in the following table. The
systems with no viscous damping are not included in the table since

their response would be unbounded for infinite or zero yield level.

1 _ 1 _ ! _
q-f 60_0.01 @—2—1- BO—O.OI d,--z—l ﬁo-—O. 05
Response
Y=o Y=0 Y =00 Y=0 Y=co Y=0
2
mwo
O’X 8.88 12. 6 8. 88 40. 6 3.96 18.2
JS w
oo
mw_
0}.(——- 8. 88 8. 88 8. 88 8. 88 3.96 3.96
JS w
O 0
i

The curves in Figs. 9-12 all approach relatively near the limiting
values in the table for large and small yield values although the yield
values are finite and the experimental excitation was not strictly white.
The elasto-plastic system has often been chosen for study by
investigators of nonlinear systems, because of its simplicity and
because many physical systems supposedly act in an approximately
elasto-plastic manner. The elasto-plastic system cannot be used in

the study of stationary response, however, since its response to
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stationary excitation is not a stationary process. Consideration of
Fig. 2 with kZ - 0 demonstrates why this is Lrue. With kZ =0 there is
no restoring force which is dependent on the total distance that the
system has departed from its initial position; hence, once the system
has yielded, it in essence forgets where it started. Thus, the re-
sponse of the elasto-plastic system is free to wander endlessly, and
is useful only for studies of transient motion. The system with
a=1/21 was chosen to represent nearly elasto-plastic systems in this
study, while eliminating the problem of wander.

Curve A in Fig. 9 reveals that for a given level of excitation
of the system with a=1/21 and no viscous damping the resulting dis-
placement response is minimized when the yield level is chosen such
that OX/Y falls in the range of one to two. Use of expression (2. 10)
shows that this minimum response is approximately the same as that
for a linear system with resonance at W, and having about 2% of critical
viscous damping. Curve B for the bilinear system with Bo =0.01 shows
that the response, Oy of this system is decreased by about 1/3 as the
yield level is reduced from infinity to the region where OX/Y ~1.3,
then O increases again with further reduction in yield level. Thé re-
sponse O for [30 =0.01 is less than that for Y = co whenever O'X/Y<7. 5,
thus yielding reduces o over quite a wide range of yield values. For
the system with Bo= 0. 05, curve C reveals that the effect of yielding

is to increase O, above that for Y = o for virtually all values of yield

level.
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Figure 10 shows that the effect of yielding with o, = 1/21 on
rms velocity response, 0., is quite different from the effect on dis-
placement. The effect of reducing the yield level from infinity to
where cx/Y =1.3 is to limit the velocity by about the same amount as
it would be limited by the addition of 15% viscous damping while
keeping Y =00. For all values of yield level the velocity response is
reduced by yielding.

A less severelynonlinear system which was chosen for study
is the one with u.=1/2. When this system has no viscous damping the
maximum reduction in O as shown in Fig. 11, occurs when Ox/le.Z
and is about like the addition of 5% viscous damping to the system with
infinite yield level. When viscous damping B, =0- 01 is introduced the
rms displacement is reduced below that for Y = oo whenever GX/Y<3O.
Figure 12 shows again that rms velocity is always decreased by yield-
ing and use of expression (2. 10) shows that the maximum reduction in
o, due to yielding for a = 1/2, is approximately like the addition of 7%
viscous damping with infinite yield level.

One can observe from the measured responses that while
a=1/21 results in considerably more reduction in G}-( than does a=1/2,
theless severely nonlinear of the two systems is more effective in re-
ducing the rms displacement, O The ''softening' spring effect of the
nonlinearity tends to increase displacement response, in some cases
overpowering the damping effect of the hysteresis, but velocity response

reflects only the damping effect.
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2.3. Power Spectral Density Measurements

The essential basic component of a system for direct measure-
ment of power spectral density is a narrow band filter with variable
center frequency. The filter is a linear device characterized by a
continuous transfer function HF(iw). The mean squared value of the

output from the filter is given by

(00
o 2= | s, () | Hp (iw) | dw
- Q0

where Sin(w) is the spectral density of the input to the filter. Consid-
ering the case where lHF(iw)‘ is symmetric with respect to its center

frequency w_ and expanding Sin(w) in a Taylor series about wC:'

ds.
= - m
Sin(w) - Sin(mc)-*-(('U u’)c) dw (wc)
(w-0)° d?‘sim
+ (w)+....
2 de C
one obtains
oo
2 Ny
%out ~ Sin(wc).[ lHF(lm)I dw
-00
2 oo
+i(_i__f_i_r_1.(w’)j(w—w )ZIH (iw)\zdw+ (2.11)
2 de c C F Tt )
-0

Thus if \HF(in is sufficiently sharply peaked as compared to the
magnitude of the second and higher even derivatives of Sin(w) at w,

the following approximate relationship is obtained:



[0 0]
2 . 2
Oout ~ S.m(wc)] \HF(lw)\ dw

o
-co
or
1 2
Sin(¥e) %ﬁg Tout (2. 12)
where
oo
B =J“H (iw) | %aw 2.13
e T . (2.13)
-00

The expression Be can be considered the effective bandwidth of the
filter since an ideal "'square-window'" filter for which

1 for |w-w |<B /2
C e

|H(Ew) | =
0 for J|w-w |>B /2
C e

would result in the same relationship between input spectral density
and mean squared output, under the assumptions leading to expression
(2.12).

Expression (2. 12) is used to determine the spectral density
of a process from a measurement of the rms of the output of the
narrow-band filter. In order to use expression (2. 12), though, near
the peak frequency of a narrow-band input process it is necessary to
have an extremely narrow-band filter, since the second derivative of
Sin(w) is large there. Appendix B.3 discusses the error inherent in
using (2. 12) to determine power spectral densities with sharp peaks.

It is shown that the maximum error in plotted spectral density, due to
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the bandwidth of the filter used, for the figures in this chapter is
probably less than 1%.

Measurement of spectral density was accomplished in this
study by using a Radiometer Wave Analyzer, Model FRA2. Experi-
mental measurement of the characteristics of the nominal 2 cps band
of the wave analyzer confirmed the shape of the transfer function
uscd by P. VY. Hu(25) to cvaluatc the effective bandwidth as

Be = 4.53 cps = 28. 4 rad/sec.
The relative sharpness of the peak of this transfer function can be
seen in Fig. 13. When the center frequency of the wave analyzer is
set lower than about 100 cps the maximum transmissibility (i.e. the
maximum value of ‘HF(iw) \) is noticeably reduced. In order to deter-
mine spectral densities at low frequencies one must divide the meas-
ured rms value of the filter output by the factor plotted in Fig. 14.

As mentioned in Section 2.2 a normalized standard error of
about (bT) 12 in mean squared level can be expected when an averag-
ing time of T seconds is used 1n meésuring the level of a narrow-band
signal with a width 2b radians per second between half-power points.
Using Figure 13 to determine the bandwidth of the wave analyzer filter
it appears that an averaging time of 100 seconds will result in an
error of about 1. 5% in determining the rms level of the output from
the filter. In order to achieve such long averaging times the random
noise voltmeter described in the previous section was used to measure

the output of the wave analyzer.
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Tests were conducted to determine spectral densities for the
displacement variable, x, of the bilinear system. The exciting
force in these tests was the noise generator with the original gas
discharge tube.

The system with a.=1/21 and B,= 0 was investigated rather
extensively and the results for this nearly elasto-plastic system are
presented in Figures 15, 16, and 17. Figure 15 presents an overall
view of the general tendencies of the curves obtained, while Figs. 16
and 17 use expanded scales to better display the details of the data.

For a linear system, as mentioned in the previous section,
the power spectral density of the response is directly related to the
excitation power spectral density by the transfer function of the
system (equation 2. 4). Thus, one can experimentally obtain the
absolute value of the transfer function of a linear system by measuring
power spectral density when the system is excited by some random

signal and using the relationship

tH, (o) | =S ()/s_(v) . (2. 14)

Equation (2. 14) does not give the harmonic-excitation transfer
function for a nonlinear system in general since separate solutions to
a nonlinear problem do not superpose to form another solution. None-
theless, the parameter mwg\/ Sx(m)/Sn(w) was chosen to present the
power spectral density of the response of the bilinear system in a

manner which allows easy comparison with linear systems. The
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steady-state response of bilinear systems to harmonic excitation has

becen accurately predicted by various tecchniques and experimentally
e 1

verified by T. K. Caughey( 4) and W. D. Iwan(l5).

From expression (2. 3) one notes the following limiting con-

ditions for the transfer function of a linear oscillator:
H (0) =1/m 2
% |
and
. 2
H (1) ~ 1/mw” as w—oo.

Since the limiting cases of the bilinear system for infinite and
zero yield levels are linear systems governed by equation (2. 2) with
w% =w(2) and w% =awi respectively, one might expect the following

limiting conditions for the bilinear system:

1. When OX/Y-‘O and w=0
then muw? /S (W)/S _(w) -1
o’ "x n
2. When OX/Y - 00 and W—0

then mwi\/ Sx(w)/sn(w) - 1/a

3. When w—~ oo and either OX/Y -0 or OX/Y -
2 IS TS~ o 1
then muw_ Sx(w)/Sn(w) wo/w

From curve A in Figs. 15 and 16 one can observe that when the
yield level was approximately one per cent of the rms level of dis-
placement response, the system response was very similar to that

. . . . -2
of a linear system with a restoring spring constant o . However,
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curve A is bounded at w:/a"wo, even though the system contained no
viscous damping.

Curves G and H reveal that when the ratio of rms response
to yield level was less than or equal to unity, the power spectral
density of the response near W= W, was quite similar to that of a
linear damped system with resonant frequency w_ . The spectral
density at low frequency, however, did not tend to the limiting value
for a system with resonance at W but, rather, appears to have
approached the limiting value for a resonance at /a w . Thus, the
predicted limiting condition Number 1 above was not experimentally
realized. For this system with no viscous damping it was impossible
to decrease the ratio OX/Y below approximately 0. 55, since a further
increase in yield with no change in excitation resulted in a corres-
ponding increase in rms response (see Fig. 9).

One notes from curves C, D and E that the power spectral
density of the response of this bilinear system was monotone decreas-
ing over the entire observed frequency range when O‘X/Y was between
4 and 9. A linear oscillator, for comparison, results in a monotone
decreasing power spectral density only when it has greater than 70%
of critical viscous damping.

Figure 18 presents the spectral density of the system with
a = 1/21, but with considerable viscous damping introduced, for
cx/Y = 0.38. The effect of the nonlinearity on the low frequency power
spectral density, within the frequency range of the experiments, is

not as great in this instance as when OX/Y is larger, but it is still
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clearly apparent in Fig. 18.

The power spectral density of the response of theless severely
nonlinear syétem, a=1/2, for several different yield levels, is pre-
sented in Fig. 19. Each of the response curves for this system has
a definite peak, and the peak is shifted gradually from frequency ER
to /o w_ as OX/Y is increased from a small value to a large value.
As with the system with a=1/21, though, the low frequency compo-
nent is like that for a system with resonance at /o W, even when the
peak response is near W

From the characteristics of the curves in Figures 15-19, it
appears that the proper limiting conditions of the response of the

bilinear system, rather than the three postulated above, are:

Y 2 -
1. When w~0 then mwo/sx(m)/sn(w) l/a for all OX/Y

2. When w- oo then m.wz\/ém - ‘JJZ /mz forallo /Y.
oV "x n o x

The forms of the spectral density curves in Figs. 15, 16 and
17 show that the response of a severely nonlinear hysteretic oscillator
is not, in general, contained in a narrow frequency band. Figure 20
further illustrates this fact by showing plots of displacement response
versus time. For comparison, curve (a) shows the response of a
linear system with approximately 1% of critical viscous damping. The
displacement of this system has a clearly defined principal frequency
and a slowly varying amplitude, as is typical of a narrow-band pro-

cess. Curve (b), for a=1/21 and GX/Y =1.6, has a fairly well defined



-44-

M
I

(a) Linear System, ﬁo

P o —_—
’ lnlllll
PR —— |
D e
o
S SR e
=

(3)x ‘INFWADVILSIA

0. 01

(3)x ‘INFWIDVIISIA

1/21, B,

=1.6

=0, O'x/Y

(b) n

Z ]
<

l..”VI J B
— -4 . v - e
—— - ..IN AV
L==1 |
_ =1 ___{
=
VE,:[ -
-
- - -

(3I)x INIWADVILSIA

1/21, pé

=5.7

=0, o /Y
X

(c)n

Time Histories of Random Response.

Figure 20.



45 -

high frequency component which looks similar to curve (a), but it
also contains a large low frequency component which gives a wander-
ing effect to the result. The response of a system with a=1/21 and
OX/Y =5.7, as shown in curve {c), shows almost no similarity to a
narrow-band process.

The magnitudes of the yield level are shown for cur;fes (b)
and (c) of Fig. 20. At any time and absolute displacement the bilinear
system can execute oscillations of amplitude less than the yield level
while acting in a purely elastic manner. The high frequency compo-
nent in curve (b) clearly shows such elastic oscillations taking place
at the natural frequency of the linear system. Curve (c), also, shows
some indication of elastic oscillations at the linear system natural
frequency, but due to the low yield level the amplitude of such oscil-
lations is very small as compared to the lower frequency components
present in the displacement. All the curves in Fig. 20 were obtained
from a system with a small-amplitude natural frequency near 50 cps,

and are plotted with a horizontal scale of 0. 05 second per line.

2. 4. Probability Distribution Measurements

The probability that a stationary signal exceeds a given level
is simply the fraction of the time that the signal exceeds that level.
The Quan-Tech Laboratories Ampiitude Distribution Analyzer, Model
317, contains a Schmitt trigger device, the output of which is 6.3 volts
whenever the input signal is greater than the comparison level and is

zero whenever the input signal is less than the comparison level. Thus
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the ratio of the mean level of the Schmitt trigger output to 6.3 volts
is the fraction of the time that the input signal exceeds the compari-
son level. The comparison level in the Quan-Tech instrument is
continuously adjustable by means of a potentiometer.

Appendix B. 2 discusses the probable error introduced by
using a finite sampling time in determining the probability distribution
of a stationary signal. It is found that the normalized standard error
can be expected to be approximately inversely proportional to the
square root of the product of the sampling time multiplied by the
probability being determined. It is also pointed out why it was neces-
sary to use an external filter and voltmeter to measure the mean
output of the Quan-Tech Schmitt trigger in this study. An RC filter
having a time constant of 25 seconds was used and this apparently
allowed determination of a probability as small as 0. 002 within about
10% accuracy. Appendix A.3 gives the details of the slight modifica-
tion of the distribution analyzer which was necessary in order to use
the external filter and voltmeter.

The first stage of the Quan-Tech analyzer is an A. C. ampli-
fier with normalized transmissibility as shown in Figure 21. A low
frequency signal passing through the amplifier experiences a phase
shift as well as the attenuation shown. Inasmuch as the power spec-
tral density measurements indicated that low frequency components
were quite significant in the response of ncarly elasto-plastic systems,
a test case was checked using an external D. C. amplifier to bypass the

A. C. amplifier stage. The test case chosen was the bilinear system
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with a=1/21, By = 0 and GX/Y =6.2. This was deemed to be a fairly
severe test since the power spectral density of the response of this
system was monotone decreasing with frequency (see Figs. 16 and 17).
The results showed that the A. C. amplifier resulted in no measurable
change in the probability distribution of the response of this particular
system, and, hence, it was concluded that the A. C. amplifier had
negligible effect on all the probability distributions obtained in this
study.

Figure 22 shows probability distributions for the nearly
clasto-plastic oscillator, a=1/21, with no viscous damping. For low
yield levels the response has a significantly greater probability of
being at large displacements, as compared to the rms level, than for
a Gaussian distribution. For example, when OX/Y =6. 4 the bilinear
system response spends approximately 0. 4% of the time beyond 3 O
whereas a signal with a Gaussian distribution spends only about 0. 13%
of the time beyond 3 0. On the other hand, when the yield level is high
there is a much smaller probability of the system response being at
large amplitudes than for a Gaussian distribution. For example,
when GX/Y =0.55 the response of the bilinear system spends only
about 0. 3% of the time beyond 2 O whereas a signal with a Gaussian
distribution spends about 2. 3% of the time beyond 20. This latter
effect, which occurs for high yield levels, will be referred to as
amglitude limiting.

Figure 23, for the bilinear system with a=1/2 and [30 =0.01,

reveals the same basic tendencies as Figure 22, although not so
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pronounced. For example, when UX/Y = 8. 4 the response spent ap-
proximately 0, 3% of the time beyond 3 OX, and when OX/Y =0.52 it
spent about 1. 8% of the time beyond 2 O When the yield level of

this damped system was increased until OX/Y =0. 2 the nonlinearity
had no detectable effect on the probability distribution of the response,
the result being a Gaussian distribution. Figure 24, however, reveals
that severe amplitude limiting does occur for high yield levels in the

system with a =1/2 when viscous damping is not present.
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III. EQUIVALENT LINEAR SYSTEMS

3. 1. Krylov-Bogoliubov Method

The statistics of the response of a simple linear oscillator to
random excitation are well known. Hence, the statistics of a non-
linear oscillator may be readily obtained if one can find an equivalent
linear system. A straight-forward method of finding an approximately
equivalent linear system is the Krylov-Bogoliubov method of equiva-
lent linearization as adapted by T. K. Caughey for nonlinear dynamic
systems with random excitation(s). Caughey has applied this tech-
nique to the particular problem of a bilinear hysteretic oscillator with
certain assumptions of small nonlinearity(l6). This analysis will be
summarized pointing out the reasons for various assumptions, and the
predicted responses will be compared with the measured responses
reported in the previous chapter.

Consider the differential equation for the nonlinear system

. .2 . N(t)
x+ ZﬁOU)OX‘I‘ UJOCQ(X) = 'F' (3 1)
where the excitation N(t) is Gaussian and has a white power spectrum.

This equation can be rewritten as

s . 2 . _ N{t)
x+ Zpe.qweqx+ weq x+e(x,x,t) = = (3.2)
where the deficiency term € is given by
e(x, x,t) = 2([30(»0 - ﬁeqweq) X
(3.3)

2 2
+ wocp(x) - weq X
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The basic assumption of equivalent linearization is that it is
possible to choose meq and ﬁeq in such a way that the effect of the
deficiency term is small enough that the statistics of the response of
the nonlinear system can be approximated by those of the linear sys-

tem described by

5<+mezx=ﬁ-—) : (3. 4)

X+28_ w (t
eq e q m

q
The statistics of the response of the linear system with W,
and ﬁeq are readily obtained. From expressions (2.7) and (2. 9) of the

previous chapter one can write the mean squared displacement and

velocity as

2 Trso
g = (3.5)
x 2 3
dm B w
€q eq
and
™S
o2 - 2 (3. 6)
X
4m B w
€q eq

where S, is the power spectral density of N(t). Further, using expres-

sions (2. 3) and (2. 4} gives the power spectral density of the response

as
5o
S (w) = 17 > . (3.-7)
2 4 w w
m-w, 1- =| + 2B
q " eq @,
eq k!
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Finally, thc probability distribution of the response of the linear sys-
tem must be Gaussian, since N{t) was specified as Gaussian.

When the response of a nonlinear system is known not to have
a Gaussian probability distribution the validity of the basic assump-
tion about the existence of an equivalent linear system is obviously
limited. It is impossible to choose weq and ﬁeq by any technique so
as to match a non-Gaussian probability distribution.

For any nonlinear system there exist infinitely many combina-
tions of weq and Beq such that either (3. 5) gives the proper g _or (3.6)
gives the proper Oy However, there exists only one combination of
weq and peq such that both (3.5) and (3.6) give Lthe Lrue system respounse.

If the power spectral density of the response of the nonlinear
systém is such that it can be approximated by (3. 7), then the choice of
weq and ﬁeq which gives the proper o and oy should result in such an
approximation. This follows from the fact that both o, and 0 for any

system are completely determined by knowledge of the power spectral

density of the system response. Specifically

[00)
ol = _[Sx(w)dw (3. 8)
-0

and

[e o]

c).{z = J' wzsx(w)dw . (3.9)
-0

Caughey's equivalent linearization technique is to choose w,
and ﬁeq so as to minimize the mean squared value of the deficiency

term. Minimizing the mean squared value of (3. 3) with respect to
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peqweq gives

p w +%w2 icp(x)/;’:z (3. 10)

o O o)

B

W =
€q eq
since xx must equal zero for a stationary, diffcrentiable signal, where

. #* i foa s s .
bars denote time averages . Similarly, minimizing with respect to

" 2 .
eq gives

2 2 2z
weq = u)o xP(x) /x . (3.11)

If one knew certain probability density functions for the non- )
linear system described by expressions (3. 1) and (3. 2) it would be
possible to use expressions (3. 10) and (3. 11) to truly minimize the
mean squared value of €. It is not obvious that such a minimization
would necessarily ensure that the solution of (3. 4) was a good approx-
imation to that of (3. 2). Even the minimum level of € in equation
(3. 2) for some nonlinear systems might have significant effect on the
response. However, it can be shown that true minimization of the
mean squared value of the deficiency term requires a choice of W,
and peq which yields exact values for O and O for all the nonlinear
second order systems for which exact solutions have been obtained to

date (13).

These systems which have been solved exactly are all
nonhysteretic.

In practice one does not normally know the probability density

“The time averages used throughout this study are equivalent to
ensemble averages it one assumes eigodicity.
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functions necessary to evaluate expressions (3. 10) and (3. 11) so
must approximate them. For a nonhysteretic system only the joint
probability density of x and x is necessary (since ©(x) is uniquely de-
termined by %) and this would usually be approximatéd by a twao-
dimensional Gaussian distribution. For a hysteretic system ©(x)
depends on the past history of x so assumptions rnust be made about
the way x varies over time.

If 60 is small and if the effect of the nonlinearity is sufficiently
small, the response of the nonlinear system will be contained in a
narrow frequency band and can be written as

x = A(t) cos (u}eqt+ 9(t)>
(3. 12)
x = ~A(t)w sin(w t+ 9(t)>
eq eq

where A(t) and 8(t) are slowly varying, i.e. . have nearly constant
values over any one cycle of frequency weq. Expressions (3. 12) give
relationships between the variables in equations (3. 10) and (3. 11) over
each cycle, so that the only probability density function required to
determine B_ w__ and ‘”eqz is that of the amplitude, p(A).

€q €q

Using expressions (3. 12) gives

. . (o)
%% = % A% - % J‘Azp(A)dA
o]
. L (e o]
SRR LRI P e
(o]
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[0 0]
XO(%) = %AC(A) - %IAC(A)p(A)dA L (3. 13)
(0 0}
Xo(%) = -%—wquS(A) - -%weq j‘AS(A)p(A)dA
(o]

where
2T
C(A) = %I cos ¥ P(A cos §)d ¥
0 (3. 14)
2m

S(A) =?lr_ J sinyp(A cos {)d{
)

Evaluating C{A) and S(A) for the bilinear hysteretic system with

o(x) as shown in Fig. 1 gives

A for A<Y
C(A) = (3. 15)
A -1{A-2Y
—n_—l:(x-rr+(l-c1)cos (—A——)
-2(1 - a2 2 /AT } for A>Y
A
and
0 for A<Y
S(A) = (3.16)
L}(l-a)%ﬁl for A>Y

Both C{A) and S(A) are significant parameters of nonlinear

hysteretic systems, apart from their role in equivalent linearization.

The equation
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gives the approximate locus of the peaks of the response curves when
the nonlinear system with no viscous damping is excited by various
levels of harmonic excitation (14). The expression -mAS(A) is the area
enclosed in the hysteresis loop and thus is the energy dissipated per
cycle of steady state motion for the nonlinear system with no viscous
damping. This latter fact can be easily noted for the bilinear system
by rewriting expression (3. 16) as
-TAS(A) = 4Y(A - Y)(! - )

which is in fact the area of the hysteresis loop.

If one knew the amplitude probability distribution p(A) it would

be possible to find the values of ﬁeqwe and weqz which minimize € by

q
substituting from expressions (3. 13), (3.15) and (3. 16) into (3. 10) and
(3.11). The only approximation would be that of assuming narrow-band
response such that A(t) and 6(t) are slowly varying parameters in ex-
pressions (3. 12). In fact, however, p(A) is not known for hysteretic
systems so it must be approximated.

The response of a linear system to a Gaussian excitation is
Gaussian. Further, if the Gaussian response is narrow-band so that

.expressions (3. 12) can adequately describe it, then the amplitude A has
a Rayleigh distribution. Thus, by assuming that the nonlinearity has
small effect on the probability density of the response of the hysteretic
system, one can approximate the probability density of the amplitude
by the Rayleigh distribution:

plA) = iz exp (-A%/20 %) (3. 17)

X
e)
X



-60-

where
o 2 - XZ
X

From expressions (3. 11) and (3. 13)

-1 > IAC(A)p(A)dA . (3.18)
(o]

)
20

(il) )2 (o8]
€q
(6]

Defining new variables

z=% (2. 19)
and
- 2
A = ziz. (3.20)
Y
and substituting (3. 15) and (3. 17) into (3. 10) gives
fy 22 1
“eq) _ 2 jz%'ZZ”d
w T2
\ o AT o
L 2
+ 20 ‘J.z?’ e? /)\d
A
e el
2
f cos E)e_Z /xdz
mA 1 z
_4(1- a 2210
J‘z (1—-—)/ dz . (3.21)
mA 1

Expression (3. 21) is simplified in Appendix C to give expres-

sion (C. 4):
2 0
w 2/X
8 I- 1 -
weq) = ( -) f(__3 ) z-T'e ?  dz (3.22)
o) 1 Z
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which can be rewritten as

2 00

1-¢( {fw ) 2
(:—3 +%>,/‘_“z-1 e ? gy . (3.23)

weq o 8
l-a ™
Caughey has numerically integrated (3. 23) and graphed the result as
a function of A (16}. This graph is reproduced in Fig. 25. For large
values of X an asymptotic expansion which allows determination of
weq/wo without numerical integration is derived in Appendix C. Ex-

pression (C. 18) gives

2
W
(T%'L) - a+%‘“’(o. 604327374 0. 245127374

o
-0. 1295{7/4) for ) >> 1. (3.24)
For an infinite yield level (A =0) expression (3. 22) reduces to
w Zow?
eq o

due to the exponential term. For the other limiting case of zerao yield
level (A =) expression (3.24) reduces to

2 _ wz
l""eq = oty

The restoring force ©(x) is exactly wozx and awozx whenY =00 and Y =0,
respectively, for the bilinear system. Thus, expressions (3.22) and
(3. 24) give the limiting values that one would expect for weq .
Similarly, using expressions (3. 10) and (3. 13) with the assump-

tion of p{A) being a Rayleigh distribution gives
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w 2 @
_ o
Pagleq = Pole Tz JAS(AIRIAIA(A)
eq’x °

Substitution of (3. 16) and (3. 17) into this expression gives

@ (l-a)Y 2 2
—a 0 A A
ﬁ'::qmcq - ﬁo\DoJr 2 J z eXp |- 2 da
weqwox Y'Ox Zox

The second integral in this expression can be integrated directly and

the first one integrated by parts to yield

Y
f?cx

2
W
+(—°) 1o Y fe (3. 25)

Yeq/ /7 /Za

where erfc denotes the complimentary error function. In terms of
this is

2

w
+(w°) Lo 12 e V/2y 0 (320
eq) /@

W
[e]

w
€q

Beg =B

eq o

The value of weq/wo from (3.22) or (3.24) above must be used with
(3. 26) to determine the value of ﬁeq for some particular value of \.
The assumptions made in this derivation of weq and ﬁeq were:
1. The response of the nonlinear system was assumed
to be contained within a narrow frequency band;
2. The probability density of the amplitude of this nar-
row-band response was assurned to be the Ravyleigh

distribution.
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violation of either of these assumptions will probably result in a choice
of weq and/or ﬁeq which does not truly minimize the mean squared
value of the deficiency term of the '"equivalent' linear system. The
basic assumption of equivalent linearization, however, is merely that
the effect of the deficiency term on the statistics of the response can be
neglected. For some problems the effects of the deficiency term may
be negligible even if weq and ﬁeq are not chosen so as to exactly mini-
mize the mean squared value of the term. However, in other problems
even the minimum mean squared level of the deficiency term may result
in significant effects on the system response. Thus, satisfaction of
assumptions 1 and 2 may in some cases not be necessary, and in other

cases not be sufficient for satisfaction of the basic assumption.

3.2. Comparison with Analog Computer Results

The analog computer investigations reported in the previous
chapter revealed that the power spectral density of the response of the
severly nonlinear hystcrctic system often is not contained within a
narrow frequency band. This is particularly true for the nearlyelasto-
plastic system. Further, determinations of probability distribution
showed that the response was not, in general, Gaussian. Thus, it is
very unlikely that the above technique for determining weq and ﬁeq
would result in minimizing the effect of the deficiency term for such
systems.

Figures 26 - 29 show the values of 0_ and 0, predicted by direct

application of the above technique (which was based on assumptions of
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small nonlinearity) to the severelynonlinear systems of & =1/21 and
a=1/2. The values determined using the analog computer are also
reproduced from Figs. 9-12 for comparison. Recall that the excita-
tion of the analog computer system was a close apprbximation of a
white, Gaussian source.

| For the system with o =1/2 and B, =0.01 the predictions of 5,
and o, agree within about 10% with the analog computer measurements
for all values of yield level (Figs. 26 and 27). The greatest discrep-
ancy is when meoz/fsw (the no-rrnalized yield level) is in the range
from 10 to 20. Figure 23 in the previous chapter shows that the proba-
bility distribution of x was noticeably non-Gaussian in this range. For
example Prob.(x>2.50_) for meoz/fS:u'): =13 was about 0.18% as com-
plared to 0.60% for a Gaussian signal. The factthatthe predictedvalues
of o, and O did not err by more than 10% for this case illustrates the
point made above that serious violation of assumption 1 or 2 does not
neéessarily result in a large error in predicted level of response.

Figures 26 and 27 also reveal that for a=1/2 and B,=0 the pre-

dicted values of O and oy agree with the analog computer results
within about 15% when meoz//so_w; is in the range from 0.6 to 10.
This range corresponds to ryx/Y varying from about 20 down to 0.6.
The very noticeable error of the prediction for higher yield levels can
be attributed to the severe amplitude limiting revealed in Fig. 24 for
this system with no viscous damping.

It appears that for systems with a =1/2 the above equivalent
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linearization technique can be used to predict both displacement and
velocity response within about 15% except when (30 is less than 0. 01
and the yield level is so low or high that meoz /fso_wo‘ falls outside
the range of 0.6 to 10. For physical systems where yielding corres-
ponds to actual ductile yielding of the material or to buckling of some
component, values of GX/Y as great as 20 could not normalily be toler-
ated without failure. Thus, for such systems the only practical limi-
tation of the region of applicability of the equivalent linearization
technique for o =1/2 is that of very small damping and high yield level.

The predicted rcsponsc bascd on the assumption of small non-
linearity in the equivalent linea‘rization technique is much less satis-
factory for the nearly elasto-plastic system with a=1/21 than for
a=1/2. The only instances in which the theory accurately predicts the
effect of the nonlinearity on Gx’ as shown in Fig. 28, are when GX/Y is
greater than about 30. The predicted resulls also agree with the analog
computer results when Gx/Y» is less than 0. 3 for the systems having
viscous damping, but in this case the nonlinearity has no significant
effect on the response.

When the yield level of the system with an=1/21 is such that
OX/Y is between 1 and 2, the small nonlinearity theory predicts values
of OX which are only about 50% of the values determined from the analog
computer. Note that for Bo = 0. 05 the theory based on small nonlinearity
fails to predict even the general character of the effect of yielding on O
In particular, for OX/Y =1 the small nonlinearity theory predicts a 38%

decrease in o, as compared to a system with infinite yield level,
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whereas the analog computer studies revealed a 22% increase in O, due
to vielding.

Figure 29 reveals that the small nonlinearity equivalent linear-
ization technique is somewhat more accurate for predicting the velocity
response than the displacement response of the nearly elasto-plastic
system. For p greater than or equal to 0. 01 the predicted O, is at
least 80% of that determined from the analog computer for all yield
levels, and for the system with no viscous damping the predicted Oy
is at least 75% of the proper value except for high yield levels
(meoz/‘/sm > 15).

F'or nearly elasto-plastic systems it appears that the equiva-
lent linearization technique based on assumptions of small nonlinearity
may Be useful for obtaining a rough estimate of the effect of yielding on
o.. However the technique yields useful information about the effect

X

of yielding on 0_ only when 0_/Y is greater than about 30.

3.3. Linear System Parameters Based on Analog Computer Results

It was mentioned.early in this chapter that it is always possible
to find a linear system which has the same values of O and o, as some
particular nonlinear system subjected to the same excitation. This is
true even though the response of the linear system may not have a
power spectral density or probability distribution which is similar to
that of the nonlinear system response. One can find the values of R
and ﬁeq for a linear system which has particular values of O and o,

by using rearranged forms of expressions (3.5) and (3. 6); namely
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%%
eq =o—x (3.27)
and
™ SOwO wO
Beq =z m . (3.28)

(mw o. )2 eq
0 x

The fact that the small nonlinearity equivalent linearization
technique was considerably more accurate in predicting O than 0. for
the system with a. = 1/21 suggests that there was considerable error in
determining weq. In order to show the errors in weq/wo and Beq’ ex-
pressions (3. 27) and (3. 28) have been used with the analog computer
results for a.=1/21 and ﬁo =0 to find a linear system which is equiva-
lent on the basis of rms response. The results are presented in Figs.
30 and 31 along with the values of weq/wo and Beq determined from the
small nonlinearity equivalent linearization technique. Figure 30 shows
the expected discrepancy in weq/wo. This discrepancy becomes small
when Gx/Y is greater than 30 because then both curves for w_ /wO
essentially reach a constant value determined by the second slope of the
restoring force curve.

Figure 31 reveals that for GX/Y between 5 and 50 the value of
Beq determined using assumptions of small ndnlinearity agrees well
with that determined from the analog computer results. In particular,
both the small nonlinearity theory and the analog computer results give
a maximum value of Beq of about 0. 53 near OX/Y =5.5. For GX/Y less

than 5 the two curves for ﬁeq begin to diverge quite rapidly differing by
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about 30% at OX/Y =2.

It should be emphasized that the linear system derived from
expressions (3.27) and (3. 28) is known to be equivalent to the non-
linear system only on the basis of rms response to an excitation which
is nearly white and Gaussian. From the results in the previous chapter
it is clear that the power spectral density and probability distribution of
the nonlinear system response cannot in general be achieved by any
such linear system. Further, the rms response of the "equivalent"
linear system may not match that of the nonlinear system for some

other excitation.
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IV. EQUIVALENT NONLINEAR SYSTEMS

4.1. Use of Fokker-Planck Equation

A Markoff random process is one for which the statistics are
completely determined by the transitional or conditional probability
function for the process. Further, this probability function is the
fundamental solution to the Fokker-Planck equation for the system(lz).
The response of a single mass oscillator to a stationary, Gaussian,
white excitation is a two-dimensional Markoff process. Specifically,
if one knows the location of the mass in the two-dimensional displace-
ment-velocity phase space at any one instant, then the transitional
probability function gives the probability of the mass being in the
neighborhood of any-point in the phase space at any futurc timec. Un-
fortunately, however, no solution of the Fokker-Planck equation for
the transitional probability function of a nonlinear second order sys-
tem has yet been obtained.

It is sometimes possible to find a solution to the Fokker-
Planck equation for a probability function which is independent of
time and initial conditions, even though the general solution cannot
be found. | Such a time-independent solution exists cnly for a random
process which is stationary after a long passage of time, and it is
actually the ordinary probability density function for the stationary

process. The most general class of nonlinear oscillators for which

the stationary probability density function has been obtained is that
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described by
X+ f(H)x+ g(x) = N(t) (4. 1)
where:

g(x) is an odd function and xg(x) >0 for x>0,

X
G(x) = [gly)dy
O

H = %;}2 + G(x)

f(1I) is a positive function, and
N(t) is a Gaussian, white process with mean zero.
T. K. Caughey has solved the Fokker-Planck equation for this system

to give the stationary probability density function as(lg)

exp(— 15 F(H(x, x) ))

p(x,X) = ————; (4. 2)
| Jexp(-%F(H(x,;‘c)))dxdi(
where
H

F(H) = Jf(h)dh
o]

and the autocorrelation of N(t) is given by _th)_l-\lmt_l)_ = 2D¥&(ty). Note
that the choice of {(H) is somewhat restricted by the condition that the
double integral in the denominator of (4. 2) must converge. The class
of oscillators described by (4. 1) includes all the cases for which exact
solutions are known.

Obviously hysteretic systems are not included in the class of
oscillators described by expression (4. 1). However, one possible

technique for finding an approximate solution for a hysteretic system
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is to seek a nonlinear system which is described by (4. 1) and which
approximates, in some way, the hysteretic system. One might expect
the results of applying this technique to severely nonlinear systems
to be somewhat better than those obtained by the technique of approxi-
mating by a linear system as discussed in the previous chapter. This
general approximation scheme has previously been used by J. M. J.

(26)

Pereira to investigate problems of transient response of elasto-
plastic oscillators.

The response of a lightly damped linear oscillator to white
random excitation can be approximated as a harmonic signal with
slowly varying amplitude and phase. The basic frequency of the har-
monic signal is the resonant frequency of the linear system. "f‘he
reason for the response being a slowly varying harmonic signal is
that the amount of energy contained in the lightly damped system varies
slowly as compared to the rate of change of displacement and velocity.
The oscillator accomodates this energy by vibrating in what resembles
free vibration.

One may expect that the energy contained in a nonlinear oscil-
lator with random excitation will also vary slowly as compared to the
rate of change of displacement and velocity, at least when energy
dissipation per cycle is small. Further, one can assume that the non-
lincar oscillator will accomodate this energy by executing a motion
that resembles free vibration. This leads to the assumption that the

response of a nonlinear system to random excitation will be approxi-

mately a periodic signal with slowly varying amplitude, phase and
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frequency. The frequency of each cycle will be a function of the
amplitude of that cycle and will be approximately the resonant fre-
quency of the nonlinear system for that amplitude of vibration. The
form of the periodic motion will be similar to that of free vibration
of the system.

The resonant frequency of a nonlinear system without energy
dissipation is simply the frequency of free vibration of a given ampli- |
tude. For a nonlinear system with energy dissipation this definition
is inadequate since free vibration is characterized by decreasing
amplitude and, hence, changing frequency. Several different logical
definitions of resonant frequency could be suggested for nonlinear
systems with energy dissipation, but all would give very nearly the
same result. One simple definition is to say that for a nonlinear sys-
tem with encrgy dissipation the resonant frequency is that frequency
of steady state periodic excitation which results in the maximum ratio
of response to excitation.

The actual choice of a nonhysteretic system to approximate a
hysteretic system could be based on any one of several methods of
comparison of the two systems. The method chosen here is primarily
a physical comparison.

It is postulated that so long as the assumption of slowly varying
periodic response is valid two different nonlinear oscillators should
have approximately the same statistics of response to random exci-

tation if:
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1. The two oscillators have the same functional
relationship between resonant frequency and
amplitude of vibration, and
2. The two oscillators have equal energy dissipation
during a cycle of vibration at any amplitude and
at the resonant frequency corresponding to that
amplitude.
This assumes that the exciting force will add approximately the same
amount of energy to each of the oscillators as they vibrate with equal
amplitude and frequency.
The following section will be an attempt to find a nonhysteretic
system which can be described by equation (4. 1) and which is similar

to a bilinear hysteretic system in the two ways listed above.

4. 2. Approximation of the Bilinear Hysteretic System by a

Nonhysteretic System

Consider the free vibration of a nonlinear nonhysteretic system
governed by
4w 0(x) = 0 . (4.3)
The periodic vibration can be written as a Fourier series:

(e 0]
x:Alcoswt+>j(Ajcosjwt+BJ.sinjwt) . (4. 4)
2

No term sinwt is included since it can be eliminated by proper choice

of the time origin. Assume that the harmonics contribute relatively
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little to x so that the restoring force can be approximated as

P(x) sz(Al cos wt) . (4.5)
Define
ar
CJ.(A) = % J‘cos(j‘V)CP(A cos ¥)dy (4. 6)
0
and
2m
Sj(A) = -i—J‘sin(j\lJ)CO(A cos ¥)dy . (4. 7)
0

Using approximation (4. 5) while substituting (4. 4) into (4. 3)

then multiplying by cos(jwt) or sin(jwt) and integrating over a complete

cycle gives

2 2 2 .
-j uJAj+ w Cj(Al)—O where j=1,2,... (4. 8)
and
2 2 2 .
-jw BJ.+ W Sj(A1)=O where j=2,3,... (4. 9)
If ®(x) is an odd function then symmetry leads to the following
simplifications:
S;(&)) = 0 for all j
Cj(Al) =0 for all even j.

Bj =0 for all j
(4. 10)

for all even j.
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Rearranging (4. 8) gives

W B (4. 1)
w2 A
(o]
and
2
L’Jo 1
A, =—=-5C.(A,)
] 1
Iyt 2
or
A CJ.(Al)

SR R S A 26 for j=3,5,... . (4.12)
AT ETED

Expression (4. 12) confirms the assumption that the lowest
frequency component contributes most of the displacement. Inaddition
to the 1/j2 factor it is normally found that the Cj(Al) terms decrease
as j incrcascs. Expression (1. 11} gives a relationship between reso-
nant frequency and amplitude of vibration based on the assumption of
the predominance of the lowest frequency component.

Consider now the energy dissipation if a linear dashpot c is
added to the system of equation (4. 3) and the system is excited such
that it executes vibration which is identical to free vibration. The
energy dissipation per cycle is

2w/ w

P2
E.D. = J cx dt.
0

Using expression (4. 4) for x, with the restrictions of expressions

(4. 10) gives
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o0
E.D. = mcw Z jZAJ.Z .
#1,3,5

Substituting for Aj according to (4. 12) yields

% c.a )

(A )
E.D.:nchfZ 0

ZITAD (4. 13)
7L3,5 J 1

Thus the energy dissipated by a linear dashpot is also predominantly
determined by the lowest frequency component of x. Note that the

maximum velocity is given by

max
F1,3,5
or
= (J_;l) 1 C5(A)
X = wA Z(-l) SR R A
max 1 ] Cl(Al)
#1,3,5

The contribution of the higher frequency terms to }Emax decreases as
1/j and hence is considerably more significant than the contribution
to x or to E. D.

One can also write x as in expression (4. 4) for the steady-
state response of a hysteretic system to periodic excitation, where
w is now the frequency of excitation. Doing this and using the assump-
tion that the displacement is dominated by the component of frequency
® results in response curves of A1 versus w which peak at the fre-
quency given by expression (4. 11). W. D. Iwan has compared the

response curves obtained in this way with those obtained by an exact
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numerical solution for the bilinear hysteretic system with harmonic

(27). The results indicate that the location of the resonant

excitation
frequency given by expression (4. 11) is a very good approximation.

For the bilinear hysteretic system Cl(A) is given by

1 for A<Y
C,(A)/A-a
- - 4, 14)
T-o (
1 -1 2Y 2( 2Y Y( Y
7 cos (1'7 ‘FI'T> KI'X>
for A>Y.

One possible choice of a nonhysteretic system to approximate
the bilinear hysteretic system is a bilinear nonhysteretic system. In
fact this appears to be the obvious choice. Using ®(x) as

b4 for |x| <Y
o(x) = ¢ Y(l-a)+ax for x>Y (4. 15)
-Y(l-aHax for x<-Y

vields
C,(A)/A-a :l__cos-l(z‘)Jrg}_ 1_Y_2 (4. 16)
1-a ™ Al m A A’
for A>Y.

Figure 32 shows a comparison of the parameter (CI(A)/A—a)/(l-a)
versus A/Y for the hilinear hysteretic and nonhysteretic systems. It
is obvious that the two curves diverge as A/Y increases. Since reso-
nant frequency is related to Cl(A)/A by expression (4. 11), Fig. 32
indicates that the bilinear hysteretic and bilinear nonhysteretic sys-
tems with the same value of @ and Y do not have the same functional

relationship between resonant frequency and amplitude of vibration.
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A different nonhysteretic system has been found to have its
resonance frequency much nearer to that of the corresponding bilinear
hysteretic system. This system will be referred to as nonhysteretic

system No. 2, and it is defined by

X for |x| £Y
@(x) = {(1-a) v V2 4 gx for x>Y (4.17)
—(l—cc)Y3/2(—x)-1/2+ax for x<-Y.
For this sytem one finds
1 for A<Y
Cl(A)/A-a
T-a  ~ (4.18)
1-2cos Y(v/a) -2 L4 1-v%A®
T T A
3/2 cos_l(Y/A)
+ % (%) ) I Jecos T ay for A>DY.
0

Figurc 32 shows the numecrical valucs of cxpression (4.18). It
was necessary to numerically integrate the final term of (4. 18) to ob-
tain these values. The agreement between (Cl(A)/A—u,)/(l-CL) for non-
hysteretic system No. 2 and a bilinear hysteretic system can be seen
to be within about 5% for all levels of A/Y shown in the figure.

It is easily verified that nonhysteretic system No. 2 also
matches the bilinear hysteretic system for values of A/Y larger than
those shown in Fig. 32, For A/Y>>1 expression (4. 18) can be
approximately evaluated without numerical integration since(zs)

/2

L T(3/2)
‘£‘/C081 dy _-ZE EANEAR
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(29)

Evaluation of the gamma functions gives

m/2
de\b =1.198
0

Using this information one finds that expression (4. 18) gives

CyA)A-a 4 792
l-a T

(v/A)>? for A/Y>> 1 (4. 19)

for nonhysteretic system No. 2. Similarly taking thc limiting con-
ditions of expression (4. 14) gives

C(A)/A-a
S e—

5 3/2
= (Y/A)

2

for A/Y>>1 (4. 20)

for a bilinear hysteretic system.

The close comparison between expressions (4. 19) and (4. 20)
along with the results shown in Fig. 32 confirm that nonhysteretié
system No. 4 and a bilinear hysteretic system with the same values
of @ and Y have nearly the same functional relationship between reso-
nant frequency and amplitude of vibration for all amplitudes. It thus
appears that woztp(x) as given in expression (4. 17} will be a reasonable
choice for g(x) in approximating the bilinear hysteretic system by
expression (4. 1).

Using
W 2
g(x) = _"o(x)

for nonhysteretic system No. 2 gives
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2. 2

w x"/2 for |x|<v
G(x) = (4 21)
3w
-2 (1—a)Y2+2w02(1-on)Y3/2 <12
+aw02 xZ/Z for x>Y.

The next problem in using expression (4. 1) to approximate a
bilinear hysteretic system is that of choosing an appropriate damping
function f(H). As stated above one seeks a damping function for the
nonhysteretic system which results in energy dissipation equal to that
of the bilinear hysteretic system for a cycle of vibration at any ampli-
tude and at the resonant frequency corresponding to that amplitude.

As previously explained the idea of the response of a nonlinear
system with random excitation being a slowly varying periodic function
is based on the expectation that the energy contained within the system
will vary slowly. Thus the energy for a cycle of amplitude A can be
written as

H=G(A) . (4.22)
The damping function f(H) is, hence, only a function of the amplitude
of vibration.

The energy dissipated per cycle of amplitude A(A>Y) by the

bilinear system without viscous damping is
2
E.D. = 4wo (1-0)Y(A-Y) .

Neglecting the higher harmonic contribution to x and E. D. expression

(4. 13) results in
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E.D. = 4w02(1—q)Y(A-Y)+1TcOwAZ (4.23)

if a dashpot s is added tu Lhe bilinear hysteretic system.
For the nonhysteretic system with dashpot f(H) the energy

dissipation is approximately

E.D. = rf(H)wA® | (4.24)
where the higher frequency contributions to x and E. D. have again
been neglected. Equating (4.23) and (4. 24) and solving for f(H) gives

5 _

4 ¥ Y Y O
f(H) = Co+F“wi(l'a)A(H) <1'A(H))

(4. 25)

where A(H) is the inverse of expression (4. 22); that is H=G(A(H)).
The frequency ® in (4. 25) is given by

C.(A(H))
W2 71
Yo=Y TAm

where either (4. 14) or (4. 17) can be used for Cl(A)/A. Expression
(4. 25) can be rearranged to a nondimensional form without explicit

dependence on 0 in the right hand side as

f(H)—cO 4 A(H) - v
w _(1-a) :FVCI(A(H)) A(H) <1_A(H)> : (4. 26)

The right hand side of this expression still involves o since the rela-

tionships between Cl(A)/A and A and between A and H both depend on

0.. Unfortunately the complicated nature of the expressions involved

does not allow a general analytical solution for f(H) as a function of H.
Expressions (4. 14), (4.21), (4.22) and (4. 26) have been used

to obtain numerical values for the damping function as a function of H



_90_

for a few values of a. These results are presented in Fig. 33 where
the damping function in the form of (4. 26) is plotted versus H nor-
malized by the lowest value of H at which yielding occurs (i.e. UJOZYZ/Z).
Curves are plotted for a=1/2 and a=1/21, the systems which have
been given particular emphasis in this study, and also for the two
limiting cases of =0 and a.=1. As mentioned in a prior chapter the
syestem with a= 0 is not acceptable for the investigation of stationary
response since when this system is subjected to random excitation the
response wanders endlessly rather than achieving a stationary state.
The system with a=1 isalsotrivial for this study since it is a linear
system with f(H)= €y
The curve in Fig. 33 for a =1, in addiliun to being a limiting
case of the systems under consideration, is interesting inasmuch as
it is possible to write f(H) as a fairly simple analytical function of H
in this instance. For a =1 expression (4. 14) gives
C(A)
r ol 1

and expressions (4. 21) and (4. 22) give

— ——  ~ 1

A(H) = '\/ZH/wOZ .

Use of these expressions in (4. 26) gives

172 -1/2
2H 2H _
—2—2- {1 -( 7 2) for a= 1. (4. 27)

WY WY
o o

f(H)-c 4
—“wo(l-a) T

For all values of aexcept &« =0 the curves of (f(H)-co)/wo(l—O.)



‘wxa ], juatoryyeo) Jurdweqg ¢¢ a2x1ndig

2AZM/HZ
ole]] 0s O 0¢e Ol S 4

o e o «IxT

U + LIS K

-91-

o

/ ® -
” l“'-'

%m(o ~1)/(% - (H))

-

T~ ~e_ | 2z1sm




-92-

tend to a single asymptote for large H. This follows from the fact
that for A/Y>>1

Cl(A)/AmZH/w ZYZQO‘.

o

Expression (4. 26} then gives this asymptote as

f(H)-c, -1/2

w (T-a) ~ =

2H
w ZYZ
o

for H>>wOZY2/2 and 0 £0 .

When a =0 the expression CI(A)/A and ZH/UJOZAZ do not become equal
for large A/Y; hence the asymptote is different for this case.

In order to determine the probability density function p(x, x) as
given in expression (4. 2) for a particular problem one needs to know

the function
H
F(H) = J‘f(h)dh.
0

An approximate expression for this function can be obtained by approx-
imating f(h) as given in Fig. 33 by an analytic or piecewise analytic
function.

Certain predictions about the general tendencies of the proba-
bility density function can be based on the form of expression (4. 2) and
the shape of the curves in Fig. 33. For H<';UOZY2/2 the joint proba-
bility density p(x, x) will be like that for a linear system, but the sharp
increase in damping for slightly greater values of H will result in

p(x, x) decreasing more rapidly with increasing H than is true for a

linear system. Thus the damping function introduces an amplitude
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limiting effect for x slightly greater than Y. On the other hand for
H>3(.l)02Y2 the damping function decreases with increasing H so in this
range p(x,x) will decrease less rapidly than for a linear system. In
particular for systems oscillating with ox>>Y the principal effect of
the damping function will be to increase the probability of large ex-
cursions as compared to a linear system. If the system contains
considerable linear viscous damping in addition to the damping corres-
ponding to Fig. 33 the effect of the nonlinear damping function on the
probability density will obviously be diminished.

The effect of a nonlinear spring is to change the relationship
between p(x, x) and p(x). A given level of the energy H corresponds to
larger values of displacement for a system with a softening spring
than for a linear system. Thus in the limiting case when the damping
function is a constant o that p(x, X) is the same function of H as for a
linear system a softening spring will result in a greater than normal
probability of large displacements.

For nonhysteretic system No. 2 with damping as shown in
Fig. 33 both the nonlinear damping and nonlinear spring effects will
influence the probability density p(x). For large values of Gx/Y both
effects will tend to increase the probability of large displacements.
For somewhat smaller values of OX/Y the two effects will be opposite
so that general predictions about p(x) cannot be made within this
domain of moderate values of GX/Y. When there is very little viscous

dampiﬁg in the system the increase of damping at initiation of yield is
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particularly abrupt, whereas the softening spring effect is somewhat
more gradual. Thus for small GX/Y and little or no viscous damping
one may expect the nonlinear damping effect to predominate over the
softening spring effect so that p{x) will have an amplitude limited
characteristic.

The analog computer results for the bilinear hysteretic system
as presented in Figs. 22-24 of Chapter II have the characteristics pre-
dicted above for nonhysteretic system No. 2 with damping as shown in
Fig. 33. For small excitation p(x) clearly reveals amplitude limiting,

while for large excitation the oppostie characteristic is dominant.

4,3, System with Small Excitation

For a system with sufficiently small excitation the response
will spend very little time at large values and the amount of damping in
the system for large values of the energy H will have little effect on the
response. For such cases one needs to closely approximate the
damping function f(H) only for relatively small values of H. The sim-
plest approximation for f(H) to fit nonhysteretic system No. 2 for H

only slightly greater than wOZYZ/Z is

c for HSwZYZIZ
o o}
f(H) = (4. 28)
2(_2H 2,2
c tw (l-g)=|—5—5- 1) for H>w “Y"/2 .
wy Y

This function is shown in Fig. 33. For all values of athe function f(H)

for nonhysteretic system No. 2 tends to (4. 28) as H tends to wOZYZ/Z.
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Using (4. 28) gives the function F(H) as

-0, 3.2

¢ H for HSLDZYZ/Z
o (o]
F(H) = . 5
2 £a2}1+ c =Ly (I-a)|H+ 5— ¢ Y
T w %y o T © 2w  o©

for H>w02Y2/2 .

(4.29)

Substitution into expression (4. 2) gives the probability density as

C

1 ( i) N 2.2
_ - <
R, exp -5 H(x,x)) for H=w Y /2

for H>w 2¥?/2

\

p(x, x) =
K3 2 . .
KZeXP 'f(H (x,x)+K2H(x, x)+K1)
where
w4Y4
Ky =—3
w22
7T oY 2,2
Ko=7 T S "% Y
2 1-
Ky =7 2
w Y
o
Q0 Q0
K, = f Iexp(-F(H)/D)dxdic .
-00 -~-00

Substituting H = 5:2/ 2+ G(x) gives

(4. 30)

(4.31)
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C . 2
Kl exp[—-ﬁo(%+G(x)>} for ¥/2+ Glx) <6 *Y?/2
p(x, %) = (4.32)

K.[.4 K
KL exp {——5 [XT+(G(X)+ —ZE);';Z-]-GZ(}()-I'KZG(XH‘K:[]

for 5<2/2+G(x)> wOZYZ/Z .

The one-dimensional probability density function p(x) is simply
an integral of (4. 32):

(0]

p(x) = J.p(x,fi)dic .
-0

An analytic expression for this integral of (4. 32) is not recadily obtain-
able. However, one could obtain values of p(x) by numerical integra-
tion of (4. 32).

It is possible to approximate the mean squared levels of re-
sponse for this system with small excitation without resorting to

numerical integration. To do so consider a new variable u defined by

u =V2H/uuo2 . (4. 33)

Since H:wZAZ/Z for vibration of frequency w and amplitude A it is
obvious that u is like the amplitude of vibration.
The probability that u is less than some particular value uy

is given by

o2

N x 2G(x) . 2

1) = Prob ="
O (o]

Prob. (u<u

Since symmetry requires that p(x, %) be an even function of both x and

X one can write
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W(u 1) ‘/J.)Ozulz—ZG(x)1

Prob.(u<u,) = 4 I dx plx, x) dx

N

where W(u_l) is defined by

2
W u
G(W(ul)) = H(u) = -5 L, (4. 34)

Then the probability density of u is given by
(u,) = 2 Prob{u<u,)
P = Ba) 1

or

dx

2 ‘ 2 2
aw Vj’_(u) wo up(x, LUO u -2G(x)

p(u) = 4

0 w *u?-2G(x)

The term p(x,,/wozuZ-ZG(x) )act.ually depends only on u, not on x. This

term is in fact given by expression (4. 30) with

Thus

W{(u)

p(u) = 4w 2up(x”/w Zuz-za(x))d_w_ dx . (4. 35)
° © du 2 2

Recall that the approximation for the damping was based on the

assumption that H does not much exceed JJOZYZ/Z. For this case it is

possible to further approximate that
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w ZXZ
o)

Glx) = —%— . (4. 36)

This assumption with (4. 34) gives
W(u) =u.

Note that u is now exactly the amplitude of vibration. Expression

(4. 35) then gives

or
wao Co mozuz' _
.. _o <
9 uexp |- -5 > foru=Y
p(u) = . (4.37)
2T K K 2 K, |w 2u2 K
©ex 3 K, - 2 u exp|-— o——+—2
K, P- DO |\™17 72 PI"p ™2 2
foru>y.

The normalizing constant K, can be evaluated from the expression

oo
jp(u)du =1,
)

Doing this yields

2 .
K -r K
4 D ( N 1) _K3 2|11 [Dvw
i) l-e texp| -5 Kl_—zl_) — _K3 - erfc(rz) (4. 38)
o Covuo UJO

where
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c LUZYZ
r, = — -2
1~ 2
D (4. 39)
K ’JJZY2 K
T, = g +—Z—
2NV D 2 2 '
It

In a similar manner the mean squared value of u can be obtained.

is given by
[0 0)
2 r 2
o, = J u“p(u)du . (4. 40)
0
Substitution and integration gives
2w 2 -r
2 ol 2D 1 1
g =— s [1+({1l+r;)e ]
u K4 c wZ) 2[ 1
o0
2
2 -r.
2TW KZ 2
o) 2 D D'e J
+ exp|-=lK -—) — = f— - —=—5—erfc(r,)| (4.41)
K4 D\1 4 w04 K3 K3 2 2 2 2

r, are as given in (4. 39).

where 2 and >
Assumption (4. 36) gives

L2 W ZXZ
s

wozuz X
He—F—=31t—3

~ Since the mean value of xx is zero for a stationary differentiable sig-

nal this expression yields
s 2
2. X +a 2 .
X

Further, since p(x, x) depends only on H, and H depends on x and )'c/wo

in an identical manner one can conclude that
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2 2 2
o =0./w .
X X (o]
These two expressions require that
2 2,02 2
O =0y lu, =072 (4. 42)

Some of the above expressions are somewhat simpler in the

special case with c, = 0. In this instance one obtains the following:

_Ki for HSU.)ZYZ/Z
4 o)
p(x.x) = , (4. 43)
2.2\¢
L 5 H(x k)-w" ¥ for H>w 2¥%/2
K, *P " ? 2 ° o
wao
u forusy
Ky
p(u) =4 ) (4. 44)
2w K k.UZu2 wZYZ
uexp EN g -2 foru>Y
K4 D 2 2
K1 _¥2 1 D& (4. 45)
2w~ 2 2. 0K 2 ’
o] w 3
o
and
2w 4
2 olY 1 D /r,2, 1 D
g = —t— Y t— (4. 46)
u TR, |4 woz A/K3 ) u004 K,

Consider now how this relates to the analog computer results

of Chapter II. The definition of D was

N(t)N(t+t1) =‘2Dv6 (1:1) .
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This corresponds to the power spectral density of N(t) being

S (w) = 2 for - 0<W<
I3 m

or the equivalent situation where

0 for w<o0
WYy =
Sy (@)
—2—]—:)— for w=0
T

The white excitation for equation (2. 1) was n(t)/m where (see (2. 6))

0 for w<o
S_(w) =
S for w=0

Using this excitation for the N(t) of expression (4. 1) gives

S
o

D=3 — . (4. 47)
m

The constant by which Y and 0  were normalized in Figs. 9 and 11 is

Further recall that the dashpot coefficient in Chapter II was given by
2[300.10. Thus

(4. 48)

Substituting for D and K, when c,= 0 yields

3
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- w3/2 /SOwO' . Tr2 sowo

) i—a _ 2 4.2

2 YZ /T mw ~Y m N Y
o o

Oy = 7 (4. 49)
L1 32 s’
2 2
|__ JI-a mwo Y ]

Figure 34 shows a .comparison of O, for a=1/21 as determined
by expressions (4. 42) and (4. 49) with the analog computer result pre-
viously presented in Fig. 9. When meoz/m is in the neighbor-
hood of 20 to 30 the agreement is within about 7%. However forlarger
yield levels the ratio OX/Y for the analog computer results begins to
increase, whereas the ratio determined by expression (4. 49) tends
uniformly to the value 1/2.

It was pointed out in Section 2. 2 that the increase of OX/Y when
YmUJOZ/,\/W| is increased beyond about 30, as is noticeable in both
Figs. 9 and 11, must be due to the small amount of negative damping
which was present in the analog computer circuit with nominally zero
viscous damping. In Appendix A.1 it is noted that the rate of build up
of oscillation of the system with no excitation was no greater than that
for a system with 0. 05% of negative viscous damping. It is possible to
use expressions (4.38), (4. 41) and (4. 42) to predict the response of a
system having negative viscous damping. This has been done for
a=1/21 and c_/w_--0.001, which corresponds to §_= -0.0005, and
the result is presented in Fig. 34. One notes that this prediction

agrees with the analog computer result with an accuracy of about 6%

for Ymu */ /502 > 20.



-103-

100 [ | l 7 /
K \
a=i/21 &
- —= ANALOG COMPUTER 6
60— — FOKKER-PLANCK / |
APPROXIMATION 8. 2-0.0006 /
40 a
v
/
3 20 —~%
(] / . L, /?’
S 4 - ]
N £,
o
g / 8 4 /
< 01
'« 10 / S/ £Fo® 00
* ' f/ \
b NOMINAL /A o>
By O ] - i~ A
.:\"\:, - % 6-\!
6 P e - -~ ,
Z
4
- 10 20 40 60 100
Y - (mwZ/V/Swy)

Figure 34. RMS Displacement Response.
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Figure 34 also shows a comparison of o, as determined by the
analog computer for 60: 0. 01 with the result of expressions (4. 38) and
(4. 41) for that value of damping. Again the results agree within about
5% for meoz m > 20.  This result is not particularly valuable,
though, since for this damped system with meoz/\/ﬁ:@;‘ > 20 the
response can be predicted within about 8% by completely neglecting
the effect of the nonlinearity and applying expression (2. 10).

Figure 35 shows the response predicted by expressions (4. 38)
and (4. 41) for the system with a=1/2 along with the analog computer
results previously presented in Fig. 11. When meoz ,\/T\.Uo' > 10
the results agree within about 7% for ‘30 = -0. 0005 and about 5% for
Bo= 0.0l. This improved accuracy for somewhat lower yield levels
makes this approximate technique more valuable for this system than
for the one with a=1/21. Note that for a=1/2 and [30 = 0. 01 this ap-
proximate technique predicts o, within about 5% even when the effect
of yielding is sufficient to reduce o to about 60% of the value for a
linear system.

Recall that the two approximations especially made for this
case of small excitation (or high yield level) were that the damping
function was given by expression (4. 28) and that the potential energy
was the same as for a linear system with resonance at W, (see expres-
sion (4. 36)). 'I'he first of these approximations overestimates the
darﬁping and the second one completely neglects the softening spring
effect; thus both approximations tend to cause an underestimation of

the response. The damping approximation is somewhat more accurate
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for the system with a =1/21 than for a=1/2, whereas the neglected
softening spring effect is greater when a =1/21. Since the predicted
responses are noticeably more accurate for the system witha=1/2
than for a =1/21 it can be concluded that the error due to the potential
energy approximation is significantly greater than that due to the
damping approximation. By replacing expression (4. 36) by a more
accurate description of the potential energy in nonhysteretic system
No. 2 one might extend the range of accurate prediction to a lower

2 - . _
value of Ymuw | ,/SO»UO , particularly for o, =1/21.

4.4 Energy Dissipation Due to Yielding

One measure of the response of a yiclding system which has
not to this point been considered in the present study is the amount of
energy dissipated in yielding. In some instances this quantity may
be important since for some materials there is experimental evidence
of a correlation between fatigue life and the energy dissipated inter-

nally due to yiclding(30).

It is possible to use the expressions in the
preceding section to obtain an approximate prediction of this quantity
for a bilinear hysteretic oscillator with a low level of excitation.

D. Karnopp and T. D. Scharton(3l) have used a somewhat different
approach to this problem and have arrived at an approximate analytical
prediction of the energy dissipated due to yielding of an elasto-plastic

oscillator. Hence it is of interest to compare the results of the two

different approaches.
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Since the bilinear hysteretic system with a low level of exci-
tation was approximated in the preceding section by a system with a
linear spring and a nonlinear dashpot it is possible to use expression
(4. 24) to determine the total energy dissipated during a cycle of
amplitude u as
E.D. = f(wozuZ/Z) wouz

The energy dissipated due to yielding can be considered to be

2
E.D. Y. = rr[:f w u2/2>—c ]w u?

o o| o
since <, represents the viscous damping present in the hysteretic sys-
-tem which is being approximated. The mean energy dissipated per
cycle due to yielding can be found from

e )
(E.D. Y.) = J‘(E. D. Y.)p (u)du.
o

Using expression (4. 28) for the damping function and expression (4. 37)

for the probability density of the amplitude. integration yields

2
sril-a) [T o | B3l B2
(E.D.Y.) =w03Y2K4 K3 D 1 4
2.2 2
Al B g % Y| D T
2 K3 2 2 K3
2 2.2
K w Y .
D 2 o J'
+ K_+ > + > K2 —— erfc (rz) (4. 50)
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where r, is as given in expression (4. 39) and K4 can be evaluated

from (4. 38).

For Y much greater than o expres sion (4. 50) can be con-

siderably simplified. In this situation r, is large so that erfc(rz)
can be approximated by an asymptotic expansion. The first two
terms of the expansion are (32)
-r 2
e 2 2
erfe(r,) = (l-l/Zr2 )
J r,

Using this two term approximation for erfc(rz) and substituting for

the various constants in expression (4. 50) yields

(B D.Y) ~ 4(l-cc)wozoxzexp(-Y2/20 2) for Y>> . (4.51)

X

This expression was put in terms of o, by noting that

2 TS
g~ 2 for Y>>0
. X

4{30&)0 m

Karnopp and Scharton's analysis is based on the assumption
that the statistics of the response of an elasto-plastic oscillator can
be approximated by those for a linear oscillator with "infinitely rigid,
perfectly inelastic barriers' at x=%Y. The amonnt af energy dissi-
pated due to yielding of the elasto-plastic system is assumed to be
the same as that dissipated by the inelastic barriers in the linear
system. The amount of energy dissipated during a single impact with
one of the barriers in the linear system is the kinetic energy of the

system at the time of impact.
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Assume that the joint probability density p(x, x) is known for a
linear system with inelastic barriers. Then p(Y, x)dxdx is the proba-
bility of being in an incremental square located at x=Y. Dividing this
probability by the time required to cross the incremental distance dx
at the velocity x gives the probable rate of crossings of dx with ve-
locity x as xp(Y, x)dx. Note that this probable number of crossings
per unit time is independent of dx and thus is exactly the probable
rate of impacts with the barrier at x=Y with velocity x. Integrating
over all positive x gives the probable frequency of impacting the
barrier at x. This result is identical to the probable frequency of
crossing the line x =Y with positive x as determined by S. O. Rice(33).

Karnopp and Scharton determine the average kinetic energy of

the system when it impacts the barrier at x=Y as

[e0) 2 o0
f%—p(Y,sc)dsc/ p(Y, k)dx .
o o

This average kinetic energy at impact is then the average amount of
energy dissipated per impact. Karnopp and Scharton multiply this
average energy dissipated per impact times the probable frequency
of impacting the barrier to estimate the average energy dissipated
per unit time due to yielding at x=Y. Since p(-Y, -x) =p(Y, %), due to
symmetry, an equal amount of energy is dissipated per unit time by
the barrier at x=-Y.

Rather than multiplying the average energy dissipated per
impact times the probable frequency of impacting it is possible to

exactly evaluate the probable total amount of energy dissipated by
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impacts during a unit time. It was found above that xp(Y, x)dx was

the probable number of impacts per unit time with velocity x. Since
the energy dissipated at each impact is simply the kinetic energy of
the system immediately prior to impact, each of these impacts with
velocity x results in an energy dissipation of 22 /2. Integrating over
all positive x gives the probable energy dissipated per unit time due
to impacts on the barrier at x=Y. An equal rate of energy dissipation
will be expected at x=-Y. Adding these then dividing by the natural
frequency of the system gives the probable energy dissipated per
cycle due to yielding as

(e o)

(ED.¥) =" Jrfc3p(Y,§;)d>'<. (4. 52)
o 0

This will be referred to as an improved Karnopp and Scharton approx-
imation since it is based on the same assumptions as their analysis
except that it avoids the assumption that the product of two averages
is equal to the average of the product.

For cases of "infrequent plastic deformations' Karnopp and
Scharton suggest that p(Y, x) can be approximated from a Gaussian

distribution:

2 .2
. 1 Y
PIY, %) = g exp| - —— -~
x X 20 20
X xX

for x>0. (4. 53)

No method is given for determining O and o other than to assume
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that they are the same as for the linear system with no barriers.
These assumptions appear to be valid when Y is much greater than T
Substituting expression (4. 53) into (4. 52) and assuming that

0. is equal to w o yields

1 _ 2 2 (_ 2 Z)

(E.D. Y.) = Zwo O, ©Xp Y /2c5X . (4. 54)
This result is twice as large as that obtained by Karnopp and Scharton.

ZYZ
o

Figure 36 shows levels of (E. D. Y.) normalized by & as
determined both from expression (4. 54) and from expression (4. 50)
with @ =0. Expressions (4.41) and (4. 42) have been used to determine
the values of 0 corresponding to expression (4.50) so that Fig. 36
could be plotted as a function of OX/Y. The figure reveals that the
two é.pproximate analyses give results which are of the same order
of magnitude over the range of O'X/Y values shown. The results of
the analysis using the solution of the Fokker-Planck equation reveal
considerable dependence on the amount of viscous damping in the sys-
tem, whereas the Karnopp and Scharton analysis assumes that OX/Y
is the only parameter affecting (E. D. Y.) for systems with "infrequent
plastic deformations’'.

Both expression (4. 53) for the probability distribution in the
Karnopp and Scharton analysis and expression (4. 36) for the potential
energy in the analysis using the solution of the Fokker-Planck equation

are based on the assumption that the system does not often go far

beyond the yield level. It thus seems logical to expect both of the
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approximate analyses to be most accurate when Y is much greater
than o . One notes however that for Y>> o, expressions (4. 51) with

e =0 gives a mean value of E. D. Y. which is twice that given by expres-
sion (4. 54) for the improved Karnopp and Scharton approximation.

It appears that the origin of this difference between the two
results can be found by a comparison between the choice of the damp-
ing factor f(H) in Section 4. 2 and the determination of the energy
dissipated in the Karnopp and Scharton analysis. The nonhysteretic
system used in Section 4. 2 to approximate a bilinear hysteretic sys-
tem always executes vibrations about a fixed center position. The
damping function was chosen to equate the energy dissipated in a cycle
of vibration amplitude u to that which would be dissipated by the
hysteretic system during a complete cycle of amplitude u about a
fixed center position; that is, an amount corresponding to yielding
equally in the positive and negative directions.

Karnopp and Scharton properly note that whenever the elasto-
plastic system (@ =0) yields, the center position of the vibration shifts
by the amount of the yielding. Hence yielding an amount (u-Y) in the
positive direction during one half-cycle of vibration shifts the center
position a distance (u-Y) in the positive direction so that the following
half-cycle of vibration starts with an initial amplitude of Y rather
than u. For Y much greater than T this sudden decrease in ampli-
tude of vibration upon yielding results in a very small probability of
yielding in both directions during a single cycle of vibration. In fact

yielding in one direction results in absolutely no increased probability
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of yielding in the opposite direction at any future time.

From the above it appears tha;ﬁ the Karnopp and Scharton analy-
sis may be more accurate than the analysis of Section 4. 2 for the
special case of =0 and Y much greater than o, However, it should
be emphasized that this special case cannot be expected to be typical
of the general class of bilinear systems. In particular, all systems
with 0 greater than zero must execute stationary vibration about a
fixed mean position, rather than wandering endlessly. Hence the
analysis of Section 4. 2 should give more accurate results for the
general case of & not equal zero. The Karnopp and Scharton analysis

is restricted to the special case of @ equal zero.



-115-

V. DISCUSSION

The C(;urse of this study has been largely determined by the
fact that no exact analytical solutions for the response of hysteretic
systems to random excitation have yet been found. The study thus
consists of experimental investigations using an analog computer, and
various approximate analytical investigations which are compared with
the analog computer results. The principal approximate analytical
investigations are reported in Chapters III and IV. This chapter will
discuss advantages and limitations of various approximation techniques.

Since the characteristics of the response of a linear system are
well known it is natural to discuss the response of a nonlinear system
in terms of how it differs from that of a linear system. When the level
of excitation of a linear system is raised or lowered the levels of all
measures of response are raised or lowcrced in dircct proportion. Thus,
ratios of mean squared level of response to level of excitation, or
power spectral density of response to power spectral density of exci-
tation are independent of the level of excitation for a linear system.

' Similarly for a linear system response the probability distribution
normalized by the rms level of Lthe response is independent of the level
of excitation.

The analog computer results presented in Chapter II clearly
indicate differences between the characteristics of the response of

bilinear hysteretic systems and linear systems. A change in the level
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of excitation of a particular bilinear hysteretic system sometimes
resulted 1n significant decreases and sometimes significant increases
in the ratios of mean squared levels of response to level of excitation.
Further, the shape of the curves showing the ratio of power spectral
density of response to power spectral density of excitation was found to
vary considerably as the level of excitation was changed. The frequency
location of the peak of these curves shifted significantly and for the
nearly elasto-plastic system the peak completely disappeared giving

a monotone decreasing power spectral density for some levels of exci-
tation. Thec normalizcd probability distribution of the bilinear system
response was also found to be considerably influenced by the level of
excitation. Since the excitation was Gaussian a linear system would
have had a Gaussian response but any particular bilinear system was
found to sometimes have a greater than Gaussian and sometimes a
smaller than Gaussian probability of large displacements, depending on
the level of excitation.

The mathematical simplicity of linear system analysis makes
very attractive the idea of attempting to apply linear analysis to non-
linear problems. To do this one must devise a method of finding a
linear system which will respond in the same manner as the nonlinear
system. Such a linear system could be referred to as an equivalent
linear system. The considerable differences noted above between the
response of linear and bilinear hysteretic systems make it clear that
no linear system will be equivalent to a bilinear system except in a

quite limited sense. However by specifying a particular basis for
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comparison of the response to a particular excitation one may be able
to find a linear system which is equivalent to a nonlinear system in
such a limited sense.

‘L. S. Jacobson in 1930 first drew attention to the idea of seek-
ing an equivalence between nonlinear and linear systems by finding
equivalent damping factors for some nonlinear oscillators with har-

(34)

monic excitation The basis of comparison of the response of the
linear and nonlinear systems was the steady state displacement ampli-
tude. The oscillators considered in this original study had nonlinear
damping mechanisms but linear springs.

More recently, possible techniques for using an equivalent
viscous damping factor to characterize systems with nonlinear hyster-
etic restoring forces have been discussed by various authors, particu-

(9.35) and D. E. Hudson(lo).

larly Jacobsen Jacobsen compares the
linear and nonlinear systems on the basis of energy dissipated per
cycle and potential energy stored in the system. This type of compar-
ison was shown to lead to equivalence in terms of level of response for
the systems with nonlinear damping treated in the 1930 study. It has
not been demonstrated, however, how this basis of comparison relates
to the response of systems with softening hysteretic restoring forces.
Hudson compares the response of the linear and nonlinear systems to
harmonic excitation on the basis of maximum amplitude of displace-
ment due to a given amplitude of excitation force. The stiffness of the

equivalent linear system is always taken to be the same as the initial

tangent stiffness of the nonlinear system. On this basis of comparison
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one finds that the maximum value of equivalent viscous damping for any
bilinear hysteretic system is about 16% and that this maximum value
can only be achieved when the system is elasto plastic (& = 0).

Hudson also compares the response of linear and nonlinear
systems to earthquake-like excitation. The basis of comparison in this
situation is the maximum value of the transient displacement due to the
excitation. The nonlinear system considered in this case is a yielding
structure with a curved hysteresis loop. The equivalent linear system
again has a stiffness equal to the initial tangent stiffness of the non-
linear system. Applying this analysis to results obtained by

P. C. Jennings(36)

, Hudson finds that for thirty seconds of strong
earthquake-like excitation the equivalent viscous damping is about 4%.
By comparison, for harmonic excitation of this particular vielding
system the maximum equivalent viscous damping (using Hudson's
definition) for any level of excitation is about 12%.

By analogy to the work of Hudson one could compare the station-
ary response of linear and nonlinear systems to white, Gaussian exci-
tation on the basis of rms displacement. The analog computer results
presented in Figs. 9 and 11 can then be used to evaluate viscous damp-
ing factors for equivalent linear systems with stiffness equal to the
initial tangent stiffness of the bilinear systems. The equivalent damp-
ing factor for a bilinear system with a specific restoring force curve
is, of course, a function of the level of excitation. For the nearly

elasto-plastic system (@ =1/21) the above definition of equivalence gives

a maximum equivalent damping factor of about 2% and for the system
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with o = 1/2 it gives a maximum equivalent damping factor of about
5%. These upper bounds compare reasonably with Hudson's results.

To talk of characterizing the effect of yielding by an equivalent
amount of viscous damping implies that yielding always acts to de-
crease the level of response. Figs. 9 and 11 show that this is not true
when the response under consideration is the stationary level of dis-
placement due to random excitation. The fact that the rms level of
response is always finite indicates that yielding does always act to
limit the response of the bilinear system containing no viscous damp-
ing, since without yielding this system would have unbounded response.
However, when the bilinear system also contains some viscous damp-
ing, yielding sometimes acts to increase the level of response. Of the
cases treated with the analog computer this increased response effect
is most notable when & =1/21 and f30 = 0. 05. In this instance yielding
results in no appreciable decrease in displacement response, and for
O'X/Y greater than about 0.3 yielding tends to increase the level of dis-
placement up to as much as 4. 5 times the level for no yielding. If one
is to characterize yielding solely by an equivalent damping factor this
suggests that the equivalent damping factor must sometimes be nega-
tive, since yielding sometimes acts to increase the level of response.
The total damping effect due to the combined action of viscous damping
and yielding is still positive but it is smaller than the effect of the
viscous damping by itself.

The explanation of the fact that yielding in some situations acts

to decrease the level of response and in other situations acts to increase
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the level of response is fairly simple. The nonlinearity of typical
softcning hysteretic systems actually has two, sometimes opposite,
effects on the system response. The softening spring in addition to
shifting resonance to a lower frequency normally tends to increase
displacement response for a given level of exciting force, while the
hysteretic energy dissipation tends to decrease the system response.
In some instances the energy dissipation effect is greater than the
softening spring effect so that the net result is a decrease in level of
response; in other instances the softening spring effect predominates
resulting in a net increase in level of response. In all instances the
two effects counteract such that great reductions in displacement re-
sponse are not realized even when there is a large amount of hysteretic
energy dissipation.

A somewhat different method of comparing linear and nonlinear
systems forme the basis of the Krylov-Bogoliubov method of equivalent
linearization as presented in Chapter III. Here the mean squared level
of the difference between the differential equations for the linear and
nonlinear systems is considered. The particular linear system which
results in the minimum mean squared difference between the equations
is called thc cquivalent linear system. The finding of both an equiva-
lent stiffness and an equivalent damping factor in this method makes
possible a better approximation of the response of a nonlinear system.

Unfortunately in order to adapt the Krylov-Bogoliubov method

to problems of random excitation it was necessary to make certain
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assumptions which are normally only valid for systems with small
nonlinearities. Nonetheless the method served to predict the levels
of displacement and velocity response within about 15% for the bi-
linear system with o = 1/2, except when the viscous damping was
very small while the yield level was either quite.high or very low.
For a nearly elasto-plastic system {(a = 1/21) the equivalent linear-
ization method gave a rough estimate (20 to 25% error) of the effect
of yielding on the velocity response, but failed almost completely

to predict the effect of yielding on the displacement response.

The spring constant and damping factor of the Krylov-
Bogoliubov equivalent linear system are dependent on the level of
excitation for any particular nonlinear system. For the bilinear
hysteretic system with @ = 1/21 the maximum value of the equiva-
lent damping factor was about 53%, and for the system with a = 1/2
the maximum equivalent damping was about 10%. The great dif-
ference between these factors and the 2% and 5% damping factors
determined above using a basis of comparison similar to that used
by Hudson is explained by the difference in stiffness of the equiva-
lent linear systems determined by the two methods.

Hudson's method of defining an cquivalcent linecar system keeps
the stiffness of the linear system equal to the initial tangent stiffness
of the nonlinear system, whereas the Krylov-Bogoliubov method allows

a decreased linear system stiffness in order to account for the soften-
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ing spring effect of a bilinear hysteretic system. The mean squared
level of displacement response of a linear system with white excitation
is inversely proportional to the product of the damping factor times the
cube of the resonance frequency. Therefore if two linear systems are
to have the same level of response the system with the greater stiffness
must have a smaller damping factor than the system with the lesser
stiffness.

Since, as mentioned above, the Krylov-Bogoliubov method
almost completely failed to predict the effect of yielding on the dis-
placement response of the system with a=1/21 it might appear to be
meaningless to compare the 53% maxiﬁ)um damping factor determined
by the Krylov-Bogoliubov method with the 2% maximum damping factor
determined using Hudson's method of comparison for this system.
However this comparison is not as meaningless as it might appear.
Consider the results obtained in Chapter III using a definition of an
equivalent linear system based on matching the levels of response of
the nonlinear system. For any particular level of excitation the reso-
nance frequency and damping factor were computed for a linear sys-
tem which would have the same rms levels of both displacement and
velocity response as the levels experimentally determined for the bi-
linear hysteretic system with @ = 1/21. The stiffness of this linear
system, as with the Krylov-Bogoliubov equivalent linear system, was
less than the initial tangent stiffness of the nonlinear system. The
maximum damping factor for any level of excitation of this newly de-

fined equivalent linear system was found to be the same as that for the
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Krylov-Bogoliubov system, that is about 53%.

In some instances one may wish to predict the power spectral
density of the response of a nonlinear system. To do this by an ap-
proximate method requires a somewhat better approximation than is
necessary to predict rms levels of response. The softening spring of
commonly encountered hysteretic systems results in the peak power
spectral density of the response to white random excitation being at a
lower frequency for a low yield level than for a high yield level. Thus
the usefulness of the method of equivalent viscous damping with initial
tangent stiffness to predict power spectral density is limited to cases
with very little yielding. Krylov-Bogoliubov linearization using both
an equivalent stiffness and an equivalent damping should give a same-
what better prediction of power spectral densities for systems with
somewhat more yielding.

The results of Chapter II, however, indicate that one can never
have more than limited success in using a single-mass linear oscil-
lator to precdict the power spectral density of a bilinear hystcretic
system. It was found, for example, that the low frequency power
_ spectral density of a bilinear hysteretic system is always like that for
a linear system with a stiffness equal to the smaller of the two slopes
of the bilinear restoring force curve. Thus choosing an equivalent
linear stiffness on the basis of fitting the center frequency portion of
the bilinear system power spectral density will always result in error

in the low frequency power spectral density.
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The difference between the curve for the power spectral den-
sity of a nearly elasto-plastic system and those appropriate to single-
mass linear systems is particularly marked. It appears, in fact, that
the curves for the nearly elasto-plastic system are more like those
for a linear system with two uncoupled modes of vibration. For such
an uncoupled system the power spectral density and mean squared
level of response due to each mode can be computed separately and
summed to obtain these measures of the total system response.

Figure 37 shows an attempt to approximate some of the p.ower
spectral density curves previously presented in Figs. 16 and 17 by
those for a two mode linear system. The linear system chosen has
one mode with resonance at W and damping factor Bl’ and another
mode with resonance at /@ X and damping factor [32. For each of the
three cases shown in Fig. 37 the damping factors ﬁl and (32 have been
chosen somewhat arbitrarily in an attempt to match the curves obtained
from the analog computer results; The figure shows that the approxi-
mations are far from exact. Nonetheless the general characteristics
of the analog computer results are found in the approximations.

The values chosen for pl and [32 of the two mode linear approx-
imation for each case shown in Fig. 37 are given in the lower part of
the accompanying table. The table also gives the mean squared dis-
placement and velocity response due to each mode of the approximation
and the resulting rms levels of total response. In the table the terms

N\
(sz)l and <0x2>2 are the mean squared displacement contributions



‘Ajtsus(g TeRI30ads xomodg osuodsoy

*Lg @andrg
Om/m

2 2 , l 80° %0 29

S
o8
e
; 2
3
~
sl o
£

———  NOILYWIXOHJdY 300N OML——=~ 02

LINS34 H3ILNdWOD 9OTVNY
_ 0% I12/1:0

ge



-126-

CASES CONSIDERED

4.

0

ANALOG COMPUTER RESULTS

mwo
e — 6.0
\/Sowo'
mwo
T 4.0
X" omo
APPROXIMATION
By 0. 053
B, 4. 00
2\ 2
( 2) ™% 14. 8
ag _— .
X
1\ e
sOU‘)O )
w2 12
2 In“00
oX - 18.9
AN <mrrrem
SOwO
2
muy
o 2 5.8
SOmO
mu 2
(o) - 14. 8
1| /e
OUJO
mad) 2
(c;)ﬁ I 0.90
“ OUJO
muy
5. ° 3. 96
% S w

7.

52.

.20

.45

.93

.93

.48

.53

10.

105

10.

. 40

.72

.97

.97

.01

.64



-127-

due to the modes with resonance at w, and /S w_ respectively; similar
subscripting is used for the velocity contributions. The levels of total
response for the two mode linear system with the chosen damping func-
tions are seen to be approximately the same as the analog computer
results presented in the upper part of the table for each case considered.

When the yield level is such that UX/Y =1.0 one might expect the
system response to be principally governed by the small-displacement’
part of the restoring force curve. The table shows, however, that for
the two mode approximation of this example the lower frequency mode
(which is based on the large-displacement slope of the restoring force
curve) contributes about 56% of the total mean squared displacement
response. This is even though the damping in the lower frequency
modé is chosen as 400%.

A two mode linear system approximation might be potentially
useful for predicting the power spectral density and the mean squared
levels of response of nearly elasto-plastic systems if one were to find
some analytical technique for choosing the damping factors. As pre-
sented above the approximation obviously gives no prediction of response
since the damping factors were chosen solely on the basis of matching
the known response.

For the bilinear system with o =1/2 the overall shape of the
power spectral density curves is more like that for a single mode
linear system than is true for the nearly elasto-plastic system. Each
of the curves for & =1/2 has a definite peak and the peak shifts gradu-

ally from frequency w_ to \/TUJO as OX/Y increases. For this system
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with a moderate amount of yielding neither Krylov-Bogoliubov linear-
ization or the above suggested two mode linear system approximation
yields a very adequate approximation of the power spectral density.
Figure 38 shows a comparison of the power spectral density obtained
from the two approximate methods with the analog computer result
from Fig. 19 for OX/Y =1.3. The damping constants in the two mode
approximation are chosen so as to give the correct mean squared levels
of total displacement and velocity response. The Krylov-Bogoliubov
approximation for this system predicts rms levels of displacement and
velocity response which are within about 6% of the analog computer re-
sults. The single mode linear system which gives the same levels of
displacement and velocity response as the analog computer results has
a peak power spectral density which is higher yet than that for the
Krylov-Bogoliubov approximation and hence is a poorer approximation
for spectral density. Thus neither a single mode linear system or a
two mode linear system with resonances at W and /E’wo seems capable
of closely approximating the power spectral density for the bilinear
system with a. =1/2 and 0_/Y =1.3.

If one wishes to approximate the probability distribution of the
response of a nonlinear system none of the above approximation
methods is of any help. The suggested methods all consist of approx-
imating the nonlinear system by some linear system and for any linear
syétem with a Gaussian excitation the response also has a Gaussian
distribution. The analog computer results reported in Chapter II,

however, indicated that the response of a bilinear hysteretic system to
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Gaussian excitation may be significantly non-Gaussian.

The stationary joint probability density function p(x, X} found by
T. K. Caughey as the fundamental solution of the appropriate Fokker-
Planck equation for a general class of nonlinear nonhysteretic systems
is presented in Chapter IV. A possible approximation of a bilinear
hysteretic system by such a nonhysteretic system is also discussed.
The general characteristics of the probability distribution predicted by
the approximation are deduced, although no numerical values are cal-
culated. For an oscillator with a low yield level the nonhysteretic
approximation predicts a greater than normal probability of large dis-
placements as normalized by the rms level. For a system with a high
yield level and little or no viscous damping, however, the approxima-
tion predicts a smaller than normal probability of large normalized
displacements. These general trends are seen to be in agreement
with the analog computer results.

From the joint probability density function one can, of course,
obtain mean squared values of displacement and velocity response in
addition to the one dimensional probability density functions. To
evaluate these measures of response for the nonhysteretic approxi-
mation presented in Chapter 1V, however, requires numerical integra-
tion in most instances. Such numerical integration was not carried
out in this study but may be potentially useful. For a limiting case
of a bilinear hysteretic system with a very high yield level it was
found possible to use a nonhysteretic approximation which gives pre-

dicted mean squared values of response without numerical integration.



-131-

The values so predicted compare well with the analog computer results.
The solution of the Fokker-Planck equation presented in Chapter

IV does not give any information about the power spectral density of

the system response. The general transitional probability solution of

the time-dependent Fokker-Planck equation would give power spectral

density, but this solution has not yet been found for second order non-

linear systems such as spring-mass oscillators.
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V1. SUMMARY AND CONCLUSIONS

6.1. Analog Computer Investigations

The analog computer was used to experimentally investigate the
stationary response of bilinear hysteretic single-mass oscillators to
an excitation which was approximately Gaussian and white. The slope
ratio O of the bilinear restoring force curve was given values of 1/21
and 1/2 in order to study one nearly elasto-plastic system and one
system intermediate between linear and elasto-plastic. The charac-
teristics of the response which were determined in the investigation
were mean squared level of displacement and velocity response, power
spectral density, and probability distribution of displacement response.
The following paragraphs summarize the findings of the analog com-
puter investigation.

l. For a given level of excitation of the bilinear hysteretic
systems with no viscous damping the mean squared level of the dis-
placement response was minimized when the yield level was chosen
such that the ratio of rms displacement to yield level (0 _/Y) was be-
tween unity and two. For the system with the slope ratio @ equal 1/2
this minimum level of displacement response was about the same as
that for the system with infinite yield level and 5% of critical viscous
damping. For the nearly elasto-plastic system (a=1/21) the minimum
level of response was about the séme as that for 2% viscous damping

with infinite yield level.
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2. For the bilinear hysteretic systems containing some viscous
damping the rms displacement response for a particular level of exci-
tation was greater by a factor of VI/@ when the yield level approached
zero than when the yield level approached infinity. When the amount
of viscous damping was such as to provide 1% damping for small am-
plitude oscillations ({30: 0. 01) the rms displacement response was less
than that for Y = oo provided GX/Y was less than 30 for a=1/2 or
oX/Y<7. 5 for a=1/21. For the nearly elasto-plastic system with

o° 0. 05 the effect of yielding was to increase the rms displacement
response level above that for Y =oo for virtually all values of yield
level.

3. For all yield levels the rms velocity response ofthe bilinear
hysteretic systems was reduced by yieldiﬁg. The minimum level of
velocity response for a given level of excitation occurred when GX/Y
was near 1.25. For this condition of minimum velocity response the
reduction of the velocity due to yielding for the system with a=1/2 was
about the same as that which would result from adding 7% viscous
damping to the system with infinite yield level. For a=1/21 the max-
imum reduction in velocity response was like that due to the addition
of 15% viscous damping to the system with infinite yield level. For
bilinear systems containing some viscous damping the level of velocity
response was the same for very high or very low yield levels.

4, Two limiting conditions were found for the power spectral
densily of the response of the bilinear hysteretic systems. At very

high freyuencies the response power spectral density of a bilinear



-134-

system was like that for a linear system having the same mass and
excitation. At frequencies near zero the response power spectral
density was like that for a linear system having the same mass and
excitation and having a spring constant equal to the smaller of the

two slopes of the bilinear restoring force curve. Between these limits
it was found that for the system with a=1/2 the power spectral density
curve always had a definite peak and the location of the peak shifted
gradually from frequency w to Jo W as UX/Y was increased from a
small value to a large value. For a=1/21 it was found that for ox/Y
between 4 and 9 the power spectral density was monotone decreasing
over the entire frequency range, while higher yield levels resulted in
a peak near frequency W, and lower yield levels resulted in a peak
near f&"wo.

5. DProbability distribution measurements showed that for low
yield levels the response of a bilinear hysteretic system had a signifi-
cantly greater probability of being at large displacements than does a
Gaussian signal with the same rms level. On the other hand, when the
yield level was high and the bilinear system contained little or no vis-
cous damping there was a much smaller probability of the system

response being at large values than for a Gaussian distribution.

6.2. Approximate Analytical Techniques

The possibility of finding a single-mass linear oscillator which
has the same displacement and/or velocity response as a particular

nonlinear oscillator with the same excitation was discussed. The only
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technique suggested for finding such an equivalent linear system for
some particular nonlinear system without first knowing the response

of the nonlinear system was an extension of the method of Krylov and
Bogoliubov. In adapting the Krylov-Bogoliuhov method to probhlems of
bilinear hysteretic systems with random excitation certain assumptions
were made which one would normally expect to be valid only for systems
with small nonlinearities. Nonetheless the response of equivalent
linear systems found by this method was compared with the analog com-
puter results for the bilinear systems with 0 =1/2 and cc=1/21.

The possibility of approximating the power spectral density
curve for the response of a nearly elasto-plastic system by one for a
two mode linear system was also discussed. However, no technique
was suggested for determining the parameters of such an equivalent
linear system without first knowing the responsc of thec nonlincar sys-
system.

Finally there was a discussion of the idea of approximating a
hysteretic system by a nonlinear nonhysteretic system for which the
solution of the Fokker-Planck equation is known. A particular non-
linear nonhysteretic system to approximate a bilinear hysteretic
system was suggested. The general characteristics of the probability
distribution of the response of this nonhysteretic system were dis-
cussed, and for a limiting case of high yield level numerical values
were obtained for its rms response level. These characteristics of
the response of the nonhysteretic system were compared with the ex-

perimentally determined characteristics of the bilinear hysteretic
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system.

The findings of the investigation of approximate analytical
techniques are summarized in the following paragraphs.

1. For the bilinear hysteretic oscillator with g =1/2 the
Krylov-Bogoliubovmethod of equivaleﬁt linearization serves to predict
the rms levels of both displacement and velocity response within about
158% except when the viscons damping factor Bo is less than 0. 01 while
the yield level is either very low or very high.

2. For a nearly elasto-plastic system (a.=1/21) the Krylov-
Bogoliubov method of equivalent linearization gives a rough estimate
of the rms velocity response (about 25% maximum error). For this
system, however, the method yields useful information about the effect
of yielding on the displacement response only when the yield level is so
low that GX/Y is greater than about 30.

3. One cannot, in general, accurately approximate the power
spectral density of the response of a bilinear hysteretic oscillator to
white excitation by the response power spectral density for a single- '
mass linear oscillator. This is true even for the bilinear hysteretic
system with a=1/2, although the response power spectral density for
this particular system does always have a well defined peak.

4., It is possible to roughly approximate the power spectral
density of the response of a nearly elasto-plastic oscillator to white
excitation by the response power spectral density for a linear system
with two uncoupled modes of vibration, where one of the modes has its

resonance at frequency w_ while the other has its resonaace at \/E'wo.
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The approximation is not exact but the general characteristics of the
power spectral density for the nearly elasto-plastic system are similar
to those for the two mode linear system if the linear system damping
factors are properly chosen. It is not possible to approximate the
response power spectral density for the bilinear hysteretic system
with a =‘1/2 by that for such a two mode linear system.

5. The technique of approximating a hysteretic system by a
nonlinear nonhysteretic system fqr which the solution of the Fokker-
Planck equation is known may be potentially useful for predicting the
response of hysteretic systems. The probability distribution of the
response of a particular type of nonlinear nonhysteretic system sug-
gested in Chapter IV has the same general characteristics as the
probability distribution for bilinear hysteretic systems. In most in-
stanccs numecrical integration will be necessary to determine numer-
ical values for the probability distribution or mean squared values of
the response for this particular type of nonlinear nonhysteretic system.
For a limiting case of a bilinear hysteretic system with a very high
yield level a simpler nonhysteretic approximation is appropriate. This
simpler approximation gives mean squared levels of response without
numerical integration, and these values agree very well with those for

bilinear hysteretic systems within the limitation of high yield level.
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A. EQUIPMENT DESIGNED OR MODIFIED FOR USE IN

ANALOG COMPUTER INVESTIGATIONS

A.l, Analog Computer Circuit

The analog computer used was a K7-A10 manifold of Philbrick
Model USA-3 Universal Stabilized Amplifiers. The basic circuit for
the bilinear oscillatof problem is shown in Fig. A. 1, where cpP(v) is
an elasto-plastic function of v. - The nominal values of the resistors.

and capacilors in the circuit of Fig. A.1 were chosen as follows:

R, = 80K

R, = 100K - C, =0.001puf
R, = 100K C, = 0.0luf
R :R_5R._6._

7 R5+R6

The value of the slope parameter o (see Fig. 1) was simply

o :R6/(R5+ Ré). Resistor R2 was varied to achieve various values
of viscous damping. Measurements of the response of the system
indicated that the individual errors of the components combined in

such a way that the actual integrator constants were:

R,C; = 1.02 X 1074
2
-4
R;C, =0.79 x 10
B -3
R,C, = 1.01 X 10

The small-amplitude (i. e. linear system) undamped natural frequency

was 496 cps.
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Analog Circuit for Bilinear Hysteretic Oscillator.
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The actual amount of viscous damping for some particular re-
sistor R2 was experimentally determined from the amplification factor
when the system was harmonically excited at its undamped natural fre-
quency with the amplitude of v/ R,C, less than v,. If was found that
when RZ was infinite {open circuit) the system response slowly built up
until it reached yield level, when there was no excitation of the system.
This build-up indicates the presence of negative damping in the system
under this condition, but measurement of the rate of build-up showed
the effect of this negative damping to be less than that of -0. 05% vis-
cous damping. Because of its small size this negative damping was
ignored and the system with R2 infinite was considered as having no
viscous damping. However, in a few instances where excitation was

small compared to yield level and when R, was infinite the effect of

2
this negative damping could be detected, as is mentioned in Section 2.2.

Probably the most common electrical device for developing an
elasto-plastic function is an integrator with either biased simple
diodes or a double anode Zener diode to limit the output voltage, as
shown in Fig. A.2a. Such a diode feedback device has a current-
voltage characteristic with finite slopes and somewhat rounded corners
as shown in Fig. A.2b. This type of elasto-plastic function generator
works quite well for studying periodic response, since by choosing
components correctly the maximum current during each cycle can be
made large enough to push the diode well past the corner of the

current-voltage characteristic. The finite slopes of the character-

istic prevent the hysteresis loop of cop(v) versus v from being truly
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elasto-plastic, but the approximation is quite good.

The imperfect current-voltage characteristic of a diode feed-
back device is much more of a hindrance to an investigation of re-
sponse to random excitation, since successive cycles of response can
be expected to give greatly differing values of maximum feedback cur-
rent. Thus one cycle may give yielding at a voltage corresponding to
the rounded corner of the current-voltage curve while another cycle
will give yielding at a larger voltage corresponding to some point well
past the corner. Hence the yield level will vary and the resulting
energy dissipation will be distributed incorrectly among the various
cycles. Experiments using a 1N475 double anode Zener diode with

7 to 10-3 amp showed that an

feedback currents in the range from 10~
increase by a factor of ten in the maximum feedback current resulted
in a 10% to 25% increase in the effective yield level.

In this study a transistor switching circuit was substituted for
the diode feedback devices of Fig. A.2. Figure A.3 illustrates the
circuit. The voltage v  is the nominal yield level and amplifier #1 is
merely a sign changer. Amplifier # 4 is the integrator and amplifiers
#2and#3 along with the two Zener diodes and four transiétors provide
the limiting effect on the output voltage.

To understand the operation of the limiting system consider the
details of how amplifier # 2 and transistors Q; and Q, limit the output

at the upper yield level. The minimum negative gain of eachamplifier

used is 107, and the maximum output voltage of each is 100 volts; thus
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the absolute value of the voltage at the summing point of any amplifier
must be less than or equal to 10> volts. When tpp(v)/R4C2— v, is less
than zero there must be a current flowing to the left from the summing
point of amplifier #2 (since the summing point is so nearly at zero
voltage). The input impedance of the amplifier itself is so high that
the current from its input must be of the order of 10_11 amps. Thus
the principal current to the summing point must come through the
Zener diode, and the output voltage of #2 must be v, =v_, the Zener
breakdown voltage of the diode. The nominal yield voltage, Vo, must
always be chosen less than Vi giving a reverse bias from emitter to
collector of transistor Q1 when V=V, Under this condition the tran-
sistor transmits only very small leakage currents and its base voltage
is maintained at Vo=V The base of Q2 is, thus, also held at voltage
v and since :pp(v)/R4CZ is less than vy (as originally assumed) there
is a very high impedance to any current flow through QZ'

Amplifier #3 and transistors Q3 and Q4 operate in a manner
directly analogous to that of amplifier #2 and Q, and QZ' Thus, when-
ever cpp(v)/R4C2+ A is greater than zero the base of Q4 is maintained
at voltage -V Hence when ‘:pp(v)/R‘LCZ is between -V, and A both QZ
and Q, are in nonconducting modes of operation due to reverse bias
voltage from emitter to base. There is, of course, some leakage cur-
rent through the transistors even though they have reversc bias. The
magnitude and effect of this leakage current is discussed below. Neg-

lecting the leakage current, the current through resistor R, due to the
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input voltage, -v, is summed (or integrated) on capacitor C2 whenever
cop(v)/RLlC2 is between -v_and v .

If v is positive then the integration on C, leads to an increasing

2
output voltage, cpp(v)/R4C2. When Cpp(v)/R4C2 approaches the level A
the current at the summing point of #2 decreases. If cpp(v)/R4C2 were
allowed to exceed A the current through the diode on #2 would reverse
direction, requiring that vy=-v,. However, if vy falls below v, (which
is at level Vo) the transistor Q1 is "turned on', allowing a current to
flow from the collector to the emitter and a much smaller current (not
more than 2. 5% of that from collector to emitter) to flow from the base

to the emitter. Similarly, if cpp(v)/R4C2 is greater than v, transistor

2
Q2 conducts a current from emitter to collector discontinuing integra-
tion on capacitor CZ'

, reaches the level v and v is greater than

zero the only current at the summing point of #2 is the 10_11 amps

Thus when cpp(v)/R4C

through the amplifier and a small leakage current through the diode.
The resulting situation is that v, is maintained slightly below v, 8o
that a small current is transmitted from collector to emitter of Q, and
a still smaller current passes from base to emitter of Ql' This latter
current is also the emitter to base current of QZ’ which is passing a
current of {r/R4 from emitter to collector, so that the charge on capa-
citor C2 is not changing and Cpp(v)/R4C2 is being maintained at a cons-
tant level. This constant Vlevel of output, which is the effective yield

level, is slightly less than A since there is some voltage drop across
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any conducting transistor. Experimental measurement, however,
showed that the effective yield level was never more than 0. 05 volt be-
low the nominal yield level in the tests conducted. The effective yield
level was measured in each test and is normally referred to simply as
yield level.

When the system is yielding as described above and v decreases
until it becomes negative, the current through the resistor R4 to the
summing point of the integrator, #4, must reverse direction. But Q2
will nat pass A current in this direction (except for the previously men-
tioned leakage current) so the charge on CZ must begin to decrease.
Thus integration of v begins again when v reverses sign, and it starts
from an initial value of yield level. When cpp(v) begins to decrease the
curr‘ent at the summing point of amplifier #2 must increase and v, re-
turns to the level v, where it must remain until :Pp(V)/R4C2 again
reaches the level v,

The operation of amplifier #3 and transistors Q3 and Q4 when
cop(v)/R4C2 reaches the level A is directly analogous to the above.

It should be mentioned that properly oriented single anode Zener
diodes on amplifiers #2 and #3 would work equally as well as the double
anode diodes used. The 1N475 diodes were chosen because of their
clean switching operation without adverse transient effects. The Zener
voltage of the diodes used was about 6 volts, hence yield level was re-

stricted to less than 6 volts.

As mentioned above there is some leakage current through the
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feedback transistors in the elasto-plastic function generator. To de-
t-ermine the effect of such leakage, consider the linear integrator with
a feedback resistor as shown in Fig. A.4. For the particular instance
where v is a harmonic signal of circular frequency w, the output of

this linear device can be written as

1 1 v
v = 2 22 vt (A1)

1+ 1/RSCouw” R,C, RSCZwZ

Substituting this output for cpp(v)/R‘}CZ in the equation of motion for the

system in Fig. A. 1 gives

":'Rlc R1C ;‘L;—TY‘”; e _R\}C +Rn(<t:)
3¢1 RyCy 5 Rg 6 RyC,w 2C1 RiGy
(A. 2)
where
Y= l2 77 <1
1+1/R8C2w

This differential equation describes harmonic motion with amplitude
smaller than the yield level of the system in Fig. A. 1, including the
leakage effect of the feedback transistors. The term v is obviously
very nearly unity when RSCZw is large compared to unity.

Since R, = R5R6/(R5+ R6) the natural circular frequency for

linear oscillations of the system of Fig. A. 1l is

Assuming V¥ to be nearly unity the natural circular frequency of equa-

tion (A. 2) is also approximately w,. Comparing terms of (A.2) with
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Figure A. 4. Integrator With Leakage Current.



-154-

a conventional form of the damped linear oscillator equation:
v+ 2B w\’r+w2 - n(t)/
oo o v n m

gives a viscous damping coefficient of

2
A O S S WY
o ZUJO R2Cl R6 R8C2 UJZ

Since Y and R7/R6 are both less than or equal to unity, the additional
damping coefficient due to the leakage current through resistor R8 can
be bounded as follows:

W

o 1
P 7 R

8

1
— . (A.3)
C2 wz

Since ﬁL is a function of frequency the effect of the leakage current on
the linear system response at frequencies other than resonance can
best be seen by looking at the transfer function for the system with

nominally zero damping, i.e., R, =oo:

2
1

\H(v) | = ,

5 2\2 e

w 0
(o]
> ! . (A. 4)
. 2/ N L I
o J,(;Z RSCZ W

The actual effective value of the leakage resistance of the feed-
back transistors used was determined by plotting v¥ versus v at low

frequencies (0.5 to 5 cps) and measuring the relative magnitude of the
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two components of v in expression (A. 1). The value determined for
the net resistance of the two transistors in parallel was approximately
Rg =145 megohms. At the natural frequency, w =3,120 rad/sec, the

damping contribution from the leakage current was, thus,

pLgl,B()Oﬁ(l.OSXIO_’{) S 1x10Y,

Substituting into expression (A. 4) shows that the leakage current af-
fected the transfer function for a signal at 5 cps by less than 0. 025%
and at 0.5 cps by less than 2. 5%.

Figure 5 (in Chapter 2) shows that at 1000 cps there was a detect-
able overshoot of Cpp(v) at yield, before it returned to a constant yield
level. This overshoot was apparently due to the finite time it took for
the output voltage of amplifiers #2 and #3 to change level. and thus
initiate yielding. The maximum rate of change of output voltage of the
USA-3 amplifiers is in the range of 2 to 8 volts per microsecond, mak-
ing it possible for there to be a 2 or 3 microsecond lag between the
time when Qpp(v)/R4C2 reached nominal yield level and the time when
actual yielding began. To establish some measure of the size of error
introduced by this overshoot, the hysteresis loop was studied carefully
_for a case with an effective yield level of 0.1 volt and the steady state
amplitude of V/R4C2 equal to 20 volts at 1000 cps. For this test case
the overshoot effect increased the area of the hysteresis loop by less
than two per cent.

Since the overshoot is due to the integration of v over some

time increment, one can expect that the height of the overshoot will be
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approximately proportional to the amplitude of v. Hence, the height
of the overshoot is approximately proportional to the product of the
amplitude of v times the frequency, for steady state operation. Thus,
the area added to the hysteresis loop by the overshoot varies approx-
immately yuadratically with the product of the amplitude of v times the
frequency, whereas the area of the ideal hysteresis loop varies ap-
proximately linearly with the product of the amplitude of v times the
yield level for low yield levels. This predicts that the percentage
error in area of the hysteresis loop will vary approximately like the
frequency squared times the ratio of the amplitude of v to the yield
level.

In the test case above the rms level of v/R4C2 was approxi-
mately 144 times greater than the yield level. In Fig. 9 of Chapter 2
results are given for cases of random excitation where this ratio is as
great as 1000, but in that instanc‘e the predominant frequency of the
response was near 108 cps, such that the expected error due to over-
shoot is approximately

1000 ( 108\2
144 \T000

(2%) = 0. 16% .

In Fig. 11 of Chapter 2 results are presented for a case with the rms
of v/ R,C, about 200 times the yield level, and with a predominant
frequency of about 350 cps. This results in a predicted error of about

0.34%. These two cases should have resulted in the most serious

error due to overshoot of any reported in this study.
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A.2. A Low-Frequency Elasto-Plastic Function Generator

A device to produce an elasto-plastic restoring force by switch-
ing the input to an integrator, rather than using a feedback device to
control the output of the integrator, was also developed. This device
is more satisfactory than the device used in this study at low frequen-
cies where leakage currents through the feedback device have been
seen to introduce some error, however it is not so satisfactory at the
higher frequencies used in this study.

Figure A.5 shows the circuit for this low-frequency elasto-
plastic function generator. Amplifiers #2 through #5, with their diodes,

form simple flip-flop devices, so that

w_(v) <v0 . =v, = —IOVZ
when _LR4CZ > v_ then Vi = 0 and AR,
and
o (v)] >-v =-v =10v
when o then v Z and v z
R4C2 < -Vo 3 =0 4} =0

Thus when -v _< Qpp(v)/R4C2< v and provided that - 10v <v;<10v,
the diodes D, and D, conduct no current such that v = -v/2 and the out-
put of #5 is the desired integral. When the output reaches tv s though,
voltage A becomes zero, and diode D1 dictates that Ve must be greater
than or equal to zero. Thus if v is positive then vy =0 and the inte-
grator sees no input signal so the output remains constant, but if ¥
becomes negat.ive then v = -v/2 and integration proceeds. Diode D,

similarly grounds the input to the integrator when the system reaches
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negative yield level and has negative v. Since there is always some
finite voltage drop across a conducting diode, Vg is never held exactly
at zero during yielding; but tests indicated that with the diodes shown
it could be limited to approximately 0.2 volt in a case with essentially
zero yield level and with the amplitude of v/2 at 12 volts.

Since there is no feedback to the summing point of the inte-
grator in this circuit no leakage currents allowing the capacitor C2 to
slowly discharge in low frequency tests are introduced by the nonlinear
circuit. Of course the capacitor itself will have some leakage current
and some current passes into the input of the amplifier, but these are
not peculiar to the nonlinear problem, and they do not preclude testing
at quite low frequencies with good components. Experiments showed
that'the hysteresis loop produced using this low frequency device had
no detectable degradation at 0. 02 cps.

The high frequency limitation of this device is due to the time
required for the output voltage of the flip-flop amplrifie rs to change.
As mentioned in the previous section the maximum rate of change of
amplifier output voltage for the amplifiers used is about 2 to 8 volts
per microsecond. Since the output of either amplifier #3 or #4 has to
change by approximately 60 volts each time yielding is initiated (with
the circuit shown), time lags of as much as 30 microseconds are
possible. This time lag causes an overshoot which remains as long as
the system continues to yield in the given direction, since there is no
way to correct the output voltage of the integrator in this system. Thus

the exact effective yield level is a function of the rate of change of v
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when it reaches yield level, In some experimental cases at about

500 cps the output was found to overshoot the low frcquency yicld level
by as much as one volt. This overshoot could be expected to decrease
linearly with frequency, for a given amplitude of v, so that this sys-
tem might be quite acceptable for work at 10 cps or 50 cps, depending

on the accuracy desired.

A.3. Modification of the Amplitude Distribution Analyzer

Appendix B. 2 points out that the time constant of the Quan-Tech
Laboratories Amplitude Distribution Analyzer, Model 317, was very
inadequate for the measurements made in this study. It was quite sim-
ple, however, to use an external RC filter and voltmeter to measure the
mean value of the output from the Schmitt trigger of the analyzer, and
thus to achieve the desired time constant. An output terminal which
was connected directly to the Schmitt trigger output was added to the
analyzer. The point of connection was the collector of the 2N711 tran-
sistor labeled Q15 on the schematic diagram accompanying the Model
317 analyzer. Connecting the Schmitt trigger output to an impedance
greater than or equal to 100 kilohms resulted in no detectable loading
effect on the internal circuitry.

A Hewlett-Packard Electronic Voltmeter, Model 410C, was
used to measure the RC filtered voltage level of the Schmitt trigger
outiaut. The input impedance of this voltmeter is 10 megohms for volt-

age ranges up to 150 millivolts full scale and is 100 megohms for higher
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voltage ranges. Thus, using an 'RC filter with R=100K resulted in not
more than about 1% error due to D. C. current passing through the
voltmeter.

The capacitor used in the RC filter was an electrolytic of 250
microfarads. Any D. C. current passing through the capacitor in such
an RC filter results in the voltmeter reading less than the actual D. C.
voltage applied to the filter. It was necessary to use some trial and
error to choose an electrolytic capacitor with low enough leakage cur-
rent to give satisfactory accuracy. With the capacitor which was used,
hbowever, the combined leakage currents through the capacitor and the
voltmeter resulted in only about 1. 5% error in reading a D. C. voltage.

In Section 2. 4 it was mentioned that a test case was checked
using an external D. C. amplifier to bypass the first stage of the Quan-
Tech analyzer. An input terminal was connected directly into the
second stage differential amplifier of the analyzer for this purpose.

The first stage of the analyzer is a variable attenuator followed
by an A_C. amplifier (with law frequency attenuation as shown in Fig.
20). The output of the first stage has a D. C. bias of about 11. 2 volts.
When the attenuator controls are set for a 10 volt maximum input to
the analyzer, the output from the first stage is the bias voltage plus
the input voltage attenuated by a factor of 9. 20:1. In order to bypass
the first stage it is necessary to use some technique to give the proper
bias to the input to the second stage. One possible technique is to use

an analog computer amplifier as shown in Fig. A.6. Any deviation of
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Figure A.6. D.C. Device to Bypass First Stage of
Quan-Tech Analyzer.
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the bias voltage of the input to the second stage of the analyzer from
that of the output from the first stage results in an effective change of
the comparison level being used in the analyzer. In fact, due to the
attenuation of the input signal a 0.1 volt error in bias level results in
an effective change in comparison level of 0. 92 volt, for the setup
shown in Fig. A.6. One way of minimizing bias voltage error is to
acquire a bias voltage of 11. 2 volts from within the analyzer and use
an analog computer amplifier to reverse its sign to give the necessary

input to the device in Fig. A. 6.
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B. ACCURACY OF ANALOG COMPUTER
INVESTIGATIONS

B. 1. Mean Squared Value of a Stationary Signal

The statistics of a stationary signal must be estimated in prac-
tice by determining the statistics of the signal over some finite time
interval called a sampling time. Thus one would like to know the effect
of the sampling time on the accuracy of the estimation of various
statistics.

Consider determining the mean squared value o‘2 of a large
number of samples from a particular stationary signal. Let each of
the samples be T seconds long. This large number of evaluations of
02 will give a random set of 02 values for which one can determine the
mean value and variance. It can be shown that the mean value of the
set of 02 values is in fact the true mean squared value of the stationary
signa1(37). The variance of the set of 02 values gives an indication of
the probable error in using one sample value of 02 to estimate the
mean squared value of the stationary signal.

J. S. Bendat(38) analyzes the effect of sampling time on the
accuracy of estimation of the autocorrelation function for the particular

case of a signal with an autocorrelation function given by

bt

R(t) = e cos wot . (B. 1)

The power spectral density of such a signal has a peak at frequency W

and the half-power points are at wO:I:b. Since R(0) is the mean squared
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value of the signal this analysis applies directly to the estimation of
mean squared value. The variance of R(t) for the special case where

t =0 can be rewritten from Bendat's more general result as

2b2+ wi
Var(o ) = ——
bT b2+ wZ
o
or
Var(oz) z-&T for wo>>b .

The ratio of the standard deviation of a set of observed values
for some quantity to the mean value of the quantity will be referred to
as the normalized standard error for the quantity. Thus for the mean
squared value of the signal discussed above the normalized standard

error is

e(c®) » = for w_>>b. (B. 2)

bT

J. S. Bendat and A. G. Piersol(3g) give a simple expression
which can be used to estimate the variance in sample mean squared
values for any signal for which the autocorrelation funcﬁon and mean
value are known. The autocorrelation function is not known for the
response of the nonlinear systems considered in this study, but it is
known for the response of a linear oscillator to white excitation. Using
the autocorrelation function for a linear system response with zero
mean value results in the same approximation of the normalized stan-

dard error as given above by (B.2). For the linear system the half
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bandwidth b is equal to Bowo where Bo is the fraction of critical damp-
ing and W is the resonant frequency.

Since expression (B. 2) approximates the normalized standard
error tor both the narrow-band signals considered above it seems
appropriate to use it to approximate the error for the response of non-
linear oscillators when that response is narrow-band. Since the error
decreases as the bandwidth increases the error in experimentally de-
termining the mean squared value of a broad-band signal for which
(B. 2) does not apply should be considerably less than that for a narrow-
band signal.

Since power spectral density curves are not plotted for all values
of yield level and excitation for which rms levels are determinéd one
needs some other way of approximating the bandwidth of the response
of the bilinear hysteretic systems. One such way is to use expression
(2.9),

TS

2 o
C. = ——— ’

* 4m2(31w1

to determine values of the half bandwidth b =B, from the experimen-
tal values of O - This assumes that the bandwidth of the nonlinear
system response is approximately the same as that for a linear sys-
tem with the same level of response.

Using the suggested approximation of b one finds that the highest
levels of O, in Figs. 10 and le of Chapter II give the minimum value of
b as about 6 rad/sec. From Figs. 9 and 11, however, one notes meas-

urements of o, at higher yield levels. Since such high yield levels
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give a response with its peak near frequency w_ one can approximate
the bandwidth for this case from the value of o, by using expr‘ession
(2.7). The result is that for the highest points in Figs. 9 and 11 the
half bandwidth was approximately 2 rad/sec.

The nominal averaging time of the random noise voltmeter used
to determine rms values was 100 seconds. Using T =100 and the values
of b determined above, expression (B. 2) predicts a normalized stan-
dard error in mean squared value of about 7% for the highest point in
both Figs. 9 and 11 and less than 4% for all other experimental points.
This corresponds to 3.5% and 2% errors, respectively, in rms values.

For a narrow-band response the bandwidth of thc displacecmentand
the velocity are approximately the same. Thusthe above error analysis

appli‘es to measurements of both displacement and velocity response.

B. 2. Probability Distribution of a Stationary Signal

Consider the problem of estimating P=Prob. (x> X) for some
stationary signal x(t) by analyzing a sample of length T seconds. The
mean of a large set of such sample values of P will be the true value of
P for the stationary signal. To determine the expected error in esti-
mating P for the stationary signal by a sample P one would like to know
the variance of a large set of sample P values. This variance, however,
cannot be very precisely determined from present knowledge of the
statistics of continuous random processes.

Bendat and Piersol(40) give a discussion of the error involved

in estimating a stationary probability density from a sample of length
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T seconds. The probability density p for a sample must be determined
by dividing Prob(X-W/2<x<X+ W/2) by W. For the special case of
signal with a uniform power spectrum over a bandwidth of B cps and
zero power spectral density elsewhere Bendat and Piersol use a
heuristic argument to obtain a '"reasonable approximation' of the
normalized standard error as

e(p)~ A,/ /BTWE'

where Al is an undetermined constant. This estimate would appear to
also apply to €(P) if Wp is replaced by P in the radical giving

e(P)mAl/./ BTP . (B. 3)

If the probability P of a discrete set of points is estimated by
the probability of a sample containing r of the discrete points, the
normalized standard error can be shown to be

e(P) =1//TP".
Further, a continuous signal of length T seconds which is completely
contained within a bandwidth of B cps can be completely reproduced

(41)

from knowledge of its value at 2ZBT discrete points This suggests

that one possible choice for A, in expression (B. 3) is

1
A= 1//27.

Expression (B. 3) may serve to indicate the general dependence
of €(P) on bandwidth, sampling time, and probability but it is not par-
ticularly helpful for actually predicting values of €¢(P). One normally
is interested in estimating €(P) for a signal which does not have a

uniform power spectrum over its entire bandwidth and it is not clear
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how expression (B. 3) should be modified to apply to any such situation.
This problem is in addition to the uncertainty about the proper choice
of A1 in expression (B. 3).

As mentioned in Chapter II the Quan-Tech amplitude distribution
analyzer used in this study contains a Schmitt trigger device which
gives zero output when the input signal is less than the chosen com-
parison level and gives a constant output of 6.3 volts when the input
signal is greater than the comparison level. The probability P is then
determined by using a low pass filter and a voltmeter to measure the
mean value of the Schmitt trigger output.

One can make a crude estimate o.f the average error due to the
finite sampling time used to evaluate P for a stationary analog system
résponse by observing the range of variation of the voltmeter reading
as time passes. The sample being analyzed is constantly changing
since the stationary signal is going on continuously so one sees directly
froﬁ the voltmeter the effect of choosing many different samples all of
the same length. Another method of estimating the error in P is to plot
probability distribution curves such as those in Figs. 22-24. Since an
error due to sample length would be random in nature it would normally
lead to scatter of the experimental points away from a smooth curve.

The Quan-Tech distribution analyzer contains an RC low pass
filter with a time constant of RC =0.125. Attempting to use this system
to determine values of P of about 0. 002 resulted in variations of the

voltmeter reading which were larger than the supposed mean value
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being sought. Thus it was necessary to slightly .modify the Quan-Tech
instrument to allow use of an external RC filter. The filter used had
RC =25. Using this filter, observation of the variation of the voltmeter
reading and the scatter of the plotted curves indicated that the crror in
determining a value of P near 0. 002 probably did not exceed 10%. Ob-
servations also indicated that the error in measuring P decreased

rapidly as P increased, as would be expected on the basis of expression

(B. 3).

B.3. Power Spectral Density Determination Using a Filter with

I'inite Bandwidth

In Section 2.3 the mean squared value of the output from a

symmetric narrow-band filter was written in a series as

oo

2 . 2

Oout = Sin(wC)J‘ lHF(lw)\ dw

- 00

2 [0 0]
d~Ss.

+Zl a 12n (w.) j (w_wc)z lHF(il’)lzdw +.o (B-4)
) -0

where Sm(x‘) is the power spectral density of the input to the filter, w_
is the center frequency of the pass band and HF(iw) is the transfer
function of the filter. The power spectral density S.m(u.‘c) was estimated,

in this study, by measuring I, and neglecting all but the first term in

ut
the above expression. The error in this estimation will be greatest
when the second derivative of S.m(-;u) is large, such as near the peak of

a narrow band S. (%).
in
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In order to learn something of the magnitude of the error in
estimating power spectral density near a peak consider the effect of
the second term in the above series for a special case. Let

S
0

sin(w) = (B. 5)

2 2 212 27
m U‘”l' of | 5+ (2pn)0)° |

This is the power spectral density of the displacement response of a

llllca-.[ bybLCm dCb(,llbt:d by
m

where N(t) has a white power spectral density of magnitude So' When

the center frequency of the filter is set at Wy expression (B. 5) gives

S
_ o)
Sinl¥) = —= 737
4m Blml
and differentiation of (B. 5) gives
A
Ty oo 1spd
dwz ¢ Zmzﬁilwl 1
For B, <<1 the last expression can be written as
dZSin -2
——(w ) =85, (w) (B.7)
dw C in' ¢ plw%

For the nominal 2 cps band filter of the Radiometer Wave

Analyzer, Model FRAZ, used in this study the integrals in expression

(B. 4) are
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(e 8]
I|Hfinml2dw::28.4 rad/sec
- 00

and

[00]

j(w_wC)ZIHF(inZdw = 4600 (rad/sec)3 .
-00

Substituting these values and expression (B. 7) into (B. 4) and neglecting
all but the first two terms of (B. 4) gives
4600

2
Tout = Sin(wc)(28'4_ 77
B1¥y

(B. 8)

This is a second order approximation to the mean squared output from
the filter when the center frequency of the pass band is set at the reso-
nant frequency of a lightly damped system described by expression

(B. 6).

Note from expression (B. 8) that the magnitude of the second
term relative to the first depends only on the product ﬁlwl. It was
noted in Section B. 1 that this product is the half bandwidth of the linear
system. That is, Zﬁlwl is the width of the frequency range over which
the response power spectral density is above the half-power level.

By assuming that the geometry near the peak of a power spectral
density curve for a nonlinear system is similar to that of a linear sys-
tem, one can use expression (B. 8) to approximate the error in deter-
mining the spectral density of the nonlinear system. To do this one
would say that an equivalent Blwl ‘for use in (B. 8) for the nonlinear
system was one-half the bandwidth between the half-power points of

the nonlinear system power spectral density.
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The sharpest peak plotted for a spectral density curve in
Chapter 2 is that of curve G in Fig. 17. Noting that this is a plot
of ,/S';, the bandwidth between half-power points of Sx is about 58 cps.
Thus an equivalent value for ﬁlwl for use in expression (B. 8), accord-
ing to the above assumptions, is 58w =182. Using this value predicts
an error of about 0. 5% in determining the peak value of S, or about

0.25% error in determining the peak value of V/SX' plotted.

B. 4. Summary of Overall Accuracy

The accuracy with which the analog computer circuit represented
the differential equation of the bilinear hysteretic systcm was discusscd
somewhat in Appendix A. 1. The nominal accuracy of each of the re-
sistors and capacitors used in the circuif was 1%. These component
errors could combine to give 2% to 4% maximum errors in m, wo and
B, @s predicted from the nominal values of the components. Experi-
mental measurement of linear system response to harmonic excitation
was used, however, to determine m, W, and [30 each with an accuracy
of about 1%.

Two particular sources of inaccuracy in the elasta-plastic func-
tion were mentioned in A. 1. The leakage current through the feedback
transistors resulted in an effect similar to that of viscous damping,
particularly at low frequéncies. At resonance, however, the damping
contribution due to this leakage was seen to be like approximately 0. 01%
of critical viscous damping. At low frequencies the leakage current

apparently affected the system transfer function by about 0. 025% at
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5 cps, and by about 2. 5% at 0.5 cps. It, thus, seems that the inac-
curacy due to the leakage currents was negligible compared to the
overall system accuracy.

The second source of error in the elasto-plastic function was
the ovecrshoot at initiation of yield at high frequencies, resulting in the
inclusion of too much area in the hysteresis loop. Analysis of a
periodic test case and an approximate application of the results to the
system with random excitation indicated that the additional area due to
the overshoot was probably less than 0. 5% of the area of the ideal hys-
teresis loop for the worst cases in the study. It, thus, appears that
the response of the analog computer circuit as used for the excitation
used should check that of an ideal bil’inear system within about 2%.

The remaining sources of error are various types of possible
error in measuring the response of the analog computer circuit. Sec-
tions 1, 2 and 3 of this appendix discuss some limitations on the
accuracy of the equipment used. In addition to these limitations there
is a limitation to the accuracy with which one can read the meters of
the various pieces of equipment.

In Section B.l it was shown that the equipment used was capable
of determining the rms response values shown in Figs. 9-12 with an
expected error of about 3. 5% for the highest point in both Figs. 9 and
11 and less than 2% for all other points in the figures. Since the
accuracy with which the dial of the voltmeter can be read is about 1%

it seems that the error in measuring the rms values should not have
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exceeded about 3% except when the yield level was very high. Allowing
for a possible 2% error in the functioning of the analog computer
circuit this predicts less than 5% deviation between the rms values
presented and those for an ideal bilinear system, except that for the
previously mentioned instances of a very high yield level the error
may have been as much as 6. 5%.

In determining power spectral density it is possible to have an
error due to inaccurate determination of the rms output from the
narrow band filter, and another error due to the variation of the spec-
tral density over the finite bandwidth of the filter. This latter error
is most serious near a sharp peak in the spectral density curve. It
was shown in Section B. 3, however, that the error due to the finite
bandwidth of the filter was only about 0. 25% for the sharpest peak
plotted in Chapter 2.

The error due to the sampling time used in determining the
rms output from the narrow band filter can be estimated by using ex-
pression (B.2). Since the filter had a bandwidth which was narrow
compared to the bandwidth of the signals for which the power spectral
density was determined one can assume that the power spectral density
of the filter output was like the curve of 'HF(iw) ' 2 plotted in Fig. 13 of
Chapter II. From this curve one obtains a bandwidth between half-
power points of about 4 cps. This gives a value of b =4t for use in
expression (B.2). The sampling time T was 100 seconds, and the re-

sulting expected error in the rms output level of the filter is about 1.5%.



-176-

The total error in measuring the \/'S;1 values, due to filter
bandwidth, finite sampling time and human error in meter reading
probably did not exceed 3%. With a 2% possible inaccuracy in the
analog computer circuit this predicts an error bound of about 5% for
the square root of power spectral density values reported in Chapter II.

Some of the points on the probability distribution curves have
the least accuracy of all the results obtained from the analog computer
investigations. As explained in Section B. 2 the error in determining a
probability value of ¥ =0. 002 was probably near 10%. Using expression
(B. 3) to approximate the dependence of the error on the level of P being
determined predicts an error of about 2% in determining a value of
P=0.05. Thus the overall accuracy of the probability values, including
the errors of the analog circuit, probably varies from about 3% for large

values of P to about 12% for P =0. 002.
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C. SIMPLIFICATION OF EQUIVALENT
FREQUENCY EXPRESSION

Expression (3. 17) can be rewritten as

w
(...?_9_) :_.Z_T +2—&T +MT _MT
wo XZ 1 )\2 2 11_)\2 3 11_)\2 4
where
1
2 .
TIZJZ3 z /)\dz
0
oo}
2
TZZJZ?’ 2 Mgy
1
P 2
B -1 2, 3 -z"/\
T3—jcos (l—g)z e dz
1
@

2
T, = | (z%-22)/zTe " Ma,

Pt €y

Performing the integration indicated gives

1

2
Tl = —-)Zi (zz-i- )\)e_z I
0
2
A X -1/
—-—‘2———2—(1+->\.)e .
Similarly
A -1/X
TZ :§(1+7\)e

(C. 1)
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Integrating T3 by parts gives

T, = wane AL [ ko2 /x) dz
1 Jz=T

Integrating by parts again, with the integrand divided as shown, yields

(0 8]
T, = n%(lm)e"l/"-xf
1

2
LZ+—2§ - 1) 2T e gy

z

Substituting the new forms of T, T2 and T3 and the original form of

T , into (C. 1) gives

4
v 2 @ 2
(%) _q.2(1-a) I[——+K+4z(z 1)] /o T e 2 /My (c.2}
e} TA 1

but
loo) 2 o 2
J(z-l)?)/zze-z Maa = 2J/z_-T"efz/)‘dz
1 1

and substituting this expression into (C. 2) gives

Yeq 2(1- cx T -2%/
( J)q> -1 I(—+4x) e dz . (C. 3)
O TT 1

Or, integrating by parts,

T4
2 /z-1 dz J

oo o)
J\ )\Ze-& /X "(4)\
1

which gives

w2

o
K.ﬂ) =1- 8(11_”‘) I /[z-T'e /)\dz. (C. 4)

L
o]
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The integrand in this expression decreases quite rapidly as z in-
creases making numerical integration of (C. 4) a practical method of
obtaining weq'/wo for a given value of A.

It is possible to expand the integral of (C. 4) in an asymptotic
expansion which can be used to determine weq/wo for large values of

)\ without numerical integration. To do so define a term

8

H

H
-
N

W 1
=

o}

N

This can be rewritten as
w 2 (o'v] i
/z—['e-z I\ 1 (zz
T5 = | T\ dz
1 z i=0

or, reversing the order of summation and integration,

@ 2
T =Z‘ 1. z(21-3)\/z-1 e 2 /)\dz

2
L] e,

i=2 it )\]

(s o) 0 0) ) 2
+z 1 Jz(21-3)\/—zTPe-z Mgy . (C. 5)
1

Note that the first integral on the right hand side of this expression is

exactly the integral in expression (C. 4).



-180-

The integration in the definition of the term 'I‘5 can be per-

formed exactly by noting that

J‘( 1y3/2 é= dz

1 Z

Integrating by parts on the first integral and collecting terms gives

3
!
| —
r—-€—78
(o N
N

But the integrand of this expression is the exact differential of

Ztan—l‘/z—I. Thus

_m
T, =3 - (C. 6)

Expressions (C. 4), (C.5) and (C. 6) can now be combined to give

2 1)
W
Y| s e mm ey, e
o T ')\
=2 1

A term /T+y’ can be expanded in a power series about the

origin to give

/\
™| W
~

T

-y

where [' denotes the gamma function.

N\w
—.

The gamma function has the

property that T(a+1l) =al'(a), so that
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Writing

the power series expansion can be used to give

() (-1))

\ 1)

Substituting this expression into (C. 7) and rearranging the order of

f‘PZ

the operations gives

w 2 oo T (1'0
(Teo‘l = u+8(:a)z( Ly (< )J/ }{I—ZK (C. 8)

J‘ (2i-j- 5/2) —z/ Nz .

K, (C.9)
l
X
For A>>1 the terms Ki can be approximated as
1
Kl’*—l'_“ (2i-j-5/2) -z/xd ‘[ (2i-j- 5/2)d] (C. 10)
|)\. 0
The second integral in this expression gives
‘f (2i-3-5/2)4, _ ——7- for 2i-j-3/2>0. (C.11)

0
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The condition 2i-j-3/2>0 is satisfied for j=0, 1,2 for all values of i
included in (C. 8). The first integral in (C. 10) is included in the

definite integral tables of W. Grobner and N. Hofreiter. Application
42)

of their result! gives

[e o)

Y s 2 .
(2i-j-5/2) -27/h ;_ _1.,(i-j/2-3/4) (. 3

I & g =001 £ - 9)

0

for 2i-j-3/2>0 . (C. 12)

Thus for 2i-j-3/2>0 and A>>1 expression (C. 10) gives

32304 5 3 1
i ( 4)-(21—_j—%>i!?\i

T (C. 13)

The magnitude of K, for 2i-j-3/2<0 can be bounded as follows:

QO
K, <——li Iz(21"3'5/2)dz
L |

which gives

K, < — "L for 2i-j-3/2<0 . (C. 14)

i, 1( .. 3)
itA\2i-j-5
2

Using expressions (C. 13) and (C. 14) to determine K, and neglecting
terms of order }\—2 in expression (C. 8) gives |
w_ |2 -3/4 3
—fq) .

W
[0}

8(1-a) 1“( 3/4
e ), S

4 Z P (i-5/4)
i!

i=2

7/4
}: TG- 7/4)} for A>> 1. (C. 15)
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L. B. W. Jolley gives a summation for a series very similar to

those in expression (C. 15), namely(43)
142 a(a+1)+a(a+l)(a+2) " _ b-1
b b(b+1) b(b+1)(b+2}) ' T b-a-1
for b-1>a>0. (C. 16)

Factoring a term of = I‘( > from each term of the first summation in
(C. 15) gives the form used by Jolley with b=3 and a=5/4. Thus
& -
i (1 3/4) -—T‘( ) :%T(Zla .

i=2
Application of (C. 16) to the other summations in (C. 15) yields

> T(1 5/4) _ 5F<4>
i=2

and

T(i- 7/4) T( )

1 .

Substitution of these values for the summations in (C. 15) gives

2

w \

eq 8(l-a) | 1 ~(1},-3/4 1.(3Y,-5/4

w oo '6'P<4>>‘ 51‘(4)>\
1 -7/4
—8T<—))\ / il for A>>1, (C.17)

The values of the gamma functions in {C. 17) are(zg)
r(3) = 3. 6256

and

3) _
I‘(Z = 1.2254 .



