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ABSTRACT

The dynamic stability of single~- and multi-degree-of-freedom unbalanced mass
exciter systems is discussed. Previous work concerning this subject by A. Sommerfield,
Y. Rocard, R. Mazét, V. O. Kononenko, Y. G. Panovko and |. |. Gubanova is
summarized. A single-degree-of-freedom system consisting of a linear mechanical
oscillator with a rotating unbalanced mass connected rigidly to it is defined as the
basic single~-degree-of-freedom system. This system is mathematically equivalent to
the one used by Rocard in his analysis. The differential equations of motion for the
system are obtained by using Lagrange's Equations. Global stability, stability ‘in the
sense of Laplace, is proved using Liapunov's second method. Four separate local
stability analyses of this system are developed, two of which assume a constant angular
velocity, £, of the unbalanced mass and two which allow for periodic variations in
{2, These analyses are termed zero and first order respectively.

The first zero order analysis is based directly on the differential equations of
motion and the zero order steady state solution. The steady state torque output of
the vibration exciter motor and the steady state torque requirements of the oscillator
are obtained as functions of the operating frequency. Stability is determined by
examining the behavior of the system in the vicinity of the intersection points of
these two functions. The second zero order analysis examines the behavior of small
perturbations added to the steady state solution. The system is considered stable if
these perturbations disappear with time. The first first order analysis is a perturbation

type, but is based on a steady state solution which allows for periodic variations in .
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The second first order analysis is also based on the first order perturbed equations of
motion but is a Floquet type analysis. Validity criteria for the zero and first order
analyses are obtained, and the zero order region of validity is plotted graphically.
A representative set of systems is analyzed numerically, and the results are presented
in a figure showing the stability boundary as a function of the system parameters in
non-dimensional form.

Two distinct types of multi-degree-of-freedom systems are discussed. The first
consists of a single oscillator mass that is free to perform planar motion. It is shown
that when an unbalanced mass exciter with a uniaxial force output is mounted on the
oscillator in such a way that only one mode is excited, the problem reduces to the
single~degree-of-freedom problem. The second system consists of a series of linear
single-degree-of-freedom oscillators with an unbalanced mass exciter mounted on
one of them. The special case of a three oscillator system with equal masses is used
to demonstrate that, for systems with widely separated resonances, the "equivalent"
single~degree-of-freedom analysis presented by Kononenko is valid. From these
results it is concluded that, in any multi-degree-of-freedom system, an "equivalent"
single-degree-of-freedom analysis may be used to examine the stability of the system
near any resonance as long as that particular mode is the only one which is being
significantly excited.

Appendices covering the details of Rocard's analysis, ond of the unbalanced

mass exciters designed and built at the California Institute of Technology are included.
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I INTRODUCTION

In recent years ’rHere has been considerable interest in the dynamic properties of
large structures such as dams and buildings, and in their behavior under the forces
generated by earthquakes, explosions, and high velocity winds. This interest created
a need for vibration exciters capable of supplying relatively high level force outputs
at controlled frequencies. When a sinusoidal exciting force is desirable or acceptable
for testing, this kind of output may be obtained by means of a rotating unbalanced
mass. Such a device is called an unbalanced mass exciter.

A practical difficulty with unbalanced mass exciters, observed as early as 1904

0

by A. Sommerfeld' ’, is that local instabilities may occur in the operating speed of
such devices. Other investigators have shown that these instabilities occur near the
exciter-structure system resonance frequencies. In particular, it has been observed
that as the operating speed of an unbalanced mass exciter is increased through a
resonance region, a sudden jump to a higher operating speed may occur; similarly,

a sudden decrease in operating speed may occur as the operating speed is decreased
through the resonance region. Such frequency jumps may be merely annoying as long
as the vibration generator is small, but may become dangerous for large vibration
exciters. The danger arises when a jump causes the operating speed to exceed the
safe limits of the exciter. Possible consequences include damage to or disintegration

of the exciter, with attendant injury to personnel and damage to the structure being

tested.
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The problem of instabilities in the operating speed may be avoided by keeping
the unbalanced mass small, avoiding systems where large motions occur, and using
motors with the steepest possible speed-torque curves. A feedback control system
may be used to provide a very steep effective speed-torque curve. A good example
of this type of exciter system is the one designed and built by the California Institute
of Technology. Appendix Il describes the design and development of this machine.

Several investigators, including Y. Rocc:rd(z), V. O. Konenenko(s’ 4), R.
Mazé’r(s), Y. G. Panovko and I. I. Gubanova(é) have studied the problem of the
stability of the unbalanced mass exciter. They all agree that an unstable condition
may occur due to a nonlinear interaction between the motor driving the unbalanced
mass and the motion of the structure to which the unbalanced mass is attached. Each
of these men used the unbalanced mass system which he considered the most con-
venient. The three basic systems used, which differ only in detail, consist of rotating
unbalanced masses which are coupled to simple single-degree-of-freedom mechanical
oscillators. The differences are in the form of coupling used, which affects the
equations of motion, and in the location of the motor, which does not affect the
equations of motion. Rocard studied a system with a rigid coupling between the
rotating unbalanced mass and the oscillator mass, and with the motor mounted on a
fixed base driving the unbalanced mass through a flexible shaft. Mazét, Panovko,
and Guscmovq also used this type of system. Kononenko used a system with the
motor attached to a fixed base, but with the rotating unbalanced mass coupled to
the oscillator with an elastic element. The system considered in this thesis, which

will be called a Modified Rocard System, uses a rigid coupling, with the motor
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mounted directly on the oscillator mass. Figure 1.1 shows sketches of the three
types of systems, using the notation developed by their originators. Figure 1.2 lists
and defines the parameters and notation used in the following discussion.
The equations of motion for the Modified Rocard System may be obtained by

using Lagrange's Equation

=0 (1.1)

#G&)
where T, the kinetic energy, is
T=gmid + TmfGrbrcos) + Graine) |+ $08,  (12)
V, the potential energy, is
vV = %‘kxz + mgr(l + cosB), (1.3)
D, the Rayleigh Dissipation Funcfionm, is
D = 385 + 5T, - ), 0.9

and q, is the generalized coordinate. Applying Lagrange's Equation for the two

coordinates g, =x and q; = 8 gives the differential equations of motion

M + m)x + Bx + kx = mr(é2 sinf - écose) (1.5)

and

'+ mr2)é + mr(X cos® - gsinf) = fl-j[-gjé: (9 -ws) + T]. (1.6)



L'l 3¥INOI

SWALSAS WOQ33¥4-40-334O30-ITONIS JH1

WILSAS ONNINONOM 3HL WILSAS QAVIO0Y A3idIAOW IHL WILSAS VOO0 IHL

b L es {
s/\ﬁe
i




5

Figure 1.2

Parameters and Notation

the Rayleigh Dissipation Function, used in Lagrange's Equation

the voltage across the motor

the component of the acceleration of gravity acting in the plane of
rotation of m

the electric current in the motor

the sum of J' and the moment of inertia of the unbalanced mass m about
its center of rotation

the polar moment of inertia of the motor

the oscillator spring constant

motor constant relating input voltage to set speed

motor constant relating back EMF to operating speed

the unbalanced mass

the sum of m and M!

the oscillator mass

the generalized displacement, used in Lagrange's Equation

the distance between the center of mass of m and its center of rotation
the electrical resistance of the motor windings

the kinetic energy, used in Lagrange's Equation

the potential energy when used in Lagrange's Equation; the Liapunov

Function when used in the Liapunov Stability analysis
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Figure 1.2 (continued)

X the linear displacement of M', measured from the position of static
equilibrium

B the oscillator damping constant

£ the damping ratio of the oscillator

6 the angular displacement of m, measured clockwise from the vertical

R

T the motor output torque which is a function of 8 and W,

w the angular speed of the motor

w the set, or zero-load angular speed of the motor

Wy the natural frequency of the system

Q the ratio of W to W,

Q, the ratio of W to w

A dot over a variable indicates a derivative with respect to time. For example,

5<=-diand')€”d2x
dt 2 °

df




Defining
M =M +m, J=J'+mr2, w2=i, and 2Cw - B (1.7)
0 m o M
allows these equations to be put into the standard form
X + 20w x +w2x=1n—r(é25in9-écose) (1.8)
o o M ’
and
é+ﬂ‘J—E(sz cos® - gsinb) = %[—2—5 6 -w) +r]. (1.9)

This pair of differential equations is autonomous because it does not explicitly involve
the time variable t.

When the stability of the system described by equations (1.8) and (1.9) is
examined, the type of stability being considered must be specified. In general, the
three types of stability are Laplace Stability, Poincaré Stability, and Liapunov

Sfcbili’ry(s).

The least stringent type is Laplace Stability, which merely requires
that all motions of the system be finite. A system is stable in the sense of Poincaré
if its solution trajectory I' has the property that the positive half paths of all trajec-
tories that are once near it remain near it. Liapunov Stability is the most stringent
of the three, and requires that n-wﬁons which are once near to each other remain
close together for all future time, as functions of time.

Laplace Stability of the unbalanced mass exciter system may be established using

)

a technique developed by Liapunov Consider a function



—;— 2 -%JG + mrk0 cos® + m(Mx+Bx

2

+ mrb c059)2 + kx (1.10)

which, along the trajectory of the equations of motion, has the time derivative
= ..,ﬁ(2+-k—x2) —;—[«-—5 (9 w)+‘r] - —II:A—mrXé cosf , (1.11)

from which follows

V= -8(< +";<K"2) [_é. @ - ) +‘l’] + 2 mr|u|8] . (1.12)

Therefore, V < 0 for x, %, and 8 sufficiently large, but still bounded, and under the
restriction that BT/Bé < 0. Thus there exists a set, X, guch that for x, x, and 0 in
its complement, Xer V < 0. Hence all solutions are stable in the sense of Laplace
because they are ultimately bounded and lie in X, which is a compact set.

The previously publishéd work concerning the stability of an unbalanced mass
exciter system has been concerned with local stability. Local stability has been
interpreted to mean orbital, or Poincaré, stability, since an autonomous system of
this type does not possess osympfoﬁc, or Liapunov, stability.

In 1943 Rocard published an analysis of the stability of an unbalanced mass

2

exciter” . In that analysis he obtained the equations of motion by using Lagrange's
Equation and assuming a linear speed-torque curve for the driving motor. The

oscillator equation was found to be



¥ r 20w %+ wix =ML d g (1.13)
o o M 2
dt
A change of variables,
x =U, (1.14)

U+ 2@(.000 + woz = 'mMLcose. (1.15)

A solution, u, was found by slowly varying the amplitude and phase. The value of
u was substifuted into the motor equation, which was then averaged over one cycle
to eliminate the rapidly varying effects. This procedure resulted in Rocard's "steady

state” motor equation:

| 2 2 2 .
) - 2oe) T S|
(1 -3+ eroy?
(mr)2 Con4 :
+ X)0 = Kw . (1.16)
M 10 -0%% + eeny? :

Instability results when the inertia term, the coefficient of 8, becomes negative.
Solutions using the same method have been published by Mazé’r(5) in 1955 and by

Panovko and Gubanova ©) in 1964,

* Mazét and Panovko and Gubanova have shown that the right hand side should
have a minus sign. Appendix | contains a complete discussion of this analysis.
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In 1961, Kononenko published an analysis of the same problem(B). Instead of

integrating the equations of motion, he assumed a steady state solution for tha

oscillator equation of the form

x = A cos (6 +E), -g-\’;&= “Aw(p +E), %:e (1.17)

where A, E, and 0 are slowly varying functions of ¢. Equations for dA/dt, d=/dt,
and d8/dt were developed, and solutions were obtained using a perturbation tech-
nique. The resulting equations are linear with constant coefficients, and the Routh-~
Hurwitz criteria were applied to obtain the stability criteria for the system.

In addition to the simple oscillator, Kononenko discussed systems with both hard
and soft nonlinear osci"qtor springs. Multiple oscillator systems were also discussed
and it was shown that, if a system has well separated resonances, the stability of the
regions near each resonance can be investigated by using an "equivalent" single-
degree-of-freedom analysis. This latter idea is discussed more fully in the section

on multi-degree-of-freedom systems.
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Il THE SINGLE-DEGREE-OF-FREEDOM SYSTEM

In fhis study of the stability of unﬁalanced mass exciter systems, the usual
procedure of starting with the simplest case and proceeding to the more complex
cases is followed. The simplest unbalanced mass exciter system consists of a rotating
unbalanced mass connected to a single-degree-of-freedom linear mechanical
oscillator. Three systems falling within the limits of this definition are illustrated
in Figure 1. 1.

The following discussion and analysis applies to the Modified Rocard System.

It was shown in the introduction that the motion of this system is described by the

differential equations

X + 28w % + wozx - ﬂM'i(éz 5in@ - B cosb) @.1)
and
o m— o . _ -_'-L- BT . _
o + ] (R cos® - gsinf) = 2] I}a—é"(e ws) + T], (2.2)

It was also stated that T is a function of the operating speed 8 and the set speed W,
and that BT/aé must be negative to insure the Laplace stability of the system. In
any given situation the exact nature of T (é, ws) is therefore a function of the exciter
motor characteristics. Since speed-torque curves are continuous functioﬁs, they may
be approximated by piecewise linear, continuous curves. The stability analysis can
therefore be sirﬁplified by considering the torque to be a linear function of 8 and w,
near the operating speed 8. If some typical speed~torque curves, such as those shown

in Figure 2, 1, are examined, it is clear that, for some speed range from zero to a
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small enough 9qu, a straight line speed-torque curve is an approximation to the
physical situation. As a further example, consider the torque balance equation for

a shunt wound d. c. motor:

) E - K,0
18+ 7 =K I=K —¢— 2.3)

where K] and K2 are constants of the motor. For steady state operation, in which

8= 0, K2 8 is the back EMF, and E = K2 w,, the motor equation is
K, K
172 2
T = -
R (ws 9). ‘ (2.4)

The motor speed-torque characteristic is defined as ¥, where ¥ =K K2/R. Substi-

1
tuting info (2. 4) gives

T = Kw - 6). (2.5)

Equation (2.5) may be used to describe any linear speed-torque curve which has a
slope of magnitude ¥. Substituting equation (2.5) into the equations of motion (2. 1)

and (2.2), the simplified equations (2. 6) and (2.7) result:

X + ZCOJOR + wozx = —TML(éZ sind - 8 cosB); (2.6)
8 + DL (% cosd - gsinf) = —’}(ws - 6. 2.7)

It should be noted at this point that, in assuming a linear speed-torque curve,
no allowance is made for phenomena that limit the torque or pbwer output of a motor.

Two such phenomena that do occur are temperature rise and saturation. Temperature
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AND COMPOUND WOUND DC ELECTRIC MOTORS(?)

FIGURE 2.1
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rise is caused by the heating of the conductor wire by the current passing through it.
As the torque or power output of a motor increases, the internal temperature of the
motor also increases. When this temperature exceeds the maximum allowable value,
the insulation in the motor begins to degrade, resulting in lower efficiency and still
higher temperaiures. Continued operation of the motor at excessive power or torque
outputs will result in either shorting or an open circuit. The second phenomenon
which limits a motor torque or power output is fhé magnetic saturation which occurs
when the magnetic flux density exceeds the capacity of the iron core. When this
happens, the torque and power outputs level off. In actual testing, the average
operating torque is kept well below the saturation leve! of the motor. If this is not
done, the speed regulation becomes poor and it is difficult, if not impossible, to
obtain useful data. One other consequence of these phenomena is that they provide
an upper bound to the operating speed 6. This is in effect saying that from physical
arguments alone, the motions of the unbalanced mass exciter must be ultimately
bounded.

Four separate analyses of the dynamic local stability of the system described by
equations (2.6) and (2.7) are conducted here. The first two are based on the u;sump;
tion that the angular spéed w of the unbalanced mass is a constant. These are called
zero order analyses. The last two, which allow for periodic variations in W, are
called first order analyses. In the first zero order analysis, the Torque-Slope Analysis,
the assumed steady state solution is used directly in the equations of motion to obtain
the average speed-torque curves for fhé system, and the stability of the system is

derived from these curves. The second zero order analysis is a standard perturbation
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type in which the behavior in time of the perturbations is used to determine the
stability of the system. The third analysis is a first order version of the perturbation
analysis. The fourth analysis is also based on the perturbed qucﬁons of motion, but
employs a Floquet type analysis to determine the stability of the system. The advan-
tage of this Floquet type analysis is that it will detect instabilities caused by any
perturbation, rather than just those specific ones allowed for in the other perturbation
analyses. Resulfs obtained using the various analyses are presented in a section

following these analyses.

Torque-Slope Analysis:
This analysis is based on the assumption that the speed of rotation of the

unbalanced mass is constant. Mathematically this means that
=wt, 6=w 6=o0. (2.8)

Using equations (2. 8) in the differential equation of motion, (2.6), results in a

specific differential equation of motion

2

% + 2Lw % + wozx = % w” sinwt 2.9)
which has the approximate solution
x = Asin(wt + ¢) (2.10)
where
_ mr 02 _ a1 -2t
A=l =23 ) KA U el
(1-99%+2e9) 1-0
and @ =, @2.11)

[e]
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Substituting equation (2. 10) into (2.7), using the relations (2. 11), and averaging

the resulting equation over one cycle gives

w m2r2 ﬂs
o

KQ - Q) = . 2.12)
s M 1-022 + 2t0)?

The left hand side of this equation is the average torque produced by the motor, and
the right hand side is the average torque required by the oscillator. Figure 2.2
shows a plot of the average oscillator torque and of a family of average motor torque
curves for various set speeds {);. Examination of this figure ;hows that, if the maxi-
mum possible torque output of the motor is less than the torque required by the
oscillator at resonance (§ = 1), the operating speed & will always remain less than
unity even though the set speed £  is made very large. However, if the maximum
motor torque available is greater than the torque required by the oscillator at
resonance, the operafing speed can increase as Qs is increased up fo some limiting
value which is appreciably larger than the resonance frequency. We recall that this
limit has not been included in the mathematical analysis.
Two questions must now be asked regarding the approximate solution:
1) For what range of the parameters is the solution valid?
2) For what range of the parameters is the solution locally stable?
Consider the question of the region of validity. Assuming for reasons of con-

venience that the mass is rotating in the horizontal plane, equation (2.7) becomes

16 + }{(9 - W) = -mrX cosf. 2. 13)
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Substituting the approximate solution for x (equation (2. 10)) and the assumed value
of 8 (equations (2.8)) into the right hand side of this equation, the value 8 = wt + P
into the left hand side, and choosing @ equal to its average value so that ¥ (@ - ws) =

‘ (l/2)mrw2Asin¢ results in the equation

JP + K =~;-mrw2A sinQwt + ¢) 2. 14)

where ¥ is the "distortion" in the 8 variable. This equation has a solution of the

form
P = Bsin(2wt + 8)

where
2 A3
) (D)

2
\/(—i-‘—) + (200)2 V'(l -0%%4 ooy

(o]

(2. 15)

The magnitude of B is the distortion amplitude on the 8 variable. The original
assumption that 8 = wt implies that B =0, so the approximate solution may be con-
sidered valid as long as B << 1. This is the primary test for the validity of the
solution. The magnitude of B may be estimated by considering the worst of all pos-

sible situations, that one where § is identically one, At this point

2

m mr 1
M 2
L \/’ * (2wao>

1

B@)| 0. = BO) 2.16)

max
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. Local stability is examined by means of the speed-torque diagram of Figure 2. 2.
Consider first the case in which QS is such that the motor speed-torque curve inter-
sects the oscillator speed-torque curve at only one point, e.g. where Qs = and
) =Q3. The operating speed is the { defined by the intersection of the motor and
oscillator curves. [f the operating speed € is perturbed by a small increase, A,
the oscillator requires more forque than the motor can supply and the operating speed
tends to decrease back to £2. Similarly, if the operating speed is decreased to § -
A8, the oscillator requires less torque than the motor is producing and the system
tends to return to the operating speed €. Thus, the system tends to cancel any
perturbations in £ and is therefore stable.

Consider now the case shown in Figure 2.2 for Q= &5 in which the motor and
oscillator curves intersect at three points. It is readily seen that small perturbations
in the operating speeds at points 1 and 3 are cancelled in the same manner as for the
single point of intersection when 2 =Q4. However, a small perturbation in € at
point 2 has the opposite effect. A small perturbation tends to grow in magnitude
rather than to decrease, and therefore the system at point 2 is unstable.

This analysis shows that an unstable region can exist for operating frequencies
just above the system resonance frequency. Instability will not occur if the motor
characteristic X, which is the magnitude of the slope of the motor speed-torque
curve, is greater than the magnitude of the maximum negative slope of the oscillator
speed-torque curve. Thus, the minimum value of X required for the complete stability
of any given system may be obtained by determining the maximum negative slope of

its oscillator speed-torque curve.
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Perturbation Analyses:

Steady state solutions, to which small perturbations are added, are assumed in
these perturbation analyses. The stability of the system is investigated by determining
the behavior of these perturbations with respect to time. Defining x_ and 8 to be
the assumed steady state solutions of the differential equations of motion, and £ and

M to be small perturbations, the relations
x=xo+E and 9=90+n (2.17)

are obtained. Substituting these relations into the differential equations of motion of

the system, (2.6) and (2.7), gives the perturbed equations
Ev2tw é + w26 ="0T00 748 n)sind_ + @ 21-7) cosd] (2.18)
o (o -M[ o TP,M) sinG, o =T cos :
and

B+ %1’7 - %[xo sinf_ + g coseo]ﬂ = -% gcose"3 . 2.19)

To solve for the perturbed variables £ and 7 a vector 2 is defined as

e
'3 z

: = = |2 (2. 20)
i 3
n z,

Using this definition, the perturbed equations, (2.18) and (2. 19), may be written in

the form

— = Alt)z; A(r +-2wl) = A(). (2.21)
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Equation (2.21) implies the existence of a solution of the form

£ = e'uf¢ (t) ¢ (t), ¥ (t) periodic
; in t with period (2.22)
n = el.ti‘w (t) 2T/w or T/w,

where 4, the characteristic exponent, is much less than unity. The values of ¢ (t)

and ¥ (t) may be expressed in series form as

Asinwt + Becoswt + Dsin2wt + E cos2wt + ...

¢ ()
(2.23)

P{#) = C + Fsinwt + G coswt + ...

The zero order solution is obtained by assuming a uniform rotafional velocity for
the unbalanced mass. In the first order solution a periodic component is superimposed

on this uniform rotational velocity. These analyses are set forth below.

The zero order perturbation analysis assumes that

9 = wt and X, = Asinlwt + ¢ @) ]. (2.24)

o

This is the same steady state solution which is used in the torque-siope analysis,
and the validity discussion used there applies here also.

Carrying the stability analysis to the same order as the assumed steady state

solution gives
o) = Asinwt + Becoswt and ¥() = C (2. 25)

where A, B, and C are constants. Substituting the values of the perturbed variables
into equations (2. 18) and (2. 19) respectively, and setting the coefficients of like

trigonometric terms to zero, gives three algebraic equations. Two of these come
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from the sine and cosine coefficients of the first equation, and one comes from the

constant coefficient of the second equation. The three equations are:

(1-9 + 20 ")A-29(1:+._._)|3-2""Q HE =0

M w
2 o2
ZQ(C+_£—A+(]-Q +2C“£‘B“‘%—C=°
[o] (o]
(2.26)
£ oA Q2B+ J(‘“2+ LI
W T2 "m—rw) mrw w)
[o] (o] [o]
4 2
mr§) 1 -0 _
+ ZM( 2.2 2)C'°'

(1 =85 +@2LQ)

A non—friQiql solution to this set of equations is guaranteed by setting the determinant
of the coefficients of A, B, and C equal to zero. This determinant, when expanded,
yields a fourth order equation in j4. However, the constant term is identically zero.
Thus we have a zero roof»qnd a third order equation in 4. The zero root is expected,

an

since the system is nonlinear, autonomous, and has a periodic solution Setting
L equal to zero in this third order equation gives the boundaries between the stable
and the unstable regions. The equation for the stability boundaries is

A =0

where

2
1-8% +(ZCQ)J

4
N )
o]
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In pactice the value of A is computed for any given system as a function of ,
and the zero crossings determine the stability boundaries. The value of A may be
plotted as a function of & to give a qualitative idea of the degree of stability the
system has at any given value of €2.

A variation on this method of determining the stability boundaries is to assume

that
[ & ) /zl\ /B] sinwf+0£lcoswf\
é z, > o /32 sinwt + 0, coswt > ,
Z = n >=< g = e ﬂ s (2.28)
n z a
L) U \ 4 )

where again i is very small compared to unity. The equation dz/dt = A (1) Z is
expanded into a set of four equations using (2.28). In this process a point is reached
at which iz and 24 appear together in two of the equations. It is then possible to
substitute directly the values of the z, and z,, or fo combine the two equations in
such a manner as to produce two new equations, neither of which contains both 22
and 24. The values of the z, and ;'i are then substituted into the resulting equations.
The remainder of the procedure follows closely that used before. The coefficients of
the various trigonometric terms are set equal to zero independently. The parameters
Olz, 32 , and a, are eliminated, leaving three algebraic equations involving & 1"

/3] , and ag. Setting the determinant of the coefficients of these parometers to zero
guarantees a non-trivial solution. The components of this determinant depend upon

which of the two techniques mentioned above is followed. The first technique
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produces a determinant which is identical to the one obtained by the previous method.
The second technique yields a slightly different third row in the determinant. This
difference results in part from neglecting (m r)z/MJ compared to unity, and in part
because the equations used to form the determinant differ due to the separation of

22 and 2'4.

In the first order perturbation analysis, periodic variations in the € variable are

taken into account by assuming that

0 = wt + € sin (Wt + 6]) + €, sin 2wt + 62), (2.29)

where the constants €; and €, are small. 8 may be written in the equivalent form

6 = Wt + e, sinwt + d, coswt + e, sin2wt + d, cos2wt (2.30)

1 1 2

where <:II =€ sinG] , e € cosd

1 1’

d2 =€, sinﬁ2 Py =&, c0552 .

Computational difficulties caused by the sinf and cos8 terms are resolved by using

(12) zsinz

. . . . i .
the Jacobi-Anger relation" ~’, This relation expresses e as a series of Bessel

Functions. Using the Bessel Function expansion for small arguments, obtain

d e d e
sinf = _51 + (l +T2 sinwt + —éz—cosw'r + -z—lsinZwt
4 &) ds 2
+ =2 cos2Wwi + '2—sin3wi' + 7c053wf + 0(€7) (2.31)

and
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d e d
cosf = -—7]— +—22-sinwt + (1 - 72—) coswt - —2]—sin2wt
e 4y °) | 2
+ Tcos2wr - —2—sm3wt + Tcos3wl' + 0(e7), (2.32)

Substituting (2.30) into equation (2.6) and using (2.31) and (2.32) gives an

approximate equation of motion which has the solution

X = A1 sinwt + B, coswt + A2 sin2wt + B2 cos2Wt

1

+ A3 sindwt + B3 cos3wt, (2.33)
where
B 1
s g0 3wty
oM 1-05% + e

—

2, 1 ] l
B = mrQ2 (]"Q)—de—(ZCQ)(]+_2—e2)

1 Mol (1 -9%2 + 2ea)? 1
. 2me0? (1-40%e, + 420)d ]
2 M (1n4922+(4m) |

-

i 2
2me02 | (1 -4094, - 4LQ)e,

| (1 -40%2% + ura)?

- 2 -
9mrQ2 (1-98 )e2 + (6C9)d2

3 2™ L 90?4 ray? |
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2
_ omen? [ (1-909d, - (6L0)e,
3 2M

(1 -90%2 + 6ea)?

The range of validity of this approximate solution may be examined by rewriting

equation (2.7) in the form

J8 + }£(9 -w) = mr(g sin® - X cosH) ' (2. 34)

and substifuting the approximate values of x and @ from (2.30) and (2. 33), denoted
here as X, and 60, into the right hand side. If we let 6 =6 _ + ¥ in the left hand
side, the amplitude of ¥ will be the primary test of the validity of the approximate
solution. As long as the magnitude of ¢ i§ much smaller than €y or €5, the solution
is valid. Taking ¥ to contain only components with frequencies higher than those
included in the approximate solution for 8, this procedure gives values for dy, ey,
dy, and e, as functions of the other parameters of the system.

The examination of the local stability of the approximate solution Follbws the
second method described in the zero order analysis. Starting from the same set of

perturbed equations, (2.18)and (2. 19), and using (2. 20), it is assumed that

Zl\ /3]sinwf +Ot] coswt +§b]sin2wt +¢]c052wf\
zy $ " /32sinwf + @, coswt + zbzsinZwt + ¢2c052wf $
z =§ z3 - < ds + ﬁ3sinw’r + Otscoswf (2"35)
z a, + B,sinwt + &, coswt
4 4 4
\ / \ 4 y,

This value of Z is substituted into the perturbed equation (2.21). The resulting vector

equation is divided into its four component scalar equations, and the coefficients of
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like trigonometric terms are set equal to zero in each equation. In doing this the
relations z'I =z, and i3 =z, are used, all terms of 0 (62) are neglected, and it is
assumed that lu,/wol < . This procedure results in a set of seven equations involv-
ing the "variables"” Ol] p ﬁlh, ¢] , 'd)] LY 33, and coefficients made up of the
system parameters.

Again, setting the determinant of the coefficients equal to zero guarantees a
non-trivial solution. As before, the "stability determinant” is expected to have a
zero root. Consequently, the constant term in the determinant expansion should be
zero. It turns out that the root is not identically zero because of the approximate
nature of the solution, but it is of second order. Thus the stability of the system is
again governed by the coefficient of the [ term in the determinant expansion. This
coefficient is obtained by expanding the 7 X 7 determinant, and retaining only those
terms which involve the first power of . All terms involving powers of € higher than
the first are also neglected.

This procedure produces an expression which, when set equal to zero, determines
the values of the system parameters for which a solution exists. Because of its com-
plexity, this expression was programmed for solution on a digital computer. The
actual computations were performed by specifying a particular physical system and

then sweeping £} through the regions of interest.

Floquet Analysis:
This analysis is based on the same steady state solution that was used in the first

order perturbation analysis. The stability of the system described by equations (2.6)
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and (2.7) is examined by considering the perturbed equations in the form used above,

namely

dz _ - 2m\ _
i Az ; A(t t=5) = A(T)A. (2.21)

Equation (2.21) is a set of linear first order differential equations with periodic

(11)

coefficients of period T=27/w. G. Floquet has shown that for a set of equations

of this type there is at least one non-zero Z such that
ZE+T) = AZ@F); M AO0. (2.36)

The number X is called a characteristic factor of the system (2.21), and may be real
or complex.

Because the unperturbed system is autonomous and is known to have a periodic
solution of period T, the perturbed equation (2.21) will also have a solution of period

T(”). This implies that A = 1 is one of the characteristic factors of the perturbed

(11)

system. The following theorem, attributed to A. Liapunov' '/, defines the stability
of the unperturbed system in terms of the characteristic factors of the perturbed system.
In the notation used above, the theorem states: If all but one of the characteristic
factors of the perturbed equation (2.21) have magnitude less than unity, then the
periodic solution of the unperturbed system has asymptotic orbital stability and
asymptotic phase (Poincaré stability).

To apply this theorem to the problem under discussion, consider the fundamental

set of solutions of equdﬁon (2.21), Z (), where Z(0) = I, the identity matrix, These

solutions satisfy the equation
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dZ ‘ A
pralie AW)Z, (2.37)
and also
ZE+T)=CZ®), (2.38)

where C is a constant matrix. Setting t =0 in (2.38) gives

Z(T) = C1 (2.39)
and therefore

cC=2z(.

The eigenvalues of the Z (T) matrix are the characteristic factors of the system (2.21).
Thus, by the theorem stated above, the unperturbed system will be sl‘ab!e if all but
one of the eigenvalues have magnitude less than unity. The remaining eigenvalue
will be equal to unity for the reasons stated above.

The matrix Z (T) is obtained by integrating equation (2. 37) numerically from
t=0tot=TwithZ(0)=T1. The eigenvalues of Z (T)are then computed using
standard techniques to determine the stability of the system at the point in question.
Because of the length and complexity of this operation, this analysis is feasible only
if a digital computer is available to perform the computations.

The primary advantage of this Floquet analysis is that as long as the assumed
steady state solution is valid and accurate, any variations from this solution will
appear as an instability. The primary disadvantage is that the analysis must be carried

out numerically for each individual case.
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Stability Analysis Results:

Any discussion of the results obtained from the analyses presented above must
consider three separate points: 1) The region of validity of each analysis; 2) the
relative advantages and disadvantages of each type of analysis; and 3) the numerical
results obtained from each analysis. The discussion of the region of validity is sim=-
plified by using the classification of the analyses developed above, which is on the
basis of the steady state solution that is assumed in each. Those analyses which
assume a constant angular velocity for the unbalanced mass (8 = wt), namely the
torque=-slope analysis and the zero order perturbation analysis, are zero order analyses.
The first order perturbation analysis and the Floquet analysis, which are based on a
non-uniform angular velocity of the unbalanced mass of the form 8 = wt + € si‘n (wt
+ 5]) t€, sin (2 w’r+52) are first order analyses,

The criterion for the validify of the zero order analyses is developed in the
discussion of the torque-slope analysis. |t states that the magnitude of the distortion

amplitude B (€2) must be much less than unity, i.e.

[B@| < 1.0 (2. 40)
where

2

_ m mr

0 (2.16)

]B(cz) !

1
max M J 16C 2
I+ G2
| 2on

For computational purposes, inequality (2.4) has been taken to mean

by < o.1. 2. 41)
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A conservative estimate of the boundary of the region of validity may be obtained by

substifuting |B (§2) for [ B (§2)[ in the inequality (2.41), and defining the bounda
max q Y ry

as

‘B(Q)l = 0.1. (2.42)

max

It is convenient to set the value of the non~dimensional parameter m r2/J equal
to its maximum possible value, unity. This is justified on the grounds that it gives a
conservative estimate of the boundary of the region of validity and that, for the cases
invesfigatedb in this thesis, this parameter had no effect on the stability of the system.
Substituting this value of m r2/J into equation (2. 16), substituting the result into:

equation (2.42) and rearranging the terms, results in the equation

aE =16\ + (=) (2.43)

which defines the boundary of the region of validity for the zero order analyses. A
plot of this boundary, with m/MT and ¥/m r2 w, as coordinates is presented in
Figure 2.3.

The validity of the first order analyses is also determined by computing the mag-
nitude of a "disfprfio.n amplitude, " the computation of which is a long and tedious
process. |f the first order analyses prove to be invalid in any given case, a new
analysis based on a more complete steady state solution must be developed. Most
cases of practical interest today will lie within the region of validity of either the

zero or first order analyses presented above.
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It is possible that the Floquet analysis may not be valid for certain cases even
though the "distortion amplitude" test indicates validity. This lack of validity is
characterized by the failure of the first eigenvalue of the solution matrix to hold
constant at unity. This complication appears to be due to the facts that the gener-
ating solution is not exact, the numerical method of solution introduces some approx-
imations, and the changes being observed in the eigenvalue are of magnitude less
than 0.1%. [t was found that this problem becomes significant for values of m/M
greater than 0.01, which is not common in test situations.

| The type of analysis required for the investigation of the stability of any given
system is determined by the parametric values of that system. Where applicable,
Figure 2.4 may be used directly. Otherwise, a zero or first order analysis must be
selected. Whenever it is valid, a zero order analysis is preferable over a first order
analysis because of its relative simplicity and ease of application. The choice of
which zero order analysis to use is a matter of personal preference. If a first order
analysis is indicated and deemed desirable, a digital computer based analysis must
be employed. The first order perturbation solution requires significantly less machine
time than the Floquet analysis and is therefore more desirable.

The numerical results obtained using the various analyses are shown in Figure 2.4
with £ and ({/m r2 ws)/ (m/M) as coordinates. The parameter m r2/J was varied over
the range 0.1 to 1.0 and had no significant effect on the stability of the cases studied.
The other parameters were varied over the following ranges: m/M from ‘0. 0001 to
0.01; € from 0.003 to 0. 1; and ¥/m 2 w, from 0. 13 to 83. The results of any two

analyses are considered to agree if the values of all the parameters under consideration
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agree to two significant figures. Using this criterion the speed-torque anqusi§ results
agree with the zero order perturbation analysis results. The zero and first order per-
turbation analysis results likewise agree in the region in which they are both valid.
Differences occur between the first order perturbation analysis results and the Floquet
analysis results when the eigenvalues of the solution matrices in the Floquet analysis
are close to the limits of validity described above. These differences increase as the
mass ratio m/M becomes larger than 0.01. Within the stated limits of validity, the
various analyses agree to within one unit in the second significant figure.

The maximum distribution of 15% found in the data points of Figure 2.4 can be
attributed fo the fact that the parameters were computed to only two significant
figures. The dashed lines in Figure 2.4 on each side of the solid line bound the region
of the mean value of (X/m r2 wo)/(m/M) + 10%. This is the maximum variation that
arises from computing the parameters to only two significant figures. All of the valid
data points obtained from the various analyses lie within this region.

It is evident from Figure 2. 4 that the stability of a system is increased when either
€ or (¥/m r2 w,)/ (m/M) is increased. Since the damping is usually a fixed parameter
of the system, the easiest and most practical method of increasing a system's stability
is to decrease the size of the unbalanced mass m, which also decreases the vibration
generator output force. A second alternative is to increase the magnitude of the
motor characteristic ¥, which may be done by changing motors, changing drive gear
ratios, or by the use of a servo control system. Further measures would require a
redesign ofAl'he vibration generator with a choice of X such that all desired combina-

tions of m/M, W, , and L lie in the stable operating region. The use of some type of



36
servo speed control system, such as is used in the machines developed at the California
Institute of Technology*, will be needed for systems with a broad range of require-

ments,

* Described in Appendix Il
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I MULTI-DEGREE-OF~FREEDOM SYSTEMS

The single~degree~of-freedom systems discussed in the preceding chapter can be
expanded into a multi-degree-of-freedom system in several ways. One way is to
allow the oscillator mass to move in two or more directions. Another is to combine
a group éf simple oscillators to form a multiple mass system. Examples of both these

types of systems are discussed below.

Single Oscillator Systems:

One logical extension of the single-degree~of-freedom system is to allow the
oscillator mass to move in a plane. Such motion is two dimensional and has three
degrees of freedom, two translational and one rotational. The differential equations A
of motion can be found by using a method similar to the one used for the single-degree-
of-freedom system. However, the equations are so unwieldy that it is necessary to
make a number of simplifying assumptions in order to solve them. Theséf assumptions
limit the validity of the solutions to a small number of cases of limited value.

A similar, often used system, which is more easily analyzed in a general manner,
is shown in Figure 3. 1. The unbalanced mass exciter in this system uses two equal
contra-rotating unbalanced masses to produce a uniaxial force.

As was done in the single~degree~of-freedom case, the differential equations of
motion were obtained by using Lagrange's Equation (1. 1) where the kinetic energy is

given by
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2
1

T =—;M'(>'< +x2) +.l [622+2x Grcose-2x x3(o smx3

+a, cosxs) + 2>'<2>'<3 (c:x.| cos x5 - a, sinx3) +26r cose;c3 (a] cos Xq

) 2, 2 2 1,42 1 .2
—<:|25mx3)+x3 ((:1.l +a, )] +=1'0 +—2-J Xq

5 @.1)

the potential energy is given by

_ 1 2 2
=3 (k S k2X2 + k 3%3 ), (3.2)
and the Rayleigh Dissipation Function for the system is
_ 2 . 2 2 :
D = —2"(/3 I +ﬁ2x2 +ﬁ3x3 + X0 -2}£6ws). (3.3)

Applying Lagrange's Equation with these values for T, V, and D gives the

following differential equations of motion for the system:
MSZ] .+ /3];(] + k]x] = m['>'<3 (a] sinx3 +a, cosx3)
+ % 2(0 COS X, = Qn SiNXn) (3.4)
3 V1 3 2 3]’ ’
MX, + B,x, + kox, = m[rw2 sinwt - X, (a, cosx, ~ a, sinx,)
2 272 272 3% 3 2 3
+ % 2(0 sinx, + a, cosx,) (3.5)
3 M1 3 2 3’ ’
Y323 + /33;(3 + k3x3 = m}[’i] + >'<3(x2+wr coswfi, [a] sinx3

+a, cosx3] - (322 - rw2 sin@t) (cl1 cos g

- Ay sinx3)§ , | 3.6)
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J.G + H(é - CIJS) + mr cose['>'<2 + ')23(01 cosxy = dy sinx3)

- >’<32 (q] sin X3 +c|2 cosx3)] + mr sine[-BE.I + 323 (a] sin X3

+a, cos x3) + >'<32 (a] cosxz ~ay sin x32-, =0, (8.7)

where
M=M +m,
J=J +mr2,

Y= J" + m(cl]2 + 022).

Assuming a zero order solution to equation (3.7) of the form
8 = wt, (3.8)

where @ is a constant, gives the approximate solutions to equations (3.5), (3.6), and

(3.7):
Xy = A] sin (Wt + ¢]) ,
Xy = A2 sin (Wt + ¢2) , 3.9)
xg = Agsin (Wt + ¢,) .

For small rotational amplitudes (x3 << 1), substituting equations (3. 9) into (3. 4),
(3.5), and (3.6), and setting the coefficients of sinwt and cosWt equal to zero

separately gives the set of equations:
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[(k—sz) ¢ - Bywsing (A, + W cosg.]A, = 0
1 cos ¢, & sin ]] 1 [ma2 cos 3] 3 ’
[(k —sz) ing, + B.wcosd.|A, + |ma wzsin¢ A,1= 0
17T Iy T Ey e ces 1] 1 [ 2 373 T
‘Ekz —sz)cos¢2 - ﬁ2w sin¢2]A2 + ,:-mq]wz cos¢3]A3 = -mrwz,
k ——sz) ing, + B, wcosd,|A, + |-ma w2 sing, [A '= 0 (3.10)
2 SiN®y T P 2|72 1 33 ’ :
ma w2 cos¢. |A. - |ma wzcosgb A, + |k
2 1 1 212 3
+Yw‘2)cos¢ - B,wsing,|A, = ma rw2
3 3 3|3 1 !
.ow2'¢A-maw2'¢A+(k
ma, W sing, A, (& sing, 1A, 3
+Yw2)sin¢ + B, wcosd |A, =0
3 3 313 o

In theory these equations may be solved for A] , A2, A3, gb] ’ ¢2, and ¢3 . How-
ever, in practice this procedure can be extremely involved.

The validity of the solution (3. 9) is checked by examining the motor equation,
(3.7). Using the same type of analysis as was used in the single-degree-of-freedom

discussion, the expression for the distortion amplitude B is found to be
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B = __;_mrw{[Az(Zstin%+Hc05¢2) + °1A

[

+ X cos¢3ﬂ2 + [2Jw - }{]2 [A2 sin 4)2 + cl]A3 sinqﬁs]z}

2 . .
Mz \ (2Jw) (A2 sm<!>2 +c:|]A3 sm¢3)

3(2Jw sin¢3

@.11)

A2 cos¢2 + a, A3 cos¢3

The solution is considered valid if B << 1.
The special case in which the center of mass of the oscillator lies on the thrust
axis of the unbalanced mass exciter (o] = 0) is of interest because of the form taken

by the resulting simplified equations of motion. These equations are:
M% +v13 x, + k.x, = ma, (X, cosx ->'<25inx)
1 171 171 23 3 3 37
. . _ 22 . o o
Mx2 + Bzx2 + k2x2 = mr(@ sinf - 0 cosB) + mc:2(x3 sinx,

3.2 o)
X3 COSX3 7
(3.12)
TRy + Byxy + kgxg = 'j—t[m"z;‘l cosxg + m (i + r6 cosB) ) sinxg

+ m02§<] ;(3 sirjxa] P

18 + }i(é -w) + mrcosel}iz - 023('3 sinx3 - >'<32c|2 cosx3] =0.

Examination of these equations shows that %y has a non-zero value only if x3' has a

non-zero value. Likewise Xa has a non-zero value only if the initial values of x;

" and/or x4 are non-zero. Thus, if the unbalanced mass exciter-oscillator system is
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started from rest, only the Xy and 6 variables have non-zero values, and the set of
equations (3. 12) reduces directly to the equations describing the single-degree-of-

freedom system.

Muliiple Oscillator Systems:

Systems made up of a series of linear single-degree-of-freedom oscillators are
of particular interest because they may be used as approximate representations of
large complex structures. Figure 3.2 shows a general multiple linear oscillator
system.

Kononenko(s) has suggested that in certain situations the stability of multiple
oscillator systems may be examined using an "equivalent" single-degree-of-freedom
analysis. The reasoning behind this suggestion becomes apparent when the equations
of motion are written in modal form. Each modal equation corresponds to a single-
degree~of-freedom oscillator with a resonance frequency equa' to the modal resonance
frequency, and to a forcing function on the right hand side that is a function of the
operating frequency. Unless the operating frequency is near the modal resonance
frequency, the modal response, to the first approximation, is negligible. Thus, for
a system with well separated resonances operating near one resonance frequency,
only the motor equation and the appropriate modal equation need to be considered,
in the first approximation. These two equations form the "equivalent" single~degree-
of-freedom system, the stability of which may be studied using an appropriate single~
degree-of~freedom analysis. This is, in brief, Kononenko's approach to the problem

of multi-degree-of-freedom systems with well separated resonances.
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In the following analysis the general equations of motion for a multi-degree-
of-freedom linear oscillator are developed in the modal form. A stability analysis
of a particular three-oscillator system with equal masses, and with the vibration
generator mounted on the second mass, is developed in detail. The results of the
analysis are compared with the "equivalent" single-degree-of-freedom analysis as
a check on Kononenko's method. The parameters and notation are the same as before,
with the additions that double subscript refers to a matrix element, the single sub-
script p refers to the oscillator on which the vibration generator is mounted, the
brackets [ ] indicate a matrix, and the braces { } indicate a vector.

As before, the equations of motion for the system are obtained from Lagrange's

Equation (1. 1). The kinetic energy is now

a2, Ly 2 T 2 Ty g2
oMty F My F e F g MOk e e MO
+ —%—m((;(m +6r cose)2 + (érsin@)z) , (3.13)
the potential energy is
_1, 2,1 2 1 2
V = 2k]x] + 2k2(x2—xl) + ...t an(xn—xn-l) , (3.14)
and the Rayleigh Dissipation Function is
2 . 2 - . 2

+-2—}£6 - Kw @, (3.15)



46

The equations of motion are
-8 + + L)
M+ B+ B

Pl k) = By P Bk TR T R

+0(i, p) (mr(é2 sinf - .écosa)) (3. 16)
and ‘
J8 + H(S - ws) + mr')ip cosB = 0; (3.17)
where
6(i,p) = 0 for ip

6(i,p =1 fori=p

The equation of motion (3. 16) may be written in the form
IMI{x} + [clix} + [K1{x} = {f@®)}. (3.18)

Premultiplying (3. 18) by [m17! gives
(3 + IMITTICIix} + IMITVIKTExd = IMI7 (R @) (3.19)

where [M]_] [C] and [M]—] LK ] are symmetric, positive definite, and differ only

by a multiplicative constant. Defining
{x} = [r1{a}, (3.20)

where T is composed of the normalized eigenvectors of [M]—] LK1, substituting
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(3.20) into (3. 19) and premultiplying the resulting equation by the transpose of T

gives

{e} + [D1{a} + [El{a} = {F(f).}.

This equation has a solution

A] sint + B] cost

fa} = < Ai sint + Bi cost
A sint + B cost
n n
‘where
Ta.mrw e - w2
A = 2i i )
! ME, D+ 0,0
T .mru.i2 D..w
B = - 2i i
i M

Differentiating equation (3.20) twice with respect to time yields the relation

E; -e)? (Dii“’)2

which, when substituted into equation (3. 17) gives

X

n
. *» mr oo _
6 + —J-'(e - ws) +--J—-(z TZiai)cose =0,

i=1

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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The perturbed equations of motion for the system are obtained by defining
= A+

(3.26)
8 = Go + 1

where ‘Bi and 90 are the assumed steady state solutions, and & and 1 are small
perturbations. Following a procedure similar to the one used in the single-degree-

of-freedom case gives the perturbed equations
£ + D € + E.E =71 (in——r-)(Qé 7 sin® +é2ncose );
i i i i i 2i\M o o o o’
i=1,2 ...,n. 3.27)
~and
n
7+ (Z Ty )ain® = -OL( ) ryE)eess. .29
i=1 i=1

Defining the vector

z, )
Z =ﬂ z, 5 (3.29)
\ “n

allows the equations (3.27) and (3. 28) to be written in the form

dz

pre = AlM)zZ. (3.30)
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For the particular case of a three oscillator system with equal masses, and with

the vibration generator mounted on the second mass, the vector Z becomes

/g]\

1

Jrr [T22 29
N

NI
]
e

(3.31)

vy Ty o
w N
~
.

w

3. 3 [0 2

\ 7

A reasonable simplifying assumption to make at this point is that z, > z_. This

7 8
is justified on the grounds that equation (3.28), when considered as a variation of
the Mathieu Equation, indicates that z, will be constant or slowly varying. Using

this assumption, the components of the A(t) matrix in equation (3.30) have the

following values:

All the Ai i are zero except for

Ay = 1.0

Ay = By

Ay = ~Dy

A27 = T2] mer cos Wt
m

_ 2mrw
'A:28 = T2] M sinwt



> >

> >

mrw
o —
22 M cos Wt

2mrw

sinwt

50



51

2
_ 2 2 2, (mrw coswt)
Agz = =Ty Ty *+Ty3) MJ
ml‘w2
-—-———j———-(’fm (A] sinwt + B] cosWwt)
+ 1"22 (A2 sinwt + 32 coswt) + T23 (A3 sinwt
+ B3 coswr)) sinwt
A = - 2472 it 2)———~("”)2 20 sinWt cos Wt - —
g8 ~ ~V21 22 23 ' TMJ Sin®t cos J

Of the types of analyses developed for the single-degree-of-freedom system,
only the torque-slope and Floquet analyses may be applied to the multi-degree-of-
freedom problem. The perturbation analyses are not valid because the multi-degree-
of-freedom problem, unlike the single-degree-of-freedom case, does not have its
characteristic exponents approximately equal to each other near the stability
boundary. For this reason a Floquet type analysis was programmed for solution on
a digital computer for the particular three-oscillator system described above. The
stability of this system for a given set of pafomefric values was determined as a
function of the value of the unbc|cn;:ed mass Fn the region of each resonance. A
Kononenko "equivalent" single-degree-of-freedom analysis was also applied to this
particular sysfem, using equation (3.27) with the appropriate value of i as the
oscillator equation and equation (3.28) as the motor equation. The resulis from the
two analyses shown no significant differences, thus indicating that in this case

Kononenko's approximate analysis is valid.
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1V SUMMARY AND CONCLUSIONS

A review of the literature related to the problem of the dynamic stability of
unbalanced mass exciter systems discloses that two zero order analyses of the local
stability of the single-degree-of-freedom case have been developed. The first
analysis, which is based on the direct integration of the differential equations of

(2)

motion, was originally presented by Y. Rocard* /. Variations of this analysis have

also been developed by R. Mazét(s), and by Y. G. Panovko and I. I. Gubunova(é).

S 4), is of the per’ruqution

The second analysis, developed by V. O. Kononenko
type in which the stability criteria for the system are developed by applying the
Routh-Hurwitz stability criteria to the perturbed equations. The effects of non-
linear oscillator springs, and the problems of multiple oscillator systems are also
considered by Kononenko. These analyses have shown that an unstable region may
exist when the system is operating ot a frequency just above the system resonance
frequency, and that this instability is due to the non-linear interaction between the
oscillator motion and the motor.

This thesis summarizes the previous wérk done and develops a first order analysis
of the single~degree-of-freedom system. A stability diagram showing the stability
boundary as a non-dimensional function of the system parameters is presented. In
addition, two zero order analyses of specific multi-degree-of-freedom systems are

developed and used to verify the "equivalent" single-degree-of-freedom analysis

suggested by Kononenko.
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Single-Degree-of-Freedom System:

The single-degree-of-freedom system is defined as a linear mechanical oscillator
with an unbalanced mass vibration generator moubn’red on the oscillator mass. The
differential equations of motion are obtained by applying Lagrange's Equation to the
model, Global stability of the system, that is, stability in the sense of Laplace, is
proved using Liapunov's second method.

Four analyses of the stability of the single-degree~of-freedom system are
developed. The first two, which are based on the assumption that the angular speed
of the unbalanced mass is uniform, are called the zero order analyses. The other
two, which allow for variations in the angular speed of the unbalanced mass, are
called the first order analyses. The regions of validity of the zero and first order
analyses are limited by the validity of their respective assumed solutions for 8, the
angular displacement of the unbalqnced mass. For the zero order analyses a simple
inequality in terms of the system parameters determines the boundary of fhe region of
validity. This boundary is defined by equation (2. 16) and is presented graphically
in Figure 2.3. The relation is not as simple for the first order analyses, and a validity
computation is performed for each case investigated.

The first zero order qnaly;is developed is the Torque-Slope Analysis, which is
derived directly from the differential equations of motion. The application of the
zero order assumption, that the angular speed, 8, of the unbalanced mass is a con-
stant W, to the differential equation of motion for the oscillator displacement, x,
gives a simple sinusoidal form for x with a known amplitude and phase. The value of

x is then used in the differential equation of motion for the angular displacement 8,
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and the result is averaged to obtain the steady state characteristics. This procedure
gives the average motor output torque on one side of the equation, and the average
torque required by the oscillator on the other side. When these two quantities are
plotted as functions of w, their intersection points correspond to the operating points
of the system. Examination of the torque characteristics at these points, particularly
the relative slopes of the two curves, shows that the motor speed-»torque curve must
have a larger negative slope than the oscillator speed-torque curve for the system to
be stable.

The second zero order analysis is based on the determination of the behavior of
small perturbations which are added to x and 8. If these perturbations die away in
time, the system is considered stable. The differential equations for the perturbed
variables are obtained as functions of the system parameters and the assumed steady
state solutions for x and 8. The form of the perturbed equations implies the existence
of a periodic solution. When this implied solution is used as the solution of the per-
turbed equations, a third order algebraic equation is obtained, the roots of which
define the stability of the system. The point at which the system is marginally stable,
i.e. the stability boundary, is determined from this equation.

The third analysis, a first order perturbation analysis, differs from the zero order
perturbation analysis in that it is based on an assumed value of 8 which allows for
periodic variations in the angular operating speed. This value of 8 also requires the
use of a more complete solution for x. In this case the analysis gives a seventh order
algebraic equation which is used to obtain the parametric values for marginal stability,

as was done in the zero order perturbation analysis.
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The fourth analysis is a Floquet analysis based on the first order perturbed
equations. Numerical integration of the differential perturbation equations over
one cycle, for the appropriate set of initial conditions, gives the fundamental set
of solutions Z(T). The eigenvalues of the matrix Z(T), which are the characteristic
factors for the system described by the perturbed equations, are obtained. Using a
theorem atfributed to A. Liapunov, the stability of the unperturbed system is related
to the values of the charccterisfic multipliers. Because of the length and complexity
of the computations involved, a digital computer was used to obtain all numerical
results,

The stability of a representative set of systems is examined using the applicable
analyses. The resﬁlfs obtained are presented in non-dimensional form in Figure 2. 4.
All variations in the results are within the limits of accuracy of the analyses. Since
as many as nine separate analyses of different systems may have contributed data
points for a given non-dimensional stability boundary point, it is concluded that
each analysis is valid when used within the restrictions developed during the
analysis. Another conclusion which may be drawn from this close agreement of
non-dimensional data points is that the stability of any system may be computed
using the simplest analysis that is valid for that specific system. When the system
parameters lie within the ranges covered by Figure 2.4, the results may be obtained
directly from the figure.

Examination of Figure 2.4 shows that the stability of a system may be increased
by appropriate changes in the values of certain parameters. Perhaps the easiest of

such changes is fo decrease either the size of the unbalanced mass or its distance
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from its center of rotation. Either of these changes decreases the force output of
the vibration generator. Other possible changes involve the "fixed" parameters of
the system. For example, the resonance frequency can be decreased; or the damp-
ing, the total mass, or the magnitude of the slope of the motor speed-torque curve

can be increased.

Multi-Degree-of-Freedom Systems:
Two general types of multi-degree-of-freedom systems are considered. The
first is a single oscillator which is free to perform planar motion. In this system, a
. vibration generator using two equal contra-rotating unbalanced masses giving an
axial oscillating force is mounted on the oscillator mass. Lagrange's Equation is
used to obtain the differential equations of motion for the system, and a zero order
steady state solution is developed. An expression for checking the validity of the
solution is also developed. It is noted that while the stability of this system can
be solved for in a general way, it is much more constructive fo consider the special
case where the center of mass of the oscillator lies on the thrust axis of the vibration
generator. This simplification results in equations of motion which reduce to those
for the single~degree-of-freedom system.

The second type considered is composed of a series of simple single-degree~of-
freedom oscillators. In many cases this type of system hay be used as a model of
more complex systems. A brief development of Kononenko's "equivalent" single-
degree-of-freedom ana|ysis(3) for multi-degree-of-freedom systems with well

separated resonances is presented. A specific system consisting of three identical
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oscillators with a vibration generator mounted on the second one is analyzed using
both a complete zero order Floquet-type analysis and an "equivalent" single-degree-
of-freedom analysis. The results show that, for the conditions specified, Kononenko's
"equivalent" single-degree-of-freedom analysis is valid.

From these results it is concluded that, when a multi-degree-of-freedom system
has well separated resonances, the stability of the system near any particular
resonance point is, to the first approximation, a function only of the motion in
that mode and of the vibration generator parameters. Thus, a form of Kononenko's
"equivalent" single-degree~-of-freedom analysis may be used to examine the stability
of any system with well separated resonances or one in which only one mode is being
excited. Investigation of the stability of all other multi-degree-of-freedom systems

requires the development of specific complete analyses.
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V APPENDIX | — THE ROCARD ANALYSIS

The following is an analysis of the stability of a simple unbalanced mass exciter
system based on the direct integration of the differential equation of motion. This
analysis is parallel to the work originally published by Y. Rocard(z), although the
Modified Rocard System is used here as a model instead of the Rocard system. The
primary difference in these two systems, as far as the equations of motion are con-
cerned, is the difference in the definition of the 8 variable. This difference does
not affect the final results, although the terms in the intermediate steps do differ.
An assumption first made by Rocard, and inherent in this analysis, is that the
unbalanced mass rotates in the horizontal plane.

The differential equations of motion for the system are obtained by applying

Lagrange's Equation, as was done before. These equations are:

% + 28w % + wix = DL @7 sind - § cosh) 5.1)
and
6 + 2Ly cosd = 1(w, - 6), (5.2)
where the motor torque T is described by
T = X, - ). 5.3)

The first equation may also be written in the form

2 ,

v 2 mr d

X o+ 20w % +w x = DL 8 hn0). (5.4)
o <] M d1‘2
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Defining a new variable u as

U= x, (5.5)
substituting into equation (5.4), and integrating twice with respect to time gives

2

G+ 2Tw 0+ w y =—-",%Alsin6 + Ft + G, (5.6)

where F and G are constants of integration. The va l-ue of G is not important
since it merely changes the zero of u. The value of F must be zero, because the
system is stable in the sense of Laplace (shown in Part | above). Thus, equation
(5. 6) becomes

U+ 20,0 + w, %y = - Rsing. 5.7)

Assuming that 8 = wt, where W is slowly varying and dw/dt is assumed known,

leads to a solution

u = Asin@ + B cos8

where A and B may vary slowly with time. Defining £ = w/w_, and solving for

A and B gives

2
AN Y Y o o
Mw “| (1 -9 + @LQ)
_ mr ZCQ
B = 3 55 5| 5.9)
Mw | (1 - Q9" + 2CQ)
where
« _ 1 /8B - OA\ dO
A‘z(z 2) dt ’ ©.10)

0+
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LA + QB dQ
= -z ( 5.11)
9 +C
Formally,
x = — (A sin8 + B cosf), 5.12)
di v

which is valid for A, B, and 8 slowly varying parameters in time, t. Equation (5.2)

may be written in the form

7+ X6 4 L cosT = —J’iws . - 6.13)

Looking at the "quasi-static" problem (i.e., considering only the slowly varying

part of the equation), gives

' Kw
. iv mr _'L -4 _ . 03 _ '2" - S
B+ 56+ (2 BO* - 2A8° - 3A6 e) (5. 14)
Substituting the values of A, A, B, é, and 8 in equation (5. 14) gives
1+ 2(mrﬂ) 1 -92 -Cz B
IM 102 4 pea)y
__L
2 tw 0 K
(mrL o} ¥ |2 _ -
vy 55 2)+-—J——9— 5 - 6. 15)
1-875 + (229Q)
L

To the first approximation the effects of the coupling between the motion of the
unbalanced mass and that of the oscillator are reflected in the modification of the

é coefficient.
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At certain frequencies close to resonance, provided that € is small enough,
this modification may result in a negative inertia. It follows from this 'rhct,v at
these frequencies, (5.15) will lead to an unstable state in which the angular
velocity 8 will depart from its equilibrium value & without any possibility of
refurn.

This result does not agree exactly with Rocard's work for two reasons. First
of all it appears that, in formulating his version of equation (5.4), Rocard omitted
the minus sign in the right hand side of the equation. As a result, the second term
in the coefficient of 8 in equation (5. 15) comes out with the opposite sign. This
results in the region of instability appearing to be on the left hand side of the
resonance curve. The analysis of this problem, but with zero damping, by Panovko
and Gubancvc(é) along parallel lines also brings out this point. |

The second reason for the differences between equation (5. 15) and Rocard's
results is a series of algebraic errors, which may be uncorrected typographical
errors, that change the coefficient of 8 in (5. 15). These "errors" are not impor-
tant to the stability analysis in the first approximation. With these two errors

corrected, his analysis does agree with those presented previously.
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VI APPENDIX Il — THE C.1.T.-DEVELOPED

VIBRATION GENERATORS

Information concerning the response properties of structures subjected fo
earthquake-induced motions is of great importance to architects and engineers.
This information is best obtained from dynamic tests of existing structures. Because
of this, the California State Department of Architecture sponsored through the
Earthquake Engineering Research Institute the development of a large unbalanced
mass exciter system suitable for tests of full size structures. Development of this
system was begun in 1959 at the California Institute of Technology. The completed
system consists of four separate rotating unbalanced mass vibration generator units
which can be operated independently or simultaneously and can be synchronized to
excite various modes of vibration in the structure being tested.

Each mechanical vibration generator consists of a pair of contra-rotating
unbalanced masses (eccentric weights) arranged so that a rectilinear sinusoidally

E)

varying horizontal inertia force is generate . The two unbalanced masses in
each generator are chain driven and rotate in opposite directions about a common
shaft. Figure 6.1 shows the four C.|.T. -developed vibration generators and their
speed control consoles. Lead weights fit into machined compartments in the rotating
circular segments. The exciters are driven by 1-1/2 hp d.c. motors which are
mounted on the backs of the units and drive the rotating unbalanced masses through

a timing belt and chain system. The drive motor and tachometer assembly can be

dismounted from the exciter for ease of handling, transportation, and installation.
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THE C.1.T. -DEVELOPED VIBRATION GENERATORS

FIGURE 6.1
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These exciter units are fabricated mainly of aluminum castings and aluminum rolled
plate in order to keep the weight to a minimum.

The horizontal force curves for the vibration exciter unit are presented in
Figure 6.2, These curves give the uniaxial sinusoidal force amplitude as a function
of frequency for the maximum, minimum, and three intermediate loads of lead
weights. When the machine is fully loaded with weights, the maximum force pro-
duced at a frequency of one cycle per second is 921 |Ib. The maximum force that
the machine can produce is limited by strength considerations to 5000 Ib. If the
operating frequency is greater than 2.33 cycles per second, the total amount of
eccentric weight must be reduced from the maximum to keep the total force below
the 5000 lb. limit. With the four units of the system operating together in synchro-
nization, a total horizontal dynamic force of 3684 Ib. can be generated at one
cycle per second, and a total of 20,000 Ib. can be generated at frequencies above
2.33 cycles per second.

The electric drive system requirements for the vibration exciter system are
particularly severe because of the variable torques imposed on the system and of
the necessity for insuring stability of the whole vibrating system when operating

(14)

near a resonance point of a lightly damped structure As has been shown
earlier, the ability o maintain accurate speed control at and near resonance
requires that the slope of the speed-torque curve of the drive system be unusually
steep. In effect, an essentially constant speed needs to be maintained for rela-

tively large torque variations. In addition, the speed control must be operable

over a relatively large speed range.
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To meet these speed control requirements, a d.c. motor is used along with a
servo-controlled electronic amplidyne system. A tachometer driven directly from
the drive motor supplies a speed signal which is compared with a standard voltage.
The difference between these voltages provides an input signal to the amplidyne
amplifiér, which then acts on the drive motor fo adjust its speéd to correspond to
the set speed. Smooth stable speed adjustments over a 40 to 1 speed range are
obtained with this system. An accurate (0. 1%) rﬁecsure of the vibration exciter
frequency is read off a digital electronic counter which is energized by a 100 pulse
per revolution permanent magnet tachometer generator mounted on the drive motor
shaft.

After completion and laboratory testing of the first of the four vibration exciter
units in late 1960, a full scale vibration test of the old Encino Dam intake tower
was conducfed(]s). The opportunity to conduct this particular test arose when the
City of Los Angeles began its program of increasing the storage capacity of the
reservoir by raising the height of the earth dam. This necessitated replacement of
the existing intake tower by a taller tower in a different location. The Department
of Water and Power offered to make the old tower available for testing prior to
demolition, thus giving the opportunity to proof test the first vibration exciter unit
before the rest of the units were completed. The existence of the unstable region
and corresponding frequency jump was dramatically illustrated during this test. The
vibration exciter was powered by a portable a.c. generator with an inoperative
voltage regulator. As resonance was approached from below, the generator output

dropped as increased current was required by the exciter drive. The operator, who
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was new to the job, compensated for this by increasing the set speed of the exciter
drive. This enabled him to obtain the low frequency part of the resonance curve,
but almost resulted in disaster when he fried to obtain the upper part of the reso-
nance curve. Only quick action prevented damage to the exciter. Replacement
of the a.c. generator with a regulated power source, which effectively increased
the value of the motor constant ¥, eliminated the instaBilify in the following tests
of the structure, and justified the design of the vibration exciter unit.

Other large structures which have been tested using this system include: Dry
Canyon Dam(‘s), an earth dam 485 ft. long by 60 ft. high by 450 ft. thick at the

(16)

base; Bouquet Canyon Dam® ™', an earth dam 1200 ft. long at the crest by 200 ft.

high by 1300 ft. thick at the base; Central Engineering Building of the Jet Propul-
(7)

sion Laboratory' "/, a nine story steel frame building; and Olin Hall of Engineering

(17)

on the campus of the University of Southern California' “/, a five story reinforced

concrete building.
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