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1 Introduction

Prejudices are as tenacious in science and engineering as in any other
human activity. One of the most firmly held prejudices in digital VLSI
design is that asynchronous circuits—a.k.a. self-timed or delay-insen-
sitive circuits—are necessarily slow and wasteful in area and logic.
Whereas asynchronous techniques would be appropriate for control,
they would be inadequate for data paths because of the cost of dual-rail
encoding of data, the cost of generating completion signals for write
operations on registers, and the difficulty of designing self-timed buses.

Because a general-purpose microprocessor contains a complex data
path, a corollary of the previous opinion is that it is impossible
to design an efficient asynchronous microprocessor. Since we have
been developing a design method for asynchronous circuits that gives
excellent results, and since the above objections to large-scale data
path designs are genuine but untested, we decided to “pick up the
gauntlet” and design a complete processor.

The design of an asynchronous microprocessor poses new chal-
lenges and opens new avenues to the computer architect. Hence, the
experiment unavoidably developed a dual purpose: We are refining an
already well-tested design method, and we are starting a new series of
experiments in asynchronous architectures. (As far as we know, this is
the first entirely asynchronous microprocessor ever built.) The results
we are reporting have a different implication depending on whether
they are related to the first or second goal of the experiment. Whereas
we are convinced that our design methods have reached maturity, we
are quite aware that asynchronous techniques may influence the com-
puter architects in completely new ways that this first design is just
starting to explore.



In order to focus the experiment on asynchronous circuit design,
we have intentionally excluded optimizations at the high and low ends
of the design process. The instruction set is straightforward and no
assumption has been made on the code produced by the compiler.
No special electrical optimizations other than transistor sizing have
been applied; the circuit techniques rarely go beyond those taught in
a graduate-level VLSI class, and, apart from the memory interfaces,
the circuits are delay-insensitive. Hence, any performance is to be
attributed to the design method and to the inherent advantages of
asynchronous design.

A circuit is delay-insensitive when its correct operation is
- independent of any assumption on delays in operators and wires
except that the delays be finite. Such circuits do not use a clock
signal or knowledge about delays: Sequencing is enforced entirely by
communication mechanisms.

The class of entirely delay-insensitive circuits is very limited.
Different asynchronous techniques distinguish themselves in the
choice of the compromises to delay-insensitivity. Speed-independent”
techniques assume that delays in gates are arbitrary, but there are no
delays in wires. Self-timed techniques assume that a circuit can be
decomposed into equipotential regions inside which delays in wires are
negligible[11].

In our method, certain local forks are introduced to distribute a
variable as inputs of several gates. We assume that the difference
between the delays in the branches of such forks are short compared
to delays in other gates. We call such forks ssochronic[6), [8].

The general method—a complete description of which can be found
in the referenced papers [2], [5], [6], [7], [8]—is based on program
transformations. The circuit is first designed as a set of concurrent
programs. Each program is then compiled (manually or automatically)
into a circuit by applying a series of program transformations. Control
and data path are first designed separately and then combined in a
mechanical way. This important divide-and-conquer technique is a
main innovation of the method.

2 Preliminary Results

As of this writing, the first design is complete, and has been scheduled
for fabrication in 2um MOSIS SCMOS. The chip was functionally
simulated using COSMOS (1], and was found to be functionally correct.



The architecture is a 16-bit processor with offset and a simple
instruction set of the RISC type [4]. The data path contains twelve
16-bit registers, four buses, an ALU, and two adders. The chip contains
20,000 transistors and fits within a 5500\ by 3500\ area. We are
using an 84-pin 6600um x 4600um frame. An estimate of the critical
path suggests processor performance of approximately 15MIPS in 2um
SCMOS. (A slightly improved 1.6um SCMOS version is also being
fabricated.)

This experiment, the most challenging one we have conducted so
far, promised to be an important test for our method. The results
obtained so far have been very encouraging.

The technique for separating control and data path has been
extended with a novel asynchronous bus design, and is now robust
and general.

The handshaking protocol between circuit elements has also been
modified so that half of a protocol sequence overlaps subsequent
actions. This protocol makes it possible to “hide” half of delays of the
completion trees, the tree of gates that combine the completion signals
from the asynchronous elements. In addition, at most two completion
trees are in sequence on any path. Thus, completion tree delays are
not a serious disadvantage of asynchronous design.

Instruction pipelining has been approached as a concurrent
programming problem: Starting with a sequential program for the
processor, concurrency is introduced through a series of program
transformations. However, although the transformations are guided by
the intent to overlap the important phases—fetch, decode, execute—of
instruction execution, they are neither mechanical nor unique. The
designer decides how to decompose a program into several concurrent
ones. We do not claim that our solution in this first design is in any
way optimal.

3 Specification of the Processor as a
Sequential Program

The instruction set is deliberately not innovative. It is a conven-
tional 16-bit-word instruction set of the load-store type. The pro-
cessor uses two separate memories for instructions and data. There
are three types of instructions: ALU, memory, and program-counter
(pe). All ALU instructions operate on registers; memory instruc-
tions involve a register and a data memory word. Certain instruc-
tions use the following word as offset. (See Table 1 in Appendix 2.)



*(FETCH :i,pc := imem|pc|, pc + 1;

[offset(s.op) — offset, pe := smem|pe|, pc + 1;

[-offset(i.op) — skip

B

EXECUTE :|alu(i.op) — (regli.z], f) := aluf(reg(i.z), reg|i.y),i.0p, f)
ld(s.0p) — regli.z] := dmemiregi.z] + reg(s.y|]
|st(i.op) — dmemireg|s.z] + reg(s.y]] := regfs.z]
lldz(i.op) — regli.z] := dmem|offset + reg(s.y}]
lstz(i.op) — dmem|offset + reg[i.y]] := reg(s.z|
lida(s.op) — regli.z] := offset + reg(i.y
lstpe(s.op) — reg[i.z] := pe
limp(i.op) — pe := regli.y]
[breh(s.op) — [cond(f, t.cc) — pe := pe + offset
|-econd(f,i.cc) — skip

l

Figure 1: Sequential program describing the processor

The only important omissions, those of an interrupt mechanism and
communication ports, are ones we found to be unnecessary distractions
in a first design.

The sequential program describing the processor is a non-
terminating loop, each step of which is a FETCH phase followed by an
EXECUTE phase. The complete sequential program for the processor
is shown in Figure 1. (The notation, which is an extension of the one
we have used in previous work, is described in Appendix 1.) Variable
1, which contains the instruction currently being executed, is described
in the PASCAL record notation as a structured variable consisting of
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several fields. All instructions contain an op field for the opeode. The
parameter fields depend on the types of the instructions, which are
found in Table 2 in Appendix 2. The most common ones, those for
ALU, load, and store instructions, consist of the three parameters, z,
Y, and 2. Variable ec contains the condition code field of the branch
instruction, and f contains the flags generated by the execution of an
alu instruction.

The two memories are the arrays smem and dmem. The index
to smem is the program-counter variable, pe. The general-purpose
registers are described as the array reg(0...15]. (Only twelve registers
are implemented in the first chip.) Register reg[0] is special: It always
contains the value zero.

4 Decomposition into Concurrent Processes

We decompose the previous program into a set of concurrent processes
that communicate and synchronize using communication commands on
channels. A restricted form of shared variables is allowed. The control
channels Xs, Ys, ZAs, ZWs, ZRs, and the bus ZA are one-to-many; the
buses X, ¥, ZM are many-to-many; the other channels are one-to-one.
But all channels are used by only two processes at a time. The
structure of processes and channels is shown in Figure 2. The final
program is shown in Figures 3 and 4.

MC
1D E AC
FETCH EXEC
2 - !
PCI PCAl||| —Xs
Xof Ys MDs
xpc ZAl pr——
ZWs MDI
Ype
[ he VoLl
Xbus 'y 1 . 1 4 4
Ybus 4 I 4
ZAbus 4 LU 3 Iy
ZMbus s 3
N~
PCADD REGISTERS ALU - MU

Figure 2: Process and channel structure
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IMEM = «[ID'imem|pc||
FETCH = +|PCI1;1D?; PCI2;
[offset(s.op) — PCI1;ID?0ffset; PCI2
|~offset(i.op) — skip
|; E1l; E2
]
PCADD = (+{[PCIT — PCI1;y :=pe + 1; PCI2;pc:=y
|PCAL — PCAl;y := pe + offset; PCA2;pc := y
[Xpc — X'pc e Xpec
[¥pc — Y7pee Ype
I
|*[[Xof — X'offset o Xof]]

)
EXEC = [E1%;

[alu(i.op) = E2; XseYse ACli.ope ZAs
ﬂld(i;op) —+ E2;XseYse MCle ZRs
lst(s.op) = E2; XseYse MC2e ZW s
lidz(i.op) — Xof e Yse MC1 e ZRs; E2
lstz(i.op) = Xof e Yse MC2e ZWs; E2
lida(s.op) = Xof e Ys e MC3 e ZRs; E2
lstpe(i.op) = XpceYse ACladd e ZAs; E2
Jimp(i.op) — YpceYs; E2
loreh(s.op) — F7f; [cond(f, i.cc) - PCAl; PCA2
[-cond(f,i.cc) — skip
li E2

Figure 3: The final program, first part



ALU = +[[AC — AC?0pe X7z eYy;
(z,f) := aluf (z,y,0p, f); ZA!z
|F — F\f
Il
MU = »|[MC1 — X?zeY?ye MCl1;ma := z + y; MDI?w; ZM'w
[MC2 — X?zeY?y e MC2 e ZM?w;ma := z + y; MDs'w
JMCS —» X?zeY?y e MC3;ma:=z + y; ZM'ma

I
DMEM = +[[MDl — MDl!dmem|ma]

[MDs — MDs?dmem|ma)

I
REG[k] = (s[[-0k Ak =i.2AXs — X!r ¢ X3

|*[[~bk Ak =s.yAYs = YireYs]

N*[[-0k Ak =5.2A2ZWs — ZM!r ¢« ZW s
|*[[-bk Ak =13.2AZAs — bk t; ZAs; ZA?r; bk 1
|#[[~bk A k = i.z A ZRs — bk 1; ZRs; ZM?r; bk |||
)

Figure 4: The final program, second part

Process FETCH fetches the instructions from the instruction
memory, and transmits them to process EXEC which decodes them.
Process PCADD updates the address pe of the next instruction
concurrently with the instruction fetch, and controls the offset register.
The execution of an ALU instruction by process ALU can overlap with
the execution of a memory instruction by process MU. The Jump and
branch instructions are executed by EXEC; store-pc is ex:-uted by
the ALU as the instruction “add the content of register r to the pc
and store it.” The array REG|k| of processes implements the register
file. Both MU and PCADD contain their own adder. Processes
IMEM and DMEM describe the instruction memory and data memory,
respectively.



Updating the PC

The variable pec is updated by process PCADD, and is used by IMEM
as the index of the array ¢mem during the 7D communication—the
instruction fetch.

The assignment pe := pe+1 is decomposed into y:i=pect+l;pc:=y,
where y is a local variable of PCADD . The overlap of the instruction
fetch, ID? (either ID?s or ID?0offset), and the pc increment, y :=
pc + 1, can now occur while pc is constant. Action ID? is enclosed
between the two communication actions PCIZ and PCI2, as follows:

PCIL;ID?s; PCI2 .

In PCADD, y := pec + 1 is enclosed between the same two
communication actions while the updating of pe follows PCI2:

PCI — PCI;y :=pc+ 1;PCI2;pc :=y .

Since the completions of PCII and PCI2in FETCH coincide with the
completion of PCI1 and PCI2 in PCADD, respectively, the execution
of ID? in FETCH overlaps the execution of y:=pec+1in PCADD.
PCI1 and PCI2 are implemented as the two halves of the same
communication handshaking to minimize the overhead.

In order to concentrate all increments of pc inside PCADD, we
use the same technique to delegate the assignment pc := pec + offset
(executed by the EXEC part in the sequential program) to PCADD.

The guarded command Xof — Xof loffset in PCADD has been
transformed into a concurrent process since it needs only be mutually
exclusive with assignment y := z + offset, and this mutual exclusion

is enforced by the sequencing between PCA1; PCA2 and Xof within
EXEC.

5 Stalling the Pipeline

When the pc is modified by EXEC as part of the execution of a pe
instruction, (store-pe, jump or branch), fetching the next instruction
by FETCH is postponed until the correct value of the pc is assigned
to PCADD.pe.

When the offset is reserved for MU by EXEC, as part of the
execution of some memory instructions, fetching the next instruction,
which might be a new offset, is postponed until MU has received the



value of the current offset. In the second design, we have refined the
protocol to block FETCH only when the next instruction is a new
offset.

Postponing the start of the next cycle in FETCH is achieved by
postponing the completion of the previous cycle, i.e., by postponing
the completion of the communication action on channel E. As in
the case of the PCI communication, E is decomposed into two
communications, E1 and E2. Again, E1 and E2 are implemented
as the two halves of the same handshaking protocol.

In FETCH, EY is replaced with E1%;E2. In EXEC, E2 is
postponed until after either Xof?offset or a complete execution of a
pc instruction has occurred.

6 Sharing Registers and Buses

A bus is used by two processes at a time, one of which is a register and
the other is EXEC, MU, ALU, or PCADD. We therefore decided to
introduce enough buses so as not to restrict the concurrent access to
different registers. For instance, ALU writing a result into a register
should not prevent MU from using another register at the same time.

The four buses correspond to the four main concurrent activities
involving the registers.

The X bus and the Y bus are used to send the parameters of an
ALU operation to the ALU, and to send the parameters of address
calculation to the memory unit. We also make opportunistic use of
them to transmit the pc and the offset to and from PCADD.

The Z A bus is used to transmit the result of an ALU operation
to the registers. The ZM bus is used by the memory unit to transmit
data between the data memory and the registers.

We make a virtue out of necessity by turning the restriction
that registers can be accessed only through those four buses into a
convenient abstraction mechanism. The ALU uses only the X, Y, and
ZA ports without having to reference the particular registers that are
used in the communications. It is the task of EXEC to reserve the X ,
Y, and ZA bus for the proper registers before the ALU uses them.

The same holds for the MU process, which references only X, Y,
and ZM. An additional abstraction is that the X bus is used to send
the offset to MU, so that the cases for which the first parameter is .z

or offset are now identical, since both parameters are sent via the X
bus.



Exclusive Use of a Bus

Commands Xpe, Ype, and Xof are used by EXEC to select the X and
Y buses for communication of pe and offset. Commands Xs, Ys, and
ZAs are used by EXEC to select the X, Y, and ZA buses, respectively,
for a register that has to communicate with the ALU as part of the
execution of an ALU instruction.

Two commands are needed to select the ZM bus: ZW s if the bus
is to be used for writing to the data memory, and ZRs if the bus is to
be used for reading from the data memory.

Let us first solve the problem of the mutual exclusion among the
different uses of a bus. As long as we have only one ALU and one
memory unit, no conflict is possible on the ZA and ZM buses, since
only the ALU uses the ZA bus, and only the memory unit uses the
ZM bus. But the X and Y buses are used concurrently by the ALU,
the memory unit, and the pc unit.

We achieve mutual exclusion on different uses of the X bus as
follows. (The same argument holds for Y.) The completion of an X
communication is made to coincide with the completion of one of the
selection actions X's, Xof, Xpc; and the occurrences of these selection
actions exclude each other in time inside EXEC since they appear in
different guarded commands.

This coincidence is implemented by the bullet (o) command : For
arbitrary communication commands U and V inside the same process,
U o V guarantees that the two actions are completed at the same
time. We then say that the two actions coincide. The use of the
bullets X!pc @ Xpe and X'offset ¢ Xof inside PCADD ,and X'r ¢ Xs
inside the registers enforce the coinidence of X with Xpe, Xof, and
Xs, respectively. The bullets in EXEC, ALU, and MU have been

introduced for reasons of efficiency: Sequencing is avoided.

7 Register Selection

Command Xs in EXEC selects the X bus for the particular register
whose index k is equal to the field 5.z of the instruction s being decoded
by EXEC, and analogously for commands Ys, ZAs, ZRs, and ZW s.

Each register process REG[k], for 0 < k < 16, consists of five
elementary processes, one for each selection command. The register
that is selected by command Xs is the one that passes the test k = 1.x.

This implementation requires that the variable s.z be shared by all
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registers and EXEC. An alternative solution that does not reqhire
shared variables uses demultiplexer processes. (The implementations
of the two solutions are almost identical.)

The semicolons in the last two guarded commands of REG[k]
are introduced to pipeline the computation of the result of an ALU
instruction or memory instruction with the decoding of the next
instruction.

Mutual Exclusion on Registers

A register may be used in several arguments (z, y, or z) of the same
vinstruction, and also as an argument in two successive instructions
whose executions may overlap. We therefore have to address the issue
of the concurrent uses of the same register. Two concurrent actions on
the same register are allowed when they are both read actions.

Concurrency within an instruction is not a problem: X and Y
communications on the same register may overlap, since they are both
read actions, and Z cannot overlap with either X or Y because of the
sequencing inside ALU and MU.

Concurrency in the access to a register during two consecutive
overlapping instructions (one instruction is an ALU and the other is a
memory instruction) can be a problem: Writing a result into a register
(a ZA or a ZR action) in the first instruction can overlap with another
action on the same register in the second instruction. But, because the
selection of the z register for the first instruction takes place before
the selection of the registers for the second instruction, we can use this
ordering to impose the same ordering on the different accesses to the
same register when a ZA or ZR is involved.

This ordering is implemented as follows: In REG[k], variable bk
(initially false) is set to true before the register is selected for ZA or
ZR, and it is set back to false only after the register has been actually
used. All uses of the register are guarded with the condition —bk.
Hence, all subsequent selections of the register are postponed until the
current ZA or ZR is completed.

We must -ensure that bk is not set to true before the register is
selected for an X or a Y action snside the same instruction, since
this would lead to deadlock. We omit this refinement which does not
appear in the program of Figures 3 and 4.

11



8 Implementation

Control Part

The control part of a process is obtained by the following transforma-
tions: First, each communication command involving message input
or output is replaced with a “bare” communication on the channel; for
instance, C?z and C'!z would both be replaced with C.

Second, all assignment statements are delegated to subprocesses.
Assignment S is replaced with a communication command on a new
channel, say Cs, and the subprocess #[[Cs — S e Cs]| is introduced.
After these transformations, the control part of each process consists
only of boolean expressions in conditionals and of communication
commands. Thus, the next step is to implement each communication
command with a handshaking protocol.

Handshaking Protocols

Consider the matching pair of actions Xlu and X?v in processes A
and B respectively. We first implement the bare communication on
channel X. The channel is implemented by the two handshake wires
(zo w yt) and (yo w zi) as indicated on Figure 5.(a). As usual, we
use a four-phase, or “return-to-zero” handshaking protocol. Such a
protocol is not symmetrical: All communications in one process are
implemented as active and all communications in the other process as
passsve.

We have shown in (7] and (8] that the implementation of an input
action is significantly simpler when combined with an active protocol
than with a passive one. Therefore all input actions are implemented
as active and all output actions as passive. (In the case of output, the
implementation of communication is the same for active and passive
protocols.)

The standard active and passive implementations are:

[wilivo 1;[-yil;yo| (passive)

’xoT;[zi];zol;[-vzi] (active) .

(The passive protocol starts with the wait action [yi], i.e., “wait until

the input wire is set to true.” The active protocol starts with zo 1,
Le., “set the output wire to true.”)
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We introduce an alternative active implementation, called lazy
actsve:
[~zs];z01;[zi];z0 |  (lazy active) .

The lazy active protocol differs from the active one in that the
last wait action [-zs] is postponed until the beginning of the next
communication. The difference is important when data communication
is involved.

yi b

A

yo xi

(a)
L yi X0

A

L*‘D———————- |

s

(b)

Figure 5: Implementation of commaunication

Figure 5.(b) shows how the data path is combined with the control.
The bits of the communication channel between the two registers (the
“data wires”) are dual-rail encoded. Wire (yow zs) is “cut open,” yo is
used to assigned the values of the bits of u to the dual-rail data wires,
and z1 is set to true when all bits of v have been set to the values of
the data wires. Each cell of a register contains an acknowledge wire
that is set to true when the bit of the cell has been set to a valid value
of the two data wires, and reset to false when the data wires are both

13



reset to false. Let vack; be the acknowledge of bit v;, zi is set and
reset as: .
vacky A vacky ... A vackys — 11

~wvackg A ~vack; ... A ~vackyg — z1 |

Since a 16-input C-element would be prohibitively slow to implement,
the implementation is a tree of smaller C-elements, which we call a
completion tree. Figure 5.(b) shows a tree of binary C-elements. In
the actual processor, we use a two-level tree of 4-input C-elements.

When data is transmitted via a bus, and when the completion
tree is large, the gain of using a lazy-active protocol can be very
important, since half of the data transmission delays and half of the
completion-tree delays can overlap with the rest of the computation.
Therefore, all input actions are implemented as lazy active.

The case when data is transmitted from process A to process
B via a bus is only slightly more complicated. No arbitration is
necessary: A and B are allowed to communicate via a bus only after
the bus has been reserved for these two processes. The chief problem
in implementing the buses is the distributed implementation of large
multi-input OR-gates.

The lazy-active protocol cannot be used when an input action
is probed—such as action AC?0p in the ALU—because the probe
requires a passive protocol. For those cases, we have designed a special
protocol that requires two control wires.

9 ALU

ALU control

In the ALU process, variable z is not needed to store the result of an
ALU operation: the result can be put directly on the ZA bus. The
first guarded command of the ALU process can be rewritten:

AC — AClope X1z e Y;(ZA, f) := aluf (z,y, op, f).
Hence, the control part is simply:

*[AC - ACe X o Y; AL
|[F—-F
1]

14



(The assignment to f is omitted.) Communication command AL
is the call of the subprocess evaluating aluf. The handshaking protocol
of AL is passive because it includes an output action on the ZA bus:
[als];alot;[~ali];alo|. Hence, alot is the “go” signal for the ALU
computation proper.

The first guarded command has the structure of a canonical stage
of the pipeline. Parameters are simultaneously received on a set of
ports, and the result is sent on another port as in:

+[L?z; R!f(z)].

Such a process is called a buffer. Since L is implemented as lazy active,
and R as passive, it is a lazy-active/passive buffer. In the second
design, where we have decomposed both the ALU and the memory
processes into two processes in order to improve the pipeline, each
stage of the pipeline is a lazy-active/passive buffer.

ALU data path

The output Z of the subprocess is dual-rail encoded. When the
subprocess is called, variables z, y, and op have stable and valid
values. Moreover, the content of op has been encoded in a K PG (“kill,
propagate, generate”) form which is used to produce the carry-out for
each bit, and also for the result. The length of the carry chain is
variable, which is an advantage in a fully asynchronous execution.

Since the carry-out of each bit is inverted relative to the carry-in,
we alternate the logic encoding of the stages in the carry chain: A
carry-in that has a true value when high generates a carry-out that has
a true value when low, and vice-versa for the next stage. With this
coding, only one CMOS gate delay is incurred per stage. Although
the acknowledge from the ZA bus is used as completion signal, a

completion tree is needed at the output of the subprocess for the
computation of the flags.

The elapsed time between the activation of the ALU subprocess
by alot and the appearance of the results on the output Z depends
on the number of stages in the carry chain. Add, substract, and other
logical functions typically take between 13 and 25ns in 2um SCMOS.
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Figure 6: Abstract Pipeline for ALU Instructions

10 Performance

In this processor, an instruction is executed in a varying amount of
time, depending in part on the type of instruction and the values of its
operands, and on the sequence surrounding the instruction. Because
of this data dependence, an analysis of the “real” performance of the
processor, i.e., the performance of the processor when executing “real”
programs, is quite complex and most probably must be determined by
simulation. The performance analysis can be simplified by assuming an
infinite sequence of identical instructions with typical operand values.
(The results obtained through this analysis do not include the potential
benefits of interleaving ALU and memory instructions.) Here, we
analyze the performance of the processor executing an infinite sequence
of ALU instructions.

In this case, the processor can be viewed as the three-stage pipeline
shown in Figure 6. By assuming the ALU operations are performed
on distinct registers, the register locking mechanism need not be
introduced and the control for the EXEC process and the ALU process
reduces to lazy-active/passive buffers. The fetch process is complicated
by the increment of the pe, but if the instruction memory is assumed to
be slower than the increment, control for this process also reduces to a
lazy-active/passive buffer. By first assuming negligible control delays
compared with datapath delays (denoted ép and 6_p for the upgoing
and downgoing propagation delays of datapath unit D, respectively),
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the cycle time, cp, of each process P is determined by the datapath
delays that must be sequenced. A lazy-active/passive buffer sequences
only the upgoing transitions of the two datapath units and, separately,
the upgoing and downgoing transitions of the individual units,
resulting in cycle time max(ép; + éps,6p1 + 6-p1,8p3 + 6-p3) .

Since each process in the pipeline is a lazy-active/passive buffer,
and since the throughput of the pipeline is determined by the slowest
process:

CPETCH = max(6,.. + 64y b + 6-m, 64 + 6..4)
cexec = max(8g + 8,,04 + 6-4,6, + 6-,)
CALU = m‘x(Go + 6360 + 6., 6. + 5qc)
¢proc = maxX(CrETCH,CEXEC)CALY) -

Timing simulations suggest that the dominant constraints are the
memory and decode sequence in the FETCH process (6, + 63), and
the operand and compute sequence in the ALU process (6, + 6,.). For
the 2um SCMOS processor, the delays introduced by the control parts
increase the cycle time by 10 to 20ns, bringing the cycle time for an
infinite stream of ALU instructions up to max(35ns + én,65ns). We
expect the processor to achieve 15 MIPS if the access delay of the
instruction memory (6m) is no longer than 30ns.

11 Correctness by Construction and CAD Tools

Since the method is based on semantics-preserving program transfor-
mations, the object code generated by the compilation procedure is
correct by construction.

The object code is a set of potentially concurrent production rules
that are constructs of the form B1 — z1 or B2 — z |, where Bl and
B2 are mutually exclusive boolean expressions, and z 1 and z | stand
for “set z to true” and “set z to false,” respectively. The compilation
procedure guarantees the absence of hazards by ensuring that the
conditions Bl and B2 are stable, i.e., if B1 is true, it remains true
until z as been set to true.

If the production rules of the object code can be matched with
the production rules that describe the standard cells of a cell library,
a standard-cell-layout program can be used to generate a layout
corresponding to the object code. We have been using such a standard
cell approach in our previous designs, and indeed all chips fabricated
in this way have been found to be functional on “first silicon.”

However, most of the processor was designed manually. First,
since the control section introduces significant overhead, we decided to
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compile its object code manually. Second, because the data path was
expected to be the critical part with respect to size and because of the
difficulty of adjusting the pitch of the different registers automatically,
the automatic layout program was used for the control part but not
for the data path. This decision was later justified by the fact that,
whereas the data path was hardly changed after the first design,
the control part went through a series of drastic modifications. We
observed that, again, our method for separating control and data path
permitted us to implement completely different pipelines by changing
the control without significant alterations of the data path.

As usual, the disadvantage of manual compilation was that the
design was not shielded from clerical errors at which humans excel.

While the difficult optimization problem that is at the core of a
high-performance processor design is probably still beyond automatic
compilation technology, the designer should be assisted with CAD tools
that perform the mechanical translation steps. Other CAD tools that
we found useful include a program that estimates the critical path of
a circuit. The program, which was developed by Steve Burns, gives
excellent results. It estimates the delays of each path by a simulation
of the execution based on the production rules.

Magic was used for the manual layout [10].

12 Conclusion

Although the chips are still in fabrication, we are very satisfied with
the preliminary results of the experiment.

First, the chip layout is obviously not large. The control is
surprisingly small despite our use of an automatic layout tool; also,
the anticipated nightmare of data path layout did not materialize.
The register pitch is 80A, which is quite reasonable given that four
buses have to be placed.

Second, the predicted performance is quite remarkable, given that
the experiment is a first in two ways: It is our first experience as
computer architects, and it is the first asynchronous microprocessor
ever built.

Third, the complete design took five persons (one joined in the
middle of the project) five months.

Since the choice of an instruction set was not part of the
experiment, our design should be judged in two ways: the choice
of the concurrent program of Figure 3, and its implementation.
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The implementation is satisfactory, but not optimal. The sizing of
transistors can be improved and the number of transitions can be
decreased, mainly by a better placement of inverters. For instance,
the delays due to a completion tree and to the control for a buffer are
both about twice their theoretical minimum.

The program of Figure 3 represents the choice of a pipeline, and
of synchronization techniques to implement it. We have deliberately
chosen a simple pipeline. In particular, the mechanism for stalling,
which places part of the decoding in series with the fetch on the
critical path, sacrifices efficiency for simplicity. However, performance
evaluations show that the pipeline is well-balanced since the different
stages have comparable average delays. Improving the critical path by
overlapping fetch and decode requires improving the ALU and memory
instruction execution stages by pipelining parts of these stages.

The practicality of overlapping ALU and memory instruction
executions remains an open issue. It is not clear whether the gain in
performance is worth the complexity of the synchronization involved
and the requirement of two separate Z buses.

We find the synchronization techniques used to implement the
concurrent activities between the different stages of the pipeline
- particularly elegant and efficient, since the delays incurred in a
synchronization can be of arbitrary length and vary from instruction
to instruction.

We foresee excellent performances for asynchronous processors
as the feature size keeps decreasing. But the designer must be
ready to learn and apply new design methods based on concurrent
programmming, that are required to exploit asynchronous techniques
to their fullest.
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Appendix 1: Notation
The program notation, which is inspired by C.A.R. Hoare's CSP 3],

is briefly described.
b1 stands for b := true, b | stands for b := false.
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The execution of the selection command [Gy — Si]...[Gn — Sa,
where G); through G, are boolean expressions, and S, through S,
are program parts, (G; is called a “guard,” and G; — S; a “guarded
command”) amounts to the execution of an arbitrary S; for which G;
holds. If ~(G; V...V G,) holds, the execution of the command is
suspended until (G, V...V G,) holds.

The execution of the repetition command *[G; — §,|...[|G, —
S,], where G, through G, are boolean expressions, and S; through
Sn are program parts, amounts to repeatedly selecting an arbitrary S;
for which G; holds and executing S;. If ~(G, V...V Gn) holds, the
repetition terminates.

For communication actions X and Y, “X e Y” stands for the
coincident execution of X and Y, i.e., the completions of the two
actions coincide.

[G] where G is a boolean expression, stands for [G — skip)], and
thus for “wait until G holds.”

(Hence, “[G); S” and [G — S| are equivalent.)

*[S] stands for #[true — S], and thus for “repeat S forever.”

From (iii) and (iv), the operational description of the statement
s[[G1 = S1]...]Gn — Sa]] is “repeat forever: wait until some G;
holds; execute an S; for which G; holds.”

Communication commands: Let two processes, pl and p2,
share a channel with port X in pl and port Y in p2. (In the processes of
Figure 3, the same name is used for all the ports of the same channel.)
If the channel is used only for synchronization between the processes,
the name of the port is sufficient to identify a commnication on this
port. If the communication is used for input and output of messages,
the CSP notation is used: X'u outputs message u, and X?v inputs
message v.

At any time, the number of completed X-actions in pl equals the
number of completed Y-actions in p2. In other words, the completion
of the nth X-action “coincides” with the completion of the n-th
Y-action. If, for example, pl reaches the nth X-action before p2
reaches the nth Y-action, the completion of X is suspended until p2
reaches Y. The X-action is then said to be pending. When, thereafter,
P2 reaches Y, both X and Y are completed. It is possible (and
even advantageous) to define communication actions as coincident and

yet implement the actions in completely asynchronous ways. For an
explanation, see [8].
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Probe: Since we need a mechanism to select a set of pending
communication actions for execution, we provide a general boolean
command on ports, called the probe. In process p1, the probe command
X has the same value as the predicate “Y is pending in p2.”

Appendix 2: Instruction Set

ALU oprxryrz (rzf:=rxopry
MEM op rx ry rz | rz := mem(rx+ry] (for load)
mem|rx-+ry| := rz (for store)
MEMOFF | op aory rz | rz := mem|ry + offset] (for load)
offset mem(ry + offset] := rz (for store)

rz := ry + offset (for load address)
BRANCH | op ao — cc | if cond(f,cc) then pc := pc + offset

offset
JUMP op a0 Ty — | pc :=ry
STPC Op 80 — IZ | Iz := pC

Table 1: Instruction Types

inst || ng n, ny no
b15b14b13b13 | B11biobobs | brbebsby | bsbabibg
alu || 0011 rx ry rz
0100 rx ry rz
1111 rx ry rz
1d 0010 rx ry Iz
st 0001 rx ry ¢ /
ldx | 0000 0000 ry rz
stx || 0000 0001 ry Iz
lda | 0000 0010 ry rz
brc | 0000 0011 — cc
jmp || 0000 0100 ry _
stpc || 0000 0101 — rz

Table 2: Opcode Assignments
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