Feature-Oriented Image Enhancement
with: Shock Filters, |

Leonid |. Rudin
and

Stanley Osher

Department of Computer Science
California Institute of Technology

Caltech-CS-TR-89-3



FEATURE-ORIENTED IMAGE ENHANCEMENT
WITH SHOCK FILTERS, I

by

Leonid I. Rudin

Los Angeles, IBM Scientific Center
11601 Wilshire Blvd.
Los Angeles, CA 90025-1738

and
California Institute of Technology
Pasadena, CA 91125
Stanley Osher

Cognitech Inc.
426 Lincoln Boulevard
Santa Monica, CA 90402

and

Department of Mathematics

University of California
Los Angeles, CA 90024-1555

Caltech-CS-TR-8%3

I. Introduction.

A basic step in the processing of signals (images, radar, acoustic signals) is

enhancement. By this we mean the removal of blurring.

An elementary example of blurring comes from the degradation of a signal

through some kind of convolution. More precisely, let

z=(z1,...,2,) eR"

and let up(z) be the original real valued function which is blurred through convo-



lution with a kernel: j(z)

(1.1) w(z) = jxvo =0 xj = [ (e~ pualy)dy.

Typically, ; has the following properties

j(z) =20

(1.2) j(z) — 0 rapidly as |z| — co, where |z| = (2 + 22,... ,zf,)%

/n Jj(z)dz = 1.

Examples include for any ¢ > 0:

(1.3a) jV(z) = (Mlt) e (the heat kernel)
(b) 5P (z) = jP(l=)),
i@ (Jz|) is strictly decreasing with |z|, for |z| < 1
iP(zl) =01if 2| > 1
JjeC=
Then consider for any § > 0

. 1 . T
i = ;5",7](2)(!'5—')

we call jg2) a “mollifying” kernel.

) 5§2(e)= & (/-

TN

<z; <

i

, t=1,...,n}
jé”(m) = 0 otherwise

jga) is the “box” kernel.



If we take the Fourier transform of (1.1) we arrive at

(1.4) B(€) = 5(€)ao(€)

To recover ug(z), we need to deconvolve, i.e. to reverse the procedure in (1.1). From
(1.4), this amounts to dividing by j(£) and applying the inverse Fourier transform.
The problem with this procedure, of course, is that this is generally very ill-posed.
Since j is usually relatively smooth, 7(¢) — 0 rapidly as |[¢| — oo, and large fre-

quencies in W(€) get amplified considerably.

The function ug(z) is often taken to be band limited, i.e. y(¢) = 0 for |¢| large
enough, say for |§;| > N for eachi =1,...,n. An important example of this comes

through discretization. Let uz(z) be a grid function defined at grid points
(zi)e = £h,

(1.5) i=1,...,n; €=(b,...,4,)
¢;=0,%1,...,£N; (2N +1h=1

and suppose uj is extended to be periodic on the grid with
uh(:c + e,-) = uh(:v)

for each e; = (0,0,...,1,0,...,0), where the 1 occurs in the :** component, i=

1,...,N.
The grid function has a unique trigeometric interpolant
(1.6) Tup(z) = S(ity), et
where the sum is taken over the cube: =N </¢; < N, i=1,...,N and

(1.7) ’ Iuh(.'lfg) = uh(zg)
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for each grid point z,.
See, e.g., [7] for a description of this interpolant and its properties.

Thus deconvolution on a grid amounts to multiplying each discrete Fourier
coefficient (#is); by (7(£))~!. This number typically grows like |¢| to some posi-
tive power, or even like the exponential of a positive power of |¢]. If u is the
discretization of a very smooth function, then the coefficients (i), rdeca.y rapidly
- perhaps more rapidly than the growth in (j(£))~!. However, there is generally
high frequency noise in all this, i.e., the discretization itself can well introduce non-
smooth, but low amplitude, round-off errors. Deconvolution in this simple fashion

will amplify this noise in a very unstable manner.

The situation is far worse if the underlying function ug, which is sampled on
grid points, is only piecewise continuous — if it has jumps or jumps in derivatives.

Then there exist two problems.

The first is global. It was shown in [9] that there is a global error between the
interpolant Juj, and ug which is e.g., O(h) for functions which have jumps. This
is true globally, i.e. at any finite distance from the discontinuity. More seriously,
any attempt to approximate ug by either a Fourier interpolant Iu, or a truncated

Fourier transform of ug — e.g. by considering

(1.8) (&) to(£)

for . )
P =1if €] < my

p&) = 0if [¢] > my
will lead to Gibbs’ phenomena. These are 0(1) errors near the discontinuity in ug(z),

which do not disappear as m;, my — oo (or A | 0). These errors cause the well
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known phenomenon of “ringing” in image processing. This is particularly problem-
atic for the machine processing of images. Thus, an attempt to deconvolve without
amplifying high frequency errors due to noise, by cutting off the high frequencies,

will lead to severe oscillations near the discontinuities of the original function u,.

The procedures discussed so far are all linear and/or all involve the Fourier
transform of ug. This way of thinking is inherently problematic for the processing

of images which are only piecewise smooth.

We remark that feature dependent image processing was tried in [18]. There
they used a filter which is the sum of two components — a linear low pass and a
linear high pass filter. This leads to a generally oscillatory procedure of limited
practical value. It does, however, represent a first attempt to perform a context

sensitive enhancement.

It was pointed out in [14], [15] that images are dominated by the geometry
of their features — edges, corners, etc. In fact the space of functions of bounded

variation appears to be the correct class for image analysis.

In [14] the concepts and techniques developed in the numerical solution of non-
linear hyperbolic equations were applied for the first time to feature oriented image
enhancement. There the first experimental shock filter, based on a modification .
of the nonlinear Burgers’ equation was used. (Seg the Appendix). However this
first shock filter did not incorporate the crucial feature-detector switch, the TVD

computational approach, and the theoretical basis developed herein.

Both subjects (image enhancement; shock calculations) deal with the discrete
representation of discontinuous functions. The relevant concepts include: charac-

teristic speed, variation diminishing or essentially non-oscillatory approximations,
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the need for nonlinear approximations to linear problems, compressive methods.

See, e.g. [1], [13] for overviews of this subject.

In othis paper, the first of a series, we shall develop shock filters for image en-
hancement. The filters use nonlinear time dependent partial differential equations.
The evolution of the initial data ug(z) into a steady state solution uy,(z) as t — co
through u(z,t), t > 0, is the filtering process. The partial differential equations
have solutions which satisfy a maximum principle and more. In fact the total varia-
tion of the solution for any fixed positive time is the same as that of the initial data,
i.e. the operator is total variation preserving. The steady state solution is achieved
relatively quickly in most cases, and this is the processed image. The initial data

is, of course, the discretization of the original image.

The processed image is piecewise smooth. In fact it is a solution of any one of a
class of second order elliptic partial differential equations in regions of smoothness.
The jumps occur across the zeros of the elliptic operator applied to the initial
data. The essential features of the true image are recovered in many cases — these
include: number of juinps, relative size of jumps, and location of jumps. In some,
more special cases, given the knowledge of the method of blurring, our results can

be made exact, if the blurring (e.g. § in equation (1.2b)) is not too large.

We shall draw from experience in the numerical solution of hyperbolic problems
which have discontinuous solutions. Such a problem is exemplified by a scalar

conservation law
(1.9a) us + f(u); =0
to be solved for —oco < < co(zeR!) , ¢ > 0 with initial data:

(1.9b) u(z,0) = up(z)
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If f' # 0, then the solution generally develops discontinuities even for very

smooth up(z).
For a small time the solution is constant along characteristics; i.e.
(1.10) u(z,t) = ug(z — f'(u)t)

for ¢ sufficiently small. This means that u is constant along characteristics: = —
fllu)t = constant In finite time these characteristics generally intersect and shocks
develop, i.e. the solution becomes a weak solution. This solution is typlcally piece-

wise continuous with jumps across curves satisfying

d _If] ,
t [y

whose [ | denotes the jump across the curve.

The modern way to solve this problem numerically uses a shock-capturing

method. The solution, shocks and all, is obtained through a single, globally defined

algorithm.
One approximates (1.8) by setting up a grid: z; = ih, t" = nAt

i=0,£1,£2..., n=0,1,...

A shock capturing approximation is, by definition, in conservation form:

At
(1.11) ult =yl — ;—(g::_% i_}_) |
where (1.12) g;““i- = g(ul_,...,ul ryy) is the numerical flux approximating f(u);

g is Lipschitz continuous with:

9(u,u,...,u) = f(u)
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This guarantees that bounded almost everywhere convergent sequences of so-

lutions to (1.11) will yield weak solutions of (1.9) [8].

Of course much more than conservation form is needed for a good scheme.
Obvious issues involve stability and convergence. A more subtle issue involves
accuracy in the presence of discontinuities. Schemes which are simple (e.g. linear if
f(u) is linear, f(u) = au) and which do not generate oscillations near discontinuities
of the solution, must of necessity, be only first order accurate (see e.g. [2], [6]). Thus

they smear discontinuities badly.

A great deal of successful work has been done to overcome this limitation. See,
e.g. (5], [16], [17]. The goal is to get highly accurate (in regions of smoothness)
methods which resolve discontinuities sharply and accurately in a non-oscillatory
way. In the next sections we shall borrow ideas from shock calculations, modify

them appropriately, and apply them to image enhancement.
The format of this work is as follows.

In section II, we shall discuss a one dimensional enhancement procedure. We
set up a new partial differential equation (PDE) which acts as our enhancement
filter and describe its (surprising) properties. We then set up a total variation
preserving (TVP) approximation to this PDE, describe its properties, and perform

numerical experiments.

In section III, we extend the procedure of section II to two space dimensions,
i.e. toreal images. The rigorous mathematical theory of this problem in two dimen-
sions, is not as extensive. Nevertheless the numerical schemes yield the described
enhancement features. This will be demonstrated again by numerical experiments

on real pictures in section IV.



A big difference between one and two dimensions comes in the freedom of
choice one has, in which second order elliptic operator to use in the enhancement
PDE. This is equivalent to the choice of edge detector one uses. The zeros of this
operator (generalized inflection points) applied to the initial data will give us the
location of the edges of our enhanced image. The final enhanced image will be
a piecewise smooth function which satisfies the homogeneous elliptic equation in

regions of smoothness.

Finally, in an appendix we discuss the relation between the present method

and that earlier developed in [15].
II. One Dimensional Enhancement.

We begin by considering the equation
(2.1a) ue = —|ug| F(uzz)
to be solved for all z, ¢t > 0 with initial data:
(2.1b) u(z,0) = uo(z)

Here the Lipschitz continuous function F' satisfies
(2.1¢)

(i) F(0) =0

(ii) X(u)F(u) >0, u#0

where X(u) =1if u >0, X(u)=-1if u<0, X(0) =0.
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An example is:
(22) Uy = "luzl Uzr
This looks at first like an extremely ill-posed problem. The coefficient of u,, is
never positive. In fact it is negative except at extrema of v where it vanishes. This
initial value problem turns out to be well-posed, or at least to satisfy the following
4 priori estimates (which are true for (2.1) with general F satisfying (2.2))
(2.3)

(1) TV u(-,t) =TV uo()

(ii) max u(-,t) = max ug(-)

(iii) minu(:,t) = min ug(-)

We can best exemplify the behavior of this enhancement procedure by taking

a case which is outside our definition, in that F is not Lipschitz continuous. Let

F(u) = X(u).
Then u satisfies:

(2.4a) U = Fug f ugy #0

(b) uy=0if upp =0

We thus have a simple linear advection equation in which the direction of prop-
agation changes sign or becomes zero at extreme and inflection points of u. An

interesting example comes from taking

(2.4c) ug(r) = cosz

10



(2.5a)

Then

u(z,t) = cos(z — t) for't<x<g
u(z,t)=1for —t<z <t

u(z, t) = cos(z + t) for — g <z< -t

t =0 x-i O<p<= x=¢ xa%
x=+t X=T-tC
- L ' I L
¥ [ Tl' I
0<t<— X =t x=i XxX=n
Figure 2.1

By symmetry, discontinuities develop at z = Ck+1)%, k=0,%£1,%£2,....

Finally at ¢t = Z and for all ¢ > 7, the enhanced image is:

Uo = (—1)* for (2k — 1)-271 <r<(2k+ 1)-72:

To show that the transformation

Uy — U
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is an approximate deconvolution, we consider what it does to convolution of a step

function by j§2)(a:) as defined in (1.3b).
Let w(z) be a step function with values
(2.6) w(z) =w, in I,,={m/.2:,,__;_ Sz<z,1}

where the real line is the union of all these I,’s. Let 0 < d = inf [a:,,_{_% - xu_%].

Finally, take 0 < § < % be given.

Define
(2.7 Uy = j§2) * W,
It is easy to see that

ug(r) = w, for Ty pté<z<z, -6

(2
up(e) = (wop1 — 0,)§§ (2 = 2,44)

forz, 1 —6<z< T4 +6
" _ (2)
ug () = (wop1 —wy)j; (T~ Ty44)
Thus, for ¢ between z,,; — § and z, +3 Tt 8, up moves strictly monotonically from
w, to w,4; after which it becomes constant until z reaches T4z — 6. Also ug has

only one inflection point in this interval, and that is at z = z,41. We have

THEOREM 2.1. If F = X in (2.1a), then the transformation uy — u with
ug = j§2) *w for§ < % yields ueo = w where w is the step function defined in (2.6).

Thus the shock filter is an ezact deconvolution in this case.

REMARK (2.1). We are tacitly assuming that the discontinuities developing in

equation (2.1) occur exactly where we want them — at inflection points of the initial
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data, where the characteristics intersect. This is borne out by all our numerical

experiments.
REMARK (2.2). In [15] the analog to (2.1a) was
(28) ur = +|uz|u.

Now if u is initially a trigonometric function, e.g., u = sinz, then u,, = —u and

initially we arrive at (2.2). This is discussed further in the appendix below.

Our theory for solutions to (2.1) comes from the following. If we differentiate
(2.1) with respect to z, multiply by X(u;) and integrate the result with respect to

T, we arrive at

(2.9) 2 [ 1uel = / 9wz Fluss))

if u is eventually constant for |z| large. This proof is rigorously true as long as u
stays smooth. Moreover, our discrete approximation has this property for general

initial data. Thus we conjecture:

CONJECTURE 2.1. The evolution equation, (2.1), with uo(z) continuous, has
a unique solution u(z,t) which has jumps only at inflection points of ug(z). The
total variation in z of u(z,t) is invariant in time, as are the location and value of

local extrema.

We now set up a discrete approximation to (2.1) which preserves the variation

and the size and location of extrema. We approximate (2.1) by

(2.10a) uMl =yl - —|m(A+u, (A un)w(_A_téL)

13



Here m(z, y) is the minmod function defined by

(sign z) min(|z|, y|) if zy > 0
2.10b yY) = .
(2.10b) m(z,y) {0 ifzy <0
and
(2.10¢) Azui = E(uizs — ui)

Call F(242:-%") — F*. Then

At

3
At

+ TIm(A+u?,A_u?)[ Fin

(2.11) Apult = A ul — —|m(Ayuly,, Apul)| FR,

We require (CFL restriction)

At 1
sup—F? < =
,‘p h 2

It is now easy to see that the right side of (2.6) has the same sign as A u? (and

vanishes if Apul = 0). Thus we have

At
(2.12) Al = |Apul| - 5 X pIm(Audyy, Arud) | F
At n n n n
+ TXH.%‘m(A-Fui 7A—u’0)|F’i ’
where

n —t n
Xy = sign Agul.

By the definition of the minmod function, it follows that
(213) Xig g m(Bsudiy, ApuP)l = X2 glm(Aiufy,, Agud)|
Thus we arrive at:

n t n n n "
[Apul ] = |Apul] = —AL (XD, )ml(B4u?, A_u})|F
h 3
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Finally

(2.15) TV =3 1Al =) 1Apu?] = TV (u™)
This is a total variation preserving (TVP) method. Moreover, if u;:"'l is a local
maxima for ult! ntl - ntl

, then since sign Aju = sign A4ul and sign A_u

i io io
sign A_uj, then u? is a local maxima for u?. By the definition of minmod it

follows that

n+l

_.n
uio = uio.

n-+t+

The same is true for u; !, a local minima. We now have

THEOREM 2.2. The scheme (2.10) enforces a local mazimum and minimum
principle — wn fact such local eztrema remain unchanged in time. Moreover the

scheme s TVP.

Thus, for fixed At, h, as n — oo the sequence of discrete solutions has a con-
vergent subsequence. We believe this limit to be unique and we call the conjectured

unique limit (u*°);, the discrete processed image.

As At — 0, h — 0, the sequence of discrete solutions also has a convergent
subsequence. We again believe this limit to be unique — this is the continuum

processed image.

Let
max(z,0) =zt

min(z,0) =z~

Then it turns out that we may rewrite (2.10a) equivalently as

(2.16) wth = - %\/((Aws')")2 + ((A-w)= 2 (F7)”

- B P+ (B R (ED)*
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If we (mentally) fix the value of F* to be constant ¢, then (2.16) is Godunov’s

method approximating
(2.17) ’ uy = —|uzle

see e.g. [2], [11]. We chose this method because, among three point approximations
to (2.17) which are monotone, this is the most compressive, i.e. least dissipative [11].
This scheme (2.16) is almost monotone in the sense that if (F*)~ is a fixed constant
< 0 or (F!")* is a fixed constant > 0, then the right hand side is a non-decreasing

function of the ul.

In a sense our difference operator is too compressive. Isolated extrema are
unchanged. The procedure, for example does not remove “salt and pepper effects”.

In succeeding papers, we shall correct this.

It is easy to see that discrete piecewise constants are left invariant by (2.10). So
are piecewise linear, continuous profiles with extrema coinciding with the “kinks”,
i.e. jumps in derivative. In order to accept general piecewise linear functions we

may modify F*.

Let

. A_A_u? A_Ajul ALA Ul
(2‘18) Fi =F(m[ h2 b h2+ ’ +h2+ ])

where minmod of n numbers is defined by inductions

(2.19) m((z!,2?%,...,2")] = m[(z!,...,2""1),z"]

Our modified scheme is:

(2:20) B N
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Results of One-Dimensional Implementation of the Shock Filter.

We now present the computed time evolution of one-dimensional wave forms

acted upon by the shock filter described by the scheme (2.10a).

Plots 1(a) - 1(e) demonstrate the enhancement procedure applied to the func-
tion of 1(b) which is a slightly diffused version of the sinusoid in Plot 1(a). The
evolution procedure with stationary inflection points which correspond here to zeras
of the function, eventually produces a steady state 1(e) which is a “square wave”.
Observe that the transformation is a continuous process, for otherwise, by knowing
the TVP nature of the equation (2.1a) one could have done the same just by finding
inflection points, and extrema and then performing thresholding. However such an
algorithm would result in futile exercise if one tried to extend it to a 2-dimensional
calculation. Furthermore equation (2.1a) will be generalized in subsequent paper to
include reconstruction of higher derivatives i.e. allow growth of the extrema (los-
ing the TVP property) hence no thresholding could give the desired enhancement

(which could be enhancements of higher derivatives).

The sequence Plot 2(a) - 2(f) demonstrates that the edge development process
is not necessarily producing smooth wave-forms culminating in a piecewise constant
function, but also that breaks in derivatives (“kinks”) do develop (see 2(b)). The

edge-switch F' in (2.10(a)) of this example had been taken to be
(2.21) F = sign (A A_ul)

One has to be warned that various other choices of F' may result in an unpleasant
numerical “freeze up” behavior such as on Plot 3 where the edge-switch was taken

to be normalized second derivative. There Plot 3 is actually of a steady-state result.
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On the other hand replacing m(z;y) in (2.10a) with any more compressive

function renders the scheme unstable and blows up quite rapidly - Plot 4.

Again the significance of the 1-dimensional filter is not just necessarily the
steady state result, but the continuous process it produces. Incidentally we intend
to experiment with this class of filters on one-dimensional speech-wave forms to
determine if any perceptible speech enhancement results. In this case the transitory

solution is of interest.
Two Dimensional Enhancement.

We now consider the equation
(3.1a) ue = —fud + Ul F(L(w))
to be solved for all z,y, and fo;' t > 0, with initial data
(3.1b) u(z,y,0) = uo(z,y)

Here F(u) satisfies (2.1c). Also £(u) is a second order, (generally) nonlinear elliptic

operator.

The general idea for the construction of the multi-dimensional shock filter

should be evident by now.

In both of the equations (2.1a) and (3.1a) we have nonlinear combination of
the propagation term: |Vu|-magnitude of the gradient, and an edge-detection term
F(L(u)) whose desired behavior involves changing sign across any essential singular

feature. Thus edge formation and sharpening process will occur at the places where

(3.2a) ‘ L(u)y=0
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Thus the choice of L(u) is governed by how faithfully the zero-crossings of this
differential operator define edges of the processed image.

s

The (well know in computer vision literature) scheme due to D. Marr, works

by finding zeros of
(3.2b) L(u) = V3(u(z,y) * G(z,y))

where G(z,y) is a two-dimensional Gaussian. Since the function we are process-
ing has already been blurred, i.e. convolved with a Gaussian, the choice for edge

operator would be

(3.2¢) L(u) = ugz + uyy (the Laplacian)

The reader is referred to [15] for the rigorous local analysis of this and a host
of other edge-detectors. In [15] an analytical tool (called the numerical analysis
of singularities) is developed in order to evaluate the behavior of “feature detec-
tors” in the vicinity of singularities. There it is shown that the detector (3.2c) will
entirely miss any nontrivial singular boundaries and, since the generalized Lapla-
cian does not contain any curvature-dependent term, it is curvature insensitive. A
somewhat better version of (3.2¢) is a scheme in which edges are extracted from 'the
zero crossings of second directional derivatives [4]. We shall skip the polynomial

approximation of [4] and simply set

(32d) | ﬁ(u) =Uzz - 'U,i +2- UgyUz Uy + Uyy * u;

which is simply an expression for the second derivative of u in the direction of the

gradient.
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We numerically implement (3.2d) by

F(u) = (A AZu)m(ALu, AZuw)? + AL A_u- [m(AYu, AV w))?
(3.2¢)
+ (AZAY u+ AL AL u)(m(AL, AZuw))m(AY u, AV )

We finally normalize F(u) by

F(u)

(320 = Fy

It should be noted here that the enhancement procedure is only as good as the
quality of the feature detector it utilizes. The choice of (3.2d) is governed by a com-
promise between quality of filtering and the computational complexity limitations,
for the shock filter needs to recompute the “edge-switch” in the beginning of each

iteration.

Greatly superior quality of enhancement should result from the kind of local
feature detector; proposed in [15]. A demonstration of the highest precision of this
scheme is given in the computer-generated “pencil drawing”-of the “Tank” picture
0. However this will require a much mdre powerful interactive graphics facility than

is available to the authors at the moment.

The estimate analogous to that in (2.9) is unfortunately lacking here. We

rederive a result used in [3] here.

Let V and V- denote gradient and divergence respectively. Let |(z;,z;)| =

V7t + 2.
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We wish to compute

63 IVl = g (e
u, O uy O
= (I—VZI-EZ + Wa—g)(-lvulf’(ﬁ(u))
= =V - (F(£L(u))Vu)
Vu
+ F(L(w)|Vu|(V - (IV_uT))

= -V (F(L(w))Vu)

= [Vu[K(u) F(L(u))

Here K(u) is the curvature of level sets, u = constant

Vu )

[Vl

_ _(uuug — 2ugyuzuy + uyyui))
[Vul?

(3.4) K(u)=-V-(

If we integrate both sides of (3.3) over R?, we arrive at:

7] 8
(3.3) 5%-‘/1;2 |Vu| = gTV|u|

- _/ |Vu|KC(u)F(L(u))
R? :

For this evolution procedure to be TV bounded at any positive time, it suffices

that —K(u)F(L(u)) be bounded above. Unfortunately, such an estimate is not

generally true.

Parenthetically, we note that if £(u) = K(u) (which makes (3.1) anticompres-

sive), then we are computing level surfaces of a curve being deformed under its

mean curvature, see [3], [12]. We have rederived here in (3.5) a dissipative estimate

— decay of variation in this case.
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We shall approximate (3.1) by setting up a grid
r; =thy, y; = jhe, t" = nAt.

i,j=0,%£1,£2,...,n=0,1,2,...

For simplicity of exposition, we shall take Ay = hy = h. The approximate solution
is to satisfy:

uj; = u(th, jh,nAt)

Our first approximation is

(3.6a) " = uj \/(m(Ai".,, uf;))? + (m(ALuf, ALuf;)) Fii(L(u"))

Here we have defined A%, A% to be the forward and backwards difference operators

in the « and y directions. Also Fj;(L(u)) = F(Lij(u)) where L;; is a discretization

of the second order edge detector, using central differencing for u,, and uy,, i.e.
1

Usz R 3rALAZ uyj, ete., symmetric differencing for ugzy & 2—}"t—(Af_Ay_ + Af_Af’,_u)

and the u,, uy terms (if needed) are approximated using the minmod operator.

The CFL restriction is
(3.6b) sup SER(L()) < 7

A slight modification of this scheme comes from

(3.7)

At

it = ufy - ((ATu)*)? + ((AZufy) ™) + (A1) *)? + (ALufy) =) F; (L(u™))

At

with the same CFL restriction (3.5b).

Our only rigorous theoretical results here are the following:
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(A) For (3.6a): If ul} ; is a local maximum

n

n n n n
Yiojo 2 ma‘x(uio—l,jo’ Uio+1,505 Yig,jo—17 uio1jo+1)

then it is not enhanced — in fact

n+1 n
ioJo — “ioJo

The same is true for local minima.

(B) For (3.7): For fixed constant values of F; < 0 and Fi'; > 0, then the
scheme is monotone — the right hand side of (3.7) is a nonincreasing function of its

arguments.

We also consider an option which replaces F};(L(u™)) by F;(L(u™))

Eyj = F(m[Lizp,j+u(u™)])

v,p=-1,0,1.

Thus the processing will leave invariant piecewise continuous approximate solutions
of
L(u)=0

4. Results of Two-Dimensional Implementation of the Shock Filter.

We demonstrate the shock filtering enhancement scheme (3.7) on various stan-
dard images from the USC IPI Image Data Base. In this experiment we first blur a
picture with number Ny of iterations of a standard approximation of the diffusion

equation (4.1)

(4.1) Ue =K -Au
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where K is chosen to be the largest satisfying the stability criteria, i.e. K = .25.
Then we show a few iterations of the shock filter N, with the final one at steady
state. The CFL # = .25, the maximal possible under the stability restriction. There
are 256 gra.y' levels for each picture element (pixel). Hence the quantization error is
~ 4 x 1073, If simple reversal of the equation (4.1) is attempted, the image blows

up geometrically in just few iterations, see e.g. [7].

A black and white (B & W) (256 x 256) Picture 1(a) was chosen for its visual
simplicity and for the clear dependence of its information content on the presence
of singularities. (One can see the difficulties involved in writing a program to count
the candies just from the image P1(b)). Picture 1(b) is the result of blurring by

iterations of the diffusion equation.
Pictures 1(c), 1(d) corregpond to
N, =9,18.
An excellent, non-oscillatory piecewise linear reconstruction is evident.

Pictures 2(a), (b), (¢) are the enhancement procedures on a (512 x 512) B &

W “Tank” image: Ngq = 8,N, = 13.

The black and white 256 x 256 “clock” image (Picture 3(a), (b)) is chosen
because it has a great deal of small details, including easily perturbed numerals
on the clock’s face. In this experiment the enhancement of the original image is
performed, i.e. Ny = 0, N, = 5. The procedure seems to resolve the image
beyond its original fidelity, revealing for instance small details on the background
photograph. The appearance of “jagged” edges simply means that edges get too

compressed for the initial resolution.
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The black and white (256 x 256) Picture 4(a), (b), (c) with Ny =0, N, = 5,11
suggest resolution beyond the original optical limit. In particular a small “gate”
appears in the white building on the background, which was not initially apparent

there.

Finally Picture 5(a), (b), (c) demonstrate color enhancement on a (512 x 512)
24 B/pixel image of a lake. Here Ng = 15 and N, = 5. Each separate color plane

was shock filtered.

An interesting observation here is that Picture 5(c) appears to be an “impres-
sionistic” version of the original. This “painting” like quality comes from the fact
that the shock filter (3.7) does not restore details beyond the scales lost in the dif-
fusion process (i.e. features whose edges are not detected by the F(u)), yet all the

higher scales get perfectly enhanced. Thus the result looks like a painting — not a

blur!
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Appendix

In [15] a modification of Burgers’ equation was used as an enhancement mech-

anism.
The differential equation used to enhance images was

(A1) ue = flug)|uslu = euzy, €>0

Here f(u;) was a “threshold” type of function and € is quite small. If we set

e =0 and let f(u,)u be replaced by —F(u;,) we arrive at (2.19).

The numerical results associated with (A1) showed some impressive denoising
and deblurring. However there are two problems with this model. One is a lack of
symmetry — minima and maxima are enhanced differently. The second is that, as

t — 0o, the evolution operator generally leads to trivial results.

As a mathematical model, it served to lead us to the present enhancement
procedure. We replaced extrema oriented reconstruction by feature oriented recon-

struction.
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