
C A

SUBMICRON SYSTEMS ARCHITECTURE PROJECT
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125

Semiannual Technical Report

Caltech Computer Science Technical Report

Caltech-CS-TR-89-4

31 March 1989

The research described in this report was sponsored by the Defense Advanced Research
Projects Agency, DARPA Order number 6202, and monitored by the Office of Naval
Research under contract number NOOOI4-87-K-0745.

SUBMICRON SYSTEMS ARCHITECTURE

Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-S9-4

31 March 1989

Reporting Period:

Principal Investigator:

Faculty Investigators:

1 November 1988 - 31 March 1989

Charles 1. Seitz

K. Mani Chandy

Alain J. Martin

Charles L. Seitz

Stephen Taylor

Sponsored by the
Defense Advanced Research Projects Agency

DARPA Order Number 6202

Monitored by the
Office of Naval Research

Contract Number N00014-87-K-0745

SUBMICRON SYSTEMS ARCHITECTURE

Department of Computer Science
California Institute of Technology

1. Overview and Summary

1.1 Scope of this Report

This document is a summary of research activities and results for the five-month
period, 1 November 1988 to 31 March 1989, under the Defense Advanced Research
Project Agency (DARPA) Submicron Systems Architecture Project. Previous
semiannual technical reports and other technical reports covering parts of the
project in detail are listed following these summaries, and can be ordered from
the Caltech Computer Science Library.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI
systems appropriate to a microcircuit technology scaled to submicron feature sizes.
Our work is focused on VLSI architecture experiments that involve the design,
construction, programming, and use of experimental message-passing concurrent
computers, and includes related efforts in concurrent computation and VLSI design.

1.3 Highlights

• Mosaic prototype approaching completion (2.1).

• Delivery of 2nd-generation multicomputers (2.2)

• Programming with composition (3.3)

• First asynchronous microprocessor (4.1).

• Fast self-timed mesh routing chips (4.2).

-1-

2. Architecture Experiments

2.1 Mosaic Project

Chuck Seitz, Nanette J. Boden, Jordan Holt, Jakov Seizovic, Don Speck, Wen-King
Su, Steve Taylor, Tony Wittry

The Mosaic C is an experimental fine-grain multicomputer, currently in develop­
ment. Each Mosaic node is a single VLSI chip containing a 16-bit processor, a
three-dimensional mesh router with each of its channels operating at 160Mb/s, a
packet interface, at least 8KB of RAM, and a ROM that holds self-test and boot­
strap code. These nodes are arrayed logically and physically in a three-dimensional
mesh. We are working toward building a 16K-node (32x32x16) Mosaic prototype,
together with the system software and programming tools required to develop ap­
plication programs.

The Mosaic can be programmed using the same reactive-process model that
is used for the medium-grain multicomputers that our group has developed.
However, the small memory in each node dictates that programs be formulated
with concurrent processes that are quite small. The Cantor programming system
supports this style of reactive-process programming by a combination of language,
compiler, and runtime support. The programmer is responsible only for expressing
the computing problem as a concurrent program. The resources of the target
concurrent machine are managed entirely by the programming system.

The Mosaic project includes many subtasks, which are listed below together
with their current status:

Design, layout, and verification of the single-chip Mosaic node. The
design and layout of the Mosaic C chip are now complete, and are going through
extensive switch-level simulation tests, including the simulation of multiple nodes
(see section 4.3). We expect to send a memory less version of the node element to
fabrication in about two weeks as a final check of the processor, packet interface,
and router sections. These chips will be connected to external RAM and ROM
to provide functional node elements for software development and host interfaces.
Fabrication of the first chips in 1.2J.Lm CMOS technology with RAM and ROM is
antidpated in June 1989; quantity fabrication is anticipated in September 1989.

Internal self-test and bootstrap code. Since the Mosaic C is a
programmable computing element, devoting a portion of the bootstrap ROM to
self-testing greatly simplifies the logistics of producing these chips in significant
quantity. The bootstrap and self-test code has been designed and is currently being
written. The code will be tested using the ROM connected to the memory less
Mosaic C elements. Additional tests to the channels, which must be accomplished
by the fabricator's automatic test equipment, are also being written.

Packaging. A preliminary packaging design based on TAB-packaged Mosaic

-2-

C chips was completed following a visit to Hewlett-Packard NID to understand
their TAB packaging capabilities. The manufacturing and replacement unit
contains eight nodes in a logical 2x2x2 submesh on a circuit-card module whose
physical dimensions are approximately 2.5 x 5inches2 • These modules have stacking
connectors that provide 160 pins on both the top and bottom, and are confined by
pressure between motherboards to provide a three-dimensional connection structure
that can be disassembled and reassembled for repair.

Cantor runtime system. A complete Cantor runtime system was written in
Mosaic assembly code, and is now running correctly with a suite of small test
programs under a Mosaic simulator on our medium-grain multicomputers (see
section 3.1). This system provides the low-level implementation of message and
process-creation primitives, and normally will be loaded as part of the Mosaic
system initialization. The evolution of the Cantor programming language and the
experience gained by use are two factors that are expected to affect continuing
refinements to this system.

Cantor language, compiler, and application studies. A definition of a
version of Cantor (3.0) with functions and limited message discretion was proposed
in January 1989 by William C. Athas of UT Austin. We have been studying the
changes in the runtime support that will be required by these improvements. In the
interim, the definition and compiler implementation of Cantor 2.2 remain in use for
application development .

Host interfaces and displays. The three-dimensional mesh structure of the
Mosaic allows a very large bandwidth around the mesh edges. In order to initiate
and interact with computations within the Mosaic, we must provide interfaces
between the Mosaic message network and conventional computers and networks.
One approach being studied is to use a memory less Mosaic with a two-ported
external memory as a convenient interface to workstation computers. Another
external connection that is desired is a display interface. An elegant method that
uses one 32x32 plane of a Mosaic as a rendering engine, frame buffer, and output
video-conversion system has been developed. The detailed design of the video
output generator that attaches to one edge of this 32x32 plane is now under way.

2.2 Second-Generation Medium-Grain Multicomputers'"

Chuck Seitz, Joe Bechenbach, Christopher Lee, Jakov Seizovic, Craig Steele, Wen­
King Su

A 16-node Intel iPSC/2 was delivered in November 1988, and a 16-node Symult
Series 2010, a second-generation medium-grain multicomputer developed as a

... This segment of our research is sponsored jointly by DARPA and by grants from
Intel Scientific Computers (Beaverton, Oregon) and Symult Systems (Monrovia,
California) .

-3-

joint project between our research project and Symult Systems, Inc. (formerly
Ametek Computer Research Division), was delivered in December 1988. Both of
these systems have been used extensively for programming system developments,
applications, and benchmarks. We have encountered very few system problems in
running existing Cosmic-C application programs on either the Symult Series 2010
or Intel iPSC/2.

Application programs typical of those that were written for first-generation
multicomputers run 8-10 times faster per node on the Symult Series 2010 and
on the Intel iPSC/2 than on first-generation machines, such as the Intel iPSC/i.
Applications involving latency-sensitive non-local message traffic exhibit more
dramatic improvements, particularly on the Series 2010, due to cut-through message
routing being included in the hardware of these second-generation multicomputers.

Delivery of a 64-node Series 2010 is expected on 31 March 1989, and our
16-node Series 2010 will be returned briefly to Symult to be upgraded to 32
nodes and retrofitted with some hardware improvements to the mesh termination
and host interfaces. The 32-node Series 2010 will continue as our principal
programming-system-development machine. The 64-node Series 2010 and the 16-
node iPSC/2 will be made available to outside users through the Caltech Concurrent
Supercomputing Facilities. Outside users will include researchers at Caltech, as well
as those associated with the Rice-Caltech-Argonne-Los Alamos (NSF Science and
Technology) Center for Research in Parallel Computation. These systems will also
be available for use by researchers in the DARPA community; DARPA researchers
should contact Chuck Seitz (chuckG)vlsi. cal tech. edu) to make arrangements for
access.

We expect to expand both the Intel iPSC/2 and Symult Series 2010 to larger
configurations by the early part of CY90.

Copies of the Cosmic Environment system have been distributed to 13 additional
sites during this period, bringing the total copies distributed directly from the
project to over 160.

An effort has been started to implement major extensions of the Cosmic
Environment host runtime system and the Reactive Kernel node operating system.
The new CE will be based internally on reactive programming, and will allow a
more distributed management of a set of network-connected multicomputers. The
extended RK will support global operations across sets of cohort processes, including
barrier synchronization, sum, min, max, parallel prefix, and rank. Another
extension will be the support of distributed data structures, such as sets and
ordered sets. These new features will be implemented at the RK handler level,
where the message latency is only a fraction of that at the protected user level. The
implementation of these algorithms at the handler level permits the performance of
global and distributed-data-structure operations in times that do not greatly exceed
those of user-level operations dealing with single messages.

-4-

Our Caltech project continues to work with both Intel and Symult on the
architectural design, message-routing methods and chips, and system software for
medium-grain multicomputers. We expect to see additional major advances in the
performance and programmability of these systems over the next two years. In
addition, we continue to develop applications in VLSI design and analysis tools, and
in other areas in which the programming of these multicomputer systems presents
particular difficulties or opportunities.

2.3 Cosmic Cube Project

Wen-King Su, Jakov Seizovic, Chuck Seitz

The Cosmic Cubes that were built in our project in 1983 and the Intel iPSC/1
d7 that was contributed to the project in 1985 continue to operate very reliably.
Overall usage has decreased somewhat with the appearance of the second-generation
multicomputers, but the iPSC/1 continues to be used fairly heavily within the
research group for discrete event simulations, and by Caltech students and faculty
in Aeronautics for supersonic-flow computations.

Neither the 64-node or 8-node Cosmic Cubes exhibited any hard failures in this
five-month period. The two original Cosmic Cubes have now logged 3.8 million
node-hours with only four hard failures, three of which were chip failures in nodes,
and one a power-supply failure. A node MTBF in excess of 1,000,000 hours is
probable based on this reliability experience.

-5-

3. Concurrent Computation

3.1 Cantor

Nanette J. Boden, Chuck Seitz

Programming Fine-Grain Multicomputers

The experiments we reported previously in application programming using Can­
tor 2.0 and 2.2 have suggested a series of changes to the Cantor language.
William C. Athas, who led the development of Cantor while he was a graduate
student and post-doc in the project, and who is now at UT Austin, has incorpo­
rated these ideas into the definition of a new version of Cantor (3.0). The principal
structural changes are the introduction of limited discretion in receiving messages
according to type, and in the approach to implementing functions.

In developing the Cantor programming system for the Mosaic, we mean to allow
for these changes so that we may change to Cantor 3.0 as soon as a new compiler
is produced.

Cantor for the Mosaic

Development of Cantor runtime support for the Mosaic multicomputer has
progressed significantly during the last five months. Initially, we defined a Cantor
Abstract Machine (CAM) that represents an idealized machine for executing Cantor
code. The CAM instruction set includes single instructions that encapsulate
complicated Cantor operations, such as process creation and message passing.
By design, the implementation of these operations can be varied within native
code generators for experimenting with different strategies. With the Mosaic, for
example, we use a macro-assembler that translates the implementation for each
CAM instruction into Mosaic instructions.

The definition of the first version of the Cantor runtime system for the Mosaic
consisted chiefly of freezing efficient implementations for process creation and
message passing, and expressing them with Mosaic instructions. In the case of
process creation, a software cache of available reference values is maintained on
each node so that processes can be created with low latency. These reference
values are later bound to actual processes by special creator processes located on
each node that allocate memory for new processes. Receiving a message on the
Mosaic is implemented by having the runtime system determine the destination
process, and then run that process to absorb the message. The runtime system also
communicates with the runtime systems on other nodes to manage resources within
the node, eg, sending requests for more reference values to fill the software cache.

To evaluate different runtime system prototypes, we developed a Mosaic
simulator that runs on existing medium-grain multicomputers, including the Cosmic

-6-

Cubes, Intel iPSCs, and the Symult 2010. A host program distributes the Mosaic
code for a Cantor program to each simulated Mosaic node, and initiates computation
by instantiating the main process of the Cantor program. Program output is
achieved by instantiating a console process and passing its reference in messages.

Currently, our simulator is working on a test suite of simple Cantor programs.
In the future, we plan to incorporate some of the more recent Cantor innovations,
eg, functions and limited message discretion, into the simulator and into the runtime
system. We are also planning experiments to evaluate different strategies for code
distribution and memory allocation throughout Mosaic nodes.

3.2 Concurrent Logic Programming

Stephen Taylor

A commercially supported concurrent logic programming system was ported to our
Symult Series 2010 multicomputer, and is available for all users of our project's
multicompu ters.

This system is composed of a compiler for the language Strand, and an
environment for program development. The language provides an abstract message­
passing framework for use in a variety of symbolic and system integration tasks.
The system is also operational on Intel iPSC systems, networks of Suns, Mecho
Transputer surfaces, PC Plug-in Transputer cards, Encore/Sequent shared memory
machines, BBN Butterfly, and Atari personal machines. The system was used for a
graduate course in compiler techniques this quarter, and will be used in a graduate
course on concurrent programming in this coming quarter. It is also being used to
study various applications in the composition research described in the following
section of this report. Finally, a textbook describing the ideas embodied in the
Strand system was recently completed, and will be published by Prentice-Hall in
July 1989.

3.3 Programming with Composition

Mani Chandy, Stephen Taylor

We are interested in developing a notation for specifying concurrent algorithms and
programs. Our goals are to support formal reasoning about program correctness
and to provide efficient implementations of symbolic, numeric, and operating system
codes. We have chosen program composition as a central notion due to its prevalence
in both semantic models and program design methodologies.

During the past six months, we have considered the basic components of such a
notation. Our conclusion is that there are four composition operators of importance.
These operators are defined on program units; the method by which these units
are implemented is relatively unimportant. It is natural to expect the notation
to allow existing codes (written in Fortran, C, Lisp, Ada, etc) to be reused on

-7-

multicomputers. Moreover, the composition of these units will have a formal
semantic characterization. To explore the utility of the notation, we are currently
focussing on the hand compilation of non-trivial application codes. IT performance
results indicate that the notation is sufficiently efficient, we plan to build a compiler
targeted to multicomputer architectures.

In the area of numeric computing we are studying a large fluid-flow problem
developed in the department of Applied Mathematics at Caltech. This Fortran
application computes the transition from a two-dimensional Taylor Vortex to three­
dimensional wavy-vortex flow. Central to the application is a relaxation algorithm
that employs a multigrid method. After benchmarking, we discovered that more
than 70% of the execution time for the application was spent in the relaxation
algorithm; thus, we decided to focus on this algorithm. Unfortunately, we arrived at
a somewhat negative conclusion: The original algorithm was based on a sequential
line-iteration scheme that afforded no opportunity for concurrent execution. As
a result, we have converted the original code to use a point Gaussian relaxation
algorithm; this appears more suitable. We are currently in the process of debugging
a concurrent formulation of the algorithm.

In the area of symbolic computing we are studying a large automated reasoning
program in conjunction with the Aerospace Corporation in Los Angeles. This
program has been used extensively for checking the correctness of hardware
specifications and Ada programs. A central component of the program is a
congruence closure algorithm used for maintaining equality assertions. We began
this research by investigating the opportunities for executing portions of this
algorithm concurrently. This, again, led us to a somewhat negative conclusion:
The granularity of typical invocations of the algorithm is too low to benefit from
concurrent execution. We are now investigating a new algorithm that overlaps the
execution of multiple equality assertions. Since a large number of these occur in a
typical proof, we believe this to be a more suitable direction.

Finally, we are also interested in working with DNA sequencing programs, but
have not yet made substantial progress in this area.

It should be understood that the objective of these application efforts is to
test the utility of the program-composition notation, rather than to develop the
applications themselves.

3.4 Variants of the Chandy-Misra-Bryant Distributed Discrete-Event
Simulation Algorithm

Wen-King Su, Chuck Seitz

During the past five months, additional simulations using the new logic simulator
have been made, and a revision of the paper "Variants of the Chandy-Misra-Bryant
Distributed Discrete-event Simulation Algorithm" (included as an appendix to this
report) was written for publication in the 1989 SCS Eastern Multi-Conference. A

-8-

test version of the hybrid simulator has been implemented on top of the concurrent
CMB variant simulators. Results from this prelimiary investigation are promising,
and anew, more efficient version of the hybrid simulator is currently being written.

3.5 Distributed Snapshots

Mani Chandy

One of the fundamental problems in distributed systems appears trivial: Record the
state of the system. The problem is, however, quite difficult because distributed
systems do not have a single system-wide clock. If there were a clock, all processes
could record their local states at a predetermined time. The problem of recording
global states of distributed systems is at the core of a large number of problems
in distributed systems, including deadlock detection, termination detection, and
resource management. The paper, "The Essence of Distributed Snapshots,"
submitted to the ACM Transactions on Computer Systems, and included as an
appendix to this report, presents necessary and sufficient conditions for a collection
of local snapshots (recordings of local states) to be a global snapshot. The paper
shows that many distributed algorithms can be developed in a systematic and
straightforward manner from these conditions.

-9-

4. VLSI Design

4.1 The Design of the First Asynchronous Microprocessor

Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, Pieter J. Hazewin­
dus

We have completed the design of an entirely asynchronous (self-timed, delay­
insensitive) microprocessor. It is a 16-bit, RISC-like architecture with independent
instruction and data memories. It has 16 registers, 4 buses, an ALU, and two adders.
The size is about 20,000 transistors. Two versions have been fabricated: one in 2JLm

MOSIS SCMOS, and one in 1.6JLm MOSIS SCMOS. (On the 2JLm version, only 12
registers were implemented in order to fit the chip into the 84-pin 6600JLmx4600JLm
pad frame.)

With the exception of isochronic forks (see the paper included as an appendix
to this report), the chips are entirely delay-insensitive, ie, their correct operation
is independent of any assumption on delays in operators and wires except that the
delays be finite. The circuits use neither clocks nor knowledge about delays.

The only exception to the design method is the interface with the memories. In
the absence of available memories with self-timed interfaces, we have simulated the
completion signal from the memories with an external delay. For testing purposes,
the delay on the instruction memory interface is variable.

In spite of the presence of several floating n-wells, the 2JLm version runs at
12 MIPS. The 1.6JLm version runs at 18 MIPS. (Those performance figures are
based on measurements from sequences of ALU instructions without carry. They
do not take advantage of the overlap between ALU and memory instructions.) Those
performance results are quite encouraging given that the design is very conservative:
It uses static gates, dual-rail encoding of data, completion trees, etc.

Only two of the 12 2JLm chips passed all tests, but 34 out of the 50 1.6JLm chips
were found to be entirely functional. However, within a certain range of values
for the instruction memory delay, the 1.6JLm version is not entirely functional. We
cannot yet explain this phenomenon.

We have tested the chips under a wide range of VDD voltage values. At room
temperature, the 2JLm version is functional in a voltage range from 7V down to
0.35V! And it reaches 15 MIPS at 7V. We have also tested the chips cooled in liquid
nitrogen. The 2JLm version reaches 20 MIPS at 5V and 30 MIPS at 12V. The 1.6JLm

version reaches 30 MIPS at 5V. Of course, these measurements are made without
adjusting any clocks (there are none), but simply by connecting the processor to a
memory containing a test program and observing the rate of instruction execution.
The results are summarized in Figure 1. The power consumption is 145mW at 5V,
and 6. 7m W at 2V. Figure 2 shows that the optimal power-delay product is obtained
at 2V at room temperature.

-10-

30

25

20
M
1 15 p
s

10

5

0

0

10

8
E
n
e 6
r
g
y

6 4

P
2

0

0 1

2

77°K,2J.L

OOK,1.6J.Lm

~OOK'2I'm

4 6

Volts

8

Figure 1: MIPS as a function of VDD

2 3 4 5

Volts

10

6

Figure 2: Power-delay product as a function of VDD

-11-

12

7

4.2 Fast Self-Timed Mesh Routing Chips

Chuck Seitz

The latest mesh-routing-chip (MRC) design, the FMRC2.1 design, was sent to
MOSIS for 1.6J.Lm SCMOS fabrication on 7 November 1988. This chip is a revision of
FMRC2.0 that corrects a timing error in the latching of a routing decision. A Spice
simulation indicated that that the revision corrected a timing error of approximately
0.7ns to a timing margin of about 1.0ns (about 50% of the difference between two
short delay paths; hence, not as risky as it may sound). The maximal throughput
predicted both by Spice and by tau-model calculations was 6OMB/s.

These chips were returned from fabrication on 10 January 1989, and were
found to operate correctly under a nearly exhaustive functional screening, and at
a maximum throughput of 56MB/s. The yield on this run was 44/50. One of the
chips had a cracked package, and two had bonding shorts; hence, the fabrication
yield was actually 44/47.

Batches of 20 good chips were sent both to Intel Scientific Computers (as GFE
on their DARPA contract) and to Symult Systems, and both companies have verified
that these chips operate correctly in their test fixtures or systems.

The FMRC2.1 chip employs a design method that is not entirely delay­
insensitive (see previous section). The circuit exhibits races within modules,
but these modules have self-timed interfaces to other modules. Previous MRCs,
entirely pin-for-pin compatible, employed the same delay-insensitive style as the
asynchronous processor reported in the previous section, and required nearly twice
the silicon area to operate half as fast as the FMRC2.1.

Hence, we conjecture that we shall see the same phenomenon with self-timed
designs that is apparent with conventional designs; namely, that chips with relatively
few cell types, such as memories and MRCs, will profitably employ circuit-level
optimizations. Such optimizations are relatively less profitable and manageable in
more complex chip designs, such as processors.

4.3 Mosaic C Chip

Jakov SeizDvic, Jordan Holt, Chuck Seitz, Don Speck, Wen-King Su, Tony Wittry

During the past few months, work on the Mosaic chip has predominantly consisted of
a series of extensive switch-level simulations. Using COSMOS instead of MOSSIM,
we were able to decrease the simulation time by a factor of ten, with a negligible
additional cost in setup (compile) time. The simulation of a memory less version
of Mosaic chip, consisting of about 26K transistors, takes slightly over a second of
real time per clock cycle when running on a SUN 3/260. This has enabled us to
simulate fairly long sequences of instructions from the Cantor runtime system at
the switch-simulation level.

-12-

Having completed simulations of all of the logic parts of the Mosaic chip,
ie, processor, packet interface, router, and bus arbiter, independently as well as
together, we are entering the final phase of switch-level simulations, where multiple
Mosaic chips will be represented as processes under CE/RK, and run on the
multicomputers operated by the project, as well as on workstations.

We are planning to send the first version of a Mosaic chip to fabrication on a
2Jl MOSIS run within a couple of weeks.

4.4 New CMOS PLAs

Jakov Seizovic, Chuck Seitz

A NOR-NOR precharged PLA has been designed to replace the NAND-NOR
precharged PLA that we have used extensively since 1985. Both the delay and
precharge time of this NOR-NOR PLA are linear in the number of inputs, a
significant improvement compared to the NAND-NOR PLA, in which the delay is
quadratic, and precharge time is cubic. This PLA has replaced the two NAND-NOR
PLAs in the Mosaic C packet interface and the hybrid static/precharge NAND-NOR
PLA in the Mosaic processor, and accordingly has saved us a lot of time and trouble
in the Mosaic design.

4.5 CIF-flogger

Glenn Lewis, Chuck Seitz

CIF-flogger is a multicomputer program for flattening CIF files, rasterizing the
geometry, and performing parallel operations on the geometry in strips. It runs
under the CE/RK system, and hence, on most available multicomputers, including
the Intel iPSC /2 and Symult Series 2010.

CIF-flogger currently supports the following operations on the chip geometry:

• parsing the CIF specification file (produced by Magic)

• flattening and rasterizing the hierarchical design geometry

• recognizing transistor geometry

• global connected-component labeling

• bloat, shrink, and logical mask layer operations

• creating new CIF for a processed design

Plans for CIF -flogger include:

• general CIF -reading capability

• circuit extraction

-13-

• well-plug checking

• design-rule checking

Initial timings indicate that CIF -flogger provides these operations in a matter of a
few seconds for WOK-transistor chips. CIF -flogger is intended to be a useful tool
for chip designers and foundries to verify that a design passes "syntactical" checks
before it is fabricated, thus saving both time and money.

4.6 Adaptive Routing in Multicomputer Networks

John Y. Ngai, Chuck Seitz

As we are wrapping up our theoretical investigation of multicomputer adaptive
routing, our recent efforts have been concentrated in two areas:

(1) The first of a series of publications will appear in the 1989 ACM Symposium
on Parallel Algorithms and Architectures, to be held in Sante Fe, New Mexico
this June. (A copy of this paper is included at the end of the report.)

(2) We have been searching for practical implementation ideas for replacing the
existing oblivious router in the Mosaic with an adaptive router. A low-latency
header encoding and modification scheme that we have dubbed the "sign­
first one-shy code" has been devised for an adaptive router with a relatively
narrow flit width. The details of these implementation ideas can be found in a
forthcoming PhD thesis.

-14-

California Institute of Technology
Computer Science Department, 256-80

Pasadena CA 91125

Technical Reports
28 March 1989

Price8 include p08tage and help to defray our printing and mailing C08tS.

Publication Order Form
To order reports fill out the last page of this publication form. Prepayment is required for all materials. Purchase orders will not
be accepted. All foreign orders must be paid by international money order or by check drawn on a U.S. bank in U.S. currency,
payable to CALTECH.

_CS-TR-89-03 $3.00

_CS-TR-89-02 $3.00

_CS-TR-89-01 $4.00

_CS-TR-88-22 $2.00

_CS-TR-88-21 $3.00

_CS-TR-88-20 $7.00

_CS-TR-88-19 $5.00

_CS-TR-88-18 $3.00

_CS-TR-88-17 $3.00

_CS-TR-88-16 $3.00

_CS-TR-88-15 $13.00

_CS-TR-88-14 $2.00

_CS-TR-88-13 $2.00

_CS-TR-88-12 $4.00

_CS-TR-88-11 $5.00

_CS-TR-88-10 $3.00

_CS-TR-88-07 $3.00

_CS-TR-88-06 $3.00

_CS-TR-88-05 $3.00

_CS-TR-88-04 $3.00

Feature-oriented Image Enhancement with Shock Filters, I
Rudin, Leonid I with Stanley Osher
De8ign of an Asynchronous Microproces80r,
Martin, Alain J
Programming in VLSI From Communicating Proces8es to Delay-inllensitive Circuits,
Martin, Alain J
Variantll of the Chandy-Mi8ra-Bryant Distributed Discrete-Event Simulation Algorithm,
Su, Wen-King and Charles L Seitz
Winner- Take-All Network8 of O(N) Complexity,
Lazzaro, John, with S Ryckebusch, M A Mahowald and C A Mead
Neural Network Dellign and the Complexity of Learning,
Judd, J. Stephen
Controlling Rigid Bodiell with Dynamic Con8traintll,
Barzel, Ronen
Submicron SYlltem8 Architecture Project,
ARPA Semiannual Technical Report
Con8trained Differential Optimization for Neural Networks,
Platt, John C and Alan H Barr
Programming Parallel Computerll,
Chandy, K Mani
Applicationll of Surface Networks to Sampling Problemll in Computer GraphiclI, PhD Thesis
Von Herzen, Brian
Syntax-directed Tranillation of Concurrent Programll into Self-timed Circuitll
Burns, Steven M and Alain J Martin
A Mellllage-Pall6ing Model for Highly Concurrent Computation,
Martin, Alain J
A Comparison of Strict and Non-lltrict Semanticil for Lilltll, MS Thesis
Burch, Jerry R
A Study of Fine-Grain Programming Ulling Cantor, MS Thesis
Boden, Nanette J
The Reactive Kernel, MS Thesis
Seizovic, Jacov
The Hexagonal Rellistive Network and the Circular Approximation,
Feinstein, David I
Theoremll on Computations of Distributed SYlltemll,
Chandy, K Mani
Submicron SYlltems Architecture
ARPA Semiannual Technical Report
Cochlear Hydrodynamics Demystified
Lyon, Richard F and Carver A Mead

1

_CS-TR-88-03 $4.00

_CS-TR-88-02 $4.00

_CS-TR-88-01 $3.00

_5258:TR:88 $3.00

_5256:TR:87 $2.00

_5253:TR:88 $2.00

_5251:TR:87 $2.00

_5250:TR:87 $10.00

_5249:TR:87 $6.00

_5247:TR:87 $6.00

_5246:TR:87 $3.00

_5244:TR:87 $3.00

_5243:TR:87 $5.00

_5242:TR:87 $8.00

_5241:TR:87 $3.00

_5240:TR:87 $2.00

_5239:TR:87 $3.00

_5238:TR:87 $7.00

_5236:TR:86 $4.00

_5235:TR:86 $4.00

_5234:TR:86 $3.00

_5233:TR:86 $3.00

_5232:TR:86 $4.00

_5230:TR:86 $24.00

_5229:TR:86 $4.00

Caltech Computer Science Technical Reports

PS: Polygon StreamlJ: A DilJtributed Architecture for Incremental Computation Applied to Graphic
MS Thesis
Gupta, Rajiv
Automated Compilation of Concurrent ProgramlJ into Self-timed CircuitlJ, MS Thesis
Steven M Burns
C Programmer'lJ Abbreviated Guide to Multicomputer Programming,
Seitz, Charles, Jakov Seizovic and Wen-King Su
Submicron SYlJtemlJ Architecture
ARPA Semiannual Technical Report
SynthuilJ Method for Self-timed VLSI CircuitlJ,
Martin, Alain
current supply only: see Proc. ICCD'87: 1987 IEEE Int'l. Con/. on Computer Design, 224-229, C
SynthuilJ of Self- Timed Circuits by Program TranlJformation,
Burns, Steven M and Alain J Martin
Conditional Knowledge as a Basis for Distributed Simulation,
Chandy, K. Mani and Jay Misra
Images, Numerical Analysis of Singularities and Shock Filters, PhD Thesis
Rudin, Leonid Iakov
Logic from Programming Language Semantics, PhD Thesis
Choo, Young-il
VLSI Concurrent Computation for Music Synthuis, PhD Thesis
Wawrzynek, John
Framework for Adaptive Routing
Ngai, John Y and Charles L. Seitz
Multicomputers
Athas, William C and Charles L Seitz
Resource-Bounded Category and Measure in Exponential Complexity Classes, PhD Thesis
Lutz, Jack H
Fine Grain Concurrent Computations, PhD Thesis
Athas, William C.
VLSI Mesh Routing SystemlJ, MS Thesis
Flaig, Charles M
Submicron Systems Architecture
ARPA Semiannual Technical Report
Trace Theory and Systolic Computations
Rem, Martin
Incorporating Time in the New World of Computing System, MS Thesis
Poh, Hean Lee
Approach to Concurrent SemanticlJ UlJing Complete Traces, MS Thesis
Van Horn, Kevin S.
Submicron SYlJtemlJ Architecture
ARPA Semiannual Technical Report
High Performance Implementation of Prolog
Newton, Michael 0
Some Results on Kolmogorov-Chaitin Complexity, MS Thesis
Schweizer, David Lawrence
Cantor User Report
Athas, W.C. and C. L. Seitz
Monte Carlo Methods for I!-D Compaction, PhD Thesis
Mosteller, R.C.
anaLOG - A Functional Simulator for VLSI Neural SystemlJ, MS Thesis
Lazzaro, John

2

Caltech Computer Science Technical Reports

__ 5228:TR:86 $3.00 On Performance of k-ary n-cube Interconection Networks,
Dally, Wm. J

__ 5227:TR:86 $18.00 Parallel Execution Model for Logic Programming, PhD Thesis
Li, Pey-yun Peggy

__ 5223:TR:86 $15.00 Integrated Optical Motion Detection, PhD Thesis
Tanner, John E.

__ 5221:TR:86 $3.00 Sync Model: A Parallel Execution Method for Logic Programming
Li, Pey-yun Peggy and Alain J. Martin
current supply only: see Proc SLP'86 9rd IEEE Symp on Logic Programming Sept '86

__ 5220:TR:86 $4.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

__ 5215:TR:86 $2.00 How to Get a Large Natural Language System into a Personal Computer,
Thompson, Bozena H. and Frederick B. Thompson

__ 5214:TR:86 $2.00 ASK is Transportable in Half a Dozen Ways,
Thompson, Bozena H. and Frederick B. Thompson

__ 5212:TR:86 $2.00 On Seitz' Arbiter,
Martin, Alain J

__ 521O:TR:86 $2.00 Compiling Communicating Processes into Delay-Insensitive VLSI Circuits,
Martin, Alain
current supply only: see Distributed Computing v 1 no 4 (1986)

__ 5207:TR:86 $2.00 Complete and Infinite Traces: A Descriptive Model of Computing Agents,
van Horn, Kevin

__ 5205:TR:85 $2.00 Two Theorems on Time Bounded Kolmogrov-Chaitin Complexity,
Schweizer, David and Yaser Abu-Mostafa

__ 5204:TR:85 $3.00 An Inverse Limit Construction of a Domain of Infinite Lists,
Choo, Young-ll

__ 5202:TR:85 $15.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report

__ 5200:TR:85 $18.00 ANIMAC: A Multiprocessor Architecture for Real- Time Computer Animation, PhD thesis
Whelan, Dan

__ 5198:TR:85 $8.00 Neural Networks, Pattern Recognition and Fingerprint Hallucination, PhD thesis
MjoiBness, Eric

__ 5197:TR:85 $7.00 Sequential Threshold Circuits, MS thesis
Platt, John

__ 5195:TR:85 $3.00 New Generalization of Dekker's Algorithm for Mutual Exclusion,
Martin, Alain J
current supply only: see Information Processing Letters, 23, 295-297 (1986)

__ 5194:TR:85 $5.00 Sneptree - A Versatile Interconnection Network,
Li, Pey-yun Peggy and Alain J Martin

__ 5193:TR:85 $2.00 Delay-insensitive Fair Arbiter
Martin, Alain J

__ 5190:TR:85 $3.00 Concurrency Algebra and Petri Nets,
Choo, Young-il

__ 5189:TR:85 $10.00 Hierarchical Composition of VLSI Circuits, PhD Thesis
Whitney, Telle

__ 5185:TR:85 $11.00 Combining Computation with Geometry, PhD Thesis
Lien, Sheue-Ling

__ 5184:TR:85 $7.00 Placement of Communicating Processes on Multiprocessor Networks, MS Thesis
Steele, Craig

__ 5179:TR:85 $3.00 Sampling Deformed, Intersecting Surfaces with Quadtrees, MS Thesis,
Von Herzen, Brian P.

__ 5178:TR:85 $9.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report

3

Caltech Computer Science Technical Reports

__ 5174:TR:85 $7.00 Balanced Cube: A Concurrent Data Structure,
Dally, William J and Charles L Seitz

__ 5172:TR:85 $6.00 Combined Logical and Functional Programming Language,
Newton, Michael

__ 5168:TR:84 $3.00 Object Oriented Architecture,
Dally, Bill and Jim Kajiya

__ 5165:TR:84 $4.00 CU3tomizing One'3 Own Interface U3ing Engli3h a3 Primary Language,
Thompson, B H and Frederick B Thompson

__ 5164:TR:84 $13.00 ASK French - A French Natural Language Syntax, MS Thesis
Sanouillet, Remy

__ 5160:TR:84 $7.00 Submicron Sy&tem3 Architecture,
ARPA Semiannual Technical Report

__ 5158:TR:84 $6.00 VLSI Architecture for Sound Synthe3is,
Wawrzynek, John and Carver Mead

__ 5157:TR:84 $15.00 Bit-Serial Reed-Solomon Decoders in VLSI, PhD Thesis
Whiting, Douglas

__ 5147:TR:84 $4.00 Network3 of Machine3 for Distributed Recur3ive Computations,
Martin, Alain and Jan van de Snepscheut

__ 5143:TR:84 $5.00 General Interconnect Problem, MS Thesis
Ngai, John

__ 5140:TR:84 $5.00 Hierarchy of Graph Isomorphism Testing, MS Thesis
Chen, Wen-Chi

__ 5139:TR:84 $4.00 HEX: A Hierarchical Circuit Extractor, MS Thesis
Oyang, Yen-Jen

__ 5137:TR:84 $7.00 Dialogue De3igning Dialogue System, PhD Thesis
Ho, Tai-Ping

__ 5136:TR:84 $5.00 Heterogeneou3 Data Ba3e Acce3s, PhD Thesis
Papachristidis, Alex

__ 5135:TR:84 $7.00 Toward Concurrent Arithmetic, MS Thesis
Chiang, Chao-Lin

__ 5134:TR:84 $2.00 U3ing Logic Programming for Compiling APL, MS Thesis
Derby, Howard

__ 5133:TR:84 $13.00 Hierarchical Timing Simulation Model for Digital Integrated Circuits and System3, PhD Thesi
Lin, Tzu-mu .

__ 5132:TR:84 $10.00 Switch Level Fault Simulation of MOS Digital Circuits, MS Thesis
Schuster, Mike

__ 5129:TR:84 $5.00 De&ign of the MOSAIC Proceuor, MS Thesis
Lutz, Chris

__ 5128:TM:84 $3.00 Lingui&tic Analy&i3 of Natural Language Communication with Computers,
Thompson, Bozena H

__ 5125:TR:84 $6.00 Superme3h, MS Thesis
Su, Wen-king

__ 5123:TR:84 $14.00 Mouim Simulation Engine Architecture and Design,
Dally, Bill

__ 5122:TR:84 $8.00 Submicron SY3tem3 Architecture,
ARPA Semiannual Technical Report

__ 5114:TM:84 $3.00 ASK A" Window to the World,
Thompson, Bozena, and Fred Thompson

__ 5112:TR:83 $22.00 Parallel Machine3 for Computer Graphic3, PhD Thesis
UIner, Michael

__ 5106:TM:83 $1.00 Ray Tracing Parametric Patches,
Kajiya, James T

4

_5104:TR:83 $9.00

_5094:TR:83 $2.00

_5092:TM:83 $2.00

_5091:TR:83 $2.00

_5090:TR:83 $9.00

_5089:TR:83 $10.00

_5086:TR:83 $4.00

_5082:TR:83 $10.00

_5081:TR:83 $4.00

_5074:TR:83 $10.00

_5073:TR:83 $12.00

_5065:TR:82 $3.00

_5054:TM:82 $3.00

_5051:TM:82 $2.00

_5035:TR:82 $9.00

_5034:TR:82 $12.00

_5033:TR:82 $4.00

_5029:TM:82 $4.00

_5018:TM:82 $2.00

_5017:TM:82 $2.00

_5015:TR:82 $15.00

_5014:TR:82 $15.00

_5012:TM:82 $2.00

_5000:TR:82 $6.00

_4684:TR:82 $3.00

Caltech Computer Science Technical Reports

Graph Model and the Embedding of MOS Circuits, MS Thesis
Ng, Tak-Kwong
Stocha6tic E6timation of Channel Routing Track Demand,
Ngai, John
Ruidue Arithmetic and VLSI,
Chiang, Chao-Lin and Lennart Johnsson
Race Detection in MOS Circuits by Ternary Simulation,
Bryant, Randal E
Space- Time Algorithm6: Semantic6 and Methodology, PhD Thesis
Chen, Marina Chien-mei
Signal Delay in General RC Network6 with Application to Timing Simulation of Digital
Integrated Circuit6,
Lin, Tzu-Mu and Carver A Mead
VLSI Combinator Reduction Engine, MS Thesis
Athas, William C Jr
Hardware Support for Advanced Data Management Systems, PhD Thesis
Neches, Philip
RT6im - A Register Transfer Simulator, MS Thesis
Lam, Jimmy
current supply only: see Acta Informatica 20, 301-313, (1983)
Robu6t Sentence AnalY6i6 and Habitability,
Trawick, David
Automated Performance Optimization of Custom Integrated Circuits, PhD Thesis
Trimberger, Steve
Switch Level Model and Simulator for MOS Digital Systems,
Bryant, Randal E
Introducing ASK, A Simple Knowledgeable Sy&tem, Conf on App'l Natural Language Processing
Thompson, Bozena H and Frederick B Thompson
Knowledgeable Context6 for U6er Interaction, Proc Nat'l Computer Conference
Thompson, Bozena, Frederick B Thompson, and Tai-Ping Ho
Type Inference in a Declarationless, Object-Oriented Language, MS Thesis
Holstege, Eric
Hybrid Proce&sing, PhD Thesis
Carroll, Chris
MOSSIM II: A Switch-Level Simulator for MOS LSI U6er's Manual,
Schuster, Mike, Randal Bryant and Doug Whiting
POOH User's Manual,
Whitney, Telle
Filtering High Quality Text for Display on Ra6ter Scan Device6,
Kajiya, Jim and Mike Ullner
Ray Tracing Parametric Patche6,
Kajiya, Jim
VLSI Computational Structure6 Applied to Fingerprint Image AnalY6is,
Megdal, Barry
Exten8ion of Object-Oriented Language6 to a Homogeneou6, Concurrent Architecture, PhD Thesis
Lang, Charles R Jr
Switch-Level Modeling of MOS Digital Circuit8,
Bryant, Randal
Self- Timed Chip Set for Multiproce660r Communication, MS Thesis
Whiting, Douglas
Characterization of Deadlock Free Re80urce Contention8,
Chen, Marina, Martin Rem, and Ronald Graham

5

_4655:TR:81 $20.00

_3760:TR:80 $10.00

_3759:TR:80 $10.00

_3710:TR:80 $10.00

_3340:TR:79 $26.00

_2276:TM:78 $12.00

Caltech Computer Science Technical Reports

Proc Second Caltech Conf on VLSI,
Seitz, Charles, ed.
Tree Machine: A Highly Concurrent Computing Environment, PhD Thesis
Browning, Sally
Homogeneou$ Machine, PhD Thesis
Locanthi, Bart
Under$tanding Hierarchical De$ign, PhD Thesis
Rowson, James
Proc. Caltech Conference on VLSI (1979),
Seitz, Charles, ed
Language Proces$or and a Sample Language,
Ayres, Ron

6

Caltech Computer Sciellce Technical Reports

Please PRINT your name, address and amount enclosed below:

name __ __

Address __ __

City ____________ State _______________ Zip _____ Country __________ _

Amount enclosed $ ___ _

____ Please check here if you wish to be included on our mailing list

___ Please check here for any change of address

___ Please check here if you would prefer to have future publications lists sent to your e-mail address.

E-mail address

Return this form to: Computer Science Library, 251>-80, Caltech, Pasadena CA 91125

__ 89-03 __ 5250 __ 5210 __ 5143 __ 5074

__ 89-02 __ 5249 __ 5207 __ 5140 __ 5073

__ 89-01 __ 5247 __ 5205 __ 5139 __ 5065

__ 88-22 __ 5246 __ 5204 __ 5137 __ 5054

__ 88-21 __ 5244 __ 5202 __ 5136 __ 5051

__ 88-20 __ 5243 __ 5200 __ 5135 __ 5035

__ 88-19 __ 5242 __ 5198 __ 5134 __ 5034

__ 88-18 __ 5241 __ 5197 __ 5133 __ 5033

__ 88-17 __ 5240 __ 5195 __ 5132 __ 5029

__ 88-16 __ 5239 __ 5194 __ 5129 __ 5018

__ 88-15 __ 5238 __ 5193 __ 5128 __ 5017

__ 88-14 __ 5236 __ 5190 __ 5125 __ 5015

__ 88-13 __ 5235 __ 5189 __ 5123 __ 5014

__ 88-12 __ 5234 __ 5185 __ 5122 __ 5012

__ 88-11 __ 5233 __ 5184 __ 5114 __ 5000

__ 88-10 __ 5232 __ 5179 __ 5112 __ 4684

__ 88-07 __ 5230 __ 5178 __ 5106 __ 4655

__ 88-06 __ 5229 __ 5174 __ 5104 __ 3760

__ 88-05 __ 5228 __ 5172 __ 5094 __ 3759

__ 88-04 __ 5227 __ 5168 __ 5092 __ 3710

__ 88-03 __ 5223 __ 5165 __ 5091 __ 3340

__ 88-01 __ 5221 __ 5164 __ 5090 2276

__ 5258 __ 5220 __ 5160 ___ 5089 -_
___ 5256 __ 5215 __ 5158 __ 5086 -_
__ 5253 __ 5214 __ 5157 __ 5082 -_
__ 5251 __ 5212 __ 5147 __ 5081 ----....

The Design of an
Asynchronous Microprocessor

Alain J. Martin, Steven M. Burns, T.K. Lee,
Drazen Borkovic, Pieter J. Hazewindus

California Institute of Technology
Pasadena CA 91125, USA

to appear in PY'oc. Decennial Caltech ConieY'ence on VLSI, 20-22
March, 1989, MIT Press
Caltech-CS-T R- 89-2

1 Introduction

Prejudices are as tenacious in science and engineering as in any other
human activity. One of the most firmly held prejudices in digital VLSI
design is that asynchronous circuits-a.k.a. self-timed or delay-insen­
sitive circuits-a.re necessarily slow and wasteful in area and logic.
Whereas asynchronous techniques would be appropriate for control,
they would be inadequate for data paths because of the cost of dual-rail
encoding of data, the cost of generating completion signals for write
operations on registers, and the difficulty of designing self-timed buses.

Because a general-purpose microprocessor contains a complex data
path, a corollary of the previous opinion is that it is impossible
to design an efficient asynchronous microprocessor. Since we have
been developing a design method for asynchronous circuits that gives
excellent results, and since the above objections to large-scale data
path designs are genuine but untested, we decided to "pick up the
gauntlet" and design a complete processor.

The design of an asynchronous microprocessor poses new chal­
lenges and opens new avenues to the computer architect. Hence, the
experiment unavoidably developed a dual purpose: We are refining an
already well-tested design method, and we are starting a new series of
experiments in asynchronous architectures. (As far as we know, this is
the first entirely asynchronous microprocessor ever built.) The results
we are reporting have a different implication depending on whether
they are related to the first or second goal of t.he experiment. Whereas
we are convinced that our design methods have reached maturity, we
are quite aware that asynchronous techniques may influence the com­
puter architects in completely new ways that this first design is just
starting to explore.

In order to focus the experiment on asynchronous circuit design,
we have intentionally excluded optimizations at the high and low ends
of the design process. The instruction set is straightforward and no
assumption has been made on the code produced by the compiler.
No special electrical optimizations other than transistor sizing have
been applied; the circuit techniques rarely go beyond those taught in
a graduate-level VLSI class, and, apart from the memory interlaces,
the circuits are delaS/-insensitive. Hence, any performance is to be
attributed to the design method and to the inherent advantages of
asynchronous design.

A circuit is delay-insensitive when its correct operation is
. independent of any assumption on delays in operators and wires

except that the delays be finite. Such circuits do not use a clock
signal or knowledge about delays: Sequencing is enforced entirely by
communication mechanisms.

The class of entirely delay-insensitive circuits is very limited.
Different asynchronous techniques distinguish themselves in the
choice of the compromises to delay-insensitivity. Speed-independent"
techniques assume that delays in gates are arbitrary, but there are no
delays in .wires. Self-timed techniques assume that a circuit can be
decomposed into equipotential regions inside which delays in wires are
negligible[ll] .

In our method, certain local forks are introduced to distribute a
variable as inputs of several gates. We assume that the difference
between the delays in the branches of such forks are short compared
to delays in other gates. We call such forks i8ochronic[6], [8].

The general method-a complete description of which can be found
in the referenced papers [2], [5], [6], [7], [8)-is based on program
transformations. The circuit is first designed as a set of concurrent
programs. Each program is then compiled (manually or automatically)
into a circuit by applying a series of program transformations. Control
and data path are first designed separately and then combined in a
mechanical way. This important divide-and-conquer technique is a
main innovation of the method.

2 Preliminary Results

As of this writing, the first design is complete, and has been scheduled
for fabrication in 21lm MOSIS SCMOS. The chip was functionally
simulated using COSMOS [1]. and was found to be functionally correct.

2

The architecture is a I6-bit processor with offset and a simple
instruction set of the RISC type [4]. The data path contains twelve
I6-bit registers, four buses, an ALU, and two adders. The chip contains
20,000 transistors and fits within a 5500A by 3500A area. We are
using an 84-pin 66OOJ'm x 4600J'm frame. An estimate of the critical
path suggests processor performance of approximately I5MIPS in 2J'm
SCMOS. (A slightly improved 1.6J'm SCMOS version is also being
fabricated.)

This experiment, the most challenging one we have conducted so
far, promised to be an important test for our method. The results
obtained so far have been very encouraging.

The technique for separating control and data path has been
extended with a novel asynchronous bus design, and is now robust
and general.

The handshaking protocol between circuit elements has also been
modified so that half of a protocol sequence overlaps subsequent
actions. This protocol makes it possible to "hide" half of delays of the
completion trees, the tree of gates that combine the completion signals
from the asynchronous elements. In addition, at most two completion
trees are in sequence on any path. Thus, completion tree delays are
not a serious disadvantage of asynchronous design.

Instruction pipelining has been approached as a concurrent
programming problem: Starting with a sequential program for the
processor, concurrency is introduced through a series of program
transformations. However, although the transformations are guided by
the intent to overlap the important phases-fetch, decode, execute-<>f
instruction execution, they are neither mechanical nor unique. The
designer decides how to decompose a program into several concurrent
ones. We do not claim that our solution in this first design is in any
way optimal.

3 Specification of the Processor as a
Sequential Program

The instruction set is deliberately not innovative. It is a conven­
tional I6-bit-word instruction set of the lood-6tore type. The pro­
cessor uses two separate memories for instructions and data. There
are three types of instructions: AL U, memory, and program-counter
(pc). All ALU instructions operate on registers; memory instruc­
tions involve a register and a data memory word. Certain instruc­
tions use the following word as OJJ6et. (See Table 1 in Appendix 2.)

3

*[FETCH : i,pc:= imem[pcl, pc + Ii
[Off8et(i.op) - off Bet, pc := imem[pcl, pc + 1;

~-'OffBet(i.op) - &kip

Ii
EXECUTE: [alu(i.op) - (reg[i.zl, f) := alu/(reg[i.xJ, reg[i·yl, i.op, f)

I·

Ild(i.op) - reg[i.zl := dmem[reg[i.xl + reg[i·ylJ

IBt(i.op) - dmem[reg[i.xl + reg[i.ylJ := reg[i.zl

Ildx{i.op) - reg[i.zl := dmem[offBd + reg[i·ylJ

I"tx(i.op) - dmem[off,et + reg[i.YIJ := reg[i.zl

I'da(i.op) - reg[i.zl := off,d + reg[i.YI

I"tpc(i.op) - reg[i.zl := pc

Iimp(i.op) - pc := reg[i.YI

Ibreh(i.op) - [eond(f, i.ee) - pc := pc + off,et

I-,eond(f, i.ee) - "kip

Figure 1: Sequential program deecribing the proceuor

The only important omissions, those of an interrupt mechanism and
communication ports, are ones we found to be unnecessary distractions
in a first design.

The sequential program describing the processor is a non­
terminating loop, each step of which is a FETCH phase followed by an
EXECUTE phase. The complete sequential program for the processor
is shown in Figure 1. (The notation, which is an extension of the one
we have used in previous work, is described in Appendix 1.) Variable
i, which contains the instruction currently being executed, is described
in the PASCAL record notation as a structured variable consisting of

4

several fields. All instructions contain an op field for the opcode. The
parameter fields depend on the types of the instructions, which are
found in Table 2 in Appendix 2. The most common ones, those for
AL U, load, and store instructions, consist of the three parameters, x,
y, and z. Variable cc contains the condition code field of the branch
instruction, and f contains the jlaga generated by the execution of an
alu instruction.

The two memories are the arrays imem and dmem. The index
to imem is the program-counter variable, pc. The general-purpose
registers are described as the array reg[O . •• 15]. (Only twelve registers
are implemented in the first chip.) Register reg[O] is special: It always
contains the value zero.

4 Decomposition into Concurrent Processes

We decompose the previous program into a set of concurrent processes
that communicate and synchronize using communication commands on
channels. A restricted form of shared variables is allowed. The control
channels X8, Y8, ZA8, ZW8, ZR8, and the bus ZA are one-to-many; the
buses X, Y, ZM are many-to-many; the other channels are one-to-one.
But all channels are used by only two processes at a time. The
structure of processes and channels is shown in Figure 2. The final
program is shown in Figures 3 and 4.

MC

ID E AC FETCH ----1 EXEC
~

PCI PCA n x.
Xof Ys

MDs
Xpc ZAs

ZWs MDl r Ypc r ZRa [I
Xbus .L 1 .L t t
Ybul t J. J. t t
ZAbus t • • • t J.
2Mbus t t t

'------.........----_.-'
PCADD REGISTERS ALU MU

Figure 2: Proce .. and channel structure

5

IMEM = .[ID!imem[pclJ

FETCH = *[PCIl; ID?i; PCI2;

[off"et(i.op) -+ PC II; I D?off"t.t; PC 12

I-,off"et(i.op) -+ skip

j; El!i;E2

PCADD = (.[[PCIT -+ PCIl;y:= pc + 1;PCI2jpc:= y

~PCAl -+ PCAljY:= pc+ off"etjPCA2jpc:= Y

IXpc -+ X!pc. Xpc

~ Ypc -+ Y?pc. Ypc

])

1l*[[Xo! -+ X!offaet • Xo/])

)

EXEC = .[El?ij

[alu(i.op) -+ E2; X". Y s. AC!i.op. ZAs

~ld(i.op) -+ E2jXs. Ya. MCI. ZRs

~st(i.op) -+ E2; Xs. Ys. MC2. ZW s

~ldx(i.op) -+ Xol. Ys. MCI. ZRsj E2

~stx(i.op) -+ Xol. Ys. MC2. ZWs;E2

~lda(i.op) -+ Xol. Ys. MC3. ZRs;E2

~stpc(i.op) -+ Xpc. Y s. AC!add. ZAs; E2

bmp(i.op) -+ Ypc. Ys; E2

~breh(i.op) -+ F? I; [eond(J, i.ee) -+ PCAl; PCA2

~-,eond(J, i.ee) -+ skip

J;E2

Figure 3: The final program, first part

6

ALU = *[[AG -+ AG?op. X?x. Y?II;

(z,f) := alu/(x,II,OP,f);ZA!z

~F -+ F!!

]]

MU = *[[MGl -+ X?x. Y?II. MGI; ma := x + II; MDl?w; ZM!w

~MGe -+ X?x. Y?II. MG2. ZM?w; ma := x + II; MDs!w

~AlCS -+ X?x. Y?II. Me3; ma := x + II; ZM!ma

II
DM EM = *[[imJI -+ MDl!dmem[ma]

~AlDi -+ MDs?dmem[ma]

II
REG[k] = (*[[-.bk A k = i.x A Xi -+ X!r. X8]]

II * [[-.bk A k = i.1I A V. -+ Y!r • Y 8]]

II * [[-.bk A k = i.z A ZWI -+ ZM!r'. ZWslI

II*[[-.bk A k = i.z A ZAs -+ bk1;ZA8;ZA?r;bktll

*[[-.bk A k = i.z A"Z1ii -+ bk 1; ZR8; ZM?r; bk tll
)

Figure 4: The final program, llecond part

Process FETCH fetches the instructions from the instruction
memory, and transmits them to process EXEC which decodes them.
Process PCADD updates the address pc of the next instruction
concurrently with the instruction fetch, and controls the offset register.
The execution of an ALU instruction by process ALU can overlap with
the execution of a memory instruction by process MU. The jump and
branch instructions are executed by EXEC; store-pc is executed by
the ALU as the instruction "add the content of register r to the pc
and store it." The array REG[kJ of processes implements the register
file. Both MU and PCADD contain their own adder. Processes
IMEM and DMEM describe the instruction memory and data memory,
respectively.

7

Updating the PC

The variable pc is updated by process PCADD, and is used by IMEM
as the index of the array imem during the I D communication-the

instruction fetch.
The assignment pc := pc+ 1 is decomposed into 1/ := pc+ 1j pc := 1/,

where y is a local variable of PCADD . The overlap of the instruction
fetch, ID? (either ID?i or ID?off.et), and the pc increment, JI :=

pc + 1, can now occur while pc is constant. Action I D? is enclosed
between the two communication actions PCl1 and PClt, as follows:

PCl1jID?ijPCI2.

In PCADD, 1/ := pc + 1 is enclosed between the same two
communication actions while the updating of pc follows PClf!:

PCll - PC II j 11 := pc + 1 j PC 12j pc := y .

Since the completions of PCl1 and PClt in FETCH coincide with the
completion of PCll and PClt in PCADD, respectively, the execution
of I D?i in FETCH overlaps the execution of 1/ := pc + 1 in PCADD.
PCl1 and PClt are implemented as the two halves of the same
communication handshaking to minimize the overhead.

In order to concentrate all increments of pc inside PCADD, we
use the same technique to delegate the assignment pc := pc + offset
(executed by the EXEC part in the sequential program) to PCADD.

The guarded command Xo/ - Xof!offset in PCADD has been
transformed into a concurrent process since it needs only be mutually
exclusive with assignment 1/ := % + offset, and this mutual exclusion
is enforced by the sequencing between PCA1j PCA2 and Xo/ within
EXEC.

5 Stalling the Pipeline

When the pc is modified by EXEC as part of the execution of a pc
instruction, (store-pc, jump or branch), fetching the next instruction
by FETCH is postponed until the correct value of the pc is assigned
to PCADD.pc.

When the offset is reserved for MU by EXEC, as part of the
execution of some memory instructions, fetching the next instruction,
which might be a new offset, is postponed until MU has received the

8

value of the current offset. In the second design, we have refined the
protocol to block FETCH only when the next instruction is a new
offset.

Postponing the start of the next cycle in FETCH is achieved by
postponing the completion of the previous cycle, i.e., by postponing
the completion of the communication action on channel E. As in
the case of the PC I communication, E is decomposed into two
communications, El and E2. Again, El and E2 are implemented
as the two halves of the same handshaking protocol.

In FETCH, E!i is replaced with El!ij E2. In EXEC, E2 is
postponed until after either Xof? oJJ.et or a complete execution of a
pc instruction has occurred.

6 Sharing Registers and Buses

A bus is used by two processes at a time, one of which is a register and
the other is EXEC, MU, ALU, or PCADD. We therefore decided to
introduce enough buses so as not to restrict the concurrent access to
different registers. For instance, ALU writing a result into a register
should not prevent MU from using another register at the same time.

The four buses correspond to the four main concurrent activities
involving the registers.

The X bus and the Y bus are used to send the parameters of an
ALU operation to the ALU, and to send the parameters of address
calculation to the memory unit. We also make opportunistic use of
them to transmit the pc and the offset to and from PCADD.

The ZA bus is used to transmit the result. of an ALU operation
to the registers. The Z M bus is used by the memory unit to transmit
data between the data memory and the registers.

We make a virtue out of necessity by turning the restriction
that registers can be accessed only through those four buses into a
convenient abstraction mechanism. The ALU uses only the X, Y, and
ZA ports without having to reference the particular registers that are
used in the communications. It is the task of EXEC to reserve the X,
Y, and ZA bus for the proper registers before the ALU uses them.

The same holds for the MU process, which references only X, Y,
and ZM. An additional abstraction is that the X bus is used to send
the offset to MU, so that the cases for which the first parameter is i.x
or offset are now identical, since both parameters are sent via the X
bus.

9

Exdu.lve U.e of a Bu.

Commands Xpc, Ypc, and Xof are used by EXEC to select the X and
Y buses for communication of pc and oif3et. Commands X3, Y3, and
ZAs are used by EXEC to select the X, Y, and ZA buses, respectively,
for a register that has to communicate with the AL U as part of the
execution of an ALU instruction.

Two commands are needed to select the ZM bus: ZW 3 if the bus
is to be used for writing to the data memory, and Z Rs if the bus is to
be used for reading from the data memory.

Let us first solve the problem of the mutual exclusion among the
different uses of a bus. As long as we have only one ALU and one
memory unit, no conflict is possible on the ZA and ZM buses, since
only the ALU uses the ZA bus, and only the memory unit uses the
ZM bus. But the X and Y buses are used concurrently by the ALU,
the memory unit, and the pc unit.

We achieve mutual exclusion on different uses of the X bus as
follows. (The same argument holds for Y.) The completion of an X
communication is made to coincide with the completion of one of the
selection actions XIJ, Xo/, Xpc; and the occurrences of these selection
actions exclude each other in time inside EXEC since they appear in
different guarded commands.

This coincidence is implemented by the bullet (.) command : For
arbitrary communication commands U and V inside the same process,
U • V guarantees that the two actions are completed at the same
time. We then say that the two actions coincide. The use of the
bullets X!pc. Xpc and X!oiflJet • Xof inside PCADD , and X!r. XIJ
inside the registers enforce the coinidence of X with Xpc, Xo/, and
X3, respectively. The bullets in EXEC, ALU, and MU have been
introduced for reasons of efficiency: Sequencing is avoided.

7 Register Selection

Command X IJ in EXEC selects the X bus for the particular register
whose index It is equal to the field i.x of the instruction i being decoded
by EXEC, and analogously for commands YIJ, ZAIJ, ZRIJ, and ZWIJ.

Each register process REGIlt], for 0 ~ It < 16, consists of five
elementary processes, one for each selection command. The register
that is selected by command X IJ is the one that passes the test It = i .x.
This implementation requires that the variable i.x be shared by all

10

registers and EXEC. An alternative solution that does not reqUIre
shared variables uses demultiplexer processes. (The implementations
of the two solutions are almost identical.)

The semicolons in the last two guarded commands of REG[k]
are introduced to pipeline the computation of the result of an ALU
instruction or memory instruction with the decoding of the next
instruction.

Mutual Exclusion on Registers

A register may be used in several arguments (z, 1/, or z) of the same
instruction, and also as an argument in two successive instructions
whose executions may overlap. We therefore have to address the issue
of the concurrent uses of the same register. Two concurrent actions on
the same register are allowed when they are both read actions.

Concurrency within an instruction is not a problem: X and Y
communications on the same register may overlap, since they are both
read actions, and Z cannot overlap with either X or Y because of the
sequencing inside ALU and MU.

Concurrency in the access to a register during two consecutive
overlapping instructions (one instruction is an AL U and the other is a
memory instruction) can be a problem: Writing a result into a register
(a Z A or a Z R action) in the first instruction can overlap with another
action on the same register in the second instruction. But, because the
selection of the z register for the first instruction takes place before
the selection of the registers for the second instruction, we can use this
ordering to impose the same ordering on the different accesses to the
same register when a ZA or ZR is involved.

This ordering is implemented as follows: In REG[kJ, variable bk
(initially false) is set to true before the register is selected for ZA or
Z R, and it is set back to false only after the register has been actually
used. All uses of the register are guarded with the condition -,bk.
Hence, all subsequent selections of the register are postponed until the
current Z A or Z R is completed.

We must -ensure that bk is not set to true before the register is
selected for an X or a Y action inJJide the "arne inJJtruction, since
this would lead to deadlock. We omit this refinement which does not
appear in the program of Figures 3 and 4.

11

8 Implementation

Control Part

The control part of a process is obtained by the following transforma­
tions: First, each communication command involving message input
or output is replaced with a "bare" communication on the channel; for
instance, C?x and Clx would both be replaced with C.

Second, all assignment statements are delegated to subprocesses.
Assignment S is replaced with a communication command on a new
channel, say C~, and the subprocess .[!C, -+ S. C~II is introduced.
After these transformations, the control part of each process consists
only of boolean expressions in conditionals and of communication
commands. Thus, the next step is to implement each communication
command with a hancUhaking protoeol.

Handshaking Protocols

Consider the matching pair of actions X!u and X?v in processes A
and B respectively. We first implement the bare communication on
channel X. The channel is implemented by the two handshake wires
(xo.!Q. I/i) and (1/0.!Q. xi) as indicated on Figure 5.(a). As usual, we
use a four-phase, or "return-to-zero" handshaking protocol. Such a
protocol is not symmetrical: All communications in one process are
implemented as active and all communications in the other process as
passIVe.

We have shown in [7] and [8] that the implementation of an input
action is significantly simpler when combined with an active protocol
than with a passive one. Therefore all input actions are implemented
as active and all output actions as passive. (In the case of output, the
implementation of communication is the same for active and passive
protocols.)

The standard active and passive implementations are:

IlIi] j 110 i j I""I/i] j I/O 1 (passive)

xo i;! xi]; xo l;! ...,xi] (active).

(The passive protocol starts with the wait action Iyi], i.e., "wait until
the input wire is set to true." The active protocol starts with xo i,
i.e., "set the output wire to true.")

12

We introduce an alternative active implementation, called lazJI
active:

[-,xi]; xo i; [xi]; xo! (lazy active) .

The lazy active protocol differs from the active one in that the
last wait action [-,xi] is postponed until the beginning of the next
communication. The difference is important when data communication
is involved.

I ~
yi

:~ ~ I
«

A B
yo

(a)

yi xo

A B
yo xi

(b)

Figure 5: Implementation of communication

Figure 5.(b) shows how the data path is combined with the control.
The bits of the communication channel between the two registers (the
"data wires") are dual-rail encoded. Wire (Slowxi) is "cut open," yo is
used to assigned the values of the bits of u to the dual-rail data wires,
and xi is set to true when all bits of t1 have been set to the values of
the data wires. Each cell of a register contains an acknowledge wire
that is set to true when the bit of the cell has been set to a valid value
of the two data wires, and reset to false when the data wires are both

13

reset to false. Let vac~ be the acknowledge of bit Vi, xi is set and
reset as:

vacko 1\ vack1 ••• 1\ vack16 1-+ xi i
-,vacko 1\ -,vack1 ••• 1\ -,vack16 1-+ xi ~

Since a 16-input C-element would be prohibitively slow to implement,
the implementation is a tree of smaller C-elements, which we call a
completion tree. Figure 5.(b) shows a tree of binary C-elements. In
the actual processor, we use a two-level tree of 4-input C-elements.

When data is transmitted via a bus, and when the completion
tree is large, the gain of using a lazy-active protocol can be very
important, since half of the data transmission delays and half of the
completion-tree delays can overlap with the rest of the computation.
Therefore, all input actions are implemented as lazy active.

The case when data is transmitted from process A to process
B via a bus is only slightly more complicated. No arbitration is
necessary: A and B are allowed to communicate via a bus only after
the bus has been reserved for these two processes. The chief problem
in implementing the buses is the distributed implementation of large
multi-input OR-gates.

The lazy-active protocol cannot be used when an input action
is probed-such as action AC?op in the ALU-because the probe
requires a passive protocol. For those cases, we have designed a special
protocol that requires two control wires.

9 ALU

ALU control

In the ALU process, variable z is not needed to store the result of an
ALU operation: the result can be put directly on the ZA bus. The
first guarded command of the ALU process can be rewritten:

AC -+ AC?op. X?x. Y?J/; (ZA, f) := aluf(x, J/, op, I).

Hence, the control part is simply:

.[[AC -+ AC. X. Y;AL

~F -+ F
]].

14

(The assignment to f is omitted.) Communication command AL
is the call of the subprocess evaluating alu/. The handshaking protocol
of AL is passive because it includes an output action on the Z A bus:
[ali]; alo i; [-....ali]; alo t. Hence, alo i is the "go" signal for the ALU
computation proper.

The first guarded command has the structure of a canonical stage
of the pipeline. Parameters are simultaneously received on a set of
ports, and the result is sent on another port as in:

-[L7%; R!f(%)].

Such a process is called a buffer. Since L is implemented as lazy active,
and R as passive, it is a 1azll-cu!titJe/ptU8itJe buffer. In the second
design, where we have decomposed both the ALU and the memory
processes into two processes in order to improve the pipeline, each
stage of the pipeline is a lazy-active/passive buffer.

ALU data path

The output Z of the subprocess is dual-rail encoded. When the
subprocess is called, variables x, II, and op have stable and valid
values. Moreover, the content of op has been encoded in a K PG ("kill,
propagate, generate") form which is used to produce the carry-out for
each bit, and also for the result. The length of the carry chain is
variable, which is an advantage in a fully asynchronous execution.

Since the ca..rry-out of each bit is inverted relative to the carry-in,
we alternate the logic encoding of the stages in the carry chain: A
carry-in that has a true value when high generates a carry-out that has
a true value when low, and vice-versa for the next stage. With this
coding, only one CMOS gate delay is incurred per stage. Although
the acknowledge from the Z A bus is used as completion signal, a
completion tree is needed at the output of the subprocess for the
computation of the flags.

The elapsed time between the activation of the ALU subprocess
by alo i and the appearance of the results on the output Z depends
on the number of stages in the carry chain. Add, substract, and other
logical functions typically take between 13 and 25n .. in 2#lm SCMOS.

15

FETCH EXEC ALU

.,

...- r--- f--- ...-
~ Ii" \ J ~ ~

6i ,6 6d,6-,d 60 ,6-.0 6c ,6-.c

IMEM DECODE OPERAND COMPUTE

Figure 6: Abstract Pipeline for ALU Instructions

10 Performance

In this processor, an instruction is executed in a varying amount of
time, depending in part on the type of instruction and the values of its
operands, and on the sequence surrounding the instruction. Because
of this data dependence, an analysis of the "real" performance of the
processor, i.e., the performance of the processor when executing "real"
programs, is quite complex and most probably must be determined by
simulation. The performance analysis can be simplified by assuming an
infinite sequence of identical instructions with typical operand values.
(The results obtained through this analysis do not include the potential
benefits of interleaving ALU and memory instructions.) Here, we
analyze the performance of the processor executing an infinite sequence
of AL U instructions.

In this case, the processor can be viewed as the three-stage pipeline
shown in Figure 6. By assuming the AL U operations are perfonned
on distinct registers, the register locking mechanism need not be
introduced and the control for the EXEC process and the ALUprocess
reduces to lazy-active/passive buffers. The fetch process is complicated
by the increment of the pc, but if the instruction memory is assumed to
be slower than the increment, control for this process also reduces to a
lazy-active/passive buffer. By first assuming negligible control delays
compared with datapath delays (denoted bD and b~D for the upgoing
and downgoing propagation delays of datapath unit D, respectively),

16

the cycle time, Cp, of each process P is determined by the datapath
delays that must be sequenced. A lazy-active/passive buffer sequences
only the upgoing transitions of the two datapath units and, separately,
the upgoing and downgoing transitions of the individual units,
resulting in cycle time max(6D1 + 6D2 , 6D1 + 6 Dlt 6D2 + 6 D2) •

Since each process in the pipeline is a lazy-active/passive buffer,
and since the throughput of the pipeline is determined by the slowest
process:

Cp~TCH = max(6", + 64 ,6". + 6-.".,64 + 6 11)

C~X~C = max(64 + 60 ,64 + 6 4 ,60 + 6-.0)

CALU = max(60 + 6c ,60 + 6-.o,6c + 6 c)

CPROC = max(cp~TCH,C&X~C,CALu) •

Timing simulations suggest that the dominant constraints are the
memory and decode sequence in the FETCH process (6". + 64), and
the operand and compute sequence in the ALU process (60 + 6c). For
the 2/Jm SCMOS processor, the delays introduced by the control parts
increase the cycle time by 10 to 2Qna, bringing the cycle time for an
infinite stream of ALU instructions up to max(35na + 6"., 65ns). We
expect the processor to a.chieve 15 MIPS if the a.ccess delay of the
instruction memory (6".) is no longer than 30na.

11 Correctness by Construction and CAD Tools

Since the method is based on semantics-preserving program transfor­
mations, the object code generated by the compilation procedure is
correct by construction.

The object code is a set of potentially concurrent production rule8
that are constructs of the form Bl 1-+ % r or B2 1-+ % 1, where Bl and
B2 are mutually exclusive boolean expressions, and % rand % 1 stand
for "set % to true" and "set % to false," respectively. The compilation
procedure guarantees the absence of hazards by ensuring that the
conditions Bl and B2 are stable, i.e., if Bl is true, it remains true
until % as been set to true.

If the production rules of the object code can be matched with
the production rules that describe the standard cells of a cell library,
a standard-cell-layout program can be used to generate a layout
corresponding to the object code. We have been using such a standard
cell approach in our previous designs, and indeed all chips fabricated
in this way have been found to be functional on "first silicon."

However, most of the processor was designed manually. First,
since the control section introduces significant overhead, we decided to

17

compile its object code manually. Second, because the data path was
expected to be the critical part with respect to size and because of the
difficulty of adjusting the pitch of the different registers automatically,
the automatic layout program was used for the control part but not
for the data path. This decision was later justified by the fact that,
whereas the data path was hardly changed after the first design,
the control part went through a series of drastic modifications. We
observed that, again, our method for separating control and data path
permitted us to implement completely different pipelines by changing
the control without significant alterations of the data path.

As usual, the disadvantage of manual compilation was that the
design was not shielded from clerical errors at which humans excel.

While the difficult optimization problem that is at the core of a
high-performance processor design is probably still beyond automatic
compilation technology, the designer should be assisted with CAD tools
that perform the mechanical translation steps. Other CAD tools that
we found useful include a program that estimates the critical path of
a circuit. The program, which was developed by Steve Burns, gives
excellent results. It estimates the delays of each path by a simulation
of the execution based on the production rules.

Magic was used for the manual layout [10].

12 Conclusion

Although the chips are still in fabrication, we are very satisfied with
the preliminary results of the experiment.

First, the chip layout is obviously not large. The control is
surprisingly small despite our use of an automatic layout tool; also,
the anticipated nightmare of data path layout did not materialize.
The register pitch is 80>', which is quite reasonable given that four
buses have to be placed.

Second, the predicted perforlTlAnce is quite remarkable, given that
the experiment is a first in two ways: It is our first experience as
computer architects, and it is the first asynchronous microprocessor
ever built.

Third, the complete design took five persons (one joined in the
middle of the project) five months.

Since the choice of an instruction set was not part of the
experiment, our design should be judged in two ways: the choice
of the concurrent program of Figure 3, and its implementation.

18

The implementation is satisfactory, but not optimal. The sizing of
transistors can be improved and the number of transitions can be
decreased, mainly by a better placement of inverters. For instance,
the delays due to a completion tree and to the control for a buffer are
both about twice their theoretical minimum.

The program of Figure 3 represents the choice of a pipeline, and
of synchronization techniques to implement it. We have deliberately
chosen a simple pipeline. In particular, the mechanism for stalling,
which places part of the decoding in series with the fetch on the
critical path, sacrifices efficiency for simplicity. However, performance
evaluations show that the pipeline is well-balanced since the different
stages have comparable average delays. Improving the critical path by
overlapping fetch and decode requires improving the ALU and memory
instruction execution stages by pipelining parts of these stages.

The practicality of overlapping ALU and memory instruction
executions remains an open issue. It is not clear whether the gain in
performance is worth the complexity of the synchronization involved
and the requirement of two separate Z buses.

We find the synchronization techniques used to implement the
concurrent activities between the different stages of the pipeline
particularly elegant and efficient, since the delays incurred in a
synchronization can be of arbitrary length and vary from instruction
to instruction.

We foresee excellent performances for asynchronous processors
as the feature size keeps decreasing. But the designer must be
ready to learn and apply new design methods based on concurrent
programmming, that are required to exploit asynchronous techniques
to their fullest.

Acknowledgment

We are indebted to Bill Athas and Bill Dally for useful discussions in
the preliminary stage of the design. Chuck Seitz, Nanette Boden, and
Dian De Sha made excellent comments on the manuscript. The first
author enjoyed numerous discussions with Chuck Seitz on the general
topic of asynchronous design.
The research described in this paper was sponsored by the Defense
Advanced Research Projects Agency, DARPA Order numbers 3771 &
6202, and monitored by the Office of Naval Research under contract
numbers N00014-79-C-0597 & N00014-87-K-0745.

19

References

[1] R.E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler.
COSMOS: A Compiled Simulator for MOS Circuits. In e.th
Duign Automation Conference, pp.9-16. ACM and IEEE, 1987.

[2] Steven M. Burns and Alain J. Martin, Syntax-directed Translation
of Concurrent Programs into Self-timed Circuits. In J. Allen and
F. Leighton (ed), Fifth MIT Conference on Advanced Re,earch in
VLSI, pp 35-40, MIT Press, 1988.

[3] C.A.R. Hoare, Communicating Sequential Processes. Comm.
ACM21,8, pp 666-677, August, 1978.

[4] Mark Horowitz d al., MIPS-X: A 20-MIPS Peak, 32-bit Micro­
processor with On-Chip Cache. IEEE Journal of Solid-State
Circuiu,SC-22(5):790-799,October, 1987.

[5] Alain J. Martin, The Design of a Self-timed Circuit for Distributed
Mutual Exclusion. In Henry Fuchs (ed), 1985 Chapel Hill Conf.
VLSI, Computer Science Press, pp 247-260, 1985.

[6] Alain J. Martin, Compiling Communicating Processes into Delay­
insensitive VLSI Circuits. Di,tributed Computing, 1,(4), Springer­
Verlag, pp 226-234 1986.

[7] Alain J. Martin, A Synthesis Method for Self-timed VLSI Circuits.
ICCD 87: 1987 IEEE Intern4tional Conference on Computer
De,ign, IEEE Computer Society Press, pp 224-229, 1987.

[8] Alain J. Martin, Programming in VLSI: From Communicating
Processes to Delay-insensitive Circuits. In C.A.R. Hoare (ed),
UT Year of Programming Inltitute on Concurrent Programming,
Addison-Wesley, Reading MA, 1989.

[9] Carver Mead and Lynn Conway, Introduction to VLSI Sf/,terru,
Addison-Wesley, Reading MA, 1980.

[10] J. K. Ousterhout d al., The Magic VLSI layout system, IEEE
Duign Te,t Comput., 2, (1), pp 19-30, February, 1985.

[11] Charles L. Seitz, System Timing, Chapter 7 in Mead & Conway,
Introduction to VLSI Sf/,terru, Addison-Wesley, Reading MA,
1980.

Appendix 1: Notation

The program notation, which is inspired by C.A.R. Hoare's CSP [3],
is briefly described.

b i stands for b := true, b 1 stands for b := false.

20

The execution of the selection command [G l -+ 51~'" ~Gn -+ 5nl,
where G l through G n are boolean expressions, and 51 through 5n

are program parts, (Gi is called a "guard," and Gi -+ 5i a "guarded
command") amounts to the execution of an arbitrary Si for which Gi
holds. If -,(G l V .•• V G n) holds, the execution of the command is
suspended until (G l V .,. V G n) holds.

The execution of the repetition command *!Gl -+ Sd ... ~Gn -+

SnJ, where G l through Gn are boolean expressions, and SI through
Sn are program parts, amounts to repeatedly selecting an arbitrary Si
for which Gi holds and executing Si. If -,(G l V ••• V Gn) holds, the
repetition terminates.

For communication actions X and Y, "X. Y" stands for the
coincident execution of X and Y, i.e., the completions of the two
actions coincide.

[Gj where G is a boolean expression, stands for IG -+ skipJ, and
thus for "wait until G holds."

(Hence, "IGj; S" and [G -+ Sj are equivalent.)
*ISj stands for *Itrue -+ Sj, and thus for "repeat S forever."
From (iii) and (iv), the operational description of the statement

*[[Gl -+ SI~'" ~Gn -+ Snll is "repeat forever: wait until some G,
holds; execute an Si for which Gi holds."

Communication commands: Let two processes, pI and p2,

share a channel with port X in pI and port Y in p2. (In the processes of
Figure 3, the same name is used for all the ports of the same channel.)
If the channel is used only for synchronization between the processes,
the name of the port is sufficient to identify a commnication on this
port. If the communication is used for input and output of messages,
the CSP notation is used: X!u outputs message u, and X?v inputs
message v.

At any time, the number of completed X-actions in pI equals the
number of completed Y-actions in p2. In other words, the completion
of the nth X-action "coincides" with the completion of the n-th
Y -action. If, for example, pI reaches the nth X-action before p2
rea.ches the nth Y -action, the completion of X is suspended until p2
reaches Y. The X-action is then said to be pending. When, thereafter,
p2 reaches Y, both X and Yare completed. It is possible (and
even advantageous) to define communication actions as coincident and
yet implement the actions in completely asynchronous ways. For an
explanation, see [8J.

21

Probe: Since we need a mechanism to select a set of pending
communication actions for execution, we provide a general boolean
command on ports, called the probe. In process pI, the probe command
X has the same value as the predicate "Y is pending in p2."

Appendix 2: Instruction Set

ALU op rx ry rz rz,f := rx op ry

MEM op rx ry rz rz := mem[rx+ry] (for load)
mem[rx+ry] := rz (for store)

MEMOFF op ao ry rz rz := mem[ry + offset] (for load)
offset mem[ry + offset] := rz (for store)

rz := ry + offset (for load address)
BRANCH op ao - cc if cond(f,cc) then pc := pc + offset

offset
JUMP op ao ry- pc := ry
STPC op ao - rz rz := pc

Table 1: Instruction Types

inst ns n2 nl no
b15 bl4 blll b12 bublObgbs lrybeb&b4 bsb2b1bo

alu 0011 rx ry rz
0100 rx ry rz
. .
1111 rx ry rz

ld 0010 rx ry rz
st 0001 rx ry rz
ldx 0000 0000 ry rz
stx 0000 0001 ry rz
Ida 0000 0010 ry rz
brc 0000 0011 - cc
Jmp 0000 0100 ry -
stpc 0000 0101 - rz

Table 2: Opcode Assignments

22

23

Variants of the Chandy-Misra-Bryant Distributed
Discrete-Event Simulation Algorithm

1. Introduction

Wen-King Su and Charles L. Seitz
Department of Computer Science
California Institute of Technology

Caltech-CS-T R - 88- 22

We have been using variants of the Chandy-Misra-Bryant (CMB) distributed discrete­
event simulation algorithm [1,2,3J since 1986 for a variety of simulation tasks [4J.
The simulation programs run on multicomputers [5J (message-passing concurrent
computers), such as the Cosmic Cube, Intel iPSC, and Ametek Series 2010. The
excellent performance of these simulators led us to investigate a family of variants of
the basic CMB algorithm, including lazy message-sending, demand-driven operation
with backward demand messages, and adaptive adjustment of the parameters that
control the laziness.

These studies were also motivated by our interest in scheduling strategies for re­
active (message-driven) multiprocess programs [5,6,7]' which are semantically similar
to discrete-event (event-driven) simulators. The simulator itself is implemented in
the reactive programming environment that we have developed for multicomputers:
the Cosmic Environment and the Reactive Kernel [8J.

We performed the studies reported here using logic networks. Logic simulation
is expected to stress a distributed simulator, and is itself of practical interest. It
is easy to construct examples of logic networks with a diversity of behaviors and
structural difficulties, such as large fan-in and fan-out. Low-level logic elements such
as logic gates exhibit responses in which an input event mayor may not influence the
outputs, depending on the internal state of the element and on the states of other
inputs; yet, they require very little computation to simulate their behavior. Thus,
the performance results shown later in this paper involve practically no computation
other than the distributed simulation itself.

This paper is a· brief and preliminary report of the simulation algorithms and
performance results. A more definitive report will be found in the first author's
forthcoming PhD thesis.

The research described in this paper was sponsored in part by the Defense
Advanced Research Projects Agency, DARPA Order number 6202, and monitored by
the Office of Naval Research under contract number N00014-87-K-0745; and in part
by grants from Intel Scientific Computers and Ametek Computer Research Division.

1

2. The CMB Simulation Framework

As usual, the system to be simulated is modeled as a set of communicating elements. A
CMB simulator can be implemented by coding the behavior of elements in processes
that communicate by messages. A message conveys both a time interval and any
events within this interval. A process reacts to the receipt of an input message by
updating its internal state, and, if outputs can be advanced in time, by sending
messages to connected processes. These messages may include null messages that
convey no events (changes in the state information), but serve only to advance the
simulation time.

It is easy to show that such a simulator is correct [3], in the sense that it computes
a possible behavior of the system being simulated. A sufficient condition for freedom
from deadlock in this eager message-sending mode is that there is a positive delay in
every circuit in the graph of element vertices and communication arcs. Intuitively,
it is the delay of the elements being simulated that permits the element simulators
to compute the outputs over an interval that is later than the time of the inputs, so
that time advances. Simulation time is determined locally, and may get as far out of
step at different elements as their causal relationships permit.

This conservative (also known as pessimistic) type of simulator is a concurrent
program that exploits the concurrency inherent in the system being simulated. In
practice, just as with other concurrent programs, if the number of concurrently
runnable processes substantially exceeds the number of processors, one can achieve
high utilization of concurrent resources. The speculative (also known as optimistic)
type of simulator attempts to exploit additional concurrency by computing beyond
the interval during which inputs are defined, at the risk of having to roll back if the
speculations prove incorrect. Such approaches are attractive for simulating systems
whose inherent concurrency is insufficient to keep concurrent resources busy, and in
which speculations can be made with high confidence. Our studies have concentrated
on conservative variants of the CMB algorithm.

The design of distributed simulation programs is also influenced by a characteristic
of the element simulators. In practice, an element simulator mayor may not take as
long to process a null message as an event-containing message. For the simulation of
some systems, the processing of an event-containing message might involve a lengthy
simulation of a physical process, whereas the processing of a null message might be
very fast. Such simulations.do not seriously stress the distributed-simulation aspect
of the computation. However, for the simulation of systems of extremely simple
elements, such as logic gates, the time required to compute the output of the gate is
so small that it is comparable to the time required to process a null message.

Due to our interest in understanding the limits of event-driven distributed
simulation, and the implications for scheduling strategies for message-driven
multiprocess programs, our studies have concentrated on the case in which the time
required to process null messages is comparable to the time required to process event­
containing messages. It is straightforward to extrapolate the performance results for
this difficult case to situations in which null-message processing is relatively fast.

2

The principal trouble with naive implementations of conservative CMB distributed
simulation programs in any situation in which processing null messages is as costly as
processing event-containing messages is that the volume of null messages may greatly
exceed the number of event-containing messages. This difficultly is most evident when
simulating systems with many short-delay circuits that have relatively low levels of
activity.

In distributing the simulation, we seek to reduce the time required to complete
the computation; however, we have an immediate problem if the element simulators
must perform many more message-processing operations in the distributed simulation
than they would perform event-processing operations in a sequential simulation. The
centralized regulation of the advance of time achieved through the ordered event
list maintained by sequential simulation programs allows these simulators to invoke
element routines only once for each input event. The null messages inflate not only
the volume of messages the system must handle, but also the computational load.
Thus, if we are going to compete with the best sequential simulators, we must reduce
the volume of null messages.

3. Indefinite Lazy Message Sending

To reduce the volume of messages, we use various strategies to defer sending outputs
in the hope that the information can be packed into fewer messages. For example, one
of the most obvious schemes is to defer sending null messages, so that a series of null
messages and an event-containing message can be combined to form a single message
that spans a longer interval. Since output events are often triggered only by input
events, deferring the delivery of preceeding null messages is less likely to hamper the
progress of the destination element than deferring the delivery of event-containing

messages.
The first problem that must be addressed in employing such strategies is deadlock.

When element simulators defer sending output messages, they may cyclically deny
themselves input messages, leading to deadlock. All of our simulators have employed
a technique of indefinite lazy message sending to permit arbitrary strategies for
deferring message sending while still avoiding deadlock. The following is an idealized
inner loop of the simulator, shown in the C programming language:

while(l)
if (p = xrecvO)

simulate_and_optionally_send_messages(p);

else
take_other_action();

The function xrecv returns a pointer, p, that points to a message for the simulation
process if a message has been received. The simulator then dispatches to the
appropriate element simulator, and may either send or queue the outputs that the
element simulator produces. If there is no message in the node's receive queue, the
pointer returned is a NULL (0) pointer. In this case, the simulator takes other

3

action to break any possible deadlock. For a source-driven simulator, it selects a
queued output to send as a message. For a demand-driven simulator, it selects a
blocked element, and sends a demand message to its predecessor to request that
queued outputs be sent. A deadlock in deferring messages cannot occur without
"starving" a node of messages. When this situation is detected by xrecv returning a
NULL pointer, the resulting action breaks the potential deadlock.

Within this indefinite lazy message-sending framework, we can experiment with
any scheme for deferring and combining messages without concern for deadlock. A
message is free to carry any number of events, and an element is free to defer message

sending on any basis.

4. Variant Algorithms

We have experimented with many CMB variants; in the interests of comprehension, we
will describe the operation and report the performance of six that are representative
of the range of possibilities that we have studied:

A Eager message sending: This basic form of CMB serves as a baseline for comparison

against the variants.

B Eager events, lazy null messages: Null outputs are queued. Event outputs,
combined with any queued null outputs, are sent immediately. When xrecv returns
a NULL pointer, the null output that extends to the earliest time is sent as a null
message.

C Indefinite-lazy, single-event: All output from element simulators is queued. The
output queues may contain multiple events. Messages are sent only when xrecv
returns a NULL pointer. The output queue that extends to the earliest time is
selected to generate a message up to the first event, if any, or a null message to
the end of the interval.

D Indefinite-lazy, multiple-event: This scheme is a slight variation on C, motivated
by characteristics of multicomputer message systems that make it economical to
pack multiple events into fewer messages. All output from element simulators is
queued. The output queues may contain multiple events. When xrecv returns a
NULL pointer, the output queue that extends to the earliest time is selected to
generate a message up to the last queued event, if any, or a null message to the end
of the interval. However, to allow a direct comparison with sequential simulators,
events are processed singly.

E Demand-driven: Although we usually think of simulation as source driven from
inputs, one can equally well organize the simulation as demand driven from
outputs. In the pure demand-driven form, all output from element simulators
is queued. When xsend returns a NULL pointer, the input that lags furthest
behind selects the destination for a demand message. Upon receipt of a demand
message, if the output queue is not empty, the simulator sends all the information
in the output queue; if the output queue is empty, the simulator generates another
demand message to the source of lagging input to this element.

4

F Demand-driven, adaptive: Demand messages single out critical paths in a
simulation. In an adaptive form of demand-driven simulation a threshold is ,
associated with each communication path. Outputs of element simulators are
queued only up to the threshold; when the threshold is exceeded, the contents
of the queue are sent as a message. Demand messages operate as in E, but also
cause the threshold to be decreased. In the cases shown below, the threshold is
halved. The simulator is accordingly able to adapt itself to the characteristics of
the system being simulated.

Although these variants are described here in terms of message passing, the
same variants also appear as different scheduling strategies in shared-memory
implementations.

5. Experimental Method

In common with other highly evolved message-passing programs, the simulator is
implemented with one simulation process per multicomputer node (or, in the Cosmic
Environment, with one simulation process per host computer or per processor in a
multiprocessor).

Basis of comparison: Although execution time is one of the most natural bases
of comparison between any two programs that perform the same function, and is
used below to illustrate the performance of our distributed simulators on different
commercial multicomputers, execution time on these concurrent computers depends
both on the algorithm and on the characteristics of the particular computer. When
we wish to isolate the characteristics of the algorithm from those of the computer,
the instrumented simulator operates as a simulator within a simulator. Execution
time is then measured in a unit called a sweep [5, 6], which corresponds here to a
fixed time required to call an element once. The time required for other operations,
such as sending a message, can be set to a particular number of sweeps. Normally,
a message sent by one node in one sweep is available in the destination node at the
next sweep. However, to test the sensitivity of the algorithms to message latency, we
can also set the latency to larger values.

Instrumentation: The simulator is a reactive program written in C, and is
instrumented to function in two operational modes. In the sweep mode, a
multicomputer-emulation program runs a simulation of a multicomputer; this in turn
runs the reactive simulators. Time is measured in sweep units; on each sweep, each
node is allowed to make one element call. In the real mode, the simulator runs directly
on the multicomputer. There is one copy of the simulator process in each node, and
each simulator process runs a subset of the elements as embedded reactive processes.
Each node runs at its own pace, and execution time is measured with UNIX's real­
time clock.

6. Experimental Results
Performance measurements have been made on a variety of logic networks, including
those that are representative of networks found in computers and VLSI chips, and

5

those that are designed specifically to test or to stress the simulator. Six different
network types, each in several sizes up to 4000 logic gates, have been the principal
vehicles for these experiments. A larger variation in performance is observed among
networks with different characteristics than between algorithm variants.

Multiplier example: The parallel multiplier is a good example of an ordinary logic
network. The 14x 14 multiplier used in several experiments employs 1376 logic gates
to generate the 28-bit product of two 14-bit binary inputs. The multiplier network
contains only limited concurrency, and does not contain tight circuits that give the
simulator artificial performance boosts or troubles, depending on element distribution.
It also contains moderately high fan-out in the multiplier and multiplicand lines; this
puts pressure on the message system. In all fairness, the distributed simulation of
this multiplier network is not expected to do too badly nor too well.

For the simulation, the most-significant bit of the product is connected back to the
multiplier input via an inverting delay. The delay is such that the multiplier reaches
a stable state before the multiplier input changes. The multiplicand input is set to a
value that causes the circuit to oscillate. A trace of the product outputs shows that
the simulator and the circuit are running correctly.

Measurements in the sweep mode: The plot in Figure 1 portrays in a log-log format
the sweep count in the sweep mode versus the number of nodes, N, for the simulation
of the 14x 14 multiplier network under all six CMB variants. It is not useful to
continue the plot beyond 211 nodes, since at this point there are as many nodes as
simulated gates. The placement of elements in nodes for these trials is balanced but
random.

Each horizontal division represents a factor of two in resources; each vertical
division represents a factor of two in sweep count or time. We have found this format
(cf [5]) for portraying the performance of concurrent programs to be more useful than
"speedup" graphs, for two reasons. First, we can observe the factor by which the
execution time is reduced as resources are increased over very wide ranges. Second,
since the ordinate is a physical measure, time or sweep count, we can compare different
algorithms directly. For example, in addition to the plots of the sweep counts of the
CMB variants, the heavy horizontal line represents the number of sweeps a sequential
simulator requires for this same simulation.

The first remarkable characteristic of these performance measurements is that they
are so similar across this class of variant algorithms. Algorithms A, E, and F produce
more messages than B, C, and D, but in this mode in which messages are free but
element invocations are expensive, there is little difference between the variants. The
performance under sweep-mode execution exposes the intrinsic characteristics of the
algorithm, and is not related to such multicomputer characteristics as the relationship
between node computing time and message latency.

The gross characteristics of these curves are similar to those of other concurrent
programs [5], and are quite understandable and predictable.

We observe at log2 N=O (1 node) that all of the CMB variants are somewhat
inefficient in comparison with the sequential event-driven simulator. For this

6

multiplier example, the null messages inflate the number of element invocations by a
factor of 2-5 times; this is consistent with the 1-2.5-octave increase in sweep count
over that of the sequential simulator. The null messages also inflate the concurrency
over that which is intrinsic to the system being simulated. We shall refer to this
inflation in the number of element invocations as the overhead of distributing the
simulation. If the time required to process a null message were smaller than the
time required to process an event-containing message, the overhead would be reduced
proportionately.

[og2(sweeps)

20

19

18
17 ~ __ ~~~ __ ~~._s_e_q~u_e_n_t_ia __ l_s_im~._u_l_a_to~r

16 "~~
"~'~
"',,~.

'~,
, . ~~ ..

~

15

14

13

12

11

10

~, ,

"~:~:.~:,: •• -,o •••••• g

9 o 1

-- - -.... ~.,., ~

F
A

2 3 4 5 6 7 8 9 10 11
log2 (nodes)

Fig 1: A 1376-gate multiplier, sweep mode

The performance is then divided roughly into two regimes, the first regime being
one of near-linear speedup in N for the first 7-8 octaves, and the second regime being
one of diminishing returns in N as the computing time approaches an asymptotic
mimimum value. In the linear speedup regime, these simulators nearly halve the
sweep count with each doubling of resources until limiting effects are reached. Load
balance is assured by the weak law of large numbers when there are many elements
per node. While each node has a sufficiently large pool of work, node utilization
remains high. The simulators approach asymptotic minimal time as they exhaust the
available concurrency in the system being simulated. The gradual "knee" of the curve
originates from progressively less-effective statistical load balancing as the number of
elements per node diminishes with larger N.

Additional statistics have been collected to measure other effects. For example,
in the linear-speedup regime, when there are many logic elements per node, the
simulators are quite insensitive to message latency. When there are few elements per
node, the performance begins to deterioriate as message latency is increased. These

7

effects will be evident in the measurements performed on real multicomputers.
Measurements on real multicomputers: The results of simulating the same 1376-

gate multiplier network on a 16-node iPSC/2 is shown in Figure 2, and on a 128-node
iPSC/1 for variants B, C, and D is shown in Figure 3. The iPSC/2 is ;::::6 times faster
per node than the iPSC /1, so the time scales do not correspond. This simulation
will not run on an iPSC /1 for N < 4 because the data and message queues for an
increased number of logic elements per node will not fit in the node memory. Due to
the same limitations of the iPSC/1 message system, neither the demand-driven nor
the eager-message-sending simulation variants will run in most machine sizes. This
choice of performance data is dictated by the desire to show performance results over
the largest range of N possible with the machines that are currently operated by
our research group. Results essentially identical to those shown in Figure 2 are also
obtained on a 16-node Ametek Series 2010.

1092(seconds)

10

6

5
o 1 2 3

uential simulator

4 567
1092(nodes)

Fig 2: A 1376-gate multiplier for 40{ls on an iPSC /2

1092 (seconds)

10

9

8

7

6

5
o 1

<::~&e uential simulator

2 3 4 567
1092(nodes)

Fig 3: A 1376-gate multiplier for 40{ls on an iPSC/1

8

The simulation of this network for 2° ::; N ::; 2i is in the relatively uninteresting
(but useful) linear-speedup regime, with some limiting effects starting to be seen in
Figure 3 at N =27

• The number of gates being simulated per node is sufficiently high
to keep the node utilization high and the sensitivity to message latency low.

In order to exhibit the performance results in the more interesting (but less useful)
diminishing-returns regime, we have scaled the network down to a 4- bit multiplier
with 116 logic gates. The peformance on an Intel iPSCj2 up to 16 nodes is shown
in Figure 4, and on an Intel iPSCj1 up to 128 nodes is shown in Figure 5. This
network is small enough to exhibit interesting limiting effects as the simulation
is increasingly distributed. The sublinear speedup is due to message latency in
inter-node communications, increased null messages as the simulation is increasingly
distributed, and load imbalance. The asymptotic time is limited by the message
latency rather than by the available concurrency. In particular, Figure 5 shows that
the asymptotic execution time of algorithm A, which is not very economical in its use
of messages, is more than a factor of two worse than the asymptotic execution time
of variants B, C, and D.

[092(seconds)

8

7

6

5

4
o 1 2 3

ential simulator

4 567
I092(nodes)

Fig 4: A 116-gate multiplier for lOOIlS on an iPSCj2

[092(seconds)

10

9

8

7

6
o 1

?;, , sequential simulator

~-'--- A

~-< ..
~£

, B

2 3 4 5 6 7
[092(nodes)

Fig 5: A 116-gate multiplier for IOOIlS on an iPSCj1

9

7. Hybrid CMB Variants

Although the CMB variants exhibit good speedup over wide ranges of N, speedup
measures only the performance of the algorithm relative to less-distributed instances
of itself. In comparison with the sequential simulator, the distributed simulators must
pay the overhead of processing null messages. If the elements used in a simulation
are such that the time required to process null messages is considerably less than
the time to process event-containing messages, these conservative CMB variants will
provide excellent performance and efficiency.

However, if the time required to process null messages is comparable to the time
required to process event-containing messages, as it is for logic simulation, this
overhead makes the CMB algorithm and its variants problematic for simulations on
parallel computers in which N is small. What might be done to extend the CMB
approach into this difficult small-N range?

A component of the overhead that cannot be eliminated within the CMB
framework, in which elements are independent processes, is the null messages used
to force progress in cycles of idling elements. However, we can take advantage of
multiple elements sharing the same node by lumping members of low-latency, low­
activity cycles, such as the gates that form a latch, into macro elements, and applying
sequential simulation to them internally. The null-mess age-processing overhead for
such cycles is eliminated at the cost of reduced concurrency for their members.

In this type of hybrid CMB variant simulator, all elements in each node are
combined into one macro element, which is simulated internally with a conventionaL
ordered-event-list, sequential simulator. These sequential simulators are tied together
externally with one of the CMB variant simulators. Since there is only one macro
element per node, the hybrid variants are identical at N =1 to a sequential simulator.
As N increases, however, more cycles are partitioned over multiple nodes, and each
hybrid variant eventually converges with its corresponding CMB variant.

Measurements in sweep mode: Figure 6 shows the performance results for the CMB
variants simulating a ring of 28 self-timed FIFO units. Each FIFO unit contains one
FIFO-control cell and eight register cells, implemented with a total of 1067 logic gates.
The FIFO ring is 50% full, holding 14 alternating 1- and a-bytes. The overhead at
N = 1 is caused by the idling of the cross-coupled NAND latches in the registers and
the FIFO controls. The CMB variants show a good speedup with increased N. Except
for the initial overhead, the performance of all of the CMB variants is excellent.

Figure 7 shows the simulation results for the same circuit using the hybrid CMB
variants with an element-distribution method that tends to place elements of each
cycle in the same node.

10

!092 (sweeps)
19

18

17

16

15

14

13

12

11

10

9 o 1

sequential simuliltor

2 3 4 5 6 7 8 9 10 11
1092 (nodes)

Fig 6: FIFO ring, non-hybrid simulator, emulation mode

!092(sweeps)
19

18

17

16 ",

15

14

13

12

11

10

9 o 1

. sequential simulator

2 3 4 5 6 7 8 9 10 11
I092(nodes)

Fig 7: FIFO ring, hybrid simulator, emulation mode

Although the hybrid simulator exhibits a generally decreasing sweep count with
increasing N, and extremely good small-N performance for the demand-driven variant
E, less desirable behaviors have been observed for the hybrid variants. In particular,
if the elements are not properly distributed, or cannot be properly distributed, the
simulation time may increase starting at N =2 before starting to decrease. This effect
is the result of cycles being broken and scattered over multiple nodes, so that it is the
CMB rather than the sequential algorithm that dominates the execution time. Figure

11

8 illustrates the performance of the sim" 'ator for the same circuit used in Figures 6
and 7, but with random placement of the elements across the nodes.

1092(sweeps)

19

18

17

16

15

14

13

12

11

10

9 o 1

. sequential simulator

2 3 4 5 6 7 8 9 10 11
1092 (nodes)

Fig 8: FIFO ring, hybrid simulator, randomized

Some programming short-cuts were used to produce these sweep-mode perfor­
mance measures for the hybrid variants without implementing a regular sequential
simulator; thus, we are not able to include corresponding performance graphs for real
multicomputers. However, the instrumentation of the hybrid sweep-mode simulations,
together with the performance parameters of second-generation multicomputers such
as the Intel iPSCj2 and Ametek Series 2010, indicate that the performance on real
multicomputers will be essentially similar to that in the sweep-mode. We are cur­
rently implementing distributed simulation programs and instrumentation to run the
hybrid CMB variants on real multicomputers.

8. Conclusions

We selected logic simulation for these experiments because we wished to examine
the limits of the applicability of the conservative CMB algorithm and its variants.
Simulating the behavior of relatively simple elements that have a high degree of
connectivity was expected to be a difficult case for distributed simulation. Indeed, the
performance results presented here have been much more revealing of the capabilities
and limitations of the distributed discrete-event simulation algorithms than earlier
simulations that we performed of systems such as multicomputer message networks.

The reader should accordingly be cautious about drawing negative conclusions
about the CMB framework from our comparisons of the performance of the CMB
variants with the ordered-event-list sequential simulator. For objects of distributed
simulation that are less demanding than logic simulation, such as systems in which

12

processing null messages is much faster than processing event-contammg messages,
the overhead is proportionately scaled down, and the following general conclusions
remain valid:

l. Selected CMB varients exhibit excellent speedup over a wide range of N, limited
eventually only by the concurrency of the system being simulated.

2. The CMB variants presented here, all based on the indefinite-lazy-message-sending
framework, provide a useful improvement over the basic eager-message-sending
CMB algorithm.

3. The hybrid CMB variants offer promise of efficient distributed simulation on small­
N concurrent computers.

In some respects, the CMB and sequential algorithms make poor comparison
subjects because these two algorithms represent relatively orthogonal optimizations
in the basic task of simulation. While the execution time of the sequential simulator
is sensitive only to the activity level of the circuit, the execution time for the fully
distributed CMB algorithm is sensitive only to the structure of the circuit. In the
FIFO-ring example, we can use more data bytes, fewer data bytes, or a different
set of data bytes, and shift the sequential simulator's execution time proportionately
without significantly changing the CMB variants' curves. Similarly, we can shift the
CMB variants' curves without affecting the execution time of the sequential algorithm
by varying the delay of the gates in the latches.

The hybrid CMB variants attempt to combine the best aspects of the sequential
and CMB algorithms by allowing the sequential simulator to dominate when N is
small, and the CMB variants to dominate when N is large. This approach mayor may
not produce a favorable result, depending on whether the elements can be properly
distributed. More research needs to be done in the area of element distribution and
its effect on the hybrid variants.

9. Acknowledgment

We very much appreciate the constructive suggestions, ideas, and encouragement
that we have received from K. Mani Chandy.

10. References

[lJ K. Mani Chandy and Jayadev Misra, "Asynchronous Distributed Simulation Via
a Sequence of Parallel Computations," CACM 24(4), pp 198-205, April 1981.

[2J Randal E. Bryant, "Simulation of Packet Communication Architecture Computer
Systems," MIT-LCS- TR-188, Massachusetts Institute of Technology, 1977.

[3J Jayadev Misra, "Distributed Discrete-Event Simulation," Computing Surveys

18(1), pp 39-65, March 1986.

[4] "Submicron Systems Architecture," Semiannual reports to DARPA, Caltech
Computer Science Technical Reports [5220:TR:86] and [5235:TR:86]' 1986.

13

[5J William C. Athas and Charles L. Seitz, "i\lulticomputers: Message-Passing
Concurrent Computers," IEEE Computer 21(8), pp 9-24, August 1988.

[6] William C. Athas, "Fine Grain Concurrent Computation," Caltech Computer
Science Technical Report (PhD thesis) [5242:TR:87]' May 1987.

[7) William J. Dally, A VLSI Architecture for Concurrent Data Structures, Kluwer
Academic Publishers, 1987.

[8] Charles L. Seitz, Jakov Seizovic, and Wen-King Su, "The C Programmer's Ab­
breviated Guide to Multicomputer Programming," Caltech-CS-TR-88-1, January
1988.

14

The Essence of Distributed Snapshots

K. Mani Chandy·
California Institute of Technology

6 March 1989
Caltech-CS-TR-89- 5

1 Introduction

A distributed system has no global clock, and it is the absence of a global
clock that makes for several interesting problems, one of which is obvi­
ously important, but apparently trivial: 'Record the state of the system.'
Recording the state of distributed system is called 'taking a global snap­
shot' after [2]. If there were a clock, taking global snapshots would be
straightforward: Each process records its state or at some predetermined
time, and the collection of recorded process states is used to construct a
system state.

Global snapshots are useful in a variety of situations [2,3,6J. The goal
of this paper is to identify the essential properties of global snapshots so as
to simplify proofs of global snapshot algorithms and to aid in the design of
new algorithms.

2 A Distributed System

2.1 Standard Definitions

We shall first define a distributed system as in [8J.

·Supported in part by DARPA-6202, monitored by ONR NOOOl4-87-K-0745

1

A prefix of a sequence z is an initial subsequence of z. A prefix-closed
set of sequences is a set such that every prefix of a sequence in the set is
also in the set.

A system is a set of components. A component is a set of events and a
prefix-closed set of sequences of its events called its set of computations.

A projection of a sequence v on a component is the sequence obtained
from v by deleting all events in v that are not events of the component.

A system computation is a sequence v of events of components of the
system such that the projection of v on each component of the system is a
computation of that component.

Let w.p be a computation of component p, all p. Let P be a set of
components. An interleaving of a set of component computations {w.p Ip E

P} is a sequence, v, of events of components in P, such that the projection
of v on p is w.p, all pEP.

We use (y, z) for the catenation of sequences y and z.

2.2 Processes and Channels

A component of a distributed system is either a process or a channel. Dis­
tinct processes have disjoint sets of events, and distinct channels have dis­
joint sets of events.

A channel is used by exactly two processes. The events of a channel are
events of the processes that use the channel. We shall restrict attention to
channels that satisfy the following monotonicity condition.

Let c be a channel used by processes q and r. Let u, v be computations
of c, where u.r = v.r, and u.q is a prefix of v.q. Let e be an event on r.

A Monotonicity Property If (u, e) is a computation of c, then (v, e) is
also a computation of c.

Explanantion The monotonicity condition implies that the execu­
tion of events on one process cannot inhibit the execution of an event on
another process. If a channel c is used by processes q and r, and there is
a computation of c in which e is executed on process rafter q and r have
executed computations a and b respectively, then there is a computation

2

of c in which e is executed after r has executed b, and q has executed an
arbitrary sequence of events following a.

Example: Bounded First-In-First-Out Buffers Consider a first­
in-first-out buffer, with a capacity of N messages (N > 0), shared by a
single producer process and a single consumer process. Such a buffer is
a channel that has the monotonicity property, as shown by the following
informal argument.

The producer can append any message to the buffer if the buffer is not
full. The consumer can receive a message m from the buffer if the buffer
is not empty and m is the message at the head of the buffer queue. IT
the producer can produce a message after it has produced i messages and
the consumer has consumed j messages, then the producer can produce a
message after it has produced i messages, and the consumer has consumed
more than j messages. Therefore, the monotonicity property holds with r
as the producer and q as the consumer.

By a similar argument, additional production does not prevent the con­
sumer from receiving the message at the head of the buffer; the mono­
tonicity property also holds with r as the consumer and q as the producer.
Therefore, the channel has the monotonicity property.

Example: Stacks Next consider a channel which is a stack. Let m be
the message at the top of the stack, if the stack is not empty. The consumer
can execute the event: Pop the stack and consume m. The producer can
execute an event: Push a message m' on top of the stack. Such a buffer
does not have the monotonicity property because an event of the producer
- push m' on the stack - where m =1= m', can prevent the consumer from
executing the event: Pop the stack and receive message m. Therefore, an
event on one process can inhibit the execution of an event on the other.

-
Note: Symmetry of Processes One way of defining channels is in

terms of causality: one of the processes sends a message on the channel, and
the other receives the message, thus there is a causal relationship between
the sending and the receiving of the message. The definition of channels
used in this paper is symmetric with respect to both processes; the defini-

3

tion does not employ the concept of causality. Monotonicity appears to be
an important property of channels of distributed systems.

3 The Problem

Restrict attention to one given system. Let z be a finite computation of the
system. For ease of exposition, assume that all events in z are distinct. (If
events are repeated in z, then number the events, so that the pair - event­
name, number - is distinct.) Let z.p be the projection of z on a process
p. Let x.p be any prefix of z.p. Let S be the set of process computations
{x.plp is a process }.

Set, S, is defined to be a global snapshot in z if and only if there exists
a system computation y where:

1. y is an interleaving of the set of process computations z.p, and

2. every event in S occurs in y before every event that is not in S.

The problem is to determine simple necessary and sufficient conditions
for S to be a global snapshot in z.

Motivation for the Problem Set S is a global snapshot in z if and only
if there is a system computation that first takes the system to a state in
which each process p has executed x.p, and then to the state in which each
process p has executed z.p. Informally, S is a global snapshot in z if and
only if it could have happened that all events in S were executed before all
events that are not in S. If S is a global snapshot in z, then properties
about S can be used to deduce properties about the state of the system
after z is executed. Therefore, it is helpful to determine simple conditions
that guarantee that S is a :!:lobal snapshot.

4 A Solution

The obvious algorithm to determine if S is a global snapshot in z is as
follows: Since z is finite, enumerate all interleavings of z.p, and determine
if there is one with the desired properties. This approach is computationally

4

intractable if the number of processes is large. Next, we present a theorem
that helps us to design tractable solutions.

4.1 Compatible Computations

Let c be a channel. Let c be used by processes q and r. Let u and v
be computations of q and r respectively. Process computations u and v
are defined to be compatible with respect to c if and only if there exists an
interleaving w of u and v such that the projection of w on c is a computation
of c.

Informally, u and v are compatible with respect to c if and only if process
computations u and v could have occurred in a computation of a system
consisting of only the two processes q and r, and the single channel c.

Example: Bounded First-In-First-Out Buffers Let c be a channel
that is a first-in-first-out buffer with a capacity of N where N > 0, and
where the buffer is initially empty. Let u and v be computations of the
processes that send and receive (respectively) on the channel. Then u and
v are compatible with respect to c if and only if the sequence of messages
received along c in v is a prefix of the sequence of messages sent along c

in u, and the number of messages sent along c in u exceeds the number of
messages received along c in v by at most N.

Let z and x.p be as in the problem definition, i.e., z is a system com­
putation and x.p is a prefix of z.p. Let the producer and consumer for c
be q and r respectively. Since z is a system computation, the sequence of
receives along c in z.r is a prefix of the sequence of sends along c in z.q.
Therefore, the sequence of receives along c in x.r is a prefix of the sequence
of sends along c in x.q if and only if the number of receives along c in x.r
is at most the number of sends along c in x.q. Therefore x.q and x.r are
compatible with respect to c if and only if

o ~ (nsends - nreceives) ~ N

where nsends and nreceives are the numbers of sends and receives along
channel c in x.q and x.r respectively.

5

4.2 The Snapshot Theorem and its Applications

We shall first give the theorem, discuss its consequences, and then prove it.
Let z, z.p, x.p and S be as given earlier.

Theorem Set, S, is a global snapshot in z if and only if, for each channel,
c:
x.q and X.T are compatible with respect to c, where q and T are the processes
that use T.

Applications of the Theorem The proof that S is a global snapshot of
an arbitrary system reduces to a proof of compatibility of a pair of process
computations for each channel. Let us use this fact in developing algorithms
for a couple of problems. The following discussion is very brief and informal,
because our goal is only to demonstrate the use of the theorem, rather than
to give a thorough exposition of the algorithms.

The Snapshot Algorithm We shall develop the algorithm in [2].
Consider a system in which channels are first-in-fust-out and the capacity
of a channel is arbitrarily large. Initially all channels are empty. We wish
to develop a distributed algorithm to record the global state of the system.

Consider a channel c used by processes q and T, where q sends along c,
and T receives along c, and initially c is empty. As discussed earlier, process
computations x.q and X.T are compatible with respect to c if and only if the
number of receives along c in X.T is at most the number of sends along c in
x.q. Therefore the problem of algorithm design reduces to this: Guarantee
that the number of receives before the receiver records its state is at most
the number of sends before the sender records its state, and also guarantee
that every process records its state eventually.

One way of doing this is as follows: After a process records its state, it
sends a special message called a marker along each of its outgoing edges.
On receiving a marker a process records its state if it has not done so.
At least one process (called the initiator) records its state in finite time;
if there is a path (a sequence of channels) from the initiator to all other
processes then every process records its state in finite time of the intiator.

6

Logical Time Consider the same system as in the previous para­
graph. Let z be a computation of the system. We are required to give each
event in z a unique number, called its logical time, such that the set of
events with logical times less than n corresponds to a global snapshot in z,
for all n. Let x.p be the prefix of z.p consisting of all events with logical
times less than nj we require that the set S (defined as before as {x.p}) be
a global snapshot.

As in the previous problem, the problem of algorithm design reduces to
this: Guarantee that for each channel c, the number of messages received
along c in x.r is at most the number of messages sent along c in x.q, where
q and r are the processes that send and receive along c, respectively. This is
equivalent to: guarantee that logical times of events are such that the event
of receiving a message has a higher logical time than the event of sending
that message. One way of doing so is in [7J: put a time-stamp t on each
message where t is the logical time of the event that sends the message, and
give the event that receives a message a logical time that is greater than
the time-stamp of the message.

(The goal for logical time in the seminal paper [7J is different from that
given here, because it is based on the concept of causality. Our goal here
is limited: to demonstrate a use of the snapshot theorem.)

4.3 Proof of The Snapshot Theorem

Snapshot Theorem Let z be a finite computation of the system. Let
x.p be a prefix of z.p, all p. Let S be the set of process computations {x.plp
is a process }. Set S is a global snapshot in z if and only if, for each channel
c, computations x.q and x.r are compatible with respect to c, where q and
r are the processes that use c.

Proof If x.q and x.r are incompatible with respect to c, then there is
no interleaving of x.q and x.r that is a computation of c, and hence S is
not a global snapshot. Next, we prove that if for each c, x.q and x.r are
compatible with respect to c, where q, ruse c, then S is a global snapshot.
The proof given here is a generalization of the proofs given in [2,5J which
are limited to unbounded first-in-first-out channels.

7

Define sequence y as follows: y is the permutation of z where all events
in S occur before all events that are not in S, and apart from this change,
the order of events in z is retained in y. We shall prove that S is a global
snapshot by proving that y is a system computation.

Let w be a permutation of z. We shall give an algorithm which starts
with w = z and that ends with w = y, and where the algorithm maintains
the invariant: w is a system computation.

The Algorithm Initially w = z. While w contains a pair of adjacent
elements d and e, where d occurs before e, and d is not in S, and e is in S:
interchange the positions of d and e in w.

Proof of Termination We prove that the algorithm terminates in
a finite number of steps by using the metric: the number of pairs (f, g),
where event f occurs earlier than event g in w, and f is not in S, and g is
in S. The algorithm terminates if and only if the metric is zero, in which
case w = y.

The metric has a finite value initially, and every step decreases it; hence
the algorithm terminates in a finite number of steps.

Proof of the Invariant We prove the stronger invariant that w.p =
z.p, all processes p, and w.c is a computation of c, all channels c, where w.d
and z.d are the projections of wand z, respectively, on component d. The
invariant holds initially, because w = z. Let w' be the same as w except
that d and e are interchanged. Our proof obligation is to show that w'
satisfies the invariant if w satisfies it.

Since x.q is a prefix of z.q and since w.q = z.q, it follows that x.q is
a prefix of w.q. Therefore, if two adjacent events in w are on the same
process, q, and the first of the two events is not in x.q, then the second is
not in x.q either. Since d is not in Sand e is in S, it follows that d and
e cannot be on the same process. Let d be on process q and let e be on
process r, where r =I q.

Since d and e are on different processes, w'.p = w.p, all p, and therefore
w'.p = z.p.

8

If d and e are on different channels, then the projections of wand w' on
each channel are identical, and hence the invariant holds for w'. Therefore,
we need only consider the case where d and e are on the same channel; let
this channel be c. Our only remaining proof obligation is to show that w' .c
is a computation of c.

Let t be the prefix of w preceding d in w. Then (t, d, e) is a prefix of w,
and (t, e, d) is a prefix of w' .

Since x.q and x.r are compatible with respect to c, there exists an inter­
leaving h of x.q and x.r such that the projection of h on c is a computation
of c. Event e is in x.r, and therefore is in h. Define u as the prefix of h
preceding e. Therefore, (u, e) is a prefix of h, and hence it is a computation
of c. Since both u.r and t.r are the prefixes of x.r that precede e, it follows
that u .r = t.r. Since d is not in x.q, it follows that x.q is a prefix of t .q.
Since u.q is a prefix of x.q, it follows from the transitivity of the prefix
relation that u.q is a prefix of t.q. From the monotonicity property, the
projection of (t, e) on c is a computation of c.

Applying the monotonicity property again, the projection of (t, e, d) on
c is a computation of c, since the projections of (t, d) and (t, e) on care
computations of c.

Let m be the length of the sequence (t, e, d). We shall prove by induction
on k, that for k 2:: m: g'.c is a computation of c where g' is the prefix of w'
of length k.

Base Case: k = m. This case has already been proved.
Induction Step: Let f be the (k+ l)-th event in w. Our proof obligation

is to show that the projection of (g', f) on c is a computation of c. Let 9 be
the prefix of w of length k. The projection of (g, f) on c is a computation
of c because (g, f) is a prefix of w. From the induction hypothesis, the
projection of g' on c is a computation of c. For k 2:: m: g.q = g'.q and
g.r = g'.r. If f is on c, the from the monotonicity property of c, the
projection of (g', f) on c is a computation of c. If f is not on c, then the
projection of (g', f) on c is the same as the projection of g' on c, and the
result follows.

9

5 Partial Snapshots

There are some problems in which a snapshot of some subset of processes
and channels is useful, and a global snapshot of all processes and channels
is not necessary. We define a partial snapshot of a set of processes, Q,
in a manner analogous to the definition of a global snapshot. Let z be a
system computation. Let x.p be a prefix of z.p. Let S be the set of process
computations {x.qlq E Q}. Set S is defined to be a partial snapshot in z if
and only if there exists a system computation y where:

1. Y is an interleaving of the set of process computations z.p, all processes
p,and

2. for each process q in Q, the events in x.q appear in y before the events
of q that are not in x.q.

A partial snapshot is a global snapshot if Q is the set of all processes.
Next, we shall define a class of problems for which partial snapshots are

helpful.

5.1 TerDlination ProbleDls

Let w be a system computation. Set, Q, is defined to have terminated after
w if and only if,

1. for all events e, and all processes q in Q, if (w.q, e) is a computation
of q, then e is an event on a channel between q and a process in Q,
and

2. for all channels c between processes In Q, there is no event e such
that (w .c, e) is a computation of c.

Informally, the first condition says that after a process q has executed w.q
it can only execute events on channels connecting it to other processes in
Q. The second condition says that there is no extension of a computation
of a channel c between processes in Q after w. The two conditions, to­
gether, imply that the processes in Q cannot execute events after system
computation w.

10

Example: Full-Buffer Deadlock Consider a system in which each
channel is a buffer with a capacity of N, where N > o. A process is
either waiting or active. A waiting process is waiting to send a message on
anyone of a set of full outgoing channels (i.e., channels containing N mes­
sages); a waiting process continues to wait until at least one of the channels
that it is waiting for becomes not full, and it then sends a message on that
channel and becomes active. Waiting processes do not receive messages. A
set of processes, Q, is said to be deadlocked if and only if:

1. each channel between processes in Q is full (or equivalently, the num­
ber of messages sent on the channel exceeds the number of messages
received on the channel by N), and

2. each process in Q is waiting to send messages only along channels to
other processes in Q.

The problem is to detect a deadlocked state.
A dual of this problem is obtained by replacing 'full' by 'empty', 'send'

by 'receive', and 'outgoing' by 'incoming' in the previous problem.
Next, we give a theorem that shows how partial snapshots may be em­

ployed.

5.2 Ter:rnination Detection Theore:rn

Let v be a system computation such that Q terminates after v. IT z is a
system computation such that for all q in Q, v.q is a prefix of z.q, then
v.q = z.q, for all q in Q.

Proof We prove by induction on the length of prefixes u of z, that u.q
is a prefix of v.q, for all q in Q. In particular, we prove that z.q is a prefix
of v.q. Since v.q is a prefix of z.q, it follows that v.q = z.q.

Base Case u is the empty sequence. The result holds, trivially.

Induction Step Consider a channel c used by processes q and r,
where both q and r are in Q. Let u.r = v.r (and u.q is a prefix of v.q from
the induction hypothesis). From the monotonicity property, for all events

11

e on c, if the projection of (v, e) on c is not a computation of c, then the
projection of (1.£, e) on c is not a computation of c. Since Q terminates after
v, the projection of (v, e) on c is not a computation of c. Hence, if 1.£.r = v.r,
for all events e on c, the projection of (1.£, e) on c is not a computation of
c. Since Q terminates after v, the only events on rafter v.r are events on
channels to other processes in Q. Hence, if 1.£.r = v.r, there is no event eon
r such that (1.£, e) is a system computation.

From the arguments of the last paragraph, if (1.£, e) is a computation of
z, then e is on a process r such that 1.£.r =f v.r. Since 1.£.r is a prefix of
v.r, the length of 1.£.r is less than the length of v.r In this case, (1.£.r,e) is a
prefix of v.r, since both (1.£.r, e) and v.r are prefixes of z.r, and the length
of (1.£.r, e) is at most the length of v.r.

5.3 Applications of the Theorem

The termination detection theorem tells us that old data (v.q) is current
(because v.q = z.q) if the old data shows that Q has terminated. This
suggests the following class of algorithms for termination detection; this
class includes algorithms in [1,4,9].

A Class of Algorithms for Termination Detection The algorithms
employ a set of process computations {v.qlq E Q} and have the following
specification.

Invariant v.q is a prefix of z.q where z is the system computation up
to the current point.

Progress For all q, if the current value of z.q is, say, y.q, then even­
tually y.q is a prefix of v.q. (The progress property says that the process
computations v.q get updated: eventually, v.q will include the current value,
y.q, of z.q.)

The algorithm determines that Q has terminated if Q terminates after
{v·qlq E Q}, i.e., if Q terminates after a system computation, y, where
y.q = v.q, all q in Q.

12

Correctness The proof of correctness of this class of algorithms is as
follows. From the invariant and the theorem, if Q has terminated after
{v·qlq E Q}, then Q has terminated after z. From the progress property, if
Q terminates after z, then eventually v.q = z.q, and hence eventually, the
algorithm determines that Q has terminated.

Example Next, we give an example of algorithms with the invariant and
progress properties given earlier. To detect termination of Q, a token is
sent from process to process in Q, in such a manner that the token visits
every process in Q repeatedly. The token carries with it a set of process
computations {v.qlq E Q}. Initially, v.q is the empty sequence. When the
token arrives at a process q, it updates this set, by replacing the value of
v.q in the set by its current computation, and q determines that Q has
terminated if Q terminates after {v.qlq E Q}.

Various optimizations are possible in applying this method to detect a
specific form of termination. For example, to detect full-buffer deadlock,
it is not necessary for the token to carry the entire computation v.qj it is
sufficient for the token to contain the number of messages sent and received
on each channel by q in v.q, and the set of processes for which q is waiting.

6 Summary

The paper presents necessary and sufficient conditions for a set of process
computations to be a global snapshot. The condition is that for every
channel, the computations in the snapshot of the processes that use the
channel, are compatible with respect to the channel. The condition is
helpful in the development of algorithms.

The paper also presents the concept of partial snapshots and demon­
strates its utility.

References

[1] Chandy, K. M.[1987] 'A Theorem on Termination of Distributed Sys­
tems', TR-87-09, March 1987, Dept. of Computer Sciences, The Uni­
versity of Texas at Austin, Austin, Texas 78712-1188.

13

[2] Chandy, K. M., and L. Lamport [1985]. 'Distributed Snapshots: Deter­
mining Global States of Distributed Systems,' ACM TOCS, 3:1, Febru­
ary 1985, pp. 63-75.

[3] Chandy, K. M. and J. Misra [1988] Parallel Program Design: A Foun­
dation, Addison-Wesley, Reading, Massachusetts, 1988.

[4] Chandy, K. M. and J. Misra [1988] 'On Proofs of Distributed Algorithms
with Application to the Problem of Termination Detection', submitted
to Distributed Computing [1987].

[5] Dijkstra, E. W. [1985]. 'The Distributed Snapshot of K. M. Chandy
and L. Lamport,' in Control Flow and Data Flow, ed. M. Broy, Berlin:
Springer-Verlag, 1985, pp. 513-517.

(6J Fischer, M. J., N. D. Griffeth, and N. A. Lynch [1982]. 'Global States
of a Distributed System,' IEEE Transactions on Software Engineering,
SE-8:3, May 1982, pp. 198-202.

[7] Lamport,L.[1978] 'Time, Clocks and the Ordering of Events in a Dis­
tributed System,' C.ACM, 21:7, July 1978, pp 558-565.

[8] Hoare, C. A. R. [1984]. Communicating Sequential Processes, London:
Prentice-Hall International, 1984.

[9] Raynal, M., J.-M. Helary, C. Jard, and N. Plouzeau [1987]. 'Detection
of Stable Properties in Distributed Applications,' in Proceedings of the
Sixth Annual ACM Symposium on Principles of Distributed Comput­
ing, 1987, pp. 125-136.

14

To be published in Pmc 1989 ACM Symposium on ParaUed Algorithms
and Architectures

A Framework for Adaptive Routing in Multicomputer
Networks

John Y. Ngai and Charles L. Seitz
Department of Computer Science, California Institute of Technology

Submitted to the 1989 ACM Symposium on Parallel Algorithms and Architectures·

Introduction
Message-passing concurrent computers, also known
as multicomputers, such as the Caltech Cosmic Cube
[1] and its commercial descendents, consist of many
computing nodes that interact with each other by
sending and receiving messages over communication
channels between the nodes [2]. The communication
networks of the second-generation machines, such
as the Symult Series 2010 and the Intel iPSC2, em­
ploy an oblivious wormhole routing technique [3,4]
that guarantees deadlock freedom. The message
latency of this highly evolved oblivious technique
has reached a limit of being capable of delivering,
under random traffic, a stable maximum sustained
throughput of f:::$ 45 to 50% of the limit set by the
network bisection bandwidth. Any further improve­
ments on these networks will require an adaptive
utilization of available network bandwidth to diffuse
local congestions.

In an adaptive multipath routing scheme, message
routes are no longer deterministic, but are con­
tinuously perturbed by local message loading. It
is expected that such an adaptive control can in­
crease the throughput capability towards the bi­
section bandwidth limit, while maintaining a rea­
sonable network latency. While the potential gain
in throughput is at most only a factor of 2 under
random traffic, the adaptive approach offers addi­
tional advantages, such as the ability to diffuse local
congestions in unbalanced traffic, and the potential
to exploit inherent path redundancy in richly con­
nected networks to perform fault-tolerant routing.
The rest of this paper consists of an examination
of the various feasibility issues and results concern­
ing the adaptive approach studied by the authors.

"The research described in this paper was sponsored in
part by the Defense Advanced Research Projects Agency,
DARPA Order number 6202, and monitored by the Office of
Naval Research under contract number N00014-87-K-0745,
and in part by grants from Intel Scientific Computers and
Ametek Computer Research Division.

1

A much more detailed exposition, including results
on performance modeling and fault-tolerant routing,
can be found in [5].

The Adaptive Cut-Through Model
It is clear that in order for the adaptive multipath
scheme to compete favorably with the existing obliv­
ious wormhole technique, it must employ a switch­
ing technique akin to virtual cut-through [6]. In cut­
through switching and its blocking variant, which is
used in oblivious wormhole routing, a packet is for­
warded immediately upon receipt of enough header
information to make a routing decision. The result is
a dramatic reduction in the network latency over the
conventional store-and-forward switching technique
under light to moderate traffic. We now describe
a simple cut-through switching model that provides
the context for the discussion of issues involved in
performing adaptive routing in multicomputer net­
works. The following definitions develop the nota­
tion that will be used throughout the rest of the
paper.

Definition 1 A Multicomputer Network, M, is a
connected undirected graph, M = G(N, C). The
vertices of the graph, N, represent the set of com­
puting nodes. The edges of the graph, C, represent
the set of bidirectional communication channels.

Definition 2 Let ni EN be a node of M. The set,
Ci ~ C, is the set of bidirectional channels connect­
ing ni to its neighbors in M.

Definition 3 The width, W, of a channel is the
number of data wires across the channel. A flit,
or flow control unit, is the W parallel bits of infor­
mation transferred in a single cycle. The flit is the
unit used to measure the length of a packet.

Definition 4 Given a pair of nodes, ni and nj, the
set, Qij, of routes joining ni to nj is the fixed and
predetermined set of directed acyclic paths from the
source node, ni, to the destination node, nj.

Definition 5 For each destination node, nj, the
profitable channel set Roj ~ Ci is the subset of chan­
nels connected to ns, where C/c E Roj => C/c E qm E
Qij. In other words, forwarding a packet along the
routes in Qi,. is equivalent to sending it out through
a profitable channel in Roj.

Definition 6 For each node ns EN, the Routing
Relation Ro = {(nj, c/c) : nj E N - {ns}, C/c E Roi}
defines for each possible destination node ni E N
its corresponding profitable channel set, Roi'

Definition 'T The actual path a packet traverses
while in transit in the communication network is re­
ferred to as the trajectory of the packet. Packet tra­
jectories are identical to the packet routes in obliv­
ious routing schemes but are non-deterministic in
our adaptive formulation.

We assume the following:

• Long messages are broken into packets that are
the logical data entities transferred across the
network.

• Packets are of fixed length; ie, packet length
= L, where L is a network-wide constant.

• Complete routing information is included in the
header flit of each packet.

• Packets are forwarded in virtual cut-through
style.

• A message packet arriving at its destination
node is consumed. This is commonly known
as the consumption assumption.

• A node can generate messages destined to any
other node in the network.

• Nodes can produce packets at any rate subject
to the constraint of available buffer space in the
network, and packets are source queued.

• Each node in the network has complete knowl­
edge of its own routing relation.

Figure 1 presents our view of the structure of a node
in a multicomputer network. Conceptually, a node
can be partitioned into a computation subsystem,
a communication subsystem, and a message inter­
face. For our purpose, the computation subsystem
serves as the producer and consumer of the mes­
sages routed by the communication subsystem of
the node. The message interface consists of dedi­
cated hardware that handles the overhead in send­
ing, receiving, and reassembling of message packets.

2

Processor

Memory

Message
Interface

Figure 1: Structure of a node.

Internally, the communication subsystem consists of
an adaptive control and a small number of message­
packet buffers. Routing decisions are made by the
adaptive control, based entirely on locally available
information. The bidirectional channel assumption
is adopted to allow the network to exploit locality in
general message-communication patterns. Further­
more, it assures an identical number of input and
output communication channels in each node, irre­
spective of the underlying network topology. The
fixed-packet-Iength assumption is not essential and
can be replaced by a bounded-packet-Iength assump­
tion; ie, packet length::::; L, without invalidating any
of our major results. It is adopted solely to simplify
our subsequent exposition.

Communication Deadlock Freedom
In any adaptive routing scheme that allows arbi­
trary multipath routing, it is necessary to assure
freedom from communication deadlock. Communi­
cation deadlock is caused generically by the exis­
tence of cyclic dependencies among communication
resources along the message routes. Methods to pre­
vent communication deadlock have been intensively
researched and many schemes exist; of these, the
methods of structured buffer pools [7] and virtual
channels [8] are representative. In essence, all of
these methods approach the problem by re-mappt"ng
any dependency that is potentially cyclic into a cor­
responding acyclic dependency structure. These
methods employ restructuring techniques that re­
quire information of a global, albeit static, charac­
ter. In contrast, a very simple technique that is in­
dependent of network size and topology, through vol-

Output Channel Doto

Request for Ou put R;. __ ----1-......:::,.

Output Data VA id

Input Acknownl ge

Input Channel Dato

Figure 2: Two-phase protocol signaling.

untary mi6routing, was suggested in [9J for networks
that employ data exchange operations. Such a pre­
emption technique utilizes only local information,
and is dynamic in character. It prevents deadlock
by breaking the potentially cyclic communication de­
pendencies into disjoint paths of unit length. Vol­
untary misrouting can be applied to assure deadlock
freedom in cut-through switching networks, pro­
vided the input and output data rates across the
channels at each node are tightly matched. A sim­
ple way is to have all bidirectional channels of the
same node operate coherently under the protocol de­
scribed next.

The Coherent Protocol. We now describe the
channel data-exchange protocol in detail. It is used
to match the transfer rates across all channels of the
same node. The protocol employs four control sig­
nals per channel, two from each of the communicat­
ing partners, and is completely symmetric between
the partners. The signaling events for a channel
c E Care:

• Ro - Qutput event to the communicating part­
ner indicating that this node is Ready to ac­
cept another input flit from its partner. It also
serves as an acknowledgment to its partner for
the successful completion of the previous trans­
fer cycle.

• R'f - input event from the communicating
partner indicating that the partner is Ready
to accept another output flit from this node. It
is also an acknowledgment from the partner for
the successful completion of the previous trans­
fer cycle.

• Vo - Qutput event to the communicating part­
ner indicating that the data flit values currently
held at the output channel of this node are
yalid and its partner should latch in the held
values.

3

• V/ - !nput event from the communicating
partner indicating that the data flit values cur­
rently asserted at the input channel of this node
are Yalid and the node should latch in the held
values.

We proceed to define our handshaking protocol
across channels of a node nk E N, in a eSP-like
notation [10]:

['Ie E Ck, Rflj
['Ie E Ck, V/Jj

apply out dataj
latch in dataj

Observe that Ro and Vo denote, respectively, the
unique outgoing Ready and data Valid signaling
event to all neighbors of nk. This enforces the
matching of outgoing data rates. On the other hand,
the matching of incoming data rates is enforced
through the synchronized wait for the R'f and V/
signaling events from all neighbors. The handshak­
ing events Ro , Rf interlock with.the events Vo , V/ to
guarantee the stability and strict alternation of each
other. The initial state of a channel has both direc­
tions of the channel ready to accept a new data flit
and proceeds thereafter in a demand-driven fashion.
Figure 2 shows a possible conceptual realization of
the protocol under the two-phase signaling conven­
tion [11] popular for off-chip communication. Since
all the handshaking events defined are local between
nearest neighbors, a network following the coherent
protocol is arbitrarily extensible.

Observe that under cut-through switching, a packet
can span many different channels. An outgoing
channel occupied by a packet may not be able to
assert Vo until after valid data has been asserted
by the corresponding incoming channel occupied by
the packet, hence, induces matching of data rates
across the two occupied channels. The notion of co­
herency introduced here is a natural way to accom­
modate such potential dependencies among the vari­
ous channels of a node under cut-through switching.
Another notion that arises naturally is that of a null
flit. To effect a transfer of data in one direction of
a channel while the opposite direction is idle, the
receiving partner is required to transmit a null flit
in order to satisfy the convention dictated by the
exchange protocol.

Deadlock Freedom. We now demonstrate that
to assure communication deadlock freedom for net­
works operating under the coherent protocol, it is
sufficient to employ voluntary misrouting to prevent
potential buffer overflow. To proceed, observe that
routing under the cut-through switching model im­
poses the following integrity constraints:

1. Packets must always be forwarded to neighbors
with their header flits transmitted first. In par­
ticular, voluntary misrouting of any internally
buffered packet must start from the header flit
of the selected packet.

2. Once the flit stream of a packet has been as­
signed a particular outgoing channel, the as­
signment must be maintained for the remaining
cycles until the entire packet has been transmit­
ted.

These constraints exist because all of the necessary
routing information of a packet is encapsulated in
the packet header. Interrupting a packet flit stream
mid-transfer would render the latter part of the
packet undeliverable. To establish deadlock free­
dom, it is sufficient to show that each node can inde­
pendently complete each transfer cycle and initiate a
new one, in a bounded period, without violating the
stated constraints. We now show that as long as we
have an equal number of input and output channels
per node, a condition satisfied readily by our bidi­
rectional channel assumption, we can always satisfy
the stated logical requirements, and, hence, assure
freedom from communication deadlock.

Theorem 1 Let M denote a coherent multicom­
puter network where each node has an equal number
of input and output channels. IT M employs volun­
tary misrouting to prevent potential buffer overflow,
then it is free from deadlock.

Proof. We need to show that buffer overflow can
always be prevented by misrouting without violat­
ing the cut-through switching integrity constraints.
We proceed with a counting argument: Let d de­
note the number of channels at a node. During a
protocol cycle, there may be as many as n* ::; d new
data flits arriving at the input channels. A frac­
tion of these, 0 ::; n' ::; n*, are new header flits;
the remaining n· - n' are non-header flits of arriv­
ing packets. Of these non-header flits, a fraction
of them, 0 ::; nil ::; n * - n', belong to packets that
have already been assigned output channels, and the
remaining n* - n' - nil flits belong to waiting pack­
ets that are buffered inside the node. Therefore,
the node has at least a total of n' + (n* - n' - nil)
headers flits that are eligible for immediate routing.
Hence, in the following cycle, a node can find at least
n'+(n*-n'-n"}+n" = n* flits that can be transmit­
ted or misrouted without violating the cut-through
switching integrity constraints. This assures that
no buffer overflow will occur. The node can always
complete its protocol cycles in bounded time; hence,
the network is free from deadlock. •

4

Figure 3: Livelock due to bad assignments.

Since the validity of the above proof does not depend
on a node's storage capacity, deadlock freedom is
established independent of the amount of available
buffer space. The simple criterion of having an equal
number of input and output channels is sufficient to
assure deadlock freedom for a coherent network. In
practice, additional buffers are needed in order to
inject packets into the network, and to improve the
network performance.

Network Progress Assurance
The adoption of voluntary misrouting renders com­
munication deadlock a non-issue. However, misrout­
ing also creates the burden to demonstrate progress
in the form of message delivery assurance. In par­
ticular, a network can run into a livdock. Consider
the sequence of routing scenarios depicted in fig­
ure 3 for a bidirectional ring consisting of eight nodes
and eight packets. Eack of the pa~kets consists of
four data flits that span multiple channels and inter­
nal buffers. Suppose the nodes employ the follow­
ing simple, deterministic, packet-to-channel assign­
ment rule: Whenever two incoming packets both
request the same outgoing channel, the packet from
the clockwise neighbor always wins. Given that, ini­
tially, nodes A, C, E, and G each receive two pack­
ets destined to nodes that are, respectively, distance
two from them in the clockwise direction, after four
routing cycles, the packets are all back to where they
started! This example illustrates that packets can
be forever denied delivery to their destinations even
in the absence of communication deadlock.

Figure 4: Livelock due to lack of assignments.

Channel-access competitions are, however, not the
only type of conflict that can lead to livelock. Con­
sider the situations depicted in figure 4 for the same
bidirectional ring network. The traffic patterns are
coincidental in such a way that none of the pack­
ets will ever have a chance to select its own output
channel; rather, at every node, each packet must be
forwarded along the only remaining channel, in com­
pliance with the voluntary misrouting discipline, in
order to avoid deadlock. It is clear that no matter
what assignment strategy one chooses, it is impos­
sible to break this kind of livelock without adding
extra buffers per node. In other words, additional
measures and resources have to be introduced in or­
der to assure progress, ie, delivery of packets, in the
network.

Buffering Discipline and Requirement. In or­
der to assure packet delivery in spite of voluntary
misrouting, extra buffers are required to store pack­
ets temporarily. In particular, sufficient buffers
must be provided to allow the adaptive control to
give any newly arriving packet a chance to escape
preemption if so determined by the assignment al­
gorithm. We now demonstrate the existence of such
a solution using a bounded number of buffers. We
assume the following buffering discipline:

1. Storage is divided into buffers of equal size; each
is capable of holding an entire message packet.

2. Each buffer has exactly one input and one out­
put port; this permits simultaneous reading and
writing. A good example is a FIFO queue of
length L.

5

3. Except as stated below, a buffer can be occu­
pied by only one packet at a time. Oftentimes a
packet may not fill its entire buffer, as in case of
a partial cut-through. Such a packet occupies
both the input and output ports to the buffer.

4. A buffer can be used temporarily to store two
packets at a time, if and only if, one of them
is leaving through the output port connected
to an output channel, and the other is entering
through the input port connected to an input
channel.

Let b and d denote, respectively, the number of
buffers and channels, ie, the degree at each node.
First, we observe that, given the above buffering
discipline, we must have b ~ d. To see this, assume
that L ~ d, and consider the following sequence of
events at a node with all buffers initially empty: At
cycle t = 0, a packet Po arrives and is forwarded
to its requested output channel c· at cycle t = 1.
Then, at cycles t = L-d up to t = L-2, a total of
d -1 packets, Pi, i = 1, ... , d -1, arriving one after
another in these d-l consecutive cycles, all request­
ing the same output channel c·. Finally, at cycle
t = L + 2, another packet Pd arrives, requesting the
same channel c·. The worst case happens when the
assignment algorithm always favors the latest arriv­
ing packet requiring it to stay and avoid preemption,
and having each occupy a distinct buffer. Given the
above arrival sequence, at cycle t = L + 1, packet
Pd-l will be forwarded through c·, which now be­
comes idle. As a result, each packet from P 1 up to
Pd would have to be temporarily stored as it comes
in. Since each packet must be allocated to a dis­
tinct buffer, we must have b ~ d. We now show that
having b = d buffers is also sufficient.

Theorem 2 Let M be a coherent network where
each node has b packet buffers inside the router op­
erating under the stated assumptions. Then b = d
buffers per router is necessary and sufficient to al­
ways allow at least one packet, chosen arbitrarily by
the assignment algorithm at each node, to escape
preemption.

Proof. Necessity follows immediately from the
preceding discussion. We proceed to establish suffi­
ciency through a counting argument. Observe that
a node is required to consider misrouting of packets
in the next cycle only when there are new packets
arriving at the current cycle. Figure 5 depicts an
accounting of all possible cases of buffer allocation
at the end of any such routing cycle. Let nl up to
nr denote, respectively, the number of packets or
buffers in each case; and no denote the number of

n1

n2

n3

n4

n5

n6

n7

Direct Cut-Through
)

~
I I I ~ bW!OOM Header

or 10 y U ere

I I I I I I I
Empty

I Mftl#i!@-." '" ~
Leav,ng

FII~tP!) Part,a CU roug
~_~l_])

anng u er

Figure 5: Accounting of buffer allocations.

newly arrived packets. Then, for inputs, we have
"0 + "1 + "5 + ne +"7 ~ d; for outputs, we have
"1 + "5 + "6 +"7 ~ d. Let p. denote the privi­
leged packet chosen by the assignment algorithm to
stay behind and avoid misrouting in the following
cycle. p. must be either a newly arrived packet
or an already buffered packet. IT p. is a buffered
packet, then a newly arriving packet either finds
an idle output channel to directly cut through the
node; or else we must have "1 +"5+"6+"7 = d =>
"5 2:: "0 + "5, which, in turn, implies that there
will always be an available buffer ready to accept
it. On the other hand, if p. is a newly arriv­
ing packet, then either "4 +"5 > 0, and, hence,
there is a buffer ready to accept it; or else we must
have "2+"5+ne+"7 = b = d. This, together with
the above inequality on inputs, => "2 ~ "0+"1 =>
"2> O. Furthermore, "0 > 0 => "1+"6+"7 < d.
In other words, the packet will be able to find at
least one buffer with a full idle packet as well as an
idle output channel to preempt this idle packet and
thus make room for itself. This establishes the suf­
ficiency condition. •

The trick in allowing the escape of misrouting for
any arbitrarily chosen packet is to provide at least
a critical, minimum number of buffers that is suffi­
cient to assure either that empty buffers still exist,
or that all buffers have been occupied, and, hence,
there is some other packet that can be misrouted in­
stead. The particular number required depends on
the adopted buffering structure and discipline, and
adding more buffers per node will allow the assign­
ment algorithm to operate with more flexibility and
perform better. In any case, by having a sufficient
number of buffers, competition of profitable channel
access is transformed into a competition for the right
to stay behind and wait until the winner's profitable
channel becomes available, at which time, it will be
forwarded. Hence, winners that have been chosen

6

by the assignment algorithm will have the chance to
follow the actual paths determined by the routing
relations. In a sense, assurance of packet delivery
has now been reduced to that of picking con6i6tent
winners across the network.

Packet-Priority Assignments. An effective
scheme for picking consistent winners that is inde­
pendent of any particular network topology is to
resolve the channel-access conflicts according to a
priority assignment. In particular, the process of
forwarding a packet towards its destination can be
viewed as a sequence of actions performed to re­
duce the packet's distance from destination, pro­
vided that the set R = {.Ha} of routing relations is
defined in terms of an underlying metric of the net­
work. In this case, as the result of a channel-access
conflict, the winner will be routed along a profitable
channel, hence decreasing its distance from the des­
tination. The losers, depending on whether they are
misrouted along the remaining unprofitable chan­
nels, mayor may not increase their distance from
destination. Ideally, one would prefer a strict mono­
tonic decrease of distance to destination for each
packet routed in the network. As this is impossi­
ble under our adaptive model, the alternative is to
ensure monotonic decrease over a sequence of ex­
changes involving multiple packets. This can be
achieved by giving higher priority to packets with
shorter distances from destination over those with
longer distances as follows:

P1 > P2 <==> D1 < D2

where P is a packet's priority and D its distance
from destination. We now show that this is sufficient
to guarantee livelock freedom.

Theorem 3 A packet-to-channel assignment strat­
egy that observes the defined distance priority, to­
gether with the set R of metric-based routing rela­
tions, guarantees livelock freedom in' a network.

Proof. At the beginning of a routing cycle, let
D > 0 be the minimum packet distance from desti­
nation. During this cycle, a packet with distance D
competes with other packets for channels leading to
its destination. IT it wins the competition, it will be
forwarded along a profitable channel within L cy­
cles. It it loses, it must be to another packet also
distance D away from its destination, according to
the defined priority. In both cases, the minimum dis­
tance is reduced to < D within L cycles. Therefore,
D will eventually be reduced to zero, in which case
a successful packet delivery occurs and the above
argument can be applied again to assure repeated
deliveries, This establishes livelock freedom. •

,

F rom Processor/Memory

To Processor /t.4emory

Figure 6: Inside the message interface.

Observe that although the distance priority alone
suffices to guarantee global progress in a message
network, no corresponding statement can be made
concerning each individual packet. This is because
it is possible for packets that are far away from their
destinations to be repeatedly defeated by newly in­
jected packets that are closer to their respective des­
tinations. A more complex priority scheme that as­
sures delivery of every packet can be obtained by
augmenting the above simple scheme with age in­
formation, with higher priorities assigned to older
packets:

(AI, Dd > (A2' D2) <=>
(AI> A2) V ((AI = A2) 1\ (DI < D2))

where A is a packet's age, that is, the number
of routing cycles elapsed since the injection of the
packet. Empirical simulation results indicate that
the simple distance assignment scheme is sufficient
for almost all situations, except under an extremely
heavy applied load.

Network-Access Assurance
A different kind of progress assurance that requires
demonstration under our adaptive formulation is the
ability of a node to inject packets eventually. Be­
cause of the requirement to maintain strict balance
of input and output data rates, a node located in
the center of heavy traffic might be denied access
to the network indefinitely. Figure 6 depicts a pos­
sible conceptual realization of a message interface.
Its operation is similar to the register insertion ring
interface described in [12]. It uses two FIFO buffers
that can be connected to the output channel to­
wards the network via a switch. Whenever the node
has a packet to transmit, it loads the packet into
the injection buffer as soon as the buffer becomes
empty. When message traffic arrives from the net­
work input channel, it passes through the destina­
tion check logic, which redirects any traffic destined
to this node to the node memory. Any remaining

7

passing traffic is loaded into the cut-through buffer,
which is normally connected to the output channel.
Whenever the cut-through buffer becomes empty,
the control logic checks to see if there is an output
packet waiting for injection. In such case, the switch
is toggled so that the output channel is connected to
the injection buffer and the injection proceeds. As
the output packet is being forwarded, any passing
traffic is loaded into the cut-through buffer. The
switch connection is flipped back to the cut-through
buffer after injection has been finished, and the pro­
cess repeats. The main interesting property of the
message interface for our current discussion is that
it provides the mechanism to capture and accumu­
late interpacket gaps, which need not be contigu­
ous, as empty spaces inside the cut-through buffers.
When enough space has been collected, ie, the en­
tire packet length, hence, an entire empty buffer, an­
other new packet can be injected into the network.
With such a mechanism, the question of assuring
eventual packet injection is translated into that of
assuring arrival of enough interpacket gape when­
ever a node has a packet injection outstanding.

Round-Trip Packets. One simple way to assure
network access is to have each packet delivered by
the network be returned to its original sender upon
arrival at its destination. Since each message inter­
face starts with an empty injection buffer, consump­
tion of its own round-trip packets will always restore
its ability to inject the next source-queued packet.
More sophisticated versions of such a scheme will use
several cut-through buffers, and will demand that
packets be returned only if the stock of empty cut­
through buffers has been depleted below a predeter­
mined threshold. In this way, the number of round­
trip packets can be dramatically reduced when traf­
fic is relatively moderate. Unfortunately, as traffic
density increases, the population of round-trip pack­
ets also increases, thus further decreasing useful net­
work bandwidth.

Packet-Injection Control. A different scheme
that does not incur this overhead is to have the
nodes maintain a bounded synchrony with neigh­
bors on the total number of injections. Nodes that
fall behind will, in effect, prohibit others from in­
jecting until they catch up. We shall adopt the
convention that a node having no packet to inject
has a null packet queued up; ie, during each rout­
ing cycle, every node either has a null or real packet
ready to inject or else is in the process of inject­
ing a real packet. The null-packet convention is re­
quired to prevent quiescent nodes that do not have
any packet to inject from blocking injections in the

active nodes. Our scheme is to introduce local syn­
chronization among neighboring nodes such that the
total number of packets injected by a node after
each routing cycle will not differ by more than K,
a positive constant, from those of its neighbors. We
assume that each node explicitly maintains records
of the total number of packet injections made by
each of its neighbors, measured relative to that of
its own, and that the information required to up­
date these records in each node is exchanged on
separate direct links between the message interfaces
among neighbors. A node is allowed to inject its
queued packet only if its own number of total in­
jections is fewer than K packet injections ahead of
its minimum neighbor. Nodes that are allowed to
inject will examine their queued packets. Null pack­
ets are always injected by convention, whereas real
packets are injected only if the injection mechanism
described previously finds at least one empty buffer
available to absorb the injection transient. We now
show that, with eventual delivery of the packets al­
ready injected, this injection synchronization proto­
col establishes cooperation among the nodes to as­
sure the eventual occurrence of empty cut-through
buffers in the message interface for nodes that have
real packets waiting for injection as permitted by
the protocol.

Lemma 4 A node that has a packet waiting for in­
jection that is permissible under the above injection
protocol will eventually inject.

Proof. Observe that, by convention, if the pend­
ing packet is null, the node is able to inject imme­
diately, so that the lemma is true vacuously. We
now proceed to establish its validity for real packets.
Suppose, to the contrary, that a particular node,
n E N, is blocked from injection indefinitely be­
cause the injection mechanism cannot accumulate
sufficient empty buffer space to absorb the injection
transient. Our injection protocol then dictates that
its neighbors also will be blocked indefinitely from
injecting. These, in turn, indefinitely block their
neighbors, and so on. Given a finite network, all
nodes are eventually blocked from any further in­
jection, and eventually no new packet can enter the
network. Given the eventual delivery guarantee for
packets already injected, ultimately the network will
be void of packets; at that point, the input channel
to the interface of n will become idle, thus enabling
it to resume the accumulation of empty spaces in­
side the cut-through buffer. Eventually, it will have
collected enough spaces to enable the injection of
its queued packet into the network. This contra­
dicts the original indefinite blocking assumption of

8

16 X 16 2D Mesh

1.0 ,----------------,

0.8 Adaptive

0.6

0.4 Oblivious

0.2

0.0 L-_~ __ ~ __ ~_~ __J

0.0 0.2 0.4 0.6 0.8 1.0
Applied Load

Figure 7: Throughput versus applied load.

n, hence establishing the validity of the lemma. •

We are now ready to show that by following the
above injection protocol every individual node will
eventually be permitted to inject, and, hence, ac­
cording to the above lemma, will eventually inject.
Specifically, let M be a network, and let 7i de­
note the total number of packet injections from node
no E N since initialization. We now prove that 7i is
strictly increasing over time.

Theorem 5 Given the injection protocol and a fi­
nite network that is livelock free, the total number
of packet injections for each node strictly increases
over time.

Proof. During a routing cycle, let t = minniEN Ti
denote the minimum among numbers of packet in­
jections since initialization, taken over all the nodes
of the network, and let S = {ni E NITi = t} de­
note the set of nodes that have recorded the min­
imum number of packet injections since initializa­
tion. Since K > 0, according to our protocol, every
node n E S is permitted to inject. Lemma 4 then
guarantees eventual injections from all of the nodes
in Sj hence, t, the minimum number of packet injec­
tions per node, is guaranteed to eventually increase
over time. This, in turn, guarantees that Ti strictly
increases over time, Vni EN. •

Hence, we are assured of eventual packet injection
for each individual node of the network. In other
words, the above theorem establishes fairness in net­
work access among all the nodes.

Performance Comparisons
An extensive set of simulations was conducted to
obtain information concerning the potential gain in
performance by switching from the oblivious worm­
hole to the adaptive cut-through technique. We now
summarize very briefly the typical kind of behaviors
observed in these simulations. A much more de­
tailed discussion can be found in [5]. Among the

16 x 16 2D Mesh

400.-------------------------,

300

Oblivious
200

100

0.1 0.2 0.3 0.4 0.0 0.6 0.1 o.s
Throughput

Figure 8: Message latency versus throughput.

various statistics collected, the two most important
performance metrics in communication networks are
network throughput and message latency. Figure 7
plots the sustained normalized network throughput
versus the normalized applied load of the oblivious
and adaptive schemes for a 16 X 16 2D-mesh network
under random traffic. The normalization is per­
formed with respect to the network bisection band­
width limit. Starting at a very low applied load, the
throughput curves of both schemes rise along a unit
slope line. The oblivious wormhole curve levels off at
~ 45 - 50% of normalized throughput but remains
stable even under increasingly heavy applied load.
In contrast, the adaptive cut-through curve keeps
rising along the unit slope line until it is out of the
range of collected data. It should be pointed out,
however, that the increase in throughput obtained
is also partly due to the extra silicon area invested in
buffer storage, which makes adaptive choices avail­
able.

Figure 8 plots the message latency versus normal­
ized throughput for the same 2D-mesh network for
a typical message length of 32 flits. The curves
shown are typical of latency curves obtained in vir­
tual cut-through switching. Both curves start with
latency values close to the ideal at very low through­
put, and remain relatively flat until they hit their
respective transition points, after which both rise
rapidly. The transition points are ~ 40% and 70%,
respectively, for the oblivious and adaptive schemes.
In essence, adaptive routing control increases the
quantity of routing service, ie, network throughput,
without sacrificing the quality of the provided ser­
vice, ie, message latency, at the expense of requiring
more silicon area.

SUInmary
Several issues related to adaptive cut-through rout­
ing have been addressed in the course of this re­
search, and we did not encounter any insurmount­
able problem. Rather, the simplicity of these res-

9

olution mechanisms gives us hope that the adap­
tive scheme can be made to improve on the already
highly evolved oblivious routing scheme. The dis­
cussion in this paper has focused on issues concern­
ing the feasibility of the proposed adaptive routing
framework. Within this framework, we have also
studied and found promising approaches to fault­
tolerant routing. Clearly, more work remains to be
done. Perhaps the most challenging of all is to real­
ize on silicon, the set of ideas outlined in this study.

References

[1] Charles L. Seitz, "The Cosmic Cube," CACM,
28(1), January 1985, pp. 22-33.

[2] William C. Athas and Charles L. Seitz., "Mul­
ticomputers: Message-Passing Concurrent Com­
puters," IEEE Computer, August 1988, pp. 9-24.

[3] William J. Dally and Charles L. Seitz, "The Torus
Routing Chip," Distributed Computing, 1986(1),
pp. 187-196.

[4] Charles M. Flaig, VLSI Mesh Routing Systems.
Caltech Computer Science Department Technical
Report, 5241:TR:87.

[5] John Y. Ngai, Adaptive Routing in Multicom­
puter Networks. Ph.D. Thesis, Computer Science
Department, Caltech. To be published.

[6] P. Kermani and L. Kleinrock, "Virtual Cut­
Through : A New Computer Communication
Switching Technique," Computer Networks 3(4)
pp. 267-286, Sept. 1979.

[7] P. Merlin, and P. Schweitzer, "Deadlock Avoid­
ance in Store-and-Forward Networks - I : Store­
and Forward Deadlock," IEEE Transactions on
Communications, Vol. COM-28, No.3, pp. 345-
354, March 1980.

[8] William J. Dally and Charles L. Seitz, "Deadlock­
Free Message Routing in Multiprocessor Intercon­
nection Networks," IEEE Transactions on Com­
puters, Vol. C-36, No.5, pp. 547-553, May 1987.

[9] A. Borodin, and J. Hopcroft, "Routing, Merging,
and Sorting on Parallel Models of Computation,"
Journal of Computer and System Sciences, 30, pp.
130-145 (1985).

[10] Alain J. Martin, "A Synthesis Method for Self­
timed VLSI Circuits," Proc. 1987 IEEE Inter­
national Conference on Computer Design: VLSI
in Computers & Processors, IEEE Compo Soc.
Press, pp. 224-229 (1987).

[11] Charles L. Seitz, "System Timing," Introduction
to VLSI Systems, C. Mead & L. Conway, Addison­
Wesley, 1980, Chapter 7.

[12] M. T. Liu, "Distributed Loop Computer Net­
works," Advances in Computers, M. Yovits, Aca­
demic Press, pp. 163-221, 1978.

