
C A 

SUBMICRON SYSTEMS ARCHITECTURE PROJECT 
Department of Computer Science 
California Institute of Technology 

Pasadena, CA 91125 

Semiannual Technical Report 

Caltech Computer Science Technical Report 

Caltech-CS-TR-89-4 

31 March 1989 

The research described in this report was sponsored by the Defense Advanced Research 
Projects Agency, DARPA Order number 6202, and monitored by the Office of Naval 
Research under contract number NOOOI4-87-K-0745. 



SUBMICRON SYSTEMS ARCHITECTURE 

Semiannual Technical Report 

Department of Computer Science 

California Institute of Technology 

Caltech-CS-TR-S9-4 

31 March 1989 

Reporting Period: 

Principal Investigator: 

Faculty Investigators: 

1 November 1988 - 31 March 1989 

Charles 1. Seitz 

K. Mani Chandy 

Alain J. Martin 

Charles L. Seitz 

Stephen Taylor 

Sponsored by the 
Defense Advanced Research Projects Agency 

DARPA Order Number 6202 

Monitored by the 
Office of Naval Research 

Contract Number N00014-87-K-0745 



SUBMICRON SYSTEMS ARCHITECTURE 

Department of Computer Science 
California Institute of Technology 

1. Overview and Summary 

1.1 Scope of this Report 

This document is a summary of research activities and results for the five-month 
period, 1 November 1988 to 31 March 1989, under the Defense Advanced Research 
Project Agency (DARPA) Submicron Systems Architecture Project. Previous 
semiannual technical reports and other technical reports covering parts of the 
project in detail are listed following these summaries, and can be ordered from 
the Caltech Computer Science Library. 

1.2 Objectives 

The central theme of this research is the architecture and design of VLSI 
systems appropriate to a microcircuit technology scaled to submicron feature sizes. 
Our work is focused on VLSI architecture experiments that involve the design, 
construction, programming, and use of experimental message-passing concurrent 
computers, and includes related efforts in concurrent computation and VLSI design. 

1.3 Highlights 

• Mosaic prototype approaching completion (2.1). 

• Delivery of 2nd-generation multicomputers (2.2) 

• Programming with composition (3.3) 

• First asynchronous microprocessor (4.1). 

• Fast self-timed mesh routing chips (4.2). 
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2. Architecture Experiments 

2.1 Mosaic Project 

Chuck Seitz, Nanette J. Boden, Jordan Holt, Jakov Seizovic, Don Speck, Wen-King 
Su, Steve Taylor, Tony Wittry 

The Mosaic C is an experimental fine-grain multicomputer, currently in develop­
ment. Each Mosaic node is a single VLSI chip containing a 16-bit processor, a 
three-dimensional mesh router with each of its channels operating at 160Mb/s, a 
packet interface, at least 8KB of RAM, and a ROM that holds self-test and boot­
strap code. These nodes are arrayed logically and physically in a three-dimensional 
mesh. We are working toward building a 16K-node (32x32x16) Mosaic prototype, 
together with the system software and programming tools required to develop ap­
plication programs. 

The Mosaic can be programmed using the same reactive-process model that 
is used for the medium-grain multicomputers that our group has developed. 
However, the small memory in each node dictates that programs be formulated 
with concurrent processes that are quite small. The Cantor programming system 
supports this style of reactive-process programming by a combination of language, 
compiler, and runtime support. The programmer is responsible only for expressing 
the computing problem as a concurrent program. The resources of the target 
concurrent machine are managed entirely by the programming system. 

The Mosaic project includes many subtasks, which are listed below together 
with their current status: 

Design, layout, and verification of the single-chip Mosaic node. The 
design and layout of the Mosaic C chip are now complete, and are going through 
extensive switch-level simulation tests, including the simulation of multiple nodes 
(see section 4.3). We expect to send a memory less version of the node element to 
fabrication in about two weeks as a final check of the processor, packet interface, 
and router sections. These chips will be connected to external RAM and ROM 
to provide functional node elements for software development and host interfaces. 
Fabrication of the first chips in 1.2J.Lm CMOS technology with RAM and ROM is 
antidpated in June 1989; quantity fabrication is anticipated in September 1989. 

Internal self-test and bootstrap code. Since the Mosaic C is a 
programmable computing element, devoting a portion of the bootstrap ROM to 
self-testing greatly simplifies the logistics of producing these chips in significant 
quantity. The bootstrap and self-test code has been designed and is currently being 
written. The code will be tested using the ROM connected to the memory less 
Mosaic C elements. Additional tests to the channels, which must be accomplished 
by the fabricator's automatic test equipment, are also being written. 

Packaging. A preliminary packaging design based on TAB-packaged Mosaic 
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C chips was completed following a visit to Hewlett-Packard NID to understand 
their TAB packaging capabilities. The manufacturing and replacement unit 
contains eight nodes in a logical 2x2x2 submesh on a circuit-card module whose 
physical dimensions are approximately 2.5 x 5inches2 • These modules have stacking 
connectors that provide 160 pins on both the top and bottom, and are confined by 
pressure between motherboards to provide a three-dimensional connection structure 
that can be disassembled and reassembled for repair. 

Cantor runtime system. A complete Cantor runtime system was written in 
Mosaic assembly code, and is now running correctly with a suite of small test 
programs under a Mosaic simulator on our medium-grain multicomputers (see 
section 3.1). This system provides the low-level implementation of message and 
process-creation primitives, and normally will be loaded as part of the Mosaic 
system initialization. The evolution of the Cantor programming language and the 
experience gained by use are two factors that are expected to affect continuing 
refinements to this system. 

Cantor language, compiler, and application studies. A definition of a 
version of Cantor (3.0) with functions and limited message discretion was proposed 
in January 1989 by William C. Athas of UT Austin. We have been studying the 
changes in the runtime support that will be required by these improvements. In the 
interim, the definition and compiler implementation of Cantor 2.2 remain in use for 
application development . 

Host interfaces and displays. The three-dimensional mesh structure of the 
Mosaic allows a very large bandwidth around the mesh edges. In order to initiate 
and interact with computations within the Mosaic, we must provide interfaces 
between the Mosaic message network and conventional computers and networks. 
One approach being studied is to use a memory less Mosaic with a two-ported 
external memory as a convenient interface to workstation computers. Another 
external connection that is desired is a display interface. An elegant method that 
uses one 32x32 plane of a Mosaic as a rendering engine, frame buffer, and output 
video-conversion system has been developed. The detailed design of the video 
output generator that attaches to one edge of this 32x32 plane is now under way. 

2.2 Second-Generation Medium-Grain Multicomputers'" 

Chuck Seitz, Joe Bechenbach, Christopher Lee, Jakov Seizovic, Craig Steele, Wen­
King Su 

A 16-node Intel iPSC/2 was delivered in November 1988, and a 16-node Symult 
Series 2010, a second-generation medium-grain multicomputer developed as a 

... This segment of our research is sponsored jointly by DARPA and by grants from 
Intel Scientific Computers (Beaverton, Oregon) and Symult Systems (Monrovia, 
California) . 
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joint project between our research project and Symult Systems, Inc. (formerly 
Ametek Computer Research Division), was delivered in December 1988. Both of 
these systems have been used extensively for programming system developments, 
applications, and benchmarks. We have encountered very few system problems in 
running existing Cosmic-C application programs on either the Symult Series 2010 
or Intel iPSC/2. 

Application programs typical of those that were written for first-generation 
multicomputers run 8-10 times faster per node on the Symult Series 2010 and 
on the Intel iPSC/2 than on first-generation machines, such as the Intel iPSC/i. 
Applications involving latency-sensitive non-local message traffic exhibit more 
dramatic improvements, particularly on the Series 2010, due to cut-through message 
routing being included in the hardware of these second-generation multicomputers. 

Delivery of a 64-node Series 2010 is expected on 31 March 1989, and our 
16-node Series 2010 will be returned briefly to Symult to be upgraded to 32 
nodes and retrofitted with some hardware improvements to the mesh termination 
and host interfaces. The 32-node Series 2010 will continue as our principal 
programming-system-development machine. The 64-node Series 2010 and the 16-
node iPSC/2 will be made available to outside users through the Caltech Concurrent 
Supercomputing Facilities. Outside users will include researchers at Caltech, as well 
as those associated with the Rice-Caltech-Argonne-Los Alamos (NSF Science and 
Technology) Center for Research in Parallel Computation. These systems will also 
be available for use by researchers in the DARPA community; DARPA researchers 
should contact Chuck Seitz (chuckG)vlsi. cal tech. edu) to make arrangements for 
access. 

We expect to expand both the Intel iPSC/2 and Symult Series 2010 to larger 
configurations by the early part of CY90. 

Copies of the Cosmic Environment system have been distributed to 13 additional 
sites during this period, bringing the total copies distributed directly from the 
project to over 160. 

An effort has been started to implement major extensions of the Cosmic 
Environment host runtime system and the Reactive Kernel node operating system. 
The new CE will be based internally on reactive programming, and will allow a 
more distributed management of a set of network-connected multicomputers. The 
extended RK will support global operations across sets of cohort processes, including 
barrier synchronization, sum, min, max, parallel prefix, and rank. Another 
extension will be the support of distributed data structures, such as sets and 
ordered sets. These new features will be implemented at the RK handler level, 
where the message latency is only a fraction of that at the protected user level. The 
implementation of these algorithms at the handler level permits the performance of 
global and distributed-data-structure operations in times that do not greatly exceed 
those of user-level operations dealing with single messages. 
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Our Caltech project continues to work with both Intel and Symult on the 
architectural design, message-routing methods and chips, and system software for 
medium-grain multicomputers. We expect to see additional major advances in the 
performance and programmability of these systems over the next two years. In 
addition, we continue to develop applications in VLSI design and analysis tools, and 
in other areas in which the programming of these multicomputer systems presents 
particular difficulties or opportunities. 

2.3 Cosmic Cube Project 

Wen-King Su, Jakov Seizovic, Chuck Seitz 

The Cosmic Cubes that were built in our project in 1983 and the Intel iPSC/1 
d7 that was contributed to the project in 1985 continue to operate very reliably. 
Overall usage has decreased somewhat with the appearance of the second-generation 
multicomputers, but the iPSC/1 continues to be used fairly heavily within the 
research group for discrete event simulations, and by Caltech students and faculty 
in Aeronautics for supersonic-flow computations. 

Neither the 64-node or 8-node Cosmic Cubes exhibited any hard failures in this 
five-month period. The two original Cosmic Cubes have now logged 3.8 million 
node-hours with only four hard failures, three of which were chip failures in nodes, 
and one a power-supply failure. A node MTBF in excess of 1,000,000 hours is 
probable based on this reliability experience. 
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3. Concurrent Computation 

3.1 Cantor 

Nanette J. Boden, Chuck Seitz 

Programming Fine-Grain Multicomputers 

The experiments we reported previously in application programming using Can­
tor 2.0 and 2.2 have suggested a series of changes to the Cantor language. 
William C. Athas, who led the development of Cantor while he was a graduate 
student and post-doc in the project, and who is now at UT Austin, has incorpo­
rated these ideas into the definition of a new version of Cantor (3.0). The principal 
structural changes are the introduction of limited discretion in receiving messages 
according to type, and in the approach to implementing functions. 

In developing the Cantor programming system for the Mosaic, we mean to allow 
for these changes so that we may change to Cantor 3.0 as soon as a new compiler 
is produced. 

Cantor for the Mosaic 

Development of Cantor runtime support for the Mosaic multicomputer has 
progressed significantly during the last five months. Initially, we defined a Cantor 
Abstract Machine (CAM) that represents an idealized machine for executing Cantor 
code. The CAM instruction set includes single instructions that encapsulate 
complicated Cantor operations, such as process creation and message passing. 
By design, the implementation of these operations can be varied within native 
code generators for experimenting with different strategies. With the Mosaic, for 
example, we use a macro-assembler that translates the implementation for each 
CAM instruction into Mosaic instructions. 

The definition of the first version of the Cantor runtime system for the Mosaic 
consisted chiefly of freezing efficient implementations for process creation and 
message passing, and expressing them with Mosaic instructions. In the case of 
process creation, a software cache of available reference values is maintained on 
each node so that processes can be created with low latency. These reference 
values are later bound to actual processes by special creator processes located on 
each node that allocate memory for new processes. Receiving a message on the 
Mosaic is implemented by having the runtime system determine the destination 
process, and then run that process to absorb the message. The runtime system also 
communicates with the runtime systems on other nodes to manage resources within 
the node, eg, sending requests for more reference values to fill the software cache. 

To evaluate different runtime system prototypes, we developed a Mosaic 
simulator that runs on existing medium-grain multicomputers, including the Cosmic 
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Cubes, Intel iPSCs, and the Symult 2010. A host program distributes the Mosaic 
code for a Cantor program to each simulated Mosaic node, and initiates computation 
by instantiating the main process of the Cantor program. Program output is 
achieved by instantiating a console process and passing its reference in messages. 

Currently, our simulator is working on a test suite of simple Cantor programs. 
In the future, we plan to incorporate some of the more recent Cantor innovations, 
eg, functions and limited message discretion, into the simulator and into the runtime 
system. We are also planning experiments to evaluate different strategies for code 
distribution and memory allocation throughout Mosaic nodes. 

3.2 Concurrent Logic Programming 

Stephen Taylor 

A commercially supported concurrent logic programming system was ported to our 
Symult Series 2010 multicomputer, and is available for all users of our project's 
multicompu ters. 

This system is composed of a compiler for the language Strand, and an 
environment for program development. The language provides an abstract message­
passing framework for use in a variety of symbolic and system integration tasks. 
The system is also operational on Intel iPSC systems, networks of Suns, Mecho 
Transputer surfaces, PC Plug-in Transputer cards, Encore/Sequent shared memory 
machines, BBN Butterfly, and Atari personal machines. The system was used for a 
graduate course in compiler techniques this quarter, and will be used in a graduate 
course on concurrent programming in this coming quarter. It is also being used to 
study various applications in the composition research described in the following 
section of this report. Finally, a textbook describing the ideas embodied in the 
Strand system was recently completed, and will be published by Prentice-Hall in 
July 1989. 

3.3 Programming with Composition 

Mani Chandy, Stephen Taylor 

We are interested in developing a notation for specifying concurrent algorithms and 
programs. Our goals are to support formal reasoning about program correctness 
and to provide efficient implementations of symbolic, numeric, and operating system 
codes. We have chosen program composition as a central notion due to its prevalence 
in both semantic models and program design methodologies. 

During the past six months, we have considered the basic components of such a 
notation. Our conclusion is that there are four composition operators of importance. 
These operators are defined on program units; the method by which these units 
are implemented is relatively unimportant. It is natural to expect the notation 
to allow existing codes (written in Fortran, C, Lisp, Ada, etc) to be reused on 
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multicomputers. Moreover, the composition of these units will have a formal 
semantic characterization. To explore the utility of the notation, we are currently 
focussing on the hand compilation of non-trivial application codes. IT performance 
results indicate that the notation is sufficiently efficient, we plan to build a compiler 
targeted to multicomputer architectures. 

In the area of numeric computing we are studying a large fluid-flow problem 
developed in the department of Applied Mathematics at Caltech. This Fortran 
application computes the transition from a two-dimensional Taylor Vortex to three­
dimensional wavy-vortex flow. Central to the application is a relaxation algorithm 
that employs a multigrid method. After benchmarking, we discovered that more 
than 70% of the execution time for the application was spent in the relaxation 
algorithm; thus, we decided to focus on this algorithm. Unfortunately, we arrived at 
a somewhat negative conclusion: The original algorithm was based on a sequential 
line-iteration scheme that afforded no opportunity for concurrent execution. As 
a result, we have converted the original code to use a point Gaussian relaxation 
algorithm; this appears more suitable. We are currently in the process of debugging 
a concurrent formulation of the algorithm. 

In the area of symbolic computing we are studying a large automated reasoning 
program in conjunction with the Aerospace Corporation in Los Angeles. This 
program has been used extensively for checking the correctness of hardware 
specifications and Ada programs. A central component of the program is a 
congruence closure algorithm used for maintaining equality assertions. We began 
this research by investigating the opportunities for executing portions of this 
algorithm concurrently. This, again, led us to a somewhat negative conclusion: 
The granularity of typical invocations of the algorithm is too low to benefit from 
concurrent execution. We are now investigating a new algorithm that overlaps the 
execution of multiple equality assertions. Since a large number of these occur in a 
typical proof, we believe this to be a more suitable direction. 

Finally, we are also interested in working with DNA sequencing programs, but 
have not yet made substantial progress in this area. 

It should be understood that the objective of these application efforts is to 
test the utility of the program-composition notation, rather than to develop the 
applications themselves. 

3.4 Variants of the Chandy-Misra-Bryant Distributed Discrete-Event 
Simulation Algorithm 

Wen-King Su, Chuck Seitz 

During the past five months, additional simulations using the new logic simulator 
have been made, and a revision of the paper "Variants of the Chandy-Misra-Bryant 
Distributed Discrete-event Simulation Algorithm" (included as an appendix to this 
report) was written for publication in the 1989 SCS Eastern Multi-Conference. A 
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test version of the hybrid simulator has been implemented on top of the concurrent 
CMB variant simulators. Results from this prelimiary investigation are promising, 
and anew, more efficient version of the hybrid simulator is currently being written. 

3.5 Distributed Snapshots 

Mani Chandy 

One of the fundamental problems in distributed systems appears trivial: Record the 
state of the system. The problem is, however, quite difficult because distributed 
systems do not have a single system-wide clock. If there were a clock, all processes 
could record their local states at a predetermined time. The problem of recording 
global states of distributed systems is at the core of a large number of problems 
in distributed systems, including deadlock detection, termination detection, and 
resource management. The paper, "The Essence of Distributed Snapshots," 
submitted to the ACM Transactions on Computer Systems, and included as an 
appendix to this report, presents necessary and sufficient conditions for a collection 
of local snapshots (recordings of local states) to be a global snapshot. The paper 
shows that many distributed algorithms can be developed in a systematic and 
straightforward manner from these conditions. 
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4. VLSI Design 

4.1 The Design of the First Asynchronous Microprocessor 

Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, Pieter J. Hazewin­
dus 

We have completed the design of an entirely asynchronous (self-timed, delay­
insensitive) microprocessor. It is a 16-bit, RISC-like architecture with independent 
instruction and data memories. It has 16 registers, 4 buses, an ALU, and two adders. 
The size is about 20,000 transistors. Two versions have been fabricated: one in 2JLm 

MOSIS SCMOS, and one in 1.6JLm MOSIS SCMOS. (On the 2JLm version, only 12 
registers were implemented in order to fit the chip into the 84-pin 6600JLmx4600JLm 
pad frame.) 

With the exception of isochronic forks (see the paper included as an appendix 
to this report), the chips are entirely delay-insensitive, ie, their correct operation 
is independent of any assumption on delays in operators and wires except that the 
delays be finite. The circuits use neither clocks nor knowledge about delays. 

The only exception to the design method is the interface with the memories. In 
the absence of available memories with self-timed interfaces, we have simulated the 
completion signal from the memories with an external delay. For testing purposes, 
the delay on the instruction memory interface is variable. 

In spite of the presence of several floating n-wells, the 2JLm version runs at 
12 MIPS. The 1.6JLm version runs at 18 MIPS. (Those performance figures are 
based on measurements from sequences of ALU instructions without carry. They 
do not take advantage of the overlap between ALU and memory instructions.) Those 
performance results are quite encouraging given that the design is very conservative: 
It uses static gates, dual-rail encoding of data, completion trees, etc. 

Only two of the 12 2JLm chips passed all tests, but 34 out of the 50 1.6JLm chips 
were found to be entirely functional. However, within a certain range of values 
for the instruction memory delay, the 1.6JLm version is not entirely functional. We 
cannot yet explain this phenomenon. 

We have tested the chips under a wide range of VDD voltage values. At room 
temperature, the 2JLm version is functional in a voltage range from 7V down to 
0.35V! And it reaches 15 MIPS at 7V. We have also tested the chips cooled in liquid 
nitrogen. The 2JLm version reaches 20 MIPS at 5V and 30 MIPS at 12V. The 1.6JLm 

version reaches 30 MIPS at 5V. Of course, these measurements are made without 
adjusting any clocks (there are none), but simply by connecting the processor to a 
memory containing a test program and observing the rate of instruction execution. 
The results are summarized in Figure 1. The power consumption is 145mW at 5V, 
and 6. 7m W at 2V. Figure 2 shows that the optimal power-delay product is obtained 
at 2V at room temperature. 
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4.2 Fast Self-Timed Mesh Routing Chips 

Chuck Seitz 

The latest mesh-routing-chip (MRC) design, the FMRC2.1 design, was sent to 
MOSIS for 1.6J.Lm SCMOS fabrication on 7 November 1988. This chip is a revision of 
FMRC2.0 that corrects a timing error in the latching of a routing decision. A Spice 
simulation indicated that that the revision corrected a timing error of approximately 
0.7ns to a timing margin of about 1.0ns (about 50% of the difference between two 
short delay paths; hence, not as risky as it may sound). The maximal throughput 
predicted both by Spice and by tau-model calculations was 6OMB/s. 

These chips were returned from fabrication on 10 January 1989, and were 
found to operate correctly under a nearly exhaustive functional screening, and at 
a maximum throughput of 56MB/s. The yield on this run was 44/50. One of the 
chips had a cracked package, and two had bonding shorts; hence, the fabrication 
yield was actually 44/47. 

Batches of 20 good chips were sent both to Intel Scientific Computers (as GFE 
on their DARPA contract) and to Symult Systems, and both companies have verified 
that these chips operate correctly in their test fixtures or systems. 

The FMRC2.1 chip employs a design method that is not entirely delay­
insensitive (see previous section). The circuit exhibits races within modules, 
but these modules have self-timed interfaces to other modules. Previous MRCs, 
entirely pin-for-pin compatible, employed the same delay-insensitive style as the 
asynchronous processor reported in the previous section, and required nearly twice 
the silicon area to operate half as fast as the FMRC2.1. 

Hence, we conjecture that we shall see the same phenomenon with self-timed 
designs that is apparent with conventional designs; namely, that chips with relatively 
few cell types, such as memories and MRCs, will profitably employ circuit-level 
optimizations. Such optimizations are relatively less profitable and manageable in 
more complex chip designs, such as processors. 

4.3 Mosaic C Chip 

Jakov SeizDvic, Jordan Holt, Chuck Seitz, Don Speck, Wen-King Su, Tony Wittry 

During the past few months, work on the Mosaic chip has predominantly consisted of 
a series of extensive switch-level simulations. Using COSMOS instead of MOSSIM, 
we were able to decrease the simulation time by a factor of ten, with a negligible 
additional cost in setup (compile) time. The simulation of a memory less version 
of Mosaic chip, consisting of about 26K transistors, takes slightly over a second of 
real time per clock cycle when running on a SUN 3/260. This has enabled us to 
simulate fairly long sequences of instructions from the Cantor runtime system at 
the switch-simulation level. 
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Having completed simulations of all of the logic parts of the Mosaic chip, 
ie, processor, packet interface, router, and bus arbiter, independently as well as 
together, we are entering the final phase of switch-level simulations, where multiple 
Mosaic chips will be represented as processes under CE/RK, and run on the 
multicomputers operated by the project, as well as on workstations. 

We are planning to send the first version of a Mosaic chip to fabrication on a 
2Jl MOSIS run within a couple of weeks. 

4.4 New CMOS PLAs 

Jakov Seizovic, Chuck Seitz 

A NOR-NOR precharged PLA has been designed to replace the NAND-NOR 
precharged PLA that we have used extensively since 1985. Both the delay and 
precharge time of this NOR-NOR PLA are linear in the number of inputs, a 
significant improvement compared to the NAND-NOR PLA, in which the delay is 
quadratic, and precharge time is cubic. This PLA has replaced the two NAND-NOR 
PLAs in the Mosaic C packet interface and the hybrid static/precharge NAND-NOR 
PLA in the Mosaic processor, and accordingly has saved us a lot of time and trouble 
in the Mosaic design. 

4.5 CIF-flogger 

Glenn Lewis, Chuck Seitz 

CIF-flogger is a multicomputer program for flattening CIF files, rasterizing the 
geometry, and performing parallel operations on the geometry in strips. It runs 
under the CE/RK system, and hence, on most available multicomputers, including 
the Intel iPSC /2 and Symult Series 2010. 

CIF-flogger currently supports the following operations on the chip geometry: 

• parsing the CIF specification file (produced by Magic) 

• flattening and rasterizing the hierarchical design geometry 

• recognizing transistor geometry 

• global connected-component labeling 

• bloat, shrink, and logical mask layer operations 

• creating new CIF for a processed design 

Plans for CIF -flogger include: 

• general CIF -reading capability 

• circuit extraction 
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• well-plug checking 

• design-rule checking 

Initial timings indicate that CIF -flogger provides these operations in a matter of a 
few seconds for WOK-transistor chips. CIF -flogger is intended to be a useful tool 
for chip designers and foundries to verify that a design passes "syntactical" checks 
before it is fabricated, thus saving both time and money. 

4.6 Adaptive Routing in Multicomputer Networks 

John Y. Ngai, Chuck Seitz 

As we are wrapping up our theoretical investigation of multicomputer adaptive 
routing, our recent efforts have been concentrated in two areas: 

(1) The first of a series of publications will appear in the 1989 ACM Symposium 
on Parallel Algorithms and Architectures, to be held in Sante Fe, New Mexico 
this June. (A copy of this paper is included at the end of the report.) 

(2) We have been searching for practical implementation ideas for replacing the 
existing oblivious router in the Mosaic with an adaptive router. A low-latency 
header encoding and modification scheme that we have dubbed the "sign­
first one-shy code" has been devised for an adaptive router with a relatively 
narrow flit width. The details of these implementation ideas can be found in a 
forthcoming PhD thesis. 
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1 Introduction 

Prejudices are as tenacious in science and engineering as in any other 
human activity. One of the most firmly held prejudices in digital VLSI 
design is that asynchronous circuits-a.k.a. self-timed or delay-insen­
sitive circuits-a.re necessarily slow and wasteful in area and logic. 
Whereas asynchronous techniques would be appropriate for control, 
they would be inadequate for data paths because of the cost of dual-rail 
encoding of data, the cost of generating completion signals for write 
operations on registers, and the difficulty of designing self-timed buses. 

Because a general-purpose microprocessor contains a complex data 
path, a corollary of the previous opinion is that it is impossible 
to design an efficient asynchronous microprocessor. Since we have 
been developing a design method for asynchronous circuits that gives 
excellent results, and since the above objections to large-scale data 
path designs are genuine but untested, we decided to "pick up the 
gauntlet" and design a complete processor. 

The design of an asynchronous microprocessor poses new chal­
lenges and opens new avenues to the computer architect. Hence, the 
experiment unavoidably developed a dual purpose: We are refining an 
already well-tested design method, and we are starting a new series of 
experiments in asynchronous architectures. (As far as we know, this is 
the first entirely asynchronous microprocessor ever built.) The results 
we are reporting have a different implication depending on whether 
they are related to the first or second goal of t.he experiment. Whereas 
we are convinced that our design methods have reached maturity, we 
are quite aware that asynchronous techniques may influence the com­
puter architects in completely new ways that this first design is just 
starting to explore. 



In order to focus the experiment on asynchronous circuit design, 
we have intentionally excluded optimizations at the high and low ends 
of the design process. The instruction set is straightforward and no 
assumption has been made on the code produced by the compiler. 
No special electrical optimizations other than transistor sizing have 
been applied; the circuit techniques rarely go beyond those taught in 
a graduate-level VLSI class, and, apart from the memory interlaces, 
the circuits are delaS/-insensitive. Hence, any performance is to be 
attributed to the design method and to the inherent advantages of 
asynchronous design. 

A circuit is delay-insensitive when its correct operation is 
. independent of any assumption on delays in operators and wires 

except that the delays be finite. Such circuits do not use a clock 
signal or knowledge about delays: Sequencing is enforced entirely by 
communication mechanisms. 

The class of entirely delay-insensitive circuits is very limited. 
Different asynchronous techniques distinguish themselves in the 
choice of the compromises to delay-insensitivity. Speed-independent" 
techniques assume that delays in gates are arbitrary, but there are no 
delays in .wires. Self-timed techniques assume that a circuit can be 
decomposed into equipotential regions inside which delays in wires are 
negligible[ll] . 

In our method, certain local forks are introduced to distribute a 
variable as inputs of several gates. We assume that the difference 
between the delays in the branches of such forks are short compared 
to delays in other gates. We call such forks i8ochronic[6], [8]. 

The general method-a complete description of which can be found 
in the referenced papers [2], [5], [6], [7], [8)-is based on program 
transformations. The circuit is first designed as a set of concurrent 
programs. Each program is then compiled (manually or automatically) 
into a circuit by applying a series of program transformations. Control 
and data path are first designed separately and then combined in a 
mechanical way. This important divide-and-conquer technique is a 
main innovation of the method. 

2 Preliminary Results 

As of this writing, the first design is complete, and has been scheduled 
for fabrication in 21lm MOSIS SCMOS. The chip was functionally 
simulated using COSMOS [1]. and was found to be functionally correct. 
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The architecture is a I6-bit processor with offset and a simple 
instruction set of the RISC type [4]. The data path contains twelve 
I6-bit registers, four buses, an ALU, and two adders. The chip contains 
20,000 transistors and fits within a 5500A by 3500A area. We are 
using an 84-pin 66OOJ'm x 4600J'm frame. An estimate of the critical 
path suggests processor performance of approximately I5MIPS in 2J'm 
SCMOS. (A slightly improved 1.6J'm SCMOS version is also being 
fabricated. ) 

This experiment, the most challenging one we have conducted so 
far, promised to be an important test for our method. The results 
obtained so far have been very encouraging. 

The technique for separating control and data path has been 
extended with a novel asynchronous bus design, and is now robust 
and general. 

The handshaking protocol between circuit elements has also been 
modified so that half of a protocol sequence overlaps subsequent 
actions. This protocol makes it possible to "hide" half of delays of the 
completion trees, the tree of gates that combine the completion signals 
from the asynchronous elements. In addition, at most two completion 
trees are in sequence on any path. Thus, completion tree delays are 
not a serious disadvantage of asynchronous design. 

Instruction pipelining has been approached as a concurrent 
programming problem: Starting with a sequential program for the 
processor, concurrency is introduced through a series of program 
transformations. However, although the transformations are guided by 
the intent to overlap the important phases-fetch, decode, execute-<>f 
instruction execution, they are neither mechanical nor unique. The 
designer decides how to decompose a program into several concurrent 
ones. We do not claim that our solution in this first design is in any 
way optimal. 

3 Specification of the Processor as a 
Sequential Program 

The instruction set is deliberately not innovative. It is a conven­
tional I6-bit-word instruction set of the lood-6tore type. The pro­
cessor uses two separate memories for instructions and data. There 
are three types of instructions: AL U, memory, and program-counter 
(pc). All ALU instructions operate on registers; memory instruc­
tions involve a register and a data memory word. Certain instruc­
tions use the following word as OJJ6et. (See Table 1 in Appendix 2.) 
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*[FETCH : i,pc:= imem[pcl, pc + Ii 
[Off8et(i.op) - off Bet, pc := imem[pcl, pc + 1; 

~-'OffBet(i.op) - &kip 

Ii 
EXECUTE: [alu(i.op) - (reg[i.zl, f) := alu/(reg[i.xJ, reg[i·yl, i.op, f) 

I· 

Ild(i.op) - reg[i.zl := dmem[reg[i.xl + reg[i·ylJ 

IBt(i.op) - dmem[reg[i.xl + reg[i.ylJ := reg[i.zl 

Ildx{i.op) - reg[i.zl := dmem[offBd + reg[i·ylJ 

I"tx(i.op) - dmem[off,et + reg[i.YIJ := reg[i.zl 

I'da(i.op) - reg[i.zl := off,d + reg[i.YI 

I"tpc(i.op) - reg[i.zl := pc 

Iimp(i.op) - pc := reg[i.YI 

Ibreh(i.op) - [eond(f, i.ee) - pc := pc + off,et 

I-,eond(f, i.ee) - "kip 

Figure 1: Sequential program deecribing the proceuor 

The only important omissions, those of an interrupt mechanism and 
communication ports, are ones we found to be unnecessary distractions 
in a first design. 

The sequential program describing the processor is a non­
terminating loop, each step of which is a FETCH phase followed by an 
EXECUTE phase. The complete sequential program for the processor 
is shown in Figure 1. (The notation, which is an extension of the one 
we have used in previous work, is described in Appendix 1.) Variable 
i, which contains the instruction currently being executed, is described 
in the PASCAL record notation as a structured variable consisting of 
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several fields. All instructions contain an op field for the opcode. The 
parameter fields depend on the types of the instructions, which are 
found in Table 2 in Appendix 2. The most common ones, those for 
AL U, load, and store instructions, consist of the three parameters, x, 
y, and z. Variable cc contains the condition code field of the branch 
instruction, and f contains the jlaga generated by the execution of an 
alu instruction. 

The two memories are the arrays imem and dmem. The index 
to imem is the program-counter variable, pc. The general-purpose 
registers are described as the array reg[O . •• 15]. (Only twelve registers 
are implemented in the first chip.) Register reg[O] is special: It always 
contains the value zero. 

4 Decomposition into Concurrent Processes 

We decompose the previous program into a set of concurrent processes 
that communicate and synchronize using communication commands on 
channels. A restricted form of shared variables is allowed. The control 
channels X8, Y8, ZA8, ZW8, ZR8, and the bus ZA are one-to-many; the 
buses X, Y, ZM are many-to-many; the other channels are one-to-one. 
But all channels are used by only two processes at a time. The 
structure of processes and channels is shown in Figure 2. The final 
program is shown in Figures 3 and 4. 

MC 

ID E AC FETCH ----1 EXEC 
~ 

PCI PCA n x. 
Xof Ys 

MDs 
Xpc ZAs 

ZWs MDl r Ypc r ZRa [I 
Xbus .L 1 .L t t 
Ybul t J. J. t t 
ZAbus t • • • t J. 
2Mbus t t t 

'------.........----_.-' 
PCADD REGISTERS ALU MU 

Figure 2: Proce .. and channel structure 
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IMEM = .[ID!imem[pclJ 

FETCH = *[PCIl; ID?i; PCI2; 

[off"et(i.op) -+ PC II; I D?off"t.t; PC 12 

I-,off"et(i.op) -+ skip 

j; El!i;E2 

PCADD = (.[[PCIT -+ PCIl;y:= pc + 1;PCI2jpc:= y 

~PCAl -+ PCAljY:= pc+ off"etjPCA2jpc:= Y 

IXpc -+ X!pc. Xpc 

~ Ypc -+ Y?pc. Ypc 

]) 

1l*[[Xo! -+ X!offaet • Xo/]) 

) 

EXEC = .[El?ij 

[alu(i.op) -+ E2; X". Y s. AC!i.op. ZAs 

~ld(i.op) -+ E2jXs. Ya. MCI. ZRs 

~st(i.op) -+ E2; Xs. Ys. MC2. ZW s 

~ldx(i.op) -+ Xol. Ys. MCI. ZRsj E2 

~stx(i.op) -+ Xol. Ys. MC2. ZWs;E2 

~lda(i.op) -+ Xol. Ys. MC3. ZRs;E2 

~stpc(i.op) -+ Xpc. Y s. AC!add. ZAs; E2 

bmp(i.op) -+ Ypc. Ys; E2 

~breh(i.op) -+ F? I; [eond(J, i.ee) -+ PCAl; PCA2 

~-,eond(J, i.ee) -+ skip 

J;E2 

Figure 3: The final program, first part 
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ALU = *[[AG -+ AG?op. X?x. Y?II; 

(z,f) := alu/(x,II,OP,f);ZA!z 

~F -+ F!! 

]] 

MU = *[[MGl -+ X?x. Y?II. MGI; ma := x + II; MDl?w; ZM!w 

~MGe -+ X?x. Y?II. MG2. ZM?w; ma := x + II; MDs!w 

~AlCS -+ X?x. Y?II. Me3; ma := x + II; ZM!ma 

II 
DM EM = *[[imJI -+ MDl!dmem[ma] 

~AlDi -+ MDs?dmem[ma] 

II 
REG[k] = (*[[-.bk A k = i.x A Xi -+ X!r. X8]] 

II * [[-.bk A k = i.1I A V. -+ Y!r • Y 8]] 

II * [[-.bk A k = i.z A ZWI -+ ZM!r'. ZWslI 

II*[[-.bk A k = i.z A ZAs -+ bk1;ZA8;ZA?r;bktll 

\\*[[-.bk A k = i.z A"Z1ii -+ bk 1; ZR8; ZM?r; bk tll 
) 

Figure 4: The final program, llecond part 

Process FETCH fetches the instructions from the instruction 
memory, and transmits them to process EXEC which decodes them. 
Process PCADD updates the address pc of the next instruction 
concurrently with the instruction fetch, and controls the offset register. 
The execution of an ALU instruction by process ALU can overlap with 
the execution of a memory instruction by process MU. The jump and 
branch instructions are executed by EXEC; store-pc is executed by 
the ALU as the instruction "add the content of register r to the pc 
and store it." The array REG[kJ of processes implements the register 
file. Both MU and PCADD contain their own adder. Processes 
IMEM and DMEM describe the instruction memory and data memory, 
respectively. 
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Updating the PC 

The variable pc is updated by process PCADD, and is used by IMEM 
as the index of the array imem during the I D communication-the 

instruction fetch. 
The assignment pc := pc+ 1 is decomposed into 1/ := pc+ 1j pc := 1/, 

where y is a local variable of PCADD . The overlap of the instruction 
fetch, ID? (either ID?i or ID?off.et), and the pc increment, JI := 

pc + 1, can now occur while pc is constant. Action I D? is enclosed 
between the two communication actions PCl1 and PClt, as follows: 

PCl1jID?ijPCI2. 

In PCADD, 1/ := pc + 1 is enclosed between the same two 
communication actions while the updating of pc follows PClf!: 

PCll - PC II j 11 := pc + 1 j PC 12j pc := y . 

Since the completions of PCl1 and PClt in FETCH coincide with the 
completion of PCll and PClt in PCADD, respectively, the execution 
of I D?i in FETCH overlaps the execution of 1/ := pc + 1 in PCADD. 
PCl1 and PClt are implemented as the two halves of the same 
communication handshaking to minimize the overhead. 

In order to concentrate all increments of pc inside PCADD, we 
use the same technique to delegate the assignment pc := pc + offset 
(executed by the EXEC part in the sequential program) to PCADD. 

The guarded command Xo/ - Xof!offset in PCADD has been 
transformed into a concurrent process since it needs only be mutually 
exclusive with assignment 1/ := % + offset, and this mutual exclusion 
is enforced by the sequencing between PCA1j PCA2 and Xo/ within 
EXEC. 

5 Stalling the Pipeline 

When the pc is modified by EXEC as part of the execution of a pc 
instruction, (store-pc, jump or branch), fetching the next instruction 
by FETCH is postponed until the correct value of the pc is assigned 
to PCADD.pc. 

When the offset is reserved for MU by EXEC, as part of the 
execution of some memory instructions, fetching the next instruction, 
which might be a new offset, is postponed until MU has received the 
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value of the current offset. In the second design, we have refined the 
protocol to block FETCH only when the next instruction is a new 
offset. 

Postponing the start of the next cycle in FETCH is achieved by 
postponing the completion of the previous cycle, i.e., by postponing 
the completion of the communication action on channel E. As in 
the case of the PC I communication, E is decomposed into two 
communications, El and E2. Again, El and E2 are implemented 
as the two halves of the same handshaking protocol. 

In FETCH, E!i is replaced with El!ij E2. In EXEC, E2 is 
postponed until after either Xof? oJJ.et or a complete execution of a 
pc instruction has occurred. 

6 Sharing Registers and Buses 

A bus is used by two processes at a time, one of which is a register and 
the other is EXEC, MU, ALU, or PCADD. We therefore decided to 
introduce enough buses so as not to restrict the concurrent access to 
different registers. For instance, ALU writing a result into a register 
should not prevent MU from using another register at the same time. 

The four buses correspond to the four main concurrent activities 
involving the registers. 

The X bus and the Y bus are used to send the parameters of an 
ALU operation to the ALU, and to send the parameters of address 
calculation to the memory unit. We also make opportunistic use of 
them to transmit the pc and the offset to and from PCADD. 

The ZA bus is used to transmit the result. of an ALU operation 
to the registers. The Z M bus is used by the memory unit to transmit 
data between the data memory and the registers. 

We make a virtue out of necessity by turning the restriction 
that registers can be accessed only through those four buses into a 
convenient abstraction mechanism. The ALU uses only the X, Y, and 
ZA ports without having to reference the particular registers that are 
used in the communications. It is the task of EXEC to reserve the X, 
Y, and ZA bus for the proper registers before the ALU uses them. 

The same holds for the MU process, which references only X, Y, 
and ZM. An additional abstraction is that the X bus is used to send 
the offset to MU, so that the cases for which the first parameter is i.x 
or offset are now identical, since both parameters are sent via the X 
bus. 
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Exdu.lve U.e of a Bu. 

Commands Xpc, Ypc, and Xof are used by EXEC to select the X and 
Y buses for communication of pc and oif3et. Commands X3, Y3, and 
ZAs are used by EXEC to select the X, Y, and ZA buses, respectively, 
for a register that has to communicate with the AL U as part of the 
execution of an ALU instruction. 

Two commands are needed to select the ZM bus: ZW 3 if the bus 
is to be used for writing to the data memory, and Z Rs if the bus is to 
be used for reading from the data memory. 

Let us first solve the problem of the mutual exclusion among the 
different uses of a bus. As long as we have only one ALU and one 
memory unit, no conflict is possible on the ZA and ZM buses, since 
only the ALU uses the ZA bus, and only the memory unit uses the 
ZM bus. But the X and Y buses are used concurrently by the ALU, 
the memory unit, and the pc unit. 

We achieve mutual exclusion on different uses of the X bus as 
follows. (The same argument holds for Y.) The completion of an X 
communication is made to coincide with the completion of one of the 
selection actions XIJ, Xo/, Xpc; and the occurrences of these selection 
actions exclude each other in time inside EXEC since they appear in 
different guarded commands. 

This coincidence is implemented by the bullet (.) command : For 
arbitrary communication commands U and V inside the same process, 
U • V guarantees that the two actions are completed at the same 
time. We then say that the two actions coincide. The use of the 
bullets X!pc. Xpc and X!oiflJet • Xof inside PCADD , and X!r. XIJ 
inside the registers enforce the coinidence of X with Xpc, Xo/, and 
X3, respectively. The bullets in EXEC, ALU, and MU have been 
introduced for reasons of efficiency: Sequencing is avoided. 

7 Register Selection 

Command X IJ in EXEC selects the X bus for the particular register 
whose index It is equal to the field i.x of the instruction i being decoded 
by EXEC, and analogously for commands YIJ, ZAIJ, ZRIJ, and ZWIJ. 

Each register process REGIlt], for 0 ~ It < 16, consists of five 
elementary processes, one for each selection command. The register 
that is selected by command X IJ is the one that passes the test It = i .x. 
This implementation requires that the variable i.x be shared by all 
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registers and EXEC. An alternative solution that does not reqUIre 
shared variables uses demultiplexer processes. (The implementations 
of the two solutions are almost identical.) 

The semicolons in the last two guarded commands of REG[ k] 
are introduced to pipeline the computation of the result of an ALU 
instruction or memory instruction with the decoding of the next 
instruction. 

Mutual Exclusion on Registers 

A register may be used in several arguments (z, 1/, or z) of the same 
instruction, and also as an argument in two successive instructions 
whose executions may overlap. We therefore have to address the issue 
of the concurrent uses of the same register. Two concurrent actions on 
the same register are allowed when they are both read actions. 

Concurrency within an instruction is not a problem: X and Y 
communications on the same register may overlap, since they are both 
read actions, and Z cannot overlap with either X or Y because of the 
sequencing inside ALU and MU. 

Concurrency in the access to a register during two consecutive 
overlapping instructions (one instruction is an AL U and the other is a 
memory instruction) can be a problem: Writing a result into a register 
(a Z A or a Z R action) in the first instruction can overlap with another 
action on the same register in the second instruction. But, because the 
selection of the z register for the first instruction takes place before 
the selection of the registers for the second instruction, we can use this 
ordering to impose the same ordering on the different accesses to the 
same register when a ZA or ZR is involved. 

This ordering is implemented as follows: In REG[kJ, variable bk 
(initially false) is set to true before the register is selected for ZA or 
Z R, and it is set back to false only after the register has been actually 
used. All uses of the register are guarded with the condition -,bk. 
Hence, all subsequent selections of the register are postponed until the 
current Z A or Z R is completed. 

We must -ensure that bk is not set to true before the register is 
selected for an X or a Y action inJJide the "arne inJJtruction, since 
this would lead to deadlock. We omit this refinement which does not 
appear in the program of Figures 3 and 4. 
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8 Implementation 

Control Part 

The control part of a process is obtained by the following transforma­
tions: First, each communication command involving message input 
or output is replaced with a "bare" communication on the channel; for 
instance, C?x and Clx would both be replaced with C. 

Second, all assignment statements are delegated to subprocesses. 
Assignment S is replaced with a communication command on a new 
channel, say C~, and the subprocess .[!C, -+ S. C~II is introduced. 
After these transformations, the control part of each process consists 
only of boolean expressions in conditionals and of communication 
commands. Thus, the next step is to implement each communication 
command with a hancUhaking protoeol. 

Handshaking Protocols 

Consider the matching pair of actions X!u and X?v in processes A 
and B respectively. We first implement the bare communication on 
channel X. The channel is implemented by the two handshake wires 
(xo.!Q. I/i) and (1/0.!Q. xi) as indicated on Figure 5.(a). As usual, we 
use a four-phase, or "return-to-zero" handshaking protocol. Such a 
protocol is not symmetrical: All communications in one process are 
implemented as active and all communications in the other process as 
passIVe. 

We have shown in [7] and [8] that the implementation of an input 
action is significantly simpler when combined with an active protocol 
than with a passive one. Therefore all input actions are implemented 
as active and all output actions as passive. (In the case of output, the 
implementation of communication is the same for active and passive 
protocols. ) 

The standard active and passive implementations are: 

IlIi] j 110 i j I""I/i] j I/O 1 (passive) 

xo i;! xi]; xo l;! ...,xi] (active). 

(The passive protocol starts with the wait action Iyi], i.e., "wait until 
the input wire is set to true." The active protocol starts with xo i, 
i.e., "set the output wire to true.") 
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We introduce an alternative active implementation, called lazJI 
active: 

[-,xi]; xo i; [xi]; xo! (lazy active) . 

The lazy active protocol differs from the active one in that the 
last wait action [-,xi] is postponed until the beginning of the next 
communication. The difference is important when data communication 
is involved. 

I ~ 
yi 

:~ ~ I 
« 

A B 
yo 

(a) 

yi xo 

A B 
yo xi 

(b) 

Figure 5: Implementation of communication 

Figure 5.(b) shows how the data path is combined with the control. 
The bits of the communication channel between the two registers (the 
"data wires") are dual-rail encoded. Wire (Slowxi) is "cut open," yo is 
used to assigned the values of the bits of u to the dual-rail data wires, 
and xi is set to true when all bits of t1 have been set to the values of 
the data wires. Each cell of a register contains an acknowledge wire 
that is set to true when the bit of the cell has been set to a valid value 
of the two data wires, and reset to false when the data wires are both 
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reset to false. Let vac~ be the acknowledge of bit Vi, xi is set and 
reset as: 

vacko 1\ vack1 ••• 1\ vack16 1-+ xi i 
-,vacko 1\ -,vack1 ••• 1\ -,vack16 1-+ xi ~ 

Since a 16-input C-element would be prohibitively slow to implement, 
the implementation is a tree of smaller C-elements, which we call a 
completion tree. Figure 5.(b) shows a tree of binary C-elements. In 
the actual processor, we use a two-level tree of 4-input C-elements. 

When data is transmitted via a bus, and when the completion 
tree is large, the gain of using a lazy-active protocol can be very 
important, since half of the data transmission delays and half of the 
completion-tree delays can overlap with the rest of the computation. 
Therefore, all input actions are implemented as lazy active. 

The case when data is transmitted from process A to process 
B via a bus is only slightly more complicated. No arbitration is 
necessary: A and B are allowed to communicate via a bus only after 
the bus has been reserved for these two processes. The chief problem 
in implementing the buses is the distributed implementation of large 
multi-input OR-gates. 

The lazy-active protocol cannot be used when an input action 
is probed-such as action AC?op in the ALU-because the probe 
requires a passive protocol. For those cases, we have designed a special 
protocol that requires two control wires. 

9 ALU 

ALU control 

In the ALU process, variable z is not needed to store the result of an 
ALU operation: the result can be put directly on the ZA bus. The 
first guarded command of the ALU process can be rewritten: 

AC -+ AC?op. X?x. Y?J/; (ZA, f) := aluf(x, J/, op, I). 

Hence, the control part is simply: 

.[[AC -+ AC. X. Y;AL 

~F -+ F 
]]. 
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(The assignment to f is omitted.) Communication command AL 
is the call of the subprocess evaluating alu/. The handshaking protocol 
of AL is passive because it includes an output action on the Z A bus: 
[ali]; alo i; [-....ali]; alo t. Hence, alo i is the "go" signal for the ALU 
computation proper. 

The first guarded command has the structure of a canonical stage 
of the pipeline. Parameters are simultaneously received on a set of 
ports, and the result is sent on another port as in: 

-[L7%; R!f(%)]. 

Such a process is called a buffer. Since L is implemented as lazy active, 
and R as passive, it is a 1azll-cu!titJe/ptU8itJe buffer. In the second 
design, where we have decomposed both the ALU and the memory 
processes into two processes in order to improve the pipeline, each 
stage of the pipeline is a lazy-active/passive buffer. 

ALU data path 

The output Z of the subprocess is dual-rail encoded. When the 
subprocess is called, variables x, II, and op have stable and valid 
values. Moreover, the content of op has been encoded in a K PG ("kill, 
propagate, generate") form which is used to produce the carry-out for 
each bit, and also for the result. The length of the carry chain is 
variable, which is an advantage in a fully asynchronous execution. 

Since the ca..rry-out of each bit is inverted relative to the carry-in, 
we alternate the logic encoding of the stages in the carry chain: A 
carry-in that has a true value when high generates a carry-out that has 
a true value when low, and vice-versa for the next stage. With this 
coding, only one CMOS gate delay is incurred per stage. Although 
the acknowledge from the Z A bus is used as completion signal, a 
completion tree is needed at the output of the subprocess for the 
computation of the flags. 

The elapsed time between the activation of the ALU subprocess 
by alo i and the appearance of the results on the output Z depends 
on the number of stages in the carry chain. Add, substract, and other 
logical functions typically take between 13 and 25n .. in 2#lm SCMOS. 
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FETCH EXEC ALU 

., 

...- r-- ....- f-- ....- ...-
~ Ii" \ J ~ ~ 

6i ,6 ...... 6d,6-,d 60 ,6-.0 6c ,6-.c 

IMEM DECODE OPERAND COMPUTE 

Figure 6: Abstract Pipeline for ALU Instructions 

10 Performance 

In this processor, an instruction is executed in a varying amount of 
time, depending in part on the type of instruction and the values of its 
operands, and on the sequence surrounding the instruction. Because 
of this data dependence, an analysis of the "real" performance of the 
processor, i.e., the performance of the processor when executing "real" 
programs, is quite complex and most probably must be determined by 
simulation. The performance analysis can be simplified by assuming an 
infinite sequence of identical instructions with typical operand values. 
(The results obtained through this analysis do not include the potential 
benefits of interleaving ALU and memory instructions.) Here, we 
analyze the performance of the processor executing an infinite sequence 
of AL U instructions. 

In this case, the processor can be viewed as the three-stage pipeline 
shown in Figure 6. By assuming the AL U operations are perfonned 
on distinct registers, the register locking mechanism need not be 
introduced and the control for the EXEC process and the ALUprocess 
reduces to lazy-active/passive buffers. The fetch process is complicated 
by the increment of the pc, but if the instruction memory is assumed to 
be slower than the increment, control for this process also reduces to a 
lazy-active/passive buffer. By first assuming negligible control delays 
compared with datapath delays (denoted bD and b~D for the upgoing 
and downgoing propagation delays of datapath unit D, respectively), 
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the cycle time, Cp, of each process P is determined by the datapath 
delays that must be sequenced. A lazy-active/passive buffer sequences 
only the upgoing transitions of the two datapath units and, separately, 
the upgoing and downgoing transitions of the individual units, 
resulting in cycle time max(6D1 + 6D2 , 6D1 + 6 ..... Dlt 6D2 + 6 ..... D2 ) • 

Since each process in the pipeline is a lazy-active/passive buffer, 
and since the throughput of the pipeline is determined by the slowest 
process: 

Cp~TCH = max(6", + 64 ,6". + 6-.".,64 + 6 ..... 11 ) 

C~X~C = max(64 + 60 ,64 + 6 ..... 4 ,60 + 6-.0) 

CALU = max(60 + 6c ,60 + 6-.o,6c + 6 ..... c ) 

CPROC = max(cp~TCH,C&X~C,CALu) • 

Timing simulations suggest that the dominant constraints are the 
memory and decode sequence in the FETCH process (6". + 64 ), and 
the operand and compute sequence in the ALU process (60 + 6c ). For 
the 2/Jm SCMOS processor, the delays introduced by the control parts 
increase the cycle time by 10 to 2Qna, bringing the cycle time for an 
infinite stream of ALU instructions up to max(35na + 6"., 65ns). We 
expect the processor to a.chieve 15 MIPS if the a.ccess delay of the 
instruction memory (6".) is no longer than 30na. 

11 Correctness by Construction and CAD Tools 

Since the method is based on semantics-preserving program transfor­
mations, the object code generated by the compilation procedure is 
correct by construction. 

The object code is a set of potentially concurrent production rule8 
that are constructs of the form Bl 1-+ % r or B2 1-+ % 1, where Bl and 
B2 are mutually exclusive boolean expressions, and % rand % 1 stand 
for "set % to true" and "set % to false," respectively. The compilation 
procedure guarantees the absence of hazards by ensuring that the 
conditions Bl and B2 are stable, i.e., if Bl is true, it remains true 
until % as been set to true. 

If the production rules of the object code can be matched with 
the production rules that describe the standard cells of a cell library, 
a standard-cell-layout program can be used to generate a layout 
corresponding to the object code. We have been using such a standard 
cell approach in our previous designs, and indeed all chips fabricated 
in this way have been found to be functional on "first silicon." 

However, most of the processor was designed manually. First, 
since the control section introduces significant overhead, we decided to 
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compile its object code manually. Second, because the data path was 
expected to be the critical part with respect to size and because of the 
difficulty of adjusting the pitch of the different registers automatically, 
the automatic layout program was used for the control part but not 
for the data path. This decision was later justified by the fact that, 
whereas the data path was hardly changed after the first design, 
the control part went through a series of drastic modifications. We 
observed that, again, our method for separating control and data path 
permitted us to implement completely different pipelines by changing 
the control without significant alterations of the data path. 

As usual, the disadvantage of manual compilation was that the 
design was not shielded from clerical errors at which humans excel. 

While the difficult optimization problem that is at the core of a 
high-performance processor design is probably still beyond automatic 
compilation technology, the designer should be assisted with CAD tools 
that perform the mechanical translation steps. Other CAD tools that 
we found useful include a program that estimates the critical path of 
a circuit. The program, which was developed by Steve Burns, gives 
excellent results. It estimates the delays of each path by a simulation 
of the execution based on the production rules. 

Magic was used for the manual layout [10]. 

12 Conclusion 

Although the chips are still in fabrication, we are very satisfied with 
the preliminary results of the experiment. 

First, the chip layout is obviously not large. The control is 
surprisingly small despite our use of an automatic layout tool; also, 
the anticipated nightmare of data path layout did not materialize. 
The register pitch is 80>', which is quite reasonable given that four 
buses have to be placed. 

Second, the predicted perforlTlAnce is quite remarkable, given that 
the experiment is a first in two ways: It is our first experience as 
computer architects, and it is the first asynchronous microprocessor 
ever built. 

Third, the complete design took five persons (one joined in the 
middle of the project) five months. 

Since the choice of an instruction set was not part of the 
experiment, our design should be judged in two ways: the choice 
of the concurrent program of Figure 3, and its implementation. 
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The implementation is satisfactory, but not optimal. The sizing of 
transistors can be improved and the number of transitions can be 
decreased, mainly by a better placement of inverters. For instance, 
the delays due to a completion tree and to the control for a buffer are 
both about twice their theoretical minimum. 

The program of Figure 3 represents the choice of a pipeline, and 
of synchronization techniques to implement it. We have deliberately 
chosen a simple pipeline. In particular, the mechanism for stalling, 
which places part of the decoding in series with the fetch on the 
critical path, sacrifices efficiency for simplicity. However, performance 
evaluations show that the pipeline is well-balanced since the different 
stages have comparable average delays. Improving the critical path by 
overlapping fetch and decode requires improving the ALU and memory 
instruction execution stages by pipelining parts of these stages. 

The practicality of overlapping ALU and memory instruction 
executions remains an open issue. It is not clear whether the gain in 
performance is worth the complexity of the synchronization involved 
and the requirement of two separate Z buses. 

We find the synchronization techniques used to implement the 
concurrent activities between the different stages of the pipeline 
particularly elegant and efficient, since the delays incurred in a 
synchronization can be of arbitrary length and vary from instruction 
to instruction. 

We foresee excellent performances for asynchronous processors 
as the feature size keeps decreasing. But the designer must be 
ready to learn and apply new design methods based on concurrent 
programmming, that are required to exploit asynchronous techniques 
to their fullest. 
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Appendix 1: Notation 

The program notation, which is inspired by C.A.R. Hoare's CSP [3], 
is briefly described. 

b i stands for b := true, b 1 stands for b := false. 
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The execution of the selection command [G l -+ 51~'" ~Gn -+ 5nl, 
where G l through G n are boolean expressions, and 51 through 5n 

are program parts, (Gi is called a "guard," and Gi -+ 5i a "guarded 
command") amounts to the execution of an arbitrary Si for which Gi 
holds. If -,(G l V .•• V G n ) holds, the execution of the command is 
suspended until (G l V .,. V G n ) holds. 

The execution of the repetition command *!Gl -+ Sd ... ~Gn -+ 

SnJ, where G l through Gn are boolean expressions, and SI through 
Sn are program parts, amounts to repeatedly selecting an arbitrary Si 
for which Gi holds and executing Si. If -,(G l V ••• V Gn) holds, the 
repetition terminates. 

For communication actions X and Y, "X. Y" stands for the 
coincident execution of X and Y, i.e., the completions of the two 
actions coincide. 

[Gj where G is a boolean expression, stands for IG -+ skipJ, and 
thus for "wait until G holds." 

(Hence, "IGj; S" and [G -+ Sj are equivalent.) 
*ISj stands for *Itrue -+ Sj, and thus for "repeat S forever." 
From (iii) and (iv), the operational description of the statement 

*[[Gl -+ SI~'" ~Gn -+ Snll is "repeat forever: wait until some G, 
holds; execute an Si for which Gi holds." 

Communication commands: Let two processes, pI and p2, 

share a channel with port X in pI and port Y in p2. (In the processes of 
Figure 3, the same name is used for all the ports of the same channel.) 
If the channel is used only for synchronization between the processes, 
the name of the port is sufficient to identify a commnication on this 
port. If the communication is used for input and output of messages, 
the CSP notation is used: X!u outputs message u, and X?v inputs 
message v. 

At any time, the number of completed X-actions in pI equals the 
number of completed Y-actions in p2. In other words, the completion 
of the nth X-action "coincides" with the completion of the n-th 
Y -action. If, for example, pI reaches the nth X-action before p2 
rea.ches the nth Y -action, the completion of X is suspended until p2 
reaches Y. The X-action is then said to be pending. When, thereafter, 
p2 reaches Y, both X and Yare completed. It is possible (and 
even advantageous) to define communication actions as coincident and 
yet implement the actions in completely asynchronous ways. For an 
explanation, see [8J. 

21 



Probe: Since we need a mechanism to select a set of pending 
communication actions for execution, we provide a general boolean 
command on ports, called the probe. In process pI, the probe command 
X has the same value as the predicate "Y is pending in p2." 

Appendix 2: Instruction Set 

ALU op rx ry rz rz,f := rx op ry 

MEM op rx ry rz rz := mem[rx+ry] (for load) 
mem[rx+ry] := rz (for store) 

MEMOFF op ao ry rz rz := mem[ry + offset] (for load) 
offset mem[ry + offset] := rz (for store) 

rz := ry + offset (for load address) 
BRANCH op ao - cc if cond(f,cc) then pc := pc + offset 

offset 
JUMP op ao ry- pc := ry 
STPC op ao - rz rz := pc 

Table 1: Instruction Types 

inst ns n2 nl no 
b15 bl4 blll b12 bublObgbs lrybeb&b4 bsb2b1bo 

alu 0011 rx ry rz 
0100 rx ry rz 
. . 
1111 rx ry rz 

ld 0010 rx ry rz 
st 0001 rx ry rz 
ldx 0000 0000 ry rz 
stx 0000 0001 ry rz 
Ida 0000 0010 ry rz 
brc 0000 0011 - cc 
Jmp 0000 0100 ry -
stpc 0000 0101 - rz 

Table 2: Opcode Assignments 
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Variants of the Chandy-Misra-Bryant Distributed 
Discrete-Event Simulation Algorithm 

1. Introduction 

Wen-King Su and Charles L. Seitz 
Department of Computer Science 
California Institute of Technology 

Caltech-CS-T R - 88- 22 

We have been using variants of the Chandy-Misra-Bryant (CMB) distributed discrete­
event simulation algorithm [1,2,3J since 1986 for a variety of simulation tasks [4J. 
The simulation programs run on multicomputers [5J (message-passing concurrent 
computers), such as the Cosmic Cube, Intel iPSC, and Ametek Series 2010. The 
excellent performance of these simulators led us to investigate a family of variants of 
the basic CMB algorithm, including lazy message-sending, demand-driven operation 
with backward demand messages, and adaptive adjustment of the parameters that 
control the laziness. 

These studies were also motivated by our interest in scheduling strategies for re­
active (message-driven) multiprocess programs [5,6,7]' which are semantically similar 
to discrete-event (event-driven) simulators. The simulator itself is implemented in 
the reactive programming environment that we have developed for multicomputers: 
the Cosmic Environment and the Reactive Kernel [8J. 

We performed the studies reported here using logic networks. Logic simulation 
is expected to stress a distributed simulator, and is itself of practical interest. It 
is easy to construct examples of logic networks with a diversity of behaviors and 
structural difficulties, such as large fan-in and fan-out. Low-level logic elements such 
as logic gates exhibit responses in which an input event mayor may not influence the 
outputs, depending on the internal state of the element and on the states of other 
inputs; yet, they require very little computation to simulate their behavior. Thus, 
the performance results shown later in this paper involve practically no computation 
other than the distributed simulation itself. 

This paper is a· brief and preliminary report of the simulation algorithms and 
performance results. A more definitive report will be found in the first author's 
forthcoming PhD thesis. 

The research described in this paper was sponsored in part by the Defense 
Advanced Research Projects Agency, DARPA Order number 6202, and monitored by 
the Office of Naval Research under contract number N00014-87-K-0745; and in part 
by grants from Intel Scientific Computers and Ametek Computer Research Division. 
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2. The CMB Simulation Framework 

As usual, the system to be simulated is modeled as a set of communicating elements. A 
CMB simulator can be implemented by coding the behavior of elements in processes 
that communicate by messages. A message conveys both a time interval and any 
events within this interval. A process reacts to the receipt of an input message by 
updating its internal state, and, if outputs can be advanced in time, by sending 
messages to connected processes. These messages may include null messages that 
convey no events (changes in the state information), but serve only to advance the 
simulation time. 

It is easy to show that such a simulator is correct [3], in the sense that it computes 
a possible behavior of the system being simulated. A sufficient condition for freedom 
from deadlock in this eager message-sending mode is that there is a positive delay in 
every circuit in the graph of element vertices and communication arcs. Intuitively, 
it is the delay of the elements being simulated that permits the element simulators 
to compute the outputs over an interval that is later than the time of the inputs, so 
that time advances. Simulation time is determined locally, and may get as far out of 
step at different elements as their causal relationships permit. 

This conservative (also known as pessimistic) type of simulator is a concurrent 
program that exploits the concurrency inherent in the system being simulated. In 
practice, just as with other concurrent programs, if the number of concurrently 
runnable processes substantially exceeds the number of processors, one can achieve 
high utilization of concurrent resources. The speculative (also known as optimistic) 
type of simulator attempts to exploit additional concurrency by computing beyond 
the interval during which inputs are defined, at the risk of having to roll back if the 
speculations prove incorrect. Such approaches are attractive for simulating systems 
whose inherent concurrency is insufficient to keep concurrent resources busy, and in 
which speculations can be made with high confidence. Our studies have concentrated 
on conservative variants of the CMB algorithm. 

The design of distributed simulation programs is also influenced by a characteristic 
of the element simulators. In practice, an element simulator mayor may not take as 
long to process a null message as an event-containing message. For the simulation of 
some systems, the processing of an event-containing message might involve a lengthy 
simulation of a physical process, whereas the processing of a null message might be 
very fast. Such simulations.do not seriously stress the distributed-simulation aspect 
of the computation. However, for the simulation of systems of extremely simple 
elements, such as logic gates, the time required to compute the output of the gate is 
so small that it is comparable to the time required to process a null message. 

Due to our interest in understanding the limits of event-driven distributed 
simulation, and the implications for scheduling strategies for message-driven 
multiprocess programs, our studies have concentrated on the case in which the time 
required to process null messages is comparable to the time required to process event­
containing messages. It is straightforward to extrapolate the performance results for 
this difficult case to situations in which null-message processing is relatively fast. 
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The principal trouble with naive implementations of conservative CMB distributed 
simulation programs in any situation in which processing null messages is as costly as 
processing event-containing messages is that the volume of null messages may greatly 
exceed the number of event-containing messages. This difficultly is most evident when 
simulating systems with many short-delay circuits that have relatively low levels of 
activity. 

In distributing the simulation, we seek to reduce the time required to complete 
the computation; however, we have an immediate problem if the element simulators 
must perform many more message-processing operations in the distributed simulation 
than they would perform event-processing operations in a sequential simulation. The 
centralized regulation of the advance of time achieved through the ordered event 
list maintained by sequential simulation programs allows these simulators to invoke 
element routines only once for each input event. The null messages inflate not only 
the volume of messages the system must handle, but also the computational load. 
Thus, if we are going to compete with the best sequential simulators, we must reduce 
the volume of null messages. 

3. Indefinite Lazy Message Sending 

To reduce the volume of messages, we use various strategies to defer sending outputs 
in the hope that the information can be packed into fewer messages. For example, one 
of the most obvious schemes is to defer sending null messages, so that a series of null 
messages and an event-containing message can be combined to form a single message 
that spans a longer interval. Since output events are often triggered only by input 
events, deferring the delivery of preceeding null messages is less likely to hamper the 
progress of the destination element than deferring the delivery of event-containing 

messages. 
The first problem that must be addressed in employing such strategies is deadlock. 

When element simulators defer sending output messages, they may cyclically deny 
themselves input messages, leading to deadlock. All of our simulators have employed 
a technique of indefinite lazy message sending to permit arbitrary strategies for 
deferring message sending while still avoiding deadlock. The following is an idealized 
inner loop of the simulator, shown in the C programming language: 

while(l) 
if (p = xrecvO) 

simulate_and_optionally_send_messages(p); 

else 
take_other_action(); 

The function xrecv returns a pointer, p, that points to a message for the simulation 
process if a message has been received. The simulator then dispatches to the 
appropriate element simulator, and may either send or queue the outputs that the 
element simulator produces. If there is no message in the node's receive queue, the 
pointer returned is a NULL (0) pointer. In this case, the simulator takes other 
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action to break any possible deadlock. For a source-driven simulator, it selects a 
queued output to send as a message. For a demand-driven simulator, it selects a 
blocked element, and sends a demand message to its predecessor to request that 
queued outputs be sent. A deadlock in deferring messages cannot occur without 
"starving" a node of messages. When this situation is detected by xrecv returning a 
NULL pointer, the resulting action breaks the potential deadlock. 

Within this indefinite lazy message-sending framework, we can experiment with 
any scheme for deferring and combining messages without concern for deadlock. A 
message is free to carry any number of events, and an element is free to defer message 

sending on any basis. 

4. Variant Algorithms 

We have experimented with many CMB variants; in the interests of comprehension, we 
will describe the operation and report the performance of six that are representative 
of the range of possibilities that we have studied: 

A Eager message sending: This basic form of CMB serves as a baseline for comparison 

against the variants. 

B Eager events, lazy null messages: Null outputs are queued. Event outputs, 
combined with any queued null outputs, are sent immediately. When xrecv returns 
a NULL pointer, the null output that extends to the earliest time is sent as a null 
message. 

C Indefinite-lazy, single-event: All output from element simulators is queued. The 
output queues may contain multiple events. Messages are sent only when xrecv 
returns a NULL pointer. The output queue that extends to the earliest time is 
selected to generate a message up to the first event, if any, or a null message to 
the end of the interval. 

D Indefinite-lazy, multiple-event: This scheme is a slight variation on C, motivated 
by characteristics of multicomputer message systems that make it economical to 
pack multiple events into fewer messages. All output from element simulators is 
queued. The output queues may contain multiple events. When xrecv returns a 
NULL pointer, the output queue that extends to the earliest time is selected to 
generate a message up to the last queued event, if any, or a null message to the end 
of the interval. However, to allow a direct comparison with sequential simulators, 
events are processed singly. 

E Demand-driven: Although we usually think of simulation as source driven from 
inputs, one can equally well organize the simulation as demand driven from 
outputs. In the pure demand-driven form, all output from element simulators 
is queued. When xsend returns a NULL pointer, the input that lags furthest 
behind selects the destination for a demand message. Upon receipt of a demand 
message, if the output queue is not empty, the simulator sends all the information 
in the output queue; if the output queue is empty, the simulator generates another 
demand message to the source of lagging input to this element. 
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F Demand-driven, adaptive: Demand messages single out critical paths in a 
simulation. In an adaptive form of demand-driven simulation a threshold is , 
associated with each communication path. Outputs of element simulators are 
queued only up to the threshold; when the threshold is exceeded, the contents 
of the queue are sent as a message. Demand messages operate as in E, but also 
cause the threshold to be decreased. In the cases shown below, the threshold is 
halved. The simulator is accordingly able to adapt itself to the characteristics of 
the system being simulated. 

Although these variants are described here in terms of message passing, the 
same variants also appear as different scheduling strategies in shared-memory 
implementations. 

5. Experimental Method 

In common with other highly evolved message-passing programs, the simulator is 
implemented with one simulation process per multicomputer node (or, in the Cosmic 
Environment, with one simulation process per host computer or per processor in a 
multiprocessor ). 

Basis of comparison: Although execution time is one of the most natural bases 
of comparison between any two programs that perform the same function, and is 
used below to illustrate the performance of our distributed simulators on different 
commercial multicomputers, execution time on these concurrent computers depends 
both on the algorithm and on the characteristics of the particular computer. When 
we wish to isolate the characteristics of the algorithm from those of the computer, 
the instrumented simulator operates as a simulator within a simulator. Execution 
time is then measured in a unit called a sweep [5, 6], which corresponds here to a 
fixed time required to call an element once. The time required for other operations, 
such as sending a message, can be set to a particular number of sweeps. Normally, 
a message sent by one node in one sweep is available in the destination node at the 
next sweep. However, to test the sensitivity of the algorithms to message latency, we 
can also set the latency to larger values. 

Instrumentation: The simulator is a reactive program written in C, and is 
instrumented to function in two operational modes. In the sweep mode, a 
multicomputer-emulation program runs a simulation of a multicomputer; this in turn 
runs the reactive simulators. Time is measured in sweep units; on each sweep, each 
node is allowed to make one element call. In the real mode, the simulator runs directly 
on the multicomputer. There is one copy of the simulator process in each node, and 
each simulator process runs a subset of the elements as embedded reactive processes. 
Each node runs at its own pace, and execution time is measured with UNIX's real­
time clock. 

6. Experimental Results 
Performance measurements have been made on a variety of logic networks, including 
those that are representative of networks found in computers and VLSI chips, and 
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those that are designed specifically to test or to stress the simulator. Six different 
network types, each in several sizes up to 4000 logic gates, have been the principal 
vehicles for these experiments. A larger variation in performance is observed among 
networks with different characteristics than between algorithm variants. 

Multiplier example: The parallel multiplier is a good example of an ordinary logic 
network. The 14x 14 multiplier used in several experiments employs 1376 logic gates 
to generate the 28-bit product of two 14-bit binary inputs. The multiplier network 
contains only limited concurrency, and does not contain tight circuits that give the 
simulator artificial performance boosts or troubles, depending on element distribution. 
It also contains moderately high fan-out in the multiplier and multiplicand lines; this 
puts pressure on the message system. In all fairness, the distributed simulation of 
this multiplier network is not expected to do too badly nor too well. 

For the simulation, the most-significant bit of the product is connected back to the 
multiplier input via an inverting delay. The delay is such that the multiplier reaches 
a stable state before the multiplier input changes. The multiplicand input is set to a 
value that causes the circuit to oscillate. A trace of the product outputs shows that 
the simulator and the circuit are running correctly. 

Measurements in the sweep mode: The plot in Figure 1 portrays in a log-log format 
the sweep count in the sweep mode versus the number of nodes, N, for the simulation 
of the 14x 14 multiplier network under all six CMB variants. It is not useful to 
continue the plot beyond 211 nodes, since at this point there are as many nodes as 
simulated gates. The placement of elements in nodes for these trials is balanced but 
random. 

Each horizontal division represents a factor of two in resources; each vertical 
division represents a factor of two in sweep count or time. We have found this format 
(cf [5]) for portraying the performance of concurrent programs to be more useful than 
"speedup" graphs, for two reasons. First, we can observe the factor by which the 
execution time is reduced as resources are increased over very wide ranges. Second, 
since the ordinate is a physical measure, time or sweep count, we can compare different 
algorithms directly. For example, in addition to the plots of the sweep counts of the 
CMB variants, the heavy horizontal line represents the number of sweeps a sequential 
simulator requires for this same simulation. 

The first remarkable characteristic of these performance measurements is that they 
are so similar across this class of variant algorithms. Algorithms A, E, and F produce 
more messages than B, C, and D, but in this mode in which messages are free but 
element invocations are expensive, there is little difference between the variants. The 
performance under sweep-mode execution exposes the intrinsic characteristics of the 
algorithm, and is not related to such multicomputer characteristics as the relationship 
between node computing time and message latency. 

The gross characteristics of these curves are similar to those of other concurrent 
programs [5], and are quite understandable and predictable. 

We observe at log2 N=O (1 node) that all of the CMB variants are somewhat 
inefficient in comparison with the sequential event-driven simulator. For this 
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multiplier example, the null messages inflate the number of element invocations by a 
factor of 2-5 times; this is consistent with the 1-2.5-octave increase in sweep count 
over that of the sequential simulator. The null messages also inflate the concurrency 
over that which is intrinsic to the system being simulated. We shall refer to this 
inflation in the number of element invocations as the overhead of distributing the 
simulation. If the time required to process a null message were smaller than the 
time required to process an event-containing message, the overhead would be reduced 
proportionately. 
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Fig 1: A 1376-gate multiplier, sweep mode 

The performance is then divided roughly into two regimes, the first regime being 
one of near-linear speedup in N for the first 7-8 octaves, and the second regime being 
one of diminishing returns in N as the computing time approaches an asymptotic 
mimimum value. In the linear speedup regime, these simulators nearly halve the 
sweep count with each doubling of resources until limiting effects are reached. Load 
balance is assured by the weak law of large numbers when there are many elements 
per node. While each node has a sufficiently large pool of work, node utilization 
remains high. The simulators approach asymptotic minimal time as they exhaust the 
available concurrency in the system being simulated. The gradual "knee" of the curve 
originates from progressively less-effective statistical load balancing as the number of 
elements per node diminishes with larger N. 

Additional statistics have been collected to measure other effects. For example, 
in the linear-speedup regime, when there are many logic elements per node, the 
simulators are quite insensitive to message latency. When there are few elements per 
node, the performance begins to deterioriate as message latency is increased. These 
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effects will be evident in the measurements performed on real multicomputers. 
Measurements on real multicomputers: The results of simulating the same 1376-

gate multiplier network on a 16-node iPSC/2 is shown in Figure 2, and on a 128-node 
iPSC/1 for variants B, C, and D is shown in Figure 3. The iPSC/2 is ;::::6 times faster 
per node than the iPSC /1, so the time scales do not correspond. This simulation 
will not run on an iPSC /1 for N < 4 because the data and message queues for an 
increased number of logic elements per node will not fit in the node memory. Due to 
the same limitations of the iPSC/1 message system, neither the demand-driven nor 
the eager-message-sending simulation variants will run in most machine sizes. This 
choice of performance data is dictated by the desire to show performance results over 
the largest range of N possible with the machines that are currently operated by 
our research group. Results essentially identical to those shown in Figure 2 are also 
obtained on a 16-node Ametek Series 2010. 
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Fig 2: A 1376-gate multiplier for 40{ls on an iPSC /2 
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Fig 3: A 1376-gate multiplier for 40{ls on an iPSC/1 
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The simulation of this network for 2° ::; N ::; 2i is in the relatively uninteresting 
(but useful) linear-speedup regime, with some limiting effects starting to be seen in 
Figure 3 at N =27

• The number of gates being simulated per node is sufficiently high 
to keep the node utilization high and the sensitivity to message latency low. 

In order to exhibit the performance results in the more interesting (but less useful) 
diminishing-returns regime, we have scaled the network down to a 4- bit multiplier 
with 116 logic gates. The peformance on an Intel iPSCj2 up to 16 nodes is shown 
in Figure 4, and on an Intel iPSCj1 up to 128 nodes is shown in Figure 5. This 
network is small enough to exhibit interesting limiting effects as the simulation 
is increasingly distributed. The sublinear speedup is due to message latency in 
inter-node communications, increased null messages as the simulation is increasingly 
distributed, and load imbalance. The asymptotic time is limited by the message 
latency rather than by the available concurrency. In particular, Figure 5 shows that 
the asymptotic execution time of algorithm A, which is not very economical in its use 
of messages, is more than a factor of two worse than the asymptotic execution time 
of variants B, C, and D. 
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Fig 4: A 116-gate multiplier for lOOIlS on an iPSCj2 

[092( seconds) 

10 

9 

8 

7 

6 
o 1 

?;, , sequential simulator 

~-'--- A 

~-< .. 
~£ 

, B 

2 3 4 5 6 7 
[092( nodes) 

Fig 5: A 116-gate multiplier for IOOIlS on an iPSCj1 

9 



7. Hybrid CMB Variants 

Although the CMB variants exhibit good speedup over wide ranges of N, speedup 
measures only the performance of the algorithm relative to less-distributed instances 
of itself. In comparison with the sequential simulator, the distributed simulators must 
pay the overhead of processing null messages. If the elements used in a simulation 
are such that the time required to process null messages is considerably less than 
the time to process event-containing messages, these conservative CMB variants will 
provide excellent performance and efficiency. 

However, if the time required to process null messages is comparable to the time 
required to process event-containing messages, as it is for logic simulation, this 
overhead makes the CMB algorithm and its variants problematic for simulations on 
parallel computers in which N is small. What might be done to extend the CMB 
approach into this difficult small-N range? 

A component of the overhead that cannot be eliminated within the CMB 
framework, in which elements are independent processes, is the null messages used 
to force progress in cycles of idling elements. However, we can take advantage of 
multiple elements sharing the same node by lumping members of low-latency, low­
activity cycles, such as the gates that form a latch, into macro elements, and applying 
sequential simulation to them internally. The null-mess age-processing overhead for 
such cycles is eliminated at the cost of reduced concurrency for their members. 

In this type of hybrid CMB variant simulator, all elements in each node are 
combined into one macro element, which is simulated internally with a conventionaL 
ordered-event-list, sequential simulator. These sequential simulators are tied together 
externally with one of the CMB variant simulators. Since there is only one macro 
element per node, the hybrid variants are identical at N =1 to a sequential simulator. 
As N increases, however, more cycles are partitioned over multiple nodes, and each 
hybrid variant eventually converges with its corresponding CMB variant. 

Measurements in sweep mode: Figure 6 shows the performance results for the CMB 
variants simulating a ring of 28 self-timed FIFO units. Each FIFO unit contains one 
FIFO-control cell and eight register cells, implemented with a total of 1067 logic gates. 
The FIFO ring is 50% full, holding 14 alternating 1- and a-bytes. The overhead at 
N = 1 is caused by the idling of the cross-coupled NAND latches in the registers and 
the FIFO controls. The CMB variants show a good speedup with increased N. Except 
for the initial overhead, the performance of all of the CMB variants is excellent. 

Figure 7 shows the simulation results for the same circuit using the hybrid CMB 
variants with an element-distribution method that tends to place elements of each 
cycle in the same node. 
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Fig 6: FIFO ring, non-hybrid simulator, emulation mode 
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Fig 7: FIFO ring, hybrid simulator, emulation mode 

Although the hybrid simulator exhibits a generally decreasing sweep count with 
increasing N, and extremely good small-N performance for the demand-driven variant 
E, less desirable behaviors have been observed for the hybrid variants. In particular, 
if the elements are not properly distributed, or cannot be properly distributed, the 
simulation time may increase starting at N =2 before starting to decrease. This effect 
is the result of cycles being broken and scattered over multiple nodes, so that it is the 
CMB rather than the sequential algorithm that dominates the execution time. Figure 
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8 illustrates the performance of the sim" 'ator for the same circuit used in Figures 6 
and 7, but with random placement of the elements across the nodes. 
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Fig 8: FIFO ring, hybrid simulator, randomized 

Some programming short-cuts were used to produce these sweep-mode perfor­
mance measures for the hybrid variants without implementing a regular sequential 
simulator; thus, we are not able to include corresponding performance graphs for real 
multicomputers. However, the instrumentation of the hybrid sweep-mode simulations, 
together with the performance parameters of second-generation multicomputers such 
as the Intel iPSCj2 and Ametek Series 2010, indicate that the performance on real 
multicomputers will be essentially similar to that in the sweep-mode. We are cur­
rently implementing distributed simulation programs and instrumentation to run the 
hybrid CMB variants on real multicomputers. 

8. Conclusions 

We selected logic simulation for these experiments because we wished to examine 
the limits of the applicability of the conservative CMB algorithm and its variants. 
Simulating the behavior of relatively simple elements that have a high degree of 
connectivity was expected to be a difficult case for distributed simulation. Indeed, the 
performance results presented here have been much more revealing of the capabilities 
and limitations of the distributed discrete-event simulation algorithms than earlier 
simulations that we performed of systems such as multicomputer message networks. 

The reader should accordingly be cautious about drawing negative conclusions 
about the CMB framework from our comparisons of the performance of the CMB 
variants with the ordered-event-list sequential simulator. For objects of distributed 
simulation that are less demanding than logic simulation, such as systems in which 
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processing null messages is much faster than processing event-contammg messages, 
the overhead is proportionately scaled down, and the following general conclusions 
remain valid: 

l. Selected CMB varients exhibit excellent speedup over a wide range of N, limited 
eventually only by the concurrency of the system being simulated. 

2. The CMB variants presented here, all based on the indefinite-lazy-message-sending 
framework, provide a useful improvement over the basic eager-message-sending 
CMB algorithm. 

3. The hybrid CMB variants offer promise of efficient distributed simulation on small­
N concurrent computers. 

In some respects, the CMB and sequential algorithms make poor comparison 
subjects because these two algorithms represent relatively orthogonal optimizations 
in the basic task of simulation. While the execution time of the sequential simulator 
is sensitive only to the activity level of the circuit, the execution time for the fully 
distributed CMB algorithm is sensitive only to the structure of the circuit. In the 
FIFO-ring example, we can use more data bytes, fewer data bytes, or a different 
set of data bytes, and shift the sequential simulator's execution time proportionately 
without significantly changing the CMB variants' curves. Similarly, we can shift the 
CMB variants' curves without affecting the execution time of the sequential algorithm 
by varying the delay of the gates in the latches. 

The hybrid CMB variants attempt to combine the best aspects of the sequential 
and CMB algorithms by allowing the sequential simulator to dominate when N is 
small, and the CMB variants to dominate when N is large. This approach mayor may 
not produce a favorable result, depending on whether the elements can be properly 
distributed. More research needs to be done in the area of element distribution and 
its effect on the hybrid variants. 

9. Acknowledgment 

We very much appreciate the constructive suggestions, ideas, and encouragement 
that we have received from K. Mani Chandy. 

10. References 

[lJ K. Mani Chandy and Jayadev Misra, "Asynchronous Distributed Simulation Via 
a Sequence of Parallel Computations," CACM 24( 4), pp 198-205, April 1981. 

[2J Randal E. Bryant, "Simulation of Packet Communication Architecture Computer 
Systems," MIT-LCS- TR-188, Massachusetts Institute of Technology, 1977. 

[3J Jayadev Misra, "Distributed Discrete-Event Simulation," Computing Surveys 

18(1), pp 39-65, March 1986. 

[4] "Submicron Systems Architecture," Semiannual reports to DARPA, Caltech 
Computer Science Technical Reports [5220:TR:86] and [5235:TR:86]' 1986. 

13 



[5J William C. Athas and Charles L. Seitz, "i\lulticomputers: Message-Passing 
Concurrent Computers," IEEE Computer 21(8), pp 9-24, August 1988. 

[6] William C. Athas, "Fine Grain Concurrent Computation," Caltech Computer 
Science Technical Report (PhD thesis) [5242:TR:87]' May 1987. 

[7) William J. Dally, A VLSI Architecture for Concurrent Data Structures, Kluwer 
Academic Publishers, 1987. 

[8] Charles L. Seitz, Jakov Seizovic, and Wen-King Su, "The C Programmer's Ab­
breviated Guide to Multicomputer Programming," Caltech-CS-TR-88-1, January 
1988. 

14 



The Essence of Distributed Snapshots 

K. Mani Chandy· 
California Institute of Technology 

6 March 1989 
Caltech-CS-TR-89- 5 

1 Introduction 

A distributed system has no global clock, and it is the absence of a global 
clock that makes for several interesting problems, one of which is obvi­
ously important, but apparently trivial: 'Record the state of the system.' 
Recording the state of distributed system is called 'taking a global snap­
shot' after [2]. If there were a clock, taking global snapshots would be 
straightforward: Each process records its state or at some predetermined 
time, and the collection of recorded process states is used to construct a 
system state. 

Global snapshots are useful in a variety of situations [2,3,6J. The goal 
of this paper is to identify the essential properties of global snapshots so as 
to simplify proofs of global snapshot algorithms and to aid in the design of 
new algorithms. 

2 A Distributed System 

2.1 Standard Definitions 

We shall first define a distributed system as in [8J. 

·Supported in part by DARPA-6202, monitored by ONR NOOOl4-87-K-0745 
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A prefix of a sequence z is an initial subsequence of z. A prefix-closed 
set of sequences is a set such that every prefix of a sequence in the set is 
also in the set. 

A system is a set of components. A component is a set of events and a 
prefix-closed set of sequences of its events called its set of computations. 

A projection of a sequence v on a component is the sequence obtained 
from v by deleting all events in v that are not events of the component. 

A system computation is a sequence v of events of components of the 
system such that the projection of v on each component of the system is a 
computation of that component. 

Let w.p be a computation of component p, all p. Let P be a set of 
components. An interleaving of a set of component computations {w.p Ip E 

P} is a sequence, v, of events of components in P, such that the projection 
of v on p is w.p, all pEP. 

We use (y, z) for the catenation of sequences y and z. 

2.2 Processes and Channels 

A component of a distributed system is either a process or a channel. Dis­
tinct processes have disjoint sets of events, and distinct channels have dis­
joint sets of events. 

A channel is used by exactly two processes. The events of a channel are 
events of the processes that use the channel. We shall restrict attention to 
channels that satisfy the following monotonicity condition. 

Let c be a channel used by processes q and r. Let u, v be computations 
of c, where u.r = v.r, and u.q is a prefix of v.q. Let e be an event on r. 

A Monotonicity Property If (u, e) is a computation of c, then (v, e) is 
also a computation of c. 

Explanantion The monotonicity condition implies that the execu­
tion of events on one process cannot inhibit the execution of an event on 
another process. If a channel c is used by processes q and r, and there is 
a computation of c in which e is executed on process rafter q and r have 
executed computations a and b respectively, then there is a computation 
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of c in which e is executed after r has executed b, and q has executed an 
arbitrary sequence of events following a. 

Example: Bounded First-In-First-Out Buffers Consider a first­
in-first-out buffer, with a capacity of N messages (N > 0), shared by a 
single producer process and a single consumer process. Such a buffer is 
a channel that has the monotonicity property, as shown by the following 
informal argument. 

The producer can append any message to the buffer if the buffer is not 
full. The consumer can receive a message m from the buffer if the buffer 
is not empty and m is the message at the head of the buffer queue. IT 
the producer can produce a message after it has produced i messages and 
the consumer has consumed j messages, then the producer can produce a 
message after it has produced i messages, and the consumer has consumed 
more than j messages. Therefore, the monotonicity property holds with r 
as the producer and q as the consumer. 

By a similar argument, additional production does not prevent the con­
sumer from receiving the message at the head of the buffer; the mono­
tonicity property also holds with r as the consumer and q as the producer. 
Therefore, the channel has the monotonicity property. 

Example: Stacks Next consider a channel which is a stack. Let m be 
the message at the top of the stack, if the stack is not empty. The consumer 
can execute the event: Pop the stack and consume m. The producer can 
execute an event: Push a message m' on top of the stack. Such a buffer 
does not have the monotonicity property because an event of the producer 
- push m' on the stack - where m =1= m', can prevent the consumer from 
executing the event: Pop the stack and receive message m. Therefore, an 
event on one process can inhibit the execution of an event on the other. 

-
Note: Symmetry of Processes One way of defining channels is in 

terms of causality: one of the processes sends a message on the channel, and 
the other receives the message, thus there is a causal relationship between 
the sending and the receiving of the message. The definition of channels 
used in this paper is symmetric with respect to both processes; the defini-
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tion does not employ the concept of causality. Monotonicity appears to be 
an important property of channels of distributed systems. 

3 The Problem 

Restrict attention to one given system. Let z be a finite computation of the 
system. For ease of exposition, assume that all events in z are distinct. (If 
events are repeated in z, then number the events, so that the pair - event­
name, number - is distinct.) Let z.p be the projection of z on a process 
p. Let x.p be any prefix of z.p. Let S be the set of process computations 
{x.plp is a process }. 

Set, S, is defined to be a global snapshot in z if and only if there exists 
a system computation y where: 

1. y is an interleaving of the set of process computations z.p, and 

2. every event in S occurs in y before every event that is not in S. 

The problem is to determine simple necessary and sufficient conditions 
for S to be a global snapshot in z. 

Motivation for the Problem Set S is a global snapshot in z if and only 
if there is a system computation that first takes the system to a state in 
which each process p has executed x.p, and then to the state in which each 
process p has executed z.p. Informally, S is a global snapshot in z if and 
only if it could have happened that all events in S were executed before all 
events that are not in S. If S is a global snapshot in z, then properties 
about S can be used to deduce properties about the state of the system 
after z is executed. Therefore, it is helpful to determine simple conditions 
that guarantee that S is a :!:lobal snapshot. 

4 A Solution 

The obvious algorithm to determine if S is a global snapshot in z is as 
follows: Since z is finite, enumerate all interleavings of z.p, and determine 
if there is one with the desired properties. This approach is computationally 
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intractable if the number of processes is large. Next, we present a theorem 
that helps us to design tractable solutions. 

4.1 Compatible Computations 

Let c be a channel. Let c be used by processes q and r. Let u and v 
be computations of q and r respectively. Process computations u and v 
are defined to be compatible with respect to c if and only if there exists an 
interleaving w of u and v such that the projection of w on c is a computation 
of c. 

Informally, u and v are compatible with respect to c if and only if process 
computations u and v could have occurred in a computation of a system 
consisting of only the two processes q and r, and the single channel c. 

Example: Bounded First-In-First-Out Buffers Let c be a channel 
that is a first-in-first-out buffer with a capacity of N where N > 0, and 
where the buffer is initially empty. Let u and v be computations of the 
processes that send and receive (respectively) on the channel. Then u and 
v are compatible with respect to c if and only if the sequence of messages 
received along c in v is a prefix of the sequence of messages sent along c 

in u, and the number of messages sent along c in u exceeds the number of 
messages received along c in v by at most N. 

Let z and x.p be as in the problem definition, i.e., z is a system com­
putation and x.p is a prefix of z.p. Let the producer and consumer for c 
be q and r respectively. Since z is a system computation, the sequence of 
receives along c in z.r is a prefix of the sequence of sends along c in z.q. 
Therefore, the sequence of receives along c in x.r is a prefix of the sequence 
of sends along c in x.q if and only if the number of receives along c in x.r 
is at most the number of sends along c in x.q. Therefore x.q and x.r are 
compatible with respect to c if and only if 

o ~ (nsends - nreceives) ~ N 

where nsends and nreceives are the numbers of sends and receives along 
channel c in x.q and x.r respectively. 
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4.2 The Snapshot Theorem and its Applications 

We shall first give the theorem, discuss its consequences, and then prove it. 
Let z, z.p, x.p and S be as given earlier. 

Theorem Set, S, is a global snapshot in z if and only if, for each channel, 
c: 
x.q and X.T are compatible with respect to c, where q and T are the processes 
that use T. 

Applications of the Theorem The proof that S is a global snapshot of 
an arbitrary system reduces to a proof of compatibility of a pair of process 
computations for each channel. Let us use this fact in developing algorithms 
for a couple of problems. The following discussion is very brief and informal, 
because our goal is only to demonstrate the use of the theorem, rather than 
to give a thorough exposition of the algorithms. 

The Snapshot Algorithm We shall develop the algorithm in [2]. 
Consider a system in which channels are first-in-fust-out and the capacity 
of a channel is arbitrarily large. Initially all channels are empty. We wish 
to develop a distributed algorithm to record the global state of the system. 

Consider a channel c used by processes q and T, where q sends along c, 
and T receives along c, and initially c is empty. As discussed earlier, process 
computations x.q and X.T are compatible with respect to c if and only if the 
number of receives along c in X.T is at most the number of sends along c in 
x.q. Therefore the problem of algorithm design reduces to this: Guarantee 
that the number of receives before the receiver records its state is at most 
the number of sends before the sender records its state, and also guarantee 
that every process records its state eventually. 

One way of doing this is as follows: After a process records its state, it 
sends a special message called a marker along each of its outgoing edges. 
On receiving a marker a process records its state if it has not done so. 
At least one process (called the initiator) records its state in finite time; 
if there is a path (a sequence of channels) from the initiator to all other 
processes then every process records its state in finite time of the intiator. 
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Logical Time Consider the same system as in the previous para­
graph. Let z be a computation of the system. We are required to give each 
event in z a unique number, called its logical time, such that the set of 
events with logical times less than n corresponds to a global snapshot in z, 
for all n. Let x.p be the prefix of z.p consisting of all events with logical 
times less than nj we require that the set S (defined as before as {x.p}) be 
a global snapshot. 

As in the previous problem, the problem of algorithm design reduces to 
this: Guarantee that for each channel c, the number of messages received 
along c in x.r is at most the number of messages sent along c in x.q, where 
q and r are the processes that send and receive along c, respectively. This is 
equivalent to: guarantee that logical times of events are such that the event 
of receiving a message has a higher logical time than the event of sending 
that message. One way of doing so is in [7J: put a time-stamp t on each 
message where t is the logical time of the event that sends the message, and 
give the event that receives a message a logical time that is greater than 
the time-stamp of the message. 

(The goal for logical time in the seminal paper [7J is different from that 
given here, because it is based on the concept of causality. Our goal here 
is limited: to demonstrate a use of the snapshot theorem.) 

4.3 Proof of The Snapshot Theorem 

Snapshot Theorem Let z be a finite computation of the system. Let 
x.p be a prefix of z.p, all p. Let S be the set of process computations {x.plp 
is a process }. Set S is a global snapshot in z if and only if, for each channel 
c, computations x.q and x.r are compatible with respect to c, where q and 
r are the processes that use c. 

Proof If x.q and x.r are incompatible with respect to c, then there is 
no interleaving of x.q and x.r that is a computation of c, and hence S is 
not a global snapshot. Next, we prove that if for each c, x.q and x.r are 
compatible with respect to c, where q, ruse c, then S is a global snapshot. 
The proof given here is a generalization of the proofs given in [2,5J which 
are limited to unbounded first-in-first-out channels. 
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Define sequence y as follows: y is the permutation of z where all events 
in S occur before all events that are not in S, and apart from this change, 
the order of events in z is retained in y. We shall prove that S is a global 
snapshot by proving that y is a system computation. 

Let w be a permutation of z. We shall give an algorithm which starts 
with w = z and that ends with w = y, and where the algorithm maintains 
the invariant: w is a system computation. 

The Algorithm Initially w = z. While w contains a pair of adjacent 
elements d and e, where d occurs before e, and d is not in S, and e is in S: 
interchange the positions of d and e in w. 

Proof of Termination We prove that the algorithm terminates in 
a finite number of steps by using the metric: the number of pairs (f, g), 
where event f occurs earlier than event g in w, and f is not in S, and g is 
in S. The algorithm terminates if and only if the metric is zero, in which 
case w = y. 

The metric has a finite value initially, and every step decreases it; hence 
the algorithm terminates in a finite number of steps. 

Proof of the Invariant We prove the stronger invariant that w.p = 
z.p, all processes p, and w.c is a computation of c, all channels c, where w.d 
and z.d are the projections of wand z, respectively, on component d. The 
invariant holds initially, because w = z. Let w' be the same as w except 
that d and e are interchanged. Our proof obligation is to show that w' 
satisfies the invariant if w satisfies it. 

Since x.q is a prefix of z.q and since w.q = z.q, it follows that x.q is 
a prefix of w.q. Therefore, if two adjacent events in w are on the same 
process, q, and the first of the two events is not in x.q, then the second is 
not in x.q either. Since d is not in Sand e is in S, it follows that d and 
e cannot be on the same process. Let d be on process q and let e be on 
process r, where r =I q. 

Since d and e are on different processes, w'.p = w.p, all p, and therefore 
w'.p = z.p. 
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If d and e are on different channels, then the projections of wand w' on 
each channel are identical, and hence the invariant holds for w'. Therefore, 
we need only consider the case where d and e are on the same channel; let 
this channel be c. Our only remaining proof obligation is to show that w' .c 
is a computation of c. 

Let t be the prefix of w preceding d in w. Then (t, d, e) is a prefix of w, 
and (t, e, d) is a prefix of w' . 

Since x.q and x.r are compatible with respect to c, there exists an inter­
leaving h of x.q and x.r such that the projection of h on c is a computation 
of c. Event e is in x.r, and therefore is in h. Define u as the prefix of h 
preceding e. Therefore, (u, e) is a prefix of h, and hence it is a computation 
of c. Since both u.r and t.r are the prefixes of x.r that precede e, it follows 
that u .r = t.r. Since d is not in x.q, it follows that x.q is a prefix of t .q. 
Since u.q is a prefix of x.q, it follows from the transitivity of the prefix 
relation that u.q is a prefix of t.q. From the monotonicity property, the 
projection of (t, e) on c is a computation of c. 

Applying the monotonicity property again, the projection of (t, e, d) on 
c is a computation of c, since the projections of (t, d) and (t, e) on care 
computations of c. 

Let m be the length of the sequence (t, e, d). We shall prove by induction 
on k, that for k 2:: m: g'.c is a computation of c where g' is the prefix of w' 
of length k. 

Base Case: k = m. This case has already been proved. 
Induction Step: Let f be the (k+ l)-th event in w. Our proof obligation 

is to show that the projection of (g', f) on c is a computation of c. Let 9 be 
the prefix of w of length k. The projection of (g, f) on c is a computation 
of c because (g, f) is a prefix of w. From the induction hypothesis, the 
projection of g' on c is a computation of c. For k 2:: m: g.q = g'.q and 
g.r = g'.r. If f is on c, the from the monotonicity property of c, the 
projection of (g', f) on c is a computation of c. If f is not on c, then the 
projection of (g', f) on c is the same as the projection of g' on c, and the 
result follows. 
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5 Partial Snapshots 

There are some problems in which a snapshot of some subset of processes 
and channels is useful, and a global snapshot of all processes and channels 
is not necessary. We define a partial snapshot of a set of processes, Q, 
in a manner analogous to the definition of a global snapshot. Let z be a 
system computation. Let x.p be a prefix of z.p. Let S be the set of process 
computations {x.qlq E Q}. Set S is defined to be a partial snapshot in z if 
and only if there exists a system computation y where: 

1. Y is an interleaving of the set of process computations z.p, all processes 
p,and 

2. for each process q in Q, the events in x.q appear in y before the events 
of q that are not in x.q. 

A partial snapshot is a global snapshot if Q is the set of all processes. 
Next, we shall define a class of problems for which partial snapshots are 

helpful. 

5.1 TerDlination ProbleDls 

Let w be a system computation. Set, Q, is defined to have terminated after 
w if and only if, 

1. for all events e, and all processes q in Q, if (w.q, e) is a computation 
of q, then e is an event on a channel between q and a process in Q, 
and 

2. for all channels c between processes In Q, there is no event e such 
that (w .c, e) is a computation of c. 

Informally, the first condition says that after a process q has executed w.q 
it can only execute events on channels connecting it to other processes in 
Q. The second condition says that there is no extension of a computation 
of a channel c between processes in Q after w. The two conditions, to­
gether, imply that the processes in Q cannot execute events after system 
computation w. 
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Example: Full-Buffer Deadlock Consider a system in which each 
channel is a buffer with a capacity of N, where N > o. A process is 
either waiting or active. A waiting process is waiting to send a message on 
anyone of a set of full outgoing channels (i.e., channels containing N mes­
sages); a waiting process continues to wait until at least one of the channels 
that it is waiting for becomes not full, and it then sends a message on that 
channel and becomes active. Waiting processes do not receive messages. A 
set of processes, Q, is said to be deadlocked if and only if: 

1. each channel between processes in Q is full (or equivalently, the num­
ber of messages sent on the channel exceeds the number of messages 
received on the channel by N), and 

2. each process in Q is waiting to send messages only along channels to 
other processes in Q. 

The problem is to detect a deadlocked state. 
A dual of this problem is obtained by replacing 'full' by 'empty', 'send' 

by 'receive', and 'outgoing' by 'incoming' in the previous problem. 
Next, we give a theorem that shows how partial snapshots may be em­

ployed. 

5.2 Ter:rnination Detection Theore:rn 

Let v be a system computation such that Q terminates after v. IT z is a 
system computation such that for all q in Q, v.q is a prefix of z.q, then 
v.q = z.q, for all q in Q. 

Proof We prove by induction on the length of prefixes u of z, that u.q 
is a prefix of v.q, for all q in Q. In particular, we prove that z.q is a prefix 
of v.q. Since v.q is a prefix of z.q, it follows that v.q = z.q. 

Base Case u is the empty sequence. The result holds, trivially. 

Induction Step Consider a channel c used by processes q and r, 
where both q and r are in Q. Let u.r = v.r (and u.q is a prefix of v.q from 
the induction hypothesis). From the monotonicity property, for all events 
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e on c, if the projection of (v, e) on c is not a computation of c, then the 
projection of (1.£, e) on c is not a computation of c. Since Q terminates after 
v, the projection of (v, e) on c is not a computation of c. Hence, if 1.£.r = v.r, 
for all events e on c, the projection of (1.£, e) on c is not a computation of 
c. Since Q terminates after v, the only events on rafter v.r are events on 
channels to other processes in Q. Hence, if 1.£.r = v.r, there is no event eon 
r such that (1.£, e) is a system computation. 

From the arguments of the last paragraph, if (1.£, e) is a computation of 
z, then e is on a process r such that 1.£.r =f v.r. Since 1.£.r is a prefix of 
v.r, the length of 1.£.r is less than the length of v.r In this case, (1.£.r,e) is a 
prefix of v.r, since both (1.£.r, e) and v.r are prefixes of z.r, and the length 
of (1.£.r, e) is at most the length of v.r. 

5.3 Applications of the Theorem 

The termination detection theorem tells us that old data (v.q) is current 
(because v.q = z.q) if the old data shows that Q has terminated. This 
suggests the following class of algorithms for termination detection; this 
class includes algorithms in [1,4,9]. 

A Class of Algorithms for Termination Detection The algorithms 
employ a set of process computations {v.qlq E Q} and have the following 
specification. 

Invariant v.q is a prefix of z.q where z is the system computation up 
to the current point. 

Progress For all q, if the current value of z.q is, say, y.q, then even­
tually y.q is a prefix of v.q. (The progress property says that the process 
computations v.q get updated: eventually, v.q will include the current value, 
y.q, of z.q.) 

The algorithm determines that Q has terminated if Q terminates after 
{v·qlq E Q}, i.e., if Q terminates after a system computation, y, where 
y.q = v.q, all q in Q. 
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Correctness The proof of correctness of this class of algorithms is as 
follows. From the invariant and the theorem, if Q has terminated after 
{v·qlq E Q}, then Q has terminated after z. From the progress property, if 
Q terminates after z, then eventually v.q = z.q, and hence eventually, the 
algorithm determines that Q has terminated. 

Example Next, we give an example of algorithms with the invariant and 
progress properties given earlier. To detect termination of Q, a token is 
sent from process to process in Q, in such a manner that the token visits 
every process in Q repeatedly. The token carries with it a set of process 
computations {v.qlq E Q}. Initially, v.q is the empty sequence. When the 
token arrives at a process q, it updates this set, by replacing the value of 
v.q in the set by its current computation, and q determines that Q has 
terminated if Q terminates after {v.qlq E Q}. 

Various optimizations are possible in applying this method to detect a 
specific form of termination. For example, to detect full-buffer deadlock, 
it is not necessary for the token to carry the entire computation v.qj it is 
sufficient for the token to contain the number of messages sent and received 
on each channel by q in v.q, and the set of processes for which q is waiting. 

6 Summary 

The paper presents necessary and sufficient conditions for a set of process 
computations to be a global snapshot. The condition is that for every 
channel, the computations in the snapshot of the processes that use the 
channel, are compatible with respect to the channel. The condition is 
helpful in the development of algorithms. 

The paper also presents the concept of partial snapshots and demon­
strates its utility. 
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Introduction 
Message-passing concurrent computers, also known 
as multicomputers, such as the Caltech Cosmic Cube 
[1] and its commercial descendents, consist of many 
computing nodes that interact with each other by 
sending and receiving messages over communication 
channels between the nodes [2]. The communication 
networks of the second-generation machines, such 
as the Symult Series 2010 and the Intel iPSC2, em­
ploy an oblivious wormhole routing technique [3,4] 
that guarantees deadlock freedom. The message 
latency of this highly evolved oblivious technique 
has reached a limit of being capable of delivering, 
under random traffic, a stable maximum sustained 
throughput of f:::$ 45 to 50% of the limit set by the 
network bisection bandwidth. Any further improve­
ments on these networks will require an adaptive 
utilization of available network bandwidth to diffuse 
local congestions. 

In an adaptive multipath routing scheme, message 
routes are no longer deterministic, but are con­
tinuously perturbed by local message loading. It 
is expected that such an adaptive control can in­
crease the throughput capability towards the bi­
section bandwidth limit, while maintaining a rea­
sonable network latency. While the potential gain 
in throughput is at most only a factor of 2 under 
random traffic, the adaptive approach offers addi­
tional advantages, such as the ability to diffuse local 
congestions in unbalanced traffic, and the potential 
to exploit inherent path redundancy in richly con­
nected networks to perform fault-tolerant routing. 
The rest of this paper consists of an examination 
of the various feasibility issues and results concern­
ing the adaptive approach studied by the authors. 

"The research described in this paper was sponsored in 
part by the Defense Advanced Research Projects Agency, 
DARPA Order number 6202, and monitored by the Office of 
Naval Research under contract number N00014-87-K-0745, 
and in part by grants from Intel Scientific Computers and 
Ametek Computer Research Division. 
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A much more detailed exposition, including results 
on performance modeling and fault-tolerant routing, 
can be found in [5]. 

The Adaptive Cut-Through Model 
It is clear that in order for the adaptive multipath 
scheme to compete favorably with the existing obliv­
ious wormhole technique, it must employ a switch­
ing technique akin to virtual cut-through [6]. In cut­
through switching and its blocking variant, which is 
used in oblivious wormhole routing, a packet is for­
warded immediately upon receipt of enough header 
information to make a routing decision. The result is 
a dramatic reduction in the network latency over the 
conventional store-and-forward switching technique 
under light to moderate traffic. We now describe 
a simple cut-through switching model that provides 
the context for the discussion of issues involved in 
performing adaptive routing in multicomputer net­
works. The following definitions develop the nota­
tion that will be used throughout the rest of the 
paper. 

Definition 1 A Multicomputer Network, M, is a 
connected undirected graph, M = G(N, C). The 
vertices of the graph, N, represent the set of com­
puting nodes. The edges of the graph, C, represent 
the set of bidirectional communication channels. 

Definition 2 Let ni EN be a node of M. The set, 
Ci ~ C, is the set of bidirectional channels connect­
ing ni to its neighbors in M. 

Definition 3 The width, W, of a channel is the 
number of data wires across the channel. A flit, 
or flow control unit, is the W parallel bits of infor­
mation transferred in a single cycle. The flit is the 
unit used to measure the length of a packet. 

Definition 4 Given a pair of nodes, ni and nj, the 
set, Qij, of routes joining ni to nj is the fixed and 
predetermined set of directed acyclic paths from the 
source node, ni, to the destination node, nj. 



Definition 5 For each destination node, nj, the 
profitable channel set Roj ~ Ci is the subset of chan­
nels connected to ns, where C/c E Roj => C/c E qm E 
Qij. In other words, forwarding a packet along the 
routes in Qi,. is equivalent to sending it out through 
a profitable channel in Roj. 

Definition 6 For each node ns EN, the Routing 
Relation Ro = {(nj, c/c) : nj E N - {ns}, C/c E Roi} 
defines for each possible destination node ni E N 
its corresponding profitable channel set, Roi' 

Definition 'T The actual path a packet traverses 
while in transit in the communication network is re­
ferred to as the trajectory of the packet. Packet tra­
jectories are identical to the packet routes in obliv­
ious routing schemes but are non-deterministic in 
our adaptive formulation. 

We assume the following: 

• Long messages are broken into packets that are 
the logical data entities transferred across the 
network. 

• Packets are of fixed length; ie, packet length 
= L, where L is a network-wide constant. 

• Complete routing information is included in the 
header flit of each packet. 

• Packets are forwarded in virtual cut-through 
style. 

• A message packet arriving at its destination 
node is consumed. This is commonly known 
as the consumption assumption. 

• A node can generate messages destined to any 
other node in the network. 

• Nodes can produce packets at any rate subject 
to the constraint of available buffer space in the 
network, and packets are source queued. 

• Each node in the network has complete knowl­
edge of its own routing relation. 

Figure 1 presents our view of the structure of a node 
in a multicomputer network. Conceptually, a node 
can be partitioned into a computation subsystem, 
a communication subsystem, and a message inter­
face. For our purpose, the computation subsystem 
serves as the producer and consumer of the mes­
sages routed by the communication subsystem of 
the node. The message interface consists of dedi­
cated hardware that handles the overhead in send­
ing, receiving, and reassembling of message packets. 
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Figure 1: Structure of a node. 

Internally, the communication subsystem consists of 
an adaptive control and a small number of message­
packet buffers. Routing decisions are made by the 
adaptive control, based entirely on locally available 
information. The bidirectional channel assumption 
is adopted to allow the network to exploit locality in 
general message-communication patterns. Further­
more, it assures an identical number of input and 
output communication channels in each node, irre­
spective of the underlying network topology. The 
fixed-packet-Iength assumption is not essential and 
can be replaced by a bounded-packet-Iength assump­
tion; ie, packet length::::; L, without invalidating any 
of our major results. It is adopted solely to simplify 
our subsequent exposition. 

Communication Deadlock Freedom 
In any adaptive routing scheme that allows arbi­
trary multipath routing, it is necessary to assure 
freedom from communication deadlock. Communi­
cation deadlock is caused generically by the exis­
tence of cyclic dependencies among communication 
resources along the message routes. Methods to pre­
vent communication deadlock have been intensively 
researched and many schemes exist; of these, the 
methods of structured buffer pools [7] and virtual 
channels [8] are representative. In essence, all of 
these methods approach the problem by re-mappt"ng 
any dependency that is potentially cyclic into a cor­
responding acyclic dependency structure. These 
methods employ restructuring techniques that re­
quire information of a global, albeit static, charac­
ter. In contrast, a very simple technique that is in­
dependent of network size and topology, through vol-
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Figure 2: Two-phase protocol signaling. 

untary mi6routing, was suggested in [9J for networks 
that employ data exchange operations. Such a pre­
emption technique utilizes only local information, 
and is dynamic in character. It prevents deadlock 
by breaking the potentially cyclic communication de­
pendencies into disjoint paths of unit length. Vol­
untary misrouting can be applied to assure deadlock 
freedom in cut-through switching networks, pro­
vided the input and output data rates across the 
channels at each node are tightly matched. A sim­
ple way is to have all bidirectional channels of the 
same node operate coherently under the protocol de­
scribed next. 

The Coherent Protocol. We now describe the 
channel data-exchange protocol in detail. It is used 
to match the transfer rates across all channels of the 
same node. The protocol employs four control sig­
nals per channel, two from each of the communicat­
ing partners, and is completely symmetric between 
the partners. The signaling events for a channel 
c E Care: 

• Ro - Qutput event to the communicating part­
ner indicating that this node is Ready to ac­
cept another input flit from its partner. It also 
serves as an acknowledgment to its partner for 
the successful completion of the previous trans­
fer cycle. 

• R'f - input event from the communicating 
partner indicating that the partner is Ready 
to accept another output flit from this node. It 
is also an acknowledgment from the partner for 
the successful completion of the previous trans­
fer cycle. 

• Vo - Qutput event to the communicating part­
ner indicating that the data flit values currently 
held at the output channel of this node are 
yalid and its partner should latch in the held 
values. 
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• V/ - !nput event from the communicating 
partner indicating that the data flit values cur­
rently asserted at the input channel of this node 
are Yalid and the node should latch in the held 
values. 

We proceed to define our handshaking protocol 
across channels of a node nk E N, in a eSP-like 
notation [10]: 

['Ie E Ck, Rflj 
['Ie E Ck, V/Jj 

apply out dataj 
latch in dataj 

Observe that Ro and Vo denote, respectively, the 
unique outgoing Ready and data Valid signaling 
event to all neighbors of nk. This enforces the 
matching of outgoing data rates. On the other hand, 
the matching of incoming data rates is enforced 
through the synchronized wait for the R'f and V/ 
signaling events from all neighbors. The handshak­
ing events Ro , Rf interlock with.the events Vo , V/ to 
guarantee the stability and strict alternation of each 
other. The initial state of a channel has both direc­
tions of the channel ready to accept a new data flit 
and proceeds thereafter in a demand-driven fashion. 
Figure 2 shows a possible conceptual realization of 
the protocol under the two-phase signaling conven­
tion [11] popular for off-chip communication. Since 
all the handshaking events defined are local between 
nearest neighbors, a network following the coherent 
protocol is arbitrarily extensible. 

Observe that under cut-through switching, a packet 
can span many different channels. An outgoing 
channel occupied by a packet may not be able to 
assert Vo until after valid data has been asserted 
by the corresponding incoming channel occupied by 
the packet, hence, induces matching of data rates 
across the two occupied channels. The notion of co­
herency introduced here is a natural way to accom­
modate such potential dependencies among the vari­
ous channels of a node under cut-through switching. 
Another notion that arises naturally is that of a null 
flit. To effect a transfer of data in one direction of 
a channel while the opposite direction is idle, the 
receiving partner is required to transmit a null flit 
in order to satisfy the convention dictated by the 
exchange protocol. 

Deadlock Freedom. We now demonstrate that 
to assure communication deadlock freedom for net­
works operating under the coherent protocol, it is 
sufficient to employ voluntary misrouting to prevent 
potential buffer overflow. To proceed, observe that 
routing under the cut-through switching model im­
poses the following integrity constraints: 



1. Packets must always be forwarded to neighbors 
with their header flits transmitted first. In par­
ticular, voluntary misrouting of any internally 
buffered packet must start from the header flit 
of the selected packet. 

2. Once the flit stream of a packet has been as­
signed a particular outgoing channel, the as­
signment must be maintained for the remaining 
cycles until the entire packet has been transmit­
ted. 

These constraints exist because all of the necessary 
routing information of a packet is encapsulated in 
the packet header. Interrupting a packet flit stream 
mid-transfer would render the latter part of the 
packet undeliverable. To establish deadlock free­
dom, it is sufficient to show that each node can inde­
pendently complete each transfer cycle and initiate a 
new one, in a bounded period, without violating the 
stated constraints. We now show that as long as we 
have an equal number of input and output channels 
per node, a condition satisfied readily by our bidi­
rectional channel assumption, we can always satisfy 
the stated logical requirements, and, hence, assure 
freedom from communication deadlock. 

Theorem 1 Let M denote a coherent multicom­
puter network where each node has an equal number 
of input and output channels. IT M employs volun­
tary misrouting to prevent potential buffer overflow, 
then it is free from deadlock. 

Proof. We need to show that buffer overflow can 
always be prevented by misrouting without violat­
ing the cut-through switching integrity constraints. 
We proceed with a counting argument: Let d de­
note the number of channels at a node. During a 
protocol cycle, there may be as many as n* ::; d new 
data flits arriving at the input channels. A frac­
tion of these, 0 ::; n' ::; n*, are new header flits; 
the remaining n· - n' are non-header flits of arriv­
ing packets. Of these non-header flits, a fraction 
of them, 0 ::; nil ::; n * - n', belong to packets that 
have already been assigned output channels, and the 
remaining n* - n' - nil flits belong to waiting pack­
ets that are buffered inside the node. Therefore, 
the node has at least a total of n' + (n* - n' - nil) 
headers flits that are eligible for immediate routing. 
Hence, in the following cycle, a node can find at least 
n'+(n*-n'-n"}+n" = n* flits that can be transmit­
ted or misrouted without violating the cut-through 
switching integrity constraints. This assures that 
no buffer overflow will occur. The node can always 
complete its protocol cycles in bounded time; hence, 
the network is free from deadlock. • 
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Figure 3: Livelock due to bad assignments. 

Since the validity of the above proof does not depend 
on a node's storage capacity, deadlock freedom is 
established independent of the amount of available 
buffer space. The simple criterion of having an equal 
number of input and output channels is sufficient to 
assure deadlock freedom for a coherent network. In 
practice, additional buffers are needed in order to 
inject packets into the network, and to improve the 
network performance. 

Network Progress Assurance 
The adoption of voluntary misrouting renders com­
munication deadlock a non-issue. However, misrout­
ing also creates the burden to demonstrate progress 
in the form of message delivery assurance. In par­
ticular, a network can run into a livdock. Consider 
the sequence of routing scenarios depicted in fig­
ure 3 for a bidirectional ring consisting of eight nodes 
and eight packets. Eack of the pa~kets consists of 
four data flits that span multiple channels and inter­
nal buffers. Suppose the nodes employ the follow­
ing simple, deterministic, packet-to-channel assign­
ment rule: Whenever two incoming packets both 
request the same outgoing channel, the packet from 
the clockwise neighbor always wins. Given that, ini­
tially, nodes A, C, E, and G each receive two pack­
ets destined to nodes that are, respectively, distance 
two from them in the clockwise direction, after four 
routing cycles, the packets are all back to where they 
started! This example illustrates that packets can 
be forever denied delivery to their destinations even 
in the absence of communication deadlock. 



Figure 4: Livelock due to lack of assignments. 

Channel-access competitions are, however, not the 
only type of conflict that can lead to livelock. Con­
sider the situations depicted in figure 4 for the same 
bidirectional ring network. The traffic patterns are 
coincidental in such a way that none of the pack­
ets will ever have a chance to select its own output 
channel; rather, at every node, each packet must be 
forwarded along the only remaining channel, in com­
pliance with the voluntary misrouting discipline, in 
order to avoid deadlock. It is clear that no matter 
what assignment strategy one chooses, it is impos­
sible to break this kind of livelock without adding 
extra buffers per node. In other words, additional 
measures and resources have to be introduced in or­
der to assure progress, ie, delivery of packets, in the 
network. 

Buffering Discipline and Requirement. In or­
der to assure packet delivery in spite of voluntary 
misrouting, extra buffers are required to store pack­
ets temporarily. In particular, sufficient buffers 
must be provided to allow the adaptive control to 
give any newly arriving packet a chance to escape 
preemption if so determined by the assignment al­
gorithm. We now demonstrate the existence of such 
a solution using a bounded number of buffers. We 
assume the following buffering discipline: 

1. Storage is divided into buffers of equal size; each 
is capable of holding an entire message packet. 

2. Each buffer has exactly one input and one out­
put port; this permits simultaneous reading and 
writing. A good example is a FIFO queue of 
length L. 
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3. Except as stated below, a buffer can be occu­
pied by only one packet at a time. Oftentimes a 
packet may not fill its entire buffer, as in case of 
a partial cut-through. Such a packet occupies 
both the input and output ports to the buffer. 

4. A buffer can be used temporarily to store two 
packets at a time, if and only if, one of them 
is leaving through the output port connected 
to an output channel, and the other is entering 
through the input port connected to an input 
channel. 

Let b and d denote, respectively, the number of 
buffers and channels, ie, the degree at each node. 
First, we observe that, given the above buffering 
discipline, we must have b ~ d. To see this, assume 
that L ~ d, and consider the following sequence of 
events at a node with all buffers initially empty: At 
cycle t = 0, a packet Po arrives and is forwarded 
to its requested output channel c· at cycle t = 1. 
Then, at cycles t = L-d up to t = L-2, a total of 
d -1 packets, Pi, i = 1, ... , d -1, arriving one after 
another in these d-l consecutive cycles, all request­
ing the same output channel c·. Finally, at cycle 
t = L + 2, another packet Pd arrives, requesting the 
same channel c·. The worst case happens when the 
assignment algorithm always favors the latest arriv­
ing packet requiring it to stay and avoid preemption, 
and having each occupy a distinct buffer. Given the 
above arrival sequence, at cycle t = L + 1, packet 
Pd-l will be forwarded through c·, which now be­
comes idle. As a result, each packet from P 1 up to 
Pd would have to be temporarily stored as it comes 
in. Since each packet must be allocated to a dis­
tinct buffer, we must have b ~ d. We now show that 
having b = d buffers is also sufficient. 

Theorem 2 Let M be a coherent network where 
each node has b packet buffers inside the router op­
erating under the stated assumptions. Then b = d 
buffers per router is necessary and sufficient to al­
ways allow at least one packet, chosen arbitrarily by 
the assignment algorithm at each node, to escape 
preemption. 

Proof. Necessity follows immediately from the 
preceding discussion. We proceed to establish suffi­
ciency through a counting argument. Observe that 
a node is required to consider misrouting of packets 
in the next cycle only when there are new packets 
arriving at the current cycle. Figure 5 depicts an 
accounting of all possible cases of buffer allocation 
at the end of any such routing cycle. Let nl up to 
nr denote, respectively, the number of packets or 
buffers in each case; and no denote the number of 
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Figure 5: Accounting of buffer allocations. 

newly arrived packets. Then, for inputs, we have 
"0 + "1 + "5 + ne +"7 ~ d; for outputs, we have 
"1 + "5 + "6 +"7 ~ d. Let p. denote the privi­
leged packet chosen by the assignment algorithm to 
stay behind and avoid misrouting in the following 
cycle. p. must be either a newly arrived packet 
or an already buffered packet. IT p. is a buffered 
packet, then a newly arriving packet either finds 
an idle output channel to directly cut through the 
node; or else we must have "1 +"5+"6+"7 = d => 
"5 2:: "0 + "5, which, in turn, implies that there 
will always be an available buffer ready to accept 
it. On the other hand, if p. is a newly arriv­
ing packet, then either "4 +"5 > 0, and, hence, 
there is a buffer ready to accept it; or else we must 
have "2+"5+ne+"7 = b = d. This, together with 
the above inequality on inputs, => "2 ~ "0+"1 => 
"2> O. Furthermore, "0 > 0 => "1+"6+"7 < d. 
In other words, the packet will be able to find at 
least one buffer with a full idle packet as well as an 
idle output channel to preempt this idle packet and 
thus make room for itself. This establishes the suf­
ficiency condition. • 

The trick in allowing the escape of misrouting for 
any arbitrarily chosen packet is to provide at least 
a critical, minimum number of buffers that is suffi­
cient to assure either that empty buffers still exist, 
or that all buffers have been occupied, and, hence, 
there is some other packet that can be misrouted in­
stead. The particular number required depends on 
the adopted buffering structure and discipline, and 
adding more buffers per node will allow the assign­
ment algorithm to operate with more flexibility and 
perform better. In any case, by having a sufficient 
number of buffers, competition of profitable channel 
access is transformed into a competition for the right 
to stay behind and wait until the winner's profitable 
channel becomes available, at which time, it will be 
forwarded. Hence, winners that have been chosen 
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by the assignment algorithm will have the chance to 
follow the actual paths determined by the routing 
relations. In a sense, assurance of packet delivery 
has now been reduced to that of picking con6i6tent 
winners across the network. 

Packet-Priority Assignments. An effective 
scheme for picking consistent winners that is inde­
pendent of any particular network topology is to 
resolve the channel-access conflicts according to a 
priority assignment. In particular, the process of 
forwarding a packet towards its destination can be 
viewed as a sequence of actions performed to re­
duce the packet's distance from destination, pro­
vided that the set R = {.Ha} of routing relations is 
defined in terms of an underlying metric of the net­
work. In this case, as the result of a channel-access 
conflict, the winner will be routed along a profitable 
channel, hence decreasing its distance from the des­
tination. The losers, depending on whether they are 
misrouted along the remaining unprofitable chan­
nels, mayor may not increase their distance from 
destination. Ideally, one would prefer a strict mono­
tonic decrease of distance to destination for each 
packet routed in the network. As this is impossi­
ble under our adaptive model, the alternative is to 
ensure monotonic decrease over a sequence of ex­
changes involving multiple packets. This can be 
achieved by giving higher priority to packets with 
shorter distances from destination over those with 
longer distances as follows: 

P1 > P2 <==> D1 < D2 

where P is a packet's priority and D its distance 
from destination. We now show that this is sufficient 
to guarantee livelock freedom. 

Theorem 3 A packet-to-channel assignment strat­
egy that observes the defined distance priority, to­
gether with the set R of metric-based routing rela­
tions, guarantees livelock freedom in' a network. 

Proof. At the beginning of a routing cycle, let 
D > 0 be the minimum packet distance from desti­
nation. During this cycle, a packet with distance D 
competes with other packets for channels leading to 
its destination. IT it wins the competition, it will be 
forwarded along a profitable channel within L cy­
cles. It it loses, it must be to another packet also 
distance D away from its destination, according to 
the defined priority. In both cases, the minimum dis­
tance is reduced to < D within L cycles. Therefore, 
D will eventually be reduced to zero, in which case 
a successful packet delivery occurs and the above 
argument can be applied again to assure repeated 
deliveries, This establishes livelock freedom. • 
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Figure 6: Inside the message interface. 

Observe that although the distance priority alone 
suffices to guarantee global progress in a message 
network, no corresponding statement can be made 
concerning each individual packet. This is because 
it is possible for packets that are far away from their 
destinations to be repeatedly defeated by newly in­
jected packets that are closer to their respective des­
tinations. A more complex priority scheme that as­
sures delivery of every packet can be obtained by 
augmenting the above simple scheme with age in­
formation, with higher priorities assigned to older 
packets: 

(AI, Dd > (A2' D2) <=> 
(AI> A2) V ((AI = A2) 1\ (DI < D2)) 

where A is a packet's age, that is, the number 
of routing cycles elapsed since the injection of the 
packet. Empirical simulation results indicate that 
the simple distance assignment scheme is sufficient 
for almost all situations, except under an extremely 
heavy applied load. 

Network-Access Assurance 
A different kind of progress assurance that requires 
demonstration under our adaptive formulation is the 
ability of a node to inject packets eventually. Be­
cause of the requirement to maintain strict balance 
of input and output data rates, a node located in 
the center of heavy traffic might be denied access 
to the network indefinitely. Figure 6 depicts a pos­
sible conceptual realization of a message interface. 
Its operation is similar to the register insertion ring 
interface described in [12]. It uses two FIFO buffers 
that can be connected to the output channel to­
wards the network via a switch. Whenever the node 
has a packet to transmit, it loads the packet into 
the injection buffer as soon as the buffer becomes 
empty. When message traffic arrives from the net­
work input channel, it passes through the destina­
tion check logic, which redirects any traffic destined 
to this node to the node memory. Any remaining 
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passing traffic is loaded into the cut-through buffer, 
which is normally connected to the output channel. 
Whenever the cut-through buffer becomes empty, 
the control logic checks to see if there is an output 
packet waiting for injection. In such case, the switch 
is toggled so that the output channel is connected to 
the injection buffer and the injection proceeds. As 
the output packet is being forwarded, any passing 
traffic is loaded into the cut-through buffer. The 
switch connection is flipped back to the cut-through 
buffer after injection has been finished, and the pro­
cess repeats. The main interesting property of the 
message interface for our current discussion is that 
it provides the mechanism to capture and accumu­
late interpacket gaps, which need not be contigu­
ous, as empty spaces inside the cut-through buffers. 
When enough space has been collected, ie, the en­
tire packet length, hence, an entire empty buffer, an­
other new packet can be injected into the network. 
With such a mechanism, the question of assuring 
eventual packet injection is translated into that of 
assuring arrival of enough interpacket gape when­
ever a node has a packet injection outstanding. 

Round-Trip Packets. One simple way to assure 
network access is to have each packet delivered by 
the network be returned to its original sender upon 
arrival at its destination. Since each message inter­
face starts with an empty injection buffer, consump­
tion of its own round-trip packets will always restore 
its ability to inject the next source-queued packet. 
More sophisticated versions of such a scheme will use 
several cut-through buffers, and will demand that 
packets be returned only if the stock of empty cut­
through buffers has been depleted below a predeter­
mined threshold. In this way, the number of round­
trip packets can be dramatically reduced when traf­
fic is relatively moderate. Unfortunately, as traffic 
density increases, the population of round-trip pack­
ets also increases, thus further decreasing useful net­
work bandwidth. 

Packet-Injection Control. A different scheme 
that does not incur this overhead is to have the 
nodes maintain a bounded synchrony with neigh­
bors on the total number of injections. Nodes that 
fall behind will, in effect, prohibit others from in­
jecting until they catch up. We shall adopt the 
convention that a node having no packet to inject 
has a null packet queued up; ie, during each rout­
ing cycle, every node either has a null or real packet 
ready to inject or else is in the process of inject­
ing a real packet. The null-packet convention is re­
quired to prevent quiescent nodes that do not have 
any packet to inject from blocking injections in the 



active nodes. Our scheme is to introduce local syn­
chronization among neighboring nodes such that the 
total number of packets injected by a node after 
each routing cycle will not differ by more than K, 
a positive constant, from those of its neighbors. We 
assume that each node explicitly maintains records 
of the total number of packet injections made by 
each of its neighbors, measured relative to that of 
its own, and that the information required to up­
date these records in each node is exchanged on 
separate direct links between the message interfaces 
among neighbors. A node is allowed to inject its 
queued packet only if its own number of total in­
jections is fewer than K packet injections ahead of 
its minimum neighbor. Nodes that are allowed to 
inject will examine their queued packets. Null pack­
ets are always injected by convention, whereas real 
packets are injected only if the injection mechanism 
described previously finds at least one empty buffer 
available to absorb the injection transient. We now 
show that, with eventual delivery of the packets al­
ready injected, this injection synchronization proto­
col establishes cooperation among the nodes to as­
sure the eventual occurrence of empty cut-through 
buffers in the message interface for nodes that have 
real packets waiting for injection as permitted by 
the protocol. 

Lemma 4 A node that has a packet waiting for in­
jection that is permissible under the above injection 
protocol will eventually inject. 

Proof. Observe that, by convention, if the pend­
ing packet is null, the node is able to inject imme­
diately, so that the lemma is true vacuously. We 
now proceed to establish its validity for real packets. 
Suppose, to the contrary, that a particular node, 
n E N, is blocked from injection indefinitely be­
cause the injection mechanism cannot accumulate 
sufficient empty buffer space to absorb the injection 
transient. Our injection protocol then dictates that 
its neighbors also will be blocked indefinitely from 
injecting. These, in turn, indefinitely block their 
neighbors, and so on. Given a finite network, all 
nodes are eventually blocked from any further in­
jection, and eventually no new packet can enter the 
network. Given the eventual delivery guarantee for 
packets already injected, ultimately the network will 
be void of packets; at that point, the input channel 
to the interface of n will become idle, thus enabling 
it to resume the accumulation of empty spaces in­
side the cut-through buffer. Eventually, it will have 
collected enough spaces to enable the injection of 
its queued packet into the network. This contra­
dicts the original indefinite blocking assumption of 
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Figure 7: Throughput versus applied load. 

n, hence establishing the validity of the lemma. • 

We are now ready to show that by following the 
above injection protocol every individual node will 
eventually be permitted to inject, and, hence, ac­
cording to the above lemma, will eventually inject. 
Specifically, let M be a network, and let 7i de­
note the total number of packet injections from node 
no E N since initialization. We now prove that 7i is 
strictly increasing over time. 

Theorem 5 Given the injection protocol and a fi­
nite network that is livelock free, the total number 
of packet injections for each node strictly increases 
over time. 

Proof. During a routing cycle, let t = minniEN Ti 
denote the minimum among numbers of packet in­
jections since initialization, taken over all the nodes 
of the network, and let S = {ni E NITi = t} de­
note the set of nodes that have recorded the min­
imum number of packet injections since initializa­
tion. Since K > 0, according to our protocol, every 
node n E S is permitted to inject. Lemma 4 then 
guarantees eventual injections from all of the nodes 
in Sj hence, t, the minimum number of packet injec­
tions per node, is guaranteed to eventually increase 
over time. This, in turn, guarantees that Ti strictly 
increases over time, Vni EN. • 

Hence, we are assured of eventual packet injection 
for each individual node of the network. In other 
words, the above theorem establishes fairness in net­
work access among all the nodes. 

Performance Comparisons 
An extensive set of simulations was conducted to 
obtain information concerning the potential gain in 
performance by switching from the oblivious worm­
hole to the adaptive cut-through technique. We now 
summarize very briefly the typical kind of behaviors 
observed in these simulations. A much more de­
tailed discussion can be found in [5]. Among the 
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Figure 8: Message latency versus throughput. 

various statistics collected, the two most important 
performance metrics in communication networks are 
network throughput and message latency. Figure 7 
plots the sustained normalized network throughput 
versus the normalized applied load of the oblivious 
and adaptive schemes for a 16 X 16 2D-mesh network 
under random traffic. The normalization is per­
formed with respect to the network bisection band­
width limit. Starting at a very low applied load, the 
throughput curves of both schemes rise along a unit 
slope line. The oblivious wormhole curve levels off at 
~ 45 - 50% of normalized throughput but remains 
stable even under increasingly heavy applied load. 
In contrast, the adaptive cut-through curve keeps 
rising along the unit slope line until it is out of the 
range of collected data. It should be pointed out, 
however, that the increase in throughput obtained 
is also partly due to the extra silicon area invested in 
buffer storage, which makes adaptive choices avail­
able. 

Figure 8 plots the message latency versus normal­
ized throughput for the same 2D-mesh network for 
a typical message length of 32 flits. The curves 
shown are typical of latency curves obtained in vir­
tual cut-through switching. Both curves start with 
latency values close to the ideal at very low through­
put, and remain relatively flat until they hit their 
respective transition points, after which both rise 
rapidly. The transition points are ~ 40% and 70%, 
respectively, for the oblivious and adaptive schemes. 
In essence, adaptive routing control increases the 
quantity of routing service, ie, network throughput, 
without sacrificing the quality of the provided ser­
vice, ie, message latency, at the expense of requiring 
more silicon area. 

SUInmary 
Several issues related to adaptive cut-through rout­
ing have been addressed in the course of this re­
search, and we did not encounter any insurmount­
able problem. Rather, the simplicity of these res-
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olution mechanisms gives us hope that the adap­
tive scheme can be made to improve on the already 
highly evolved oblivious routing scheme. The dis­
cussion in this paper has focused on issues concern­
ing the feasibility of the proposed adaptive routing 
framework. Within this framework, we have also 
studied and found promising approaches to fault­
tolerant routing. Clearly, more work remains to be 
done. Perhaps the most challenging of all is to real­
ize on silicon, the set of ideas outlined in this study. 
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