
Reactive�Process Programming

and

Distributed Discrete�Event Simulation

Thesis by

Wen�King Su

In Partial Ful�llment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena� California

����

�Submitted October ��� ��	�


Caltech�CS�TR�	����



ii

c� ����

Wen�King Su

All rights Reserved



iii

Acknowledgments

Many thanks

To my thesis advisor� Dr� Charles L� Seitz� whose care and dedication made it
all possible�

To my committee members� Dr� Charles L� Seitz� Dr� Mani Chandy�
Dr� Alain Martin� Dr� Brad Sturtevant� and Dr� Eric Van de Velde� for
their careful review and analysis of my research�

To our technical editor� Dian De Sha� who spent glorious days and nights
tracking and hunting the blunders and blemishes in my writing�

To our operations manager� Arlene DesJardins� who takes care of every little
day�to�day detail and makes the department feel like a nice big family�

To my peers� Bill Athas� Bill Dally� John Ngai� and Craig Steele� for their help
and advice�

To my junior co�workers� Nanette Boden� Charles Flaig� Glenn Lewis�
Mike Pertel� and Jakov Seizovic� for their feedback and support�

To our system managers� Don Speck� Chris Lee� and Joe Beckenbach� for
keeping our machines running smoothly�

To our guests from abroad� Sven Mattisson and Lena Peterson� for their
enthusiasm and friendship�

To my advisors at UC Davis� Dr� Wen C� Lin of EE�CS and
Dr� George E� Bruening of BioChem� for my enlightenments�

To my buddies from UC Davis� Glenn Saito and John Bakos� for their help in
my college years�

To my teachers and counselor at Casa Roble High School� Mr� Gomez�
Dr� Smithson� Mr� Ho�man� Mr� Scalatta� Mr� Pickard� Mr� Hellen�
Mrs� Sproul� and Mrs� Cruzen� who worked to keep me involved in school�

To Xerox Corporation for supporting this work through a Xerox
special�opportunity fellowship�

To my parents� who endured many di�cult times to bring me here and to
raise me in this land of opportunity�

And to Freedom and Liberty�
sacred to our very heart and soul� yet sadly denied to so many�

The research described in this thesis was sponsored in part by the Defense Advanced
Research Projects Agency� DARPA Order number �	
	� and monitored by the O�ce
of Naval Research under contract number N


�
����K�
�
��



iv

Abstract

The same forces that spurred the development of multicomputers � the demand for

better performance and economy � are driving the evolution of multicomputers in

the direction of more abundant and less expensive computing nodes � the direction

of �ne�grain multicomputers� This evolution in multicomputer architecture derives

from advances in integrated circuit� packaging� and message�routing technologies�

and carries far�reaching implications in programming and applications� This thesis

pursues that trend with a balanced treatment of multicomputer programming and

applications� First� a reactive�process programming system � Reactive�C � is

investigated� then� a model application � discrete�event simulation � is developed�

�nally� a number of logic�circuit simulators written in the Reactive�C notation are

evaluated�

One di�culty in multicomputer applications is the ine�ciency of many dis�

tributed algorithms compared to their sequential counterparts� When better for�

mulations are developed� they often scale poorly with increasing numbers of nodes�

and their bene�cial e	ects eventually vanish when many nodes are used� However�

rules for programming are quite di	erent when nodes are plentiful and cheap
 The

primary concern is to utilize all of the concurrency available in an application� rather

than to utilize all of the computing cycles available in a machine� We have shown in

our research that it is possible to extract the maximum concurrency of a simulation

subject� even one as di�cult as a logic circuit� when one simulation element is as�

signed to each node� Despite the initial ine�ciency of a straightforward algorithm�

as the the number of nodes increases� the computation time decreases linearly until

there are only a few elements in each node� We conclude by suggesting a technique

to further increase the available concurrency when there are many more nodes than

simulation elements�



v

Contents

List of Figures ix

List of Program Listings xiii

� Introduction �

��� Motivation � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� History � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Outline � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Reactive�Process Programming �

��� De�nition of a Reactive Process � � � � � � � � � � � � � � � � � � � �

��� Reactive�C Programming System � � � � � � � � � � � � � � � � � � �

� Reactive�Process Layers ��

��� Simple Layers � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� The bottom layer �b�layer� � � � � � � � � � � � � � � � � � ��

����� The length�carrying layer �l�layer� � � � � � � � � � � � � � � ��

����� The non�blocking�receive layer �nb	layer� � � � � � � � � � � � �


����
 Handler layering � � � � � � � � � � � � � � � � � � � � � � ��

��� Message Type � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Discretion on Receive � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Discretion using b	layer functions � � � � � � � � � � � � � � ��

����� The RPC�discretion layer �r�layer� � � � � � � � � � � � � � � �


����� The CSP�discretion layer �csp	layer� � � � � � � � � � � � � � ��

����
 A more general type�discretion layer �t�layer� � � � � � � � � � 
�

��
 Other Layers � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

��
�� A �ow�controlling layer �f�layer� � � � � � � � � � � � � � � � 
�

��
�� The CK primitives � � � � � � � � � � � � � � � � � � � � � 
�

��
�� The RK primitives �x	primitives� � � � � � � � � � � � � � � � 





vi

��� Layering on Light�Weight Processes � � � � � � � � � � � � � � � � � ��

� Cosmic Environment ��

��� The Cosmic Environment Speci�cation � � � � � � � � � � � � � � � � ��

��� Our Cosmic Environment Implementation � � � � � � � � � � � � � � � ��

����� Structure of our CE implementation � � � � � � � � � � � � � �	

����� Cosmic Environment exterior � � � � � � � � � � � � � � � � ��

����� Cosmic Environment processes � � � � � � � � � � � � � � � � ��

����� Program compilation � � � � � � � � � � � � � � � � � � � � �


����� Spawning programs � � � � � � � � � � � � � � � � � � � � � ��

����
 Data representation and conversion � � � � � � � � � � � � � � ��

� Model of Simulation ��

��� Mathematical Framework and Analysis � � � � � � � � � � � � � � � � 
�

����� Systems and elements � � � � � � � � � � � � � � � � � � � � 
�

����� States and time � � � � � � � � � � � � � � � � � � � � � � 
�

����� Knots and progress � � � � � � � � � � � � � � � � � � � � � 
�

����� Rules of thumb � su�cient conditions for progress � � � � � � � 



����� Non�existence of necessary and su�cient progress conditions � � � 
�

������� Simulation and Boolean satis�ability � � � � � � � � 
�

������� Simulation and simultaneous equations � � � � � � � 
�

��� Operational Framework � � � � � � � � � � � � � � � � � � � � � � � 
�

����� Breaking a simulation into smaller slices � � � � � � � � � � � � 
�

����� Slices and knots � � � � � � � � � � � � � � � � � � � � � � ��

����� Implementation considerations � � � � � � � � � � � � � � � � ��

��� The Generic Simulator Model and Its Derivatives � � � � � � � � � � � ��

����� Message�driven simulation � � � � � � � � � � � � � � � � � � ��

����� Concurrent event�driven simulation � � � � � � � � � � � � � � ��



vii

����� Sequential simulator � � � � � � � � � � � � � � � � � � � � ��

����� Concurrent backtracking simulators � � � � � � � � � � � � � � ��

����� Branch�and�bound simulators � � � � � � � � � � � � � � � � �	

����� Time�driven simulators � � � � � � � � � � � � � � � � � � � �


����� Summary � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Logic�Circuit Simulator Experiments ��

��� Why Logic Circuits� � � � � � � � � � � � � � � � � � � � � � � � � ��

��
 CMB�Variant Simulator � � � � � � � � � � � � � � � � � � � � � � ��

��
�� The element simulators � � � � � � � � � � � � � � � � � � � ��

��
�
 The simulator message system � � � � � � � � � � � � � � � � ��

��
�� The variants � � � � � � � � � � � � � � � � � � � � � � � � ��

��
�� Variant algorithms � � � � � � � � � � � � � � � � � � � � � ��

��
�� Instrumentation � � � � � � � � � � � � � � � � � � � � � � �	�

��
�� Experimental results � � � � � � � � � � � � � � � � � � � � �	


��� Sequential Simulator � � � � � � � � � � � � � � � � � � � � � � � � �	�

����� Sequential simulator mechanism � � � � � � � � � � � � � � � �	�

����
 Hazards in sequential simulators � � � � � � � � � � � � � � � ��	

����� Instrumentation � � � � � � � � � � � � � � � � � � � � � � ��


����� Big multiplier results � � � � � � � � � � � � � � � � � � � � ���

����� Small multiplier results � � � � � � � � � � � � � � � � � � � ���

����� Circuit topology vs� activity level � � � � � � � � � � � � � � � ���

����� Hybrid possibilities � � � � � � � � � � � � � � � � � � � � � �
	

� Hybrid Simulators ���

��� Coordinated Sequential Simulator �Hybrid��� � � � � � � � � � � � � � �



����� The algorithm � � � � � � � � � � � � � � � � � � � � � � � �



����
 Sorting with a di�erent key � � � � � � � � � � � � � � � � � �
�



viii

����� The simulator mechanism � � � � � � � � � � � � � � � � � � ���

����� The simulator output � � � � � � � � � � � � � � � � � � � � ���

����	 Expectation � � � � � � � � � � � � � � � � � � � � � � � � ��


����� Experimental results � � � � � � � � � � � � � � � � � � � � ���

��� Progressive Hybrid Simulator �Hybrid��� � � � � � � � � � � � � � � � ���

����� The mechanism � � � � � � � � � � � � � � � � � � � � � � ���

����� Experimental results � � � � � � � � � � � � � � � � � � � � ���

� Additional Performance Results ���

��� ��D Clock Network � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Description � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Sweep�mode results � � � � � � � � � � � � � � � � � � � � � ���

����� Real�mode results � � � � � � � � � � � � � � � � � � � � � ��	

��� Tree�Ring Example � � � � � � � � � � � � � � � � � � � � � � � � �	�

����� Description � � � � � � � � � � � � � � � � � � � � � � � � �	�

����� Simulation results � � � � � � � � � � � � � � � � � � � � � �	�

��� FIFO Loop � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Description � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Simulation results � � � � � � � � � � � � � � � � � � � � � ���

� Summary ���


�� Economy and Performance of a Multicomputer � � � � � � � � � � � � ���


�� Overhead and Latency � � � � � � � � � � � � � � � � � � � � � � � ���


�� Fine�Grain Multicomputer Programming � � � � � � � � � � � � � � � ���


�� The Next Frontier � � � � � � � � � � � � � � � � � � � � � � � � � ���

�� Bibliography ���



ix

List of Figures

��� Block diagram of a multicomputer � � � � � � � � � � � � � � � � � � � �

��� Possible behavior of a reactive process � � � � � � � � � � � � � � � � � � �

��� Representation of a process � � � � � � � � � � � � � � � � � � � � � � � �

��� Operation of a Reactive�C kernel � � � � � � � � � � � � � � � � � � � � ��

��� Speci�cation of the factorial process � � � � � � � � � � � � � � � � � � � ��

��	 The divide step � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��
 The combine step � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Mapping a binary tree to a multicomputer � � � � � � � � � � � � � � � � ��

��� Process structure comparison � � � � � � � � � � � � � � � � � � � � � � ��

��� Structure of a l�layer message bu�er � � � � � � � � � � � � � � � � � � ��

��� An example of a FIFO queue � � � � � � � � � � � � � � � � � � � � � � ��

��	 Expansion steps in the merge�sort program � � � � � � � � � � � � � � � � ��

��
 Giving away a list for the third time �stack grows up� � � � � � � � � � � � ��

��� Getting an out�of�sequence reply � � � � � � � � � � � � � � � � � � � � ��

��� Structure of a channel in a channel�based CSP implementation � � � � � � � ��

��� Control �ow for heavy�weight processes � � � � � � � � � � � � � � � � � �	

���� Control �ow for light�weight processes � � � � � � � � � � � � � � � � � � �


��� Elements of a computation � � � � � � � � � � � � � � � � � � � � � � � ��

��� A process group � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

��� Partitioning into two parts � � � � � � � � � � � � � � � � � � � � � � � 	�

��� A multicomputer shared by two users � � � � � � � � � � � � � � � � � � 	�

��	 Host message�system implementation � � � � � � � � � � � � � � � � � � 	�

��
 Cosmic Environment with uni�ed resource management � � � � � � � � � � 	�

	�� Representation of a system � � � � � � � � � � � � � � � � � � � � � � � 
�

	�� Representation of a system composed of elements � � � � � � � � � � � � � 
�

	�� Closing a system into a closed graph � � � � � � � � � � � � � � � � � � � 
�



x

��� Arc source and destination � � � � � � � � � � � � � � � � � � � � � � � ��

��� Element inputs and outputs � � � � � � � � � � � � � � � � � � � � � � ��

��� Arcs a��� form a path of length � � � � � � � � � � � � � � � � � � � � � ��

��� Arcs a��� form a circuit of length � � � � � � � � � � � � � � � � � � � � ��

��� Example of a knot�containing system � � � � � � � � � � � � � � � � � � ��

��	 A circuit to evaluate satis�ability of a set of clauses � � � � � � � � � � � � ��

��
� Mapping equations into physical system � � � � � � � � � � � � � � � � � ��

��

 Element�simulator operation for an element with a non�zero delay � � � � � � ��

��
� Element�simulator operation for an element with a zero delay � � � � � � � � �


��
� A system that contains all three types of slices � � � � � � � � � � � � � � ��

��
� Representation of an arc � � � � � � � � � � � � � � � � � � � � � � � � ��

��
� Replacing tape by messages � � � � � � � � � � � � � � � � � � � � � � ��

��
� Example of deadlock in an event�driven simulation � � � � � � � � � � � � ��

��
� Model of a sequential simulator � � � � � � � � � � � � � � � � � � � � � ��

��
� A researcher submitting a grant � � � � � � � � � � � � � � � � � � � � � ��

��
	 Comparison between three simulators � � � � � � � � � � � � � � � � � � �


���� An example of a continuous system � � � � � � � � � � � � � � � � � � � ��

��
 A logic circuit whose behavior is di�erent from its Boolean network � � � � � ��

��� A number of circuit simulators and their relationship � � � � � � � � � � � ��

��� Domain of the generic simulator model � � � � � � � � � � � � � � � � � ��

��� Process structure and a simple example of connectivity � � � � � � � � � � ��

��� A sample circuit and a possible mapping to a multicomputer � � � � � � � � 	�

��� Structure of a sweep�mode simulation � � � � � � � � � � � � � � � � � � 
��

��� Structure of a real�mode simulation � � � � � � � � � � � � � � � � � � � 
��

��� Three phases of the oscillating multiplier � � � � � � � � � � � � � � � � � 
��

��	 A ��	
�gate multiplier� sweep�mode � � � � � � � � � � � � � � � � � � � 
��

��
� A circuit containing a dynamic hazard condition � � � � � � � � � � � � � 

�



xi

���� A �����gate multiplier for ���s on an iPSC	
 � � � � � � � � � � � � � � ���

���� A �����gate multiplier for ���s on an iPSC	� � � � � � � � � � � � � � � ���

���� Combining the iPSC	
 and iPSC	� graphs with sequential timing aligned � � ���

���� A �����gate multiplier for ����s on a Symult 
��� � � � � � � � � � � � � ���

���� A ����gate multiplier for ����s on an iPSC	� � � � � � � � � � � � � � � ���

���� A ����gate multiplier for ����s on an iPSC	
 � � � � � � � � � � � � � � ���

���� A ����gate multiplier for ����s on a Symult 
��� � � � � � � � � � � � � � ���

���	 E�ect of increased latency on simulation performance � � � � � � � � � � � ��	

���
 A �����gate multiplier for ����s on a Symult 
��� 
 fast oscillation � � � � ��


���� Modi�ed La�er Curve � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� An event that invalidates another event � � � � � � � � � � � � � � � � � ���

��� Layering in the hybrid�� simulator � � � � � � � � � � � � � � � � � � � ���

��� Expected performance of the hybrid�� simulator � � � � � � � � � � � � � ��


��� A �����gate multiplier for ����s on a Symult 
��� � � � � � � � � � � � � ���

��� A �����gate multiplier for ����s on a Symult 
��� with random placement � � ���

��� A faster oscillating �����gate multiplier for ����s on a Symult 
��� � � � � � ���

��� A �����gate multiplier for ����s on a Symult 
��� � � � � � � � � � � � � ���

��	 A �����gate multiplier for ����s on a Symult 
��� with random placement � � ��


��
 A faster�oscillating �����gate multiplier for ����s on a Symult 
��� � � � � � ��


���� A ����gate multiplier for ����s on a Symult 
��� � � � � � � � � � � � � � ���

	�� A FIFO consisting of � units � � � � � � � � � � � � � � � � � � � � � � ���

	�� A C�element FIFO consisting of � units � � � � � � � � � � � � � � � � � ���

	�� A ��� array of self�oscillating FIFO units � � � � � � � � � � � � � � � � ���

	�� Sweep�mode CMB�variant simulation of an �����gate clock network � � � � � ���

	�� An �����gate clock network for ���s on a Symult 
��� � � � � � � � � � � � ���

	�� An �����gate clock network for ���s on a Symult 
��� � � � � � � � � � � � ��	

	�� A ����gate clock network for 
���s on a Symult 
��� � � � � � � � � � � � ��




xii

��� A ����gate clock network for ����s on a Symult ���� � � � � � � � � � � � ���

��� A �	�gate clock network for 	���s on a Symult ���� � � � � � � � � � � � � ���

���� A ���unit tree ring � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� A ��to�� pulse�distributor circuit � � � � � � � � � � � � � � � � � � � � ���

���� A �����gate tree network for 	��s on a Symult ���� � � � � � � � � � � � � ���

���� A �����gate tree network for 	��s on a Symult ���� � � � � � � � � � � � � ��	

���
 An 
	��gate tree network for ���s on a Symult ���� � � � � � � � � � � � � ���

���� An 	���gate tree network for ����s on a Symult ���� � � � � � � � � � � � ���

���	 An �
��gate tree network for ����s on a Symult ���� � � � � � � � � � � � ���

���� Circuit for one latch � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

���� Sweep�mode CMB�variant simulation of an �����gate FIFO loop � � � � � � �	�

���� An �����gate FIFO loop for ����s on a Symult ���� � � � � � � � � � � � �	�

���� An �����gate FIFO loop for ����s on a Symult ���� � � � � � � � � � � � �	


���� A �	��gate FIFO loop for ����s on a Symult ���� � � � � � � � � � � � � �	�

���� A �		�gate FIFO loop for ����s on a Symult ���� � � � � � � � � � � � � �		

��� Two idealized multicomputer evolution paths � � � � � � � � � � � � � � � �	�

��� Multicomputer cost space � � � � � � � � � � � � � � � � � � � � � � � �	�

��� Intersection with A plane � � � � � � � � � � � � � � � � � � � � � � � �	�

��
 Intersection with B�plane � � � � � � � � � � � � � � � � � � � � � � � ���

��� Two idealized multicomputer evolution paths in the path space � � � � � � � ���



xiii

List of Program Listings

��� Kernel of Reactive�C programming environment � � � � � � � � � � � � � � ��

��� Reactive�C factorial program � � � � � � � � � � � � � � � � � � � � � � ��

��� Factorial main program � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Heavy�weight factorial program � � � � � � � � � � � � � � � � � � � � � ��

��� Program fragments for mapping a binary tree to a multicomputer � � � � � � ��

��� The carrier program for building FIFO � � � � � � � � � � � � � � � � � ��

��� The merge�sort program � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 An incorrect implementation of the C read function � � � � � � � � � � � � �	

��� A correct implementation of the C read function � � � � � � � � � � � � � �


��� Three representations of � in double�precision �oating�point�number format � 	�

��� Three layouts of a structure� in order of increasing byte address � � � � � � � 	�

��� Structure of a FRAGMENT � � � � � � � � � � � � � � � � � � � � � � � � ��

��� An inverter in a CMB�variant simulator � � � � � � � � � � � � � � � � � ��

��� An XOR�gate in a CMB�variant simulator � � � � � � � � � � � � � � � � ��

��� An OR�gate in a CMB�variant simulator � � � � � � � � � � � � � � � � � ��

��	 CMB�variant QUEUE
FRAGMENT function � � � � � � � � � � � � � � � � � ��

��� CMB�variant TRIM
FRAGMENT function � � � � � � � � � � � � � � � � � � ��

��
 CMB�variant OUTPUT function � � � � � � � � � � � � � � � � � � � � � ��

��� CMB�variant main loop � � � � � � � � � � � � � � � � � � � � � � � � ��

��� CMB�variant inde�nitely�lazy main loop � � � � � � � � � � � � � � � � � ��

���� CMB�variant demand�driven main loop � � � � � � � � � � � � � � � � � ���

���� CMB�variant main loop as a light�weight process � � � � � � � � � � � � � ���

���� Sequential�simulator event structure � � � � � � � � � � � � � � � � � � � ��


���� An inverter in sequential simulator � � � � � � � � � � � � � � � � � � � ���

���� The SEND
EVENT function in sequential simulator � � � � � � � � � � � � � ���

���	 An OR�gate in sequential simulator � � � � � � � � � � � � � � � � � � � ���



xiv

���� Sequential�simulator main loop as a light�weight process � � � � � � � � � � ���

���� A SEND�EVENT function that reduces glitches � � � � � � � � � � � � � � � ���

��� Hybrid�� main loop � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Hybrid�� embedded message system � � � � � � � � � � � � � � � � � � � ���

��� Generic logic�gate handler for hybrid�� � � � � � � � � � � � � � � � � � � ��	

��	 Hybrid�� main loop � � � � � � � � � � � � � � � � � � � � � � � � � � ���



Section ���� Motivation �

Chapter � Introduction

Section ��� Motivation

Advances in applications� programming methods� and computer architectures are inextrica�

bly intertwined� Architectures and programming methods develop in response to demands

from applications� they also give rise to new applications� Simulation is an application

that contributes to and bene�ts from the development of faster and more economical com�

puters� Discrete�event simulation can produce a broad variety of interaction patterns and

timing relationships� it is� therefore� a model application for the study of multicomput�

ers and reactive�process programming� This research is a study of both reactive�process

programming and distributed discrete�event simulation on multicomputers�

COMMUNICATION NETWORK

CNC�C�C�

N computing �nodes�

Figure ��� Block diagram of a multicomputer�

A multicomputer 	Figure 
�
� is composed of a collection of node computers connected

to each other via a message�passing network� Multicomputers can be divided into three

categories by their node size�

Category
Node
Size

Memory
per Node N Examples

Coarse�grain cabinet � 
�MB ��
� Network of supercomputers

Medium�grain circuit�board � �MB 

����
 iPSC� NCUBE� Symult ��
�

Fine�grain chip � 

KB 
����
���
 Mosaic

Each node has its own private memory that is not directly accessible by other nodes� and

each node can contain multiple processes� Processes on di�erent nodes run asynchronously�

� March ����



� Chapter �� Introduction

processes within a single node are interleaved to produce the same e�ect as if they were in

di�erent nodes� Communication between processes is performed via message passing�

Section ��� History

Simulation and programming have long in�uenced each other� Although one can argue that

every computation is� in fact� a simulation of some physical or abstract process� the �rst

e�ort to provide a programming system for discrete�event simulation was the development of

Simula �	
� which was based on the Algol programming language� Discrete�event simulation

operates on a system of components �physical processes� that interact by discrete actions�

Structured languages such as Algol permit the modular representation of these components�

As such languages became available� discrete�event simulation techniques began to emerge

from the traditional event�list�oriented simulation techniques� Each Simula module contains

its own set of private data and procedures� and is� in e�ect� a process that interacts with

others to perform a simulation�

Although it was initially conceived as a simulation language� Simula became a general�

purpose� object�oriented� multiple�process programming language� The assimilation of

object�oriented and multiple�process programming concepts led to the development of CSP

�

� Smalltalk ��
� and other systems that are more closely identi�ed with programming�

Although Smalltalk was created to make programming simple� its programming model also

gave it the potential for concurrent operation of its objects� CSP was created to study

and unify diverse distributed programming constructs by using concurrent processes and

synchronous messages� Smalltalk and Simula are both object�oriented systems� CSP in�

cludes the concept of independent� interacting processes without the distraction of such

object�oriented concepts as inheritance�

Multicomputer implementations for variants of Simula ��
 and Smalltalk ���
 were shown

to be feasible and useful� Occam ���
� a CSP variant with static interprocess communication

graphs� provided a programming system for transputer�based multicomputers� However�

� March ����



Section ���� History �

most commercial multicomputers do not use language derivatives as their basic program�

ming system because the concepts of multiple�process programming also appear in operating

systems� Interprocess synchronization and communication capabilities became common in

such popular operating systems as UNIX� Although UNIX began as a system with simple

�le locks and data streams� it evolved into one in which both servers and clients abound�

and whose processes are capable of complex interaction with other processes either on the

same machine or on other machines via computer networks� Thus� when medium�grain

multicomputers with PC�sized nodes became available� the conventional process model of

multiprogramming operating systems was used�

These machines use generic� sequential programming languages� such as C� Fortran�

Lisp� and Pascal� Codes written in these languages compile into independent programs that

are run in the nodes as processes� These processes interact with each other by calling library

functions that send and receive messages� The model of a conventional operating system is

chosen because the sequential programming languages are adequate for most applications�

and also because object�oriented languages and others� such as Lisp and Prolog� can be

implemented easily on such systems� Program objects are represented by processes and

embedded processes�

Early experiments in distributed discrete�event simulation were done by Mani Chandy

and Jay Misra ���	� and independently by Randy Bryant ��
	� These approaches were seen

as variants of event�list�based sequential simulation algorithms� in which synchronization

is accomplished by message�passing� Although the degree of synchronization that exists in

most sequential simulators can be relaxed when a simulation is distributed� extra work �or

overhead� is required to maintain the necessary synchronization� Such simulators are called

conservative simulators� because the processes do not perform speculative computations�

The speculative �optimistic� approach was developed by David Je
erson ���	 to improve

the performance of simulations for the medium�grain multicomputers� His research on the

Time Warp simulator resulted in a general�purpose programming system called the Virtual

� March ����



� Chapter �� Introduction

Time System� The idea was to save the state of a process whenever the process encounters

a synchronization point� then� instead of blocking the process until the synchronization is

complete� to have the process select a possible outcome and continue to execute� When

the synchronization is �nally complete� if the outcome di�ers from the selected outcome�

the process and all those that it has since a�ected are rolled back� and process execution

restarts at the synchronization point�

Methods for reducing overhead were studied intensively because nodes in a medium�

grain multicomputer are few and expensive� However� as multicomputers evolve toward

their next incarnation � the �ne�grain multicomputers � nodes become abundant and

cheap� With a myriad of single�chip nodes� �ne�grain multicomputers promise signi�cantly

better cost�vs��performance ratios and total computing capacity than do the medium�grain

multicomputers� The Mosaic C� currently being developed at Caltech� is an example of

a �ne�grain multicomputer� While each node of the Mosaic C contains a �	�bit CPU� a

message router� and only �	 Kbytes of RAM� the entire Mosaic C will contain �	K nodes�

A number of �ne�grain� reactive�process�based programming languages have been devel�

oped in anticipation of the �ne�grain multicomputer� Among them is the Cantor notation�

which most strongly in
uenced the programming methods used in this research� �Can�

tor is being developed by W�C� Athas ��
� using a model similar to the Actor notation

����� Reactive�process programming systems are similar to CSP� but impose additional con�

straints on the operation of the processes in order to simplify the operating systems of

the �ne�grain multicomputers� Cantor also allows us to express programs in �nely divided

objects that are distributed over many small nodes�

The inversion of the cost ratio between the processor and the memory forms a new set

of ground rules for multicomputer programming� The shifting focus has strong implications

for programming in general� The memory� rather than the processor� is now the scarce com�

modity� Programming techniques that buy speed by using a large number of idle memory

cells are no longer favorable� but ones that buy speed by using idle processors are� Instead

� March ����



Section ���� Outline �

of trying to have something useful happen in every available CPU cycle in the machine�

application writers should now focus on extracting as much concurrency as possible from

the application�

In this experiment� the concept of �ne�grain� reactive�process programming in�uenced

simulation� The overhead that prompted the development of optimistic approaches for

medium�grain multicomputers was recast in a more benign role� Having this overhead

merely required the use of a larger number of inexpensive processors in the multicomputer�

and did not reduce the amount of concurrency that could be extracted from the system being

simulated� A programming system similar to Cantor was developed for this research� and

a number of conservative simulators suitable for �ne�grain multicomputers were developed�

Section ��� Outline

Since this research is a study of both programming and simulation� this thesis is divided into

two major parts� Chapters � through 	 deal with programming� and Chapters 
 through �

deal with simulation� The two parts are only loosely interdependent� and do not re�ect the

extensive two�way in�uence that exists between simulation and programming� For example�

the lazy�evaluation model of simulation guided us in the design of the x�primitives� which

are the message�handling functions of our reactive�process programming system� and the

support mechanisms in the simulator were modeled after the mechanisms of the Reactive�C

programming system�

Chapter � introduces reactive�process programming and the Reactive�C implementation

of its basic mechanisms� Reactive�C is merely the ordinary C programming language used

with a particular programming discipline� It is useful for exposing the simplicity of reactive�

process programming systems 
 a level of simplicity that is necessary for any programming

system for �ne�grain multicomputers� It is not the best tool� however� for studying reactive�

process programming� Therefore� a slightly higher�level programming system is used in

Chapter � to demonstrate the generality and simplicity of reactive�process programming�

� March ����



� Chapter �� Introduction

Chapter � describes the Cosmic Environment� a programming environment that embodies

the reactive�process programming discipline�

The discussion of simulation begins in Chapter � with the model of simulation� The

subject system being simulated is recursively de�ned to be a collection of interacting systems

or elements� and elements are simulated by a set of simulators that interact by message�

passing� The condition for progress is discussed in detail� a generic simulator is described�

and the derivation of a variety of simulators is shown� Chapter � describes a direct im�

plementation of the generic simulator using the Reactive�C notation� Logic circuits are the

subject of choice� because they are diverse and because they expose properties of the simu�

lators by imposing few processing requirements of their own� The performance we observed

is shown to be that which was expected	 The time required for a simulation decreases

linearly as the number of computing nodes increases� Comparing the performance to the

sequential simulator shows that the overhead does not interfere with the ability to utilize

the concurrency available in the system� Chapter 
 introduces new simulators that do not

have an overhead when only one node is used� However� the speed increase is no longer

linear	 Performance converges to that of the previous simulator as more nodes are used�

Although only one test circuit was used throughout these two chapters� additional results

on a few other circuits are presented in Chapter �� The results are all similar� even though

the circuits being simulated are quite di�erent�

Finally� Chapter 
 defends the rationale for simulation on �ne�grain multicomputers�

and discusses some of its implications on programming and simulation�

� March ����



Section ���� De�nition of a Reactive Process �

Chapter � Reactive�Process Programming

Reactive�process programming is a discipline in which processes are inactive until they are

triggered by inputs� When suitable inputs are present� a process and its inputs will react

in a single atomic action in which the inputs are consumed� Reactive�process programs can

be written in speci�cally designed notations such as Cantor� they can also be written in

vanilla notations such as C� Although Cantor hides many rough edges to make programming

simpler� C is perhaps better in exposing the mechanics of reactive�process programming� We

will use C for our discussion� and assume that readers are familiar with C�

A reactive�process program can be written as a simple combination of data structure

and function� as a full��edged heavy�weight process with its own process context� or as a

complex multi�tasking operating system� The diversity arises from a small and elegant set

of properties that allows reactive�process programming systems with very di�erent capa�

bilities to be built on top of one another in a consistent manner� Since the tailoring of a

programming system to speci�c requirements is made simple� an application no longer has

to be twisted around the system� instead� the system can be crafted to suit the intrinsic

needs of the application�

In this chapter� we will describe reactive�process programming in its simplest form� the

next chapter will be devoted to examples of building more�complex programming systems

on top of simpler ones�

Section ��� De�nition of a Reactive Process

A reactive process can be characterized by its two run�states	

Waiting� While a process is waiting� it is completely inert� The process will remain

in the waiting state as long as there is no message ready for it to receive�

otherwise� the process will be run� taking the earliest�arriving message as its

input�

� March ����



� Chapter �� Reactive�Process Programming

Running� While a process is running� it cannot receive any more messages� A process

can run for only a �nite period of time before it returns to the waiting state�

While a process is running� it can�

a� modify its internal state�

b� send messages�

c� instantiate other processes� or

d� self�destruct�

Message bu�ers remain attached to a process until they are explicitly released

by the process�

msg

msg

msg

msg

runwaitrunwait

time

state

w

12345
12345

12345
12345

123456
123456

ait

Figure ��� Possible behavior of a reactive process�

The reactive�process programming environment has these additional properties�

�� Processes do not exist until they are instantiated�

	� Processes persist until they self�destruct�

� March ����



Section ���� Reactive�C Programming System �

�� Each process has a unique process ID�

�� Messages are addressed by the destination�process ID�

�� Message order between any pair of processes is preserved�

�� Messages not immediately consumed are queued�

�� Messages with a valid destination will eventually be delivered�

�� Message bu	ers are allocated by calling an allocate function�


� Message bu	ers can be released by calling either a deallocate or a send function�

Section ��� Reactive�C Programming System

Reactive�C is a minimalist implementation of a reactive�process programming environment

using the C programming language� As shown in Figure ���� a process in Reactive�C is

represented by a process structure that includes two pointers
 a function pointer and a

data pointer� The function pointer references a C function� the current entry function of

the process� The entry function is called when a process is run�

data f�

f�

f�

f�
data ptr current entry

function of
the process

process structure

entry ptr

set of functions

Figure ��� Representation of a process�

The data pointer references an arbitrary data structure maintained by the process�

Both the data structure and the two pointers are state variables of the process that owns

them� and the process can modify them at any time while it is running� When a process

starts to run� the triggering message and the process structure are passed to the entry

� March ����



�� Chapter �� Reactive�Process Programming

kernel kernelkernel

queue

message

identify�process�mesg��getmessage��� ��proc��entry��proc	mesg��

Figure ��� Operation of a Reactive�C kernel�

function as function arguments� A process returns to the waiting state by returning from

the entry function�

Listing ��� is a sample kernel loop of the Reactive�C programming environment� As

shown in Figure ���� the kernel repeatedly gets a message from the message queue� identi�es

the receiver� and calls the entry function of the receiving process�

� kernel�loop��
� �
� char �mesg	

 PROC �proc	

� while���
� �

 mesg � getmessage��	
� proc � identify�process�mesg�	

�� ��proc��entry��proc�mesg�	
�� �
�� �

Listing ��� Kernel of Reactive�C programming environment�

Listing ��� contains an example of a reactive�process program that computes a factorial in

logarithmic time on an arbitrarily large machine�

� typedef struct � REF ID	 int HI� LO	 � FAC�DATA	

� fac���proc�mesg�

 RC�PROC �proc	 FAC�DATA �mesg	
� �
� FAC�DATA �mesg�	
� int half	


� if�mesg��HI �� mesg��LO�
�� �
�� rc�send�mesg��ID�mesg�	
�� rc�exit��	
��
�
 � else

� March ����



Section ���� Reactive�C Programming System ��

�� �
�� half � �mesg��HI 	 mesg��LO
��

��
�� mesg� � �FAC�DATA �
 rc�malloc�sizeof�FAC�DATA



�� mesg���ID � rc�myid�


�� mesg���HI � mesg��HI

�� mesg���LO � half	�

�� rc�spawn�fac���mesg�


��
�� mesg� � �FAC�DATA �
 rc�malloc�sizeof�FAC�DATA



�� mesg���ID � rc�myid�


�� mesg���HI � half

�� mesg���LO � mesg��LO

�� rc�spawn�fac���mesg�


��
�� proc��data � �char �
 mesg

�� proc��entry � fac��

�� �
�� �

�� fac���proc�mesg

�� RC�PROC �proc
 FAC�DATA �mesg

�� �
�� ��FAC�DATA �
�proc��data

��LO � mesg��LO

�� rc�free�mesg


�� proc��entry � fac��

�� �

�� fac���proc�mesg

�� RC�PROC �proc
 FAC�DATA �mesg

�� �
�� ��FAC�DATA �
�proc��data

��LO �� mesg��LO

�� rc�free�mesg


�� rc�send���FAC�DATA �
�proc��data

��ID� proc��data


�� rc�exit�


�� �

Listing ��� Reactive�C factorial program�

The three functions in Listing ��� �fac��� fac��� and fac��� are in a suitable form for

entry functions because their arguments are the process structure and the input message�

and because they are assured to return in �nite time� However� they do not represent actual

processes� they are merely message	handling functions for processes that reference them by

their entry pointers�

Let a factorial process be a process that references any of the three functions� Initially�

a factorial process waits for a message whose structure is de�ned by the C data structure

called FAC�DATA� The message is called a FAC�DATA message�

� March ����



�� Chapter �� Reactive�Process Programming

ID LO HI

ID LO HIcaller

caller

result

fac

fac

Figure ��� Speci�cation of the factorial process�

� typedef struct � REF ID� int LO� HI� � FAC�DATA�

ID� Data structure containing the caller�s process ID�

LO� Low end of a number range�

HI� High end of a number range�

After receiving the message �Figure ����� the factorial process computes the product

of all integers within the closed interval	 
LO� HI�� The factorial process stores the product

in the LO �eld of another FAC�DATA message� which is returned to the requester� Thus�

sending a FAC�DATA message with a 
 in the LO �eld to the factorial process will cause the

the factorial of HI to be computed�

To compute the factorial of a value� the requesting process �caller� instantiates a new

process whose entry pointer contains the address of the fac�� function� We shall call this

new process the fac�� process� The factorial is computed by a divide�and�conquer method

that iterates using the di�erence between HI and LO�

� if�mesg	
HI �� mesg	
LO


When the fac�� process receives its �rst message� it compares the two ends of the

interval described in the message� If HI equals LO� then there is only one integer in the

interval� If HI is � �therefore less than LO� which must be 
 at this point�� then the factorial

of � is to be computed� In either case� the correct reply value is equal to the number already

contained in LO�

�� rc�send�mesg	
ID�mesg
�
�� rc�exit�
�

� March ����



Section ���� Reactive�C Programming System ��

Therefore� when LO � HI� the message is bounced back to the caller� untouched� The

rc�send function called in line �� causes the message bu�er mesg to be sent to the process

whose ID is mesg��ID� which is� in this case� the ID of the caller� Since rc�send dissociates

the message bu�er from the process� the process does not have to release it explicitly before

the process is terminated by calling the rc�exit function�

�� half � �mesg��HI � mesg��LO�	
�

d
e

C

d
e

C

d
e

C

fac��fac��fac��

Figure ��� The divide step�

If HI is greater than LO� the fac�� process computes a midpoint that divides the in�

terval into two smaller intervals� Two more fac�� processes are created to work on these

two intervals �Figure ��	
� These processes are called the siblings of this process� and an

initialization message is sent to each sibling as it is created�

�� mesg
 � �FAC
DATA �� rc
malloc�sizeof�FAC
DATA���

Message bu�ers are allocated by the rc�malloc call� The function rc�malloc has the

same semantics as the malloc function in C� Depending on the implementation� rc�malloc

can be identical to C malloc� can be built on top of C malloc� or can be an entirely di�erent

allocator that gets space from a dedicated memory region�

�� mesg
��ID � rc
myid���

� mesg
��HI � mesg��HI�

� mesg
��LO � half���

� March ����



�� Chapter �� Reactive�Process Programming

After a message bu�er has been allocated� it is �lled with data to be sent to a sibling�

Lines ���	� are for the sibling that handles the upper half of the interval� The rc�myid

function returns the ID of the process� The process becomes the caller of its siblings after

its ID has been stored and sent in the ID �elds of the initialization messages� The fac��

process will receive one reply from each of its siblings� When two replies are received� the

process multiplies the values contained in their LO �elds and returns the product to its own

caller�

�� rc�spawn�fac���mesg���

Processes are created with the rc�spawn function call� At line 		� a new process

structure is created� the entry pointer of the new process is initialized to reference the

function fac�� 
�rst parameter to the rc�spawn function�� and the message mesg� 
second

parameter to the rc�spawn� is sent to the new process as its �rst input message�

�	 proc
�data � �char 
� mesg�
�� proc
�entry � fac���

d
e

C

d
e

C

d
e

C

�
�

fac��fac��

Figure ��� The combine step�

The process must now return from the fac�� function in order to wait for the replies

from its siblings 
Figure 	���� The process sends its reply using the same message bu�er

that it received� but to prevent losing the reference to that message bu�er� it assigns the

message bu�er into the data pointer of its process structure� Furthermore� since the process

� March ����



Section ���� Reactive�C Programming System ��

is now waiting for a reply message instead of a factorial request message� the entry pointer

is changed to reference the function that handles the �rst reply message� By storing the

address of the fac�� function into the entry �eld� the fac�� process becomes a fac��

process� The process then returns from the fac�� function to indicate that it is going back

to the waiting state�

�� fac���proc�mesg�
�� RC�PROC 	proc
 FAC�DATA 	mesg

�� �
�
 ��FAC�DATA 	��proc��data����LO � mesg��LO

�� rc�free�mesg�

�� proc��entry � fac��

�� �

The fac�� process waits for the �rst reply message� When it arrives� its reply value is

simply copied into the LO �eld of the original message bu�er� since the process needs a value

from each reply before the product can be computed� The reply message bu�er from the

sibling is no longer needed and is released by calling rc�free� The process then becomes a

fac�� process�

�� ��FAC�DATA 	��proc��data����LO 	� mesg��LO

�� rc�free�mesg�

�
 rc�send���FAC�DATA 	��proc��data����ID� proc��data�

�� rc�exit��


When the fac�� process gets the second reply message� the returned value is multiplied

into the LO �eld of the original message bu�er� The reply message bu�er is also freed� The

original message bu�er� now containing the product of the two reply values� is sent back to

the caller� Lastly� the process terminates by calling rc�exit�

Listing ��� is a sample program that calls the factorial program� It waits for an in�

put number� computes the factorial of the input number� prints the factorial� and then

terminates�

� rc�main�proc�mesg�
� RC�PROC 	proc

� char 	mesg

� �
� int hi

� FAC�DATA 	mesg�



 rc�free�mesg�


� March ����



�� Chapter �� Reactive�Process Programming

�� printf��Enter number� ��� scanf���d�	
hi��

�� mesg� � �FAC
DATA �� rc
malloc�sizeof�FAC
DATA���
�� mesg���ID � rc
myid���
�� mesg���HI � hi�
�� mesg���LO � ��
�� rc
spawn�fac
�	mesg���

�� proc��entry � main
reply�
�� �

�� main
reply�proc	mesg�
�� RC
PROC �proc� FAC
DATA �mesg�
�� �
�� printf���d�n�	mesg��LO�� rc
free�mesg�� rc
exit���
�� �

Listing ��� Factorial main program�

The basic Reactive�C primitives are summarized below�

char �rc�malloc��� Allocates a message bu�er�

rc�free��� Releases a message bu�er�

rc�send��� Sends and releases a message bu�er�

REF rc�myid��� Returns the ID of the calling process�

rc�spawn��� Instantiates a new process�

rc�exit��� Terminates the calling process�

Deliberately omitted from the list is a function that receives a message� In Reactive�C� a

message is implicitly requested when a process is created or when a process returns from its

entry function� The request is ful�lled when its current entry function is called� The other

unusual aspect of the Reactive�C primitives is that rc�spawn does not return the ID of the

new process� thus� the only direct way for a parent process to get the ID of the sibling is to

receive the ID from a message sent by the sibling�

Reactive�C is a minimalist reactive�process programming system� 	The kernel code for

a single�processor system is only 
�� lines long�
 Since the parent process can always send

its ID to the sibling during spawn� and since the sibling can always send its ID back to its

parent via a message� it is not necessary for the spawn function in a minimalist system to

return an ID� The goal of Reactive�C is to create a system that is minimal but that is not

� March ����



Section ���� Reactive�C Programming System ��

necessarily easy on the programmer� However� a close relative of the Reactive�C turns out to

be well suited for writing event�driven simulators� Another derivative� the Reactive Kernel�

proves to be very useful in implementing the inner kernel and the handlers of multicomputer

operating systems� Details of the Reactive Kernel can be found in the Master�s thesis of

Jakov Seizovic ����

Reactive�C is strongly in	uenced by the Cantor programming language� which is a


ne�grain reactive�process programming system in which process spawning uses futures to

immediately return the sibling ID� The properties and programming paradigms related

to 
ne�grain reactive�process programming are explored in detail the Doctoral thesis of

W�C� Athas �����

In the next chapter� we will focus on the universality of reactive�process programming� a

property that is best illustrated using full�	edged� coarse�grain reactive processes� Although

we will be leaving the Reactive�C environment for now� we should bear in mind that duality

exists between a Reactive�C process and its heavy�weight counterpart� What is applicable for

one is equally applicable for the other� Heavy�weight programs are used for the remainder

our discussion because they are simpler to describe�

Universality of a programming system requires the programming system to e
ciently

support a large variety of other programming systems� Layering� or the implementation

of new functions on top of basic functions� is the principal means by which universality is

achieved�

� March ����



�� Chapter �� Reactive�Process Layers

Chapter � Reactive�Process Layers

In contrast to a light�weight Reactive�C process� which has only a function and a data

structure� we can generally consider a heavy�weight process to be one that� although its

structure is machine dependent� has its own code� data� stack� and thread of control� We

can run heavy�weight reactive processes under the Reactive�C programming environment

with minimal overhead by using a dedicated� light�weight reactive process� called a handler�

In one possible arrangement� the data pointer of a handler references a table containing

three segment pointers �for the code� data� and stack segments� and a context structure

�containing the frozen records of a suspended heavy�weight process�� When a message is

received by a handler� the entry function for the handler performs a context switch to

resume the execution of the heavy�weight process� When the heavy�weight process calls a

receive function� it saves the process context� restores the system context� and returns to

the handler� The handler returns from its entry function to request a new message�

In this manner� the combination of the heavy�weight process and its handler appears to

the kernel as an ordinary Reactive�C process� The cost of supporting a heavy�weight process

under a handler� as opposed to supporting it under the kernel� is no more than one extra

level of function call� A handler for a heavy�weight process is an example of layering� A

handler that supports multiple heavy�weight processes is used in the Reactive Kernel node

operating system for running normal user processes�

Section ��� Simple Layers

����� The bottom layer �b�layer�

As we did for Reactive�C� we shall establish the groundwork for the discussion of universality

and layering with an example� Listing ��� contains a heavy�weight reactive�process program

that computes a factorial in the same manner as the Reactive�C example� We shall refer to

the programming system used in this example as the bottom� or b�layer�

� typedef struct � int pn� pp� int HI� LO� � FAC�DATA�

� main�	

� March ����



Section ���� Simple Layers ��

� �
� FAC�DATA �data�

� � FAC�DATA �mesg � 	FAC�DATA �
 b�recvb	
�
� FAC�DATA �mesg��

 int half� k�

�� if	mesg��HI �� mesg��LO

�� �
�� b�send	mesg�mesg��pn�mesg��pp
�
�� exit	�
�

�� � else
�� �
�� half � 	mesg��HI � mesg��LO
���
�
 k � mypid	
�nnodes	
 � mynode	
�

�� mesg� � 	FAC�DATA �
 b�malloc	sizeof	FAC�DATA

�
�� mesg���pn � mynode	
�
�� mesg���pp � mypid	
�
�� mesg���HI � mesg��HI�
�� mesg���LO � half���
�� spawn	�pfac�� 	��k��
�nnodes	
� 	��k��
�nnodes	
� ��
�
�� b�send	mesg�� 	��k��
�nnodes	
� 	��k��
�nnodes	
 
�

�
 mesg� � 	FAC�DATA �
 b�malloc	sizeof	FAC�DATA

�
�� mesg���pn � mynode	
�
�� mesg���pp � mypid	
�
�� mesg���HI � half�
�� mesg���LO � mesg��LO�
�� spawn	�pfac�� 	��k��
�nnodes	
� 	��k��
�nnodes	
� ��
�
�� b�send	mesg�� 	��k��
�nnodes	
� 	��k��
�nnodes	
 
�

�� data � mesg�
�� �
�
 �

�� � FAC�DATA �mesg � 	FAC�DATA �
 b�recvb	
�

�� data��LO � mesg��LO�
�� b�free	mesg
�
�� �

�� � FAC�DATA �mesg � 	FAC�DATA �
 b�recvb	
�

�
 data��LO �� mesg��LO�
�� b�free	mesg
�
�� b�send	data�data��pn�data��pp
�
�� exit	�
�
�� �
�� �

Listing ��� Heavy�weight factorial program�

� March ����



�� Chapter �� Reactive�Process Layers

A comparison between the Reactive�C example and the b�layer example reveals numer�

ous similarities� The three entry�function candidates are replaced by three program blocks�

each block is headed by a line that waits for and receives a message�

� � FAC�DATA �mesg � �FAC�DATA �� b�recvb���

Instead of messages being passed to it as function arguments� a b�layer process must

perform an explicit b�recvb call to get a message� The b�recvb call suspends the process

until a message arrives� The message is then returned to the process by the b�recvb

function�

	 typedef struct � int pn
 pp� int HI
 LO� � FAC�DATA�

A b�layer process is identi�ed by its node and pid pair rather than by just a REF value�

There is no reason why it should not use the same single�value representation that Reactive�

C uses� except that heavy�weight processes require better control over process placement

because they take up a great deal of memory� Thus� wherever ID was used� it is replaced

with the node and pid pair�

	� k � mypid���nnodes�� 
 mynode���

�� spawn��pfac�
 ���k
���nnodes��
 ���k
���nnodes��
 ����
�� b�send�mesg�
 ���k
���nnodes��
 ���k
���nnodes�� ��

�� spawn��pfac�
 ���k
	��nnodes��
 ���k
	��nnodes��
 ����
�� b�send�mesg�
 ���k
	��nnodes��
 ���k
	��nnodes�� ��

Listing ��� Program fragments for mapping a binary tree to a multicomputer�

Both b�send and spawn need node and pid as their arguments� In order to give a

process better control over the placement of its siblings� a process is allowed to de�ne the

node and pid of the new processes it creates� The three program fragments shown in Listing

��	 map a tree structure onto a multicomputer such that if the tree is balanced� the number

of processes in any two nodes will di
er by no more than ��

As shown in Figure ���� the tree is �rst mapped to a linear array such that a process with

an ID of �node�pid� on a multicomputer with N nodes will have an index of k � pid�N

	 node� The two siblings of the process will have an index of 
k	� and 
k	
� respectively�

The list is than folded into the multicomputer using the ��
 and the �

 operators�

� March ����



Section ���� Simple Layers ��

���

�������������

	
��

�

�

�

pid
node

� � � � �

k
�k � �

�k � �
Figure ��� Mapping a binary tree to a multicomputer�

The functions mypid� mynode� and nnodes return the pid of the process� the node of

the process� and the number of nodes in the machine
 The spawn function creates a process

whose program �le name is speci�ed in the �rst argument� and whose ID is speci�ed in the

second and third arguments
 The program �le in this case is named pfac
 The �rst process

to be spawned by the caller should have an ID of �����


data

entry

code seg ptr

data seg ptr

stack seg ptr

saved SP

saved PC

saved msg

saved msg

data

entry

heavy�weight

var �data

process
stack

next action

context switch
function

next entry
function
�� fac��

light�weight

Figure ��� Process structure comparison�

The equivalence between the light�weight and heavy�weight processes is most obvious

when the process structures of the two factorial processes are compared at the time that they

are both waiting for their �rst reply message �Figure �
��
 The light�weight factorial process

retains its message bu�er in the data pointer of its process structure� the heavy�weight

factorial process retains its message bu�er in a pointer located on its program stack
 The

� March ����



�� Chapter �� Reactive�Process Layers

light�weight factorial process speci�es its next action with the entry pointer of its process

structure� the heavy�weight factorial process speci�es its next action with the program

counter stored in its context structure�

The basic b�layer primitives can be summarized in the following list� The set is minimal�

given the decision that processes are allowed to directly control process placement�

char �b�malloc��� Allocates a message bu�er�

b�free��� Releases a message bu�er�

char �b�recvb��� Receives a message�

b�send��� Sends and releases a message bu�er�

int mynode��� Returns the node of the calling process�

int mypid��� Returns the pid of the calling process�

int nnodes��� Returns the number of nodes in the machine�

spawn��� Instantiates a new process�

exit��� Terminates the calling process�

����� The length�carrying layer �l�layer�

We shall introduce the general concept of layering by a very simple example� We will create

a new set of functions� the l�layer functions� that are parallel to the b�layer functions with

the exception that l�layer functions contain an additional function for accessing the length

of a message bu�er� To store the length information� we will make each message bu�er a

little larger than it needs to be� and store the length information in the extra space�

header body

bu�er address seen by l�layer programs

bu�er address seen by b�layer

1234
1234

programs

Figure ��� Structure of a l�layer message bu�er�

That extra space is placed at the front of each message bu�er and is called the header

of the message� the rest of the message is called the body� We can hide the header by

having l�layer functions work only with pointers to the body of the message� As a result�

the l�layer functions become a super set of the b�layer functions�

� March ����



Section ���� Simple Layers ��

� typedef struct � int length� � HEADER�
� �define BODY�OF�h	 �h
sizeof�HEADER		 �� given header
 find body ��
� �define HEAD�OF�b	 �b�sizeof�HEADER		 �� given body
 find header ��

The HEADER structure shown above de�nes the content of the header for an l�layer

message bu�er� The only �eld in this header is an integer that contains the length of the

message body� In order to allow all data types in the message body� headers should normally

be padded to the maximum data alignment requirement of the hardware� In the interest of

simplicity� however� padding is neglected for our examples�

� char �l�malloc�n	
� int n�
� �
� char �p�

�� p � b�malloc�n 
 sizeof�HEADER		�
�� ��HEADER �	 p	��length � n�
�� return�BODY�OF�p		�
�� �

�� char �l�recvb�	 � return�BODY�OF�b�recvb�			� �

The two functions that return message bu�ers � receive and allocate � call the cor�

responding b�layer functions to get message bu�ers� When one is obtained� the pointer to

the body of the bu�er is returned by the functions� In addition� the l�malloc function

stores the bu�er length into the message header before it returns� Similarly� a function that

takes a message bu�er as input has to locate the real beginning of the message bu�er before

passing it to the corresponding b�layer function�

�� l�free�p	 char �p� � b�free�HEAD�OF�p		� �

�� l�send�p
node
pid	
�� char �p�
�� int node
 pid�
�� �
�� b�send�HEAD�OF�p	
 node
 pid	�
�� �

�� l�length�p	
�� char �p�
�� �
�� return���HEADER �	HEAD�OF�p		��length	�
�� �

This is the simplest application of layering� it does not change the message properties

in any way� By adding more �elds to the header structure� we can just as easily include any

� March ����



�� Chapter �� Reactive�Process Layers

information that we would like to send along with a message� such as length of the message

bu�er� message type� and sender node and pid�

����� The non�blocking�receive layer �nb�layer�

A process running in a reactive�process programming environment should not monopolize

the processor by running nonstop for long periods between receive calls� for if a process does

not call a receive function� other processes in the same node will not get a chance to run�

A conventional multi�tasking operating system makes scheduling fair by interrupting a

long�running process with a timer in order to wrest control away from a process� The same

thing can be done in a Reactive�C implementation of a heavy�weight programming system by

treating a timer�interrupt mechanism � as a process resource� A process� therefore� includes

an interrupt mechanism and an interrupt service routine� When a process is interrupted by

the timer� the interrupt service routine of the process calls a receive function to relinquish

control�

A timer�interrupt is just one of the ways to make a process call a receive function

periodically� While a timer may still be needed as a backup mechanism to stop runaway

processes� the preferred method is to convert a non�reactive process into a reactive process

by having the process call a receive function periodically during extended computations�

Although the messages received may not be needed right away� they can always be queued

by the process until they are needed�

It is better for the process to be de�scheduled at choice points in the program rather

than at arbitrary points selected by the timer� Choice points are places in a program where

much of the system resources used by the program� such as �oating�point accelerators�

direct�memory�access units� and processor registers� are released by the process as a normal

part of the program execution� The amount of state information that needs to be saved

and restored when a program is stopped and restarted at a choice point is usually small

and can be reliably predicted during compile time�

� March ����



Section ���� Simple Layers ��

Calling a receive function� either from a timer�interrupt handler or from a choice point�

presents a problem� however� A process that relinquishes control by calling a receive func�

tion will not be re�started until a message is ready for it� As a result� a node can sit

idle with runnable processes suspended because there are no messages queued for them�

Furthermore� if a suspended process does not receive any more messages� it will remain

suspended inde�nitely�

What we need is a receive function that does not block� This function can be imple�

mented by having the process send a uniquely identi�able message to itself just before it

calls a blocking receive function� We can create such messages by the same layering mech�

anism that we used for message length� Let us pre�x the new functions with nb�� and let

us invent a new receive function� nb�recv� A call to nb�recv has the same e�ect as a call

to a normal receive function� except that in cases where a normal receive function would

block� nb�recv returns a null pointer� �A nb�recv call may still return a null pointer at

other times but it will always cause the process to release control �rst��

Below is a set of routines that implement the nb�layer functions� We will list only those

functions that are di�erent in form from the l�layer functions� First of all� two private

variables are needed� The token�got variable indicates whether a uniquely identi�able

token message has been previously allocated� The token�msg pointer contains the token

message if it is allocated and if the process is currently holding it	 the pointer contains null

otherwise�

� typedef struct � int is�token� � HEADER�

� static int token�got � ��
	 static char 
token�msg � ��

� char 
nb�recv�

� �
� char 
p�

�� if��token�got
 � token�msg � l�malloc��
� token�got � �� �

�� if� token�msg
 � ��HEADER 

HEAD�OF�token�msg

��is�token � ��
�� b�send�HEAD�OF�token�msg
� mynode�
� mypid�

�
�	 token�msg � �� �
�� p � b�recvb�
�

� March ����



�� Chapter �� Reactive�Process Layers

�� if���HEADER �� p���is�token� 	 token�msg 
 p� return�NULL�� �
�
 return�BODY�OF�p���
�� �

The �rst thing that the non�blocking nb�recv does is to check for the existence of the

token message� If the token message has not been allocated� the function allocates it� Next�

the function checks to see if it is currently holding the token message� If it is� the function

sends the token message to itself� so that a subsequent b�recvb call is guaranteed to return�

Lastly� it calls b�recvb to get a message� If the message obtained is a token message� the

token message is saved and null is returned� Otherwise� the message is returned�

�� char �nb�recvb��
�� 	
�� char �p�

�� p 
 b�recvb���
�� while���HEADER �� p���is�token� 	 token�msg 
 p� p 
 b�recvb��� �
�� return�BODY�OF�p���
�
 �

�� nb�send�p�node�pid�
�� char �p�
�� int node� pid�
�� 	
�� ��HEADER ��HEAD�OF�p����is�token 
 ��
�� b�send�HEAD�OF�p�� node� pid��
�� �

The blocking nb�recvb waits for a non�token message and returns that message when

it is received� If a token message is received �rst� it is stored in token�msg and nb�recvb

continues to wait for the next message� The nb�send function clears the token �ag in the

message header before sending the message because it can only send ordinary messages�

In order to improve e�ciency� detection of token messages is ordinarily integrated into

the kernel so that the kernel can defer token messages until the input message queue is

otherwise empty� The primary e�ect is that processes with pending non�token messages are

favorably scheduled� The side e�ect is that processes have a reliable method of determining

whether the input queue of the node is empty� This special treatment of token messages

constitutes the basis for inde�nite�lazy computation in distributed simulation� This will be

discussed in a later section�

� March ����



Section ���� Simple Layers ��

����� Handler layering

Running a heavy�weight process inside a handler is an example of layering� We can also run

a light�weight process inside a heavy�weight process� or a light�weight process inside another

light�weight process� When each handler process controls just one reactive process� the ID

of the handler is su�cient to uniquely identify the process� When there may be more than

one process inside a handler� a secondary pid needs to be included in the message header

to distinguish them� Examples of handler layering are the Reactive Kernel for heavy�weight

processes and simulators for light�weight processes�

� typedef struct � int pid�� � HEADER� �� message header ��

� struct PROC ptab	MAX
PID��� �� process table ��

� main
loop
�
� �
� char �mesg�
� PROC �proc�

�� while
��
�� �
�� mesg � b
recvb
��
�� proc � ptab � 

HEADER ��p���pid��
�� 
�proc��entry�
proc�BODY
OF
mesg���
�� �
�� �

Shown above is the main loop of a heavy�weight process capable of handling more than

one light�weight process� The message functions resemble the l�layer functions� but with

the second pid� rather than the message length� in the message header� The heavy�weight

process repeatly calls b�recvb to get a message� �nds the real destination process by the

pid� �eld� and calls the entry function of the process� If this program fragment looks

familiar� it is because this is the main loop of the Reactive�C kernel� The Reactive�C kernel

is itself a reactive�process program�

Although the de�nition of a reactive�process program is �xed as stated in the beginning

of Chapter �� certain properties of the programming system are implementation�dependent�

Handler layering provides a way of running a programming system with a di�erent set of

properties on top of another programming system� For example� assume that we have a

� March ����



�� Chapter �� Reactive�Process Layers

programming system in which all messages to non�existing processes are thrown away� To

implement systems such as the Cantor run�time system� messages to non�existing processes

must be preserved� Suppose we were to support Cantor by running a Cantor handler under

a reactive kernel� As far as the kernel is concerned� all messages will �nd their destination

processes� namely� the Cantor handler processes� When the handler gets a message� the

message is beyond the jurisdiction of the kernel� the handler can do any number of things

with it� In particular� the handler can queue messages for Cantor processes that have not

yet been created�

Section ��� Message Type

It is convenient in many computations for a process to respond di�erently to di�erent types

of messages� In the factorial examples� there are three types of messages� the message

from the parent� the �rst message to arrive from the siblings� and the second message to

arrive from the siblings� These messages do not have to be distinguished by type because

they are identi�ed by their order of arrival� In the Reactive�C example� di�erent responses

to di�erent messages are speci�ed by storing di�erent function pointers into the process

structure after each message is received� In the b�layer version� the responses are speci�ed

by the locations in the program where b�recvb is called�

carrier carriercarriercarriercarriercarrier

tailhead Figure ��� An example of a FIFO queue�

In the next example� however� it is necessary to distinguish messages by type� The

FIFO 	�rst�in��rst�out queue
 structure shown in Figure ��� can be constructed with the

chain of carrier processes described in Listing ���� The carrier processes are connected

into a singly linked list by the next�node and next�pid variables in each process� The

FIFO is accessed by a reference to the head carrier and a reference to the tail carrier�

When an item is to be added to the FIFO� the item is sent as a message to the tail of

the FIFO� The process at the tail of the FIFO spawns a new carrier for the new item and

� March ����



Section ���� Message Type ��

returns the reference of the new carrier to the caller� When an item is to be retrieved

from the FIFO� a message is sent by the caller to the head of the FIFO� The process at

the head of the FIFO sends its item and the reference of the next carrier to the caller�

The process then removes itself from the FIFO� Message types are needed because the two

commands � �new item� and �retrieve item� � can arrive in any order when a FIFO is

only one element long�

� typedef struct � int type� value� node� pid� � REQ�MESG�

� main�	

 �
� REQ�MESG �req�

 int value�
� int caller�node� caller�pid�
� int next�node� next�pid�

�� while��	
�� �
�� req � �REQ�MESG �	 b�recvb�	�

�
 switch�req��type	
�� �
�
 case ADD�VALUE� spawn�anywhere��carrier���next�node��next�pid	�
�� req��type � SET�VALUE�
�� b�send�req� next�node� next�pid	�
�� break�

�� case SET�VALUE� value � req��value �
�� next�node � INVALID�NODE�
�� next�pid � INVALID�PID �
�
 caller�node � req��node �
�� caller�pid � req��pid �
�
 req��node � mynode�	 �
�� req��pid � mypid �	 �
�� b�send�req� next�node� next�pid	�
�� break�

�� case GET�VALUE� req��value � value �
�� caller�node � req��node�
�� caller�pid � req��pid �
�
 req��node � next�node�
�� req��pid � next�pid �
�
 b�send�req� next�node� next�pid	�
�� exit��	�
�� �
�� �

� �

Listing ��� The carrier program for building FIFO�

� March ����



�� Chapter �� Reactive�Process Layers

When a carrier receives an ADD�VALUE message� it spawns another carrier� and the

message is passed to the new carrier after its message type is set to SET�VALUE �������	

The spawn�anywhere function will spawn the speci
ed process on some available node and

return the node and pid of the process in the next�node and the next�pid variables	

When a carrier receives a SET�VALUE message� the process is the new tail process	

The value 
eld of the message is copied into the value variable of the carrier	 The next

reference of the carrier is initialized to a null ID	 The ID of the carrier is written into the

message� and the message is returned to the caller �������	 After the message is received

by the caller� the caller�s tail reference is updated	

When a carrier receives a GET�VALUEmessage� its value and its next
carrier reference

are copied into the message	 The message is sent back to the caller and the process exits

�������	

Section ��� Discretion on Receive

Discretion on receive means allowing a process to select certain messages to consume while

deferring other messages	 The Reactive
C� the b�layer� and other simple layered variants all

have the same message property in that they do not supply any mechanisms for discretion�

their processes have no choice but to take messages in the order they arrive	 Discretion can�

however� be implemented inside a process	

����� Discretion using b�layer functions

An example in which discretion is implemented in the program is a merge
sort program� in

which the list to be sorted is split recursively along the branches of a time�on�target tree

until every processing node in the machine is used	 The machine should have a power
of
two

number of nodes to support this doubling approach	

At the beginning of the sort� the zeroth
generation process is created in a machine with

�n nodes� and a list of numbers to be sorted is sent to the process as a message	 The

zeroth
generation process then proceeds to 
ll the machine with processes in a total of n

expansion steps	 In the kth expansion step� every process in the machine creates a new

� March ����



Section ���� Discretion on Receive ��

C

��

��

��

�	

C

�

�	

�

C

	

C

�

123
123
123

12
12

12
12

12
1212
12

12
12

12

12
12

12
12
12
12

23
23
23
23

12
12
12
12

123
123
123

1234
1234
1234
1234

12
12
12

123
123

12
12	

Figure ��� Expansion steps in the merge�sort program�

kth
generation process� giving half of its list to the new process and keeping the other half

for itself� After n steps� there will be �n processes on the machine� each holding ���nth of

the original list�

The processes begin to sort their share of the list locally� When sorting is complete�

the expansion steps are reversed to merge the fragmented lists� In the kth merging step 
k

decreasing�� each kth
generation process sends its list back to its parent in a reply message�

After n steps� only the zeroth
generation process remains� The list that it now holds is the

sorted version of the original list�

When the process structure is fully instantiated� each kth
generation process has a

sibling for every generation number from k�� to n� Since the computation is asynchronous�

returning messages from the siblings may arrive in a di�erent order from the order of the

merging steps� Since each process needs to consume reply messages from its siblings in the

order of decreasing generation number� each sibling will need a di�erent message type for

its reply message� and the process will selectively wait for a certain message in each merging

step�

The sorting program in Listing ��� �rst appeared in �Multicomputers� Message
Passing

Concurrent Computers� ���� The �rst version of the program� which uses integer
based

types� was written by C�L� Seitz� the version appearing in Listing ��� and in the IEEE

paper was modi�ed by the author to use pointer
based types�

� typedef struct MESG MESG� �� Message header structure� ��
� struct MESG � int pnode� ppid� �� Address of the parent process� ��
	 int tbase � �� Base for time
on
target tree� ��
� int len � �� Number of elements in the vector���
� MESG ��type �
 � �� Type field for filtering message���

� March ����



�� Chapter �� Reactive�Process Layers

� �define BUF�v� ��double ���v���� �� Data follows MESG immediately	 ��


 unsigned int this�node� this�pid� node�cnt


�� main��
�� � MESG �v


�� this�node � mynode��
 �� Node number of this process	 ��
�� this�pid � mypid��
 �� Pid number of this process	 ��
�� node�cnt � nnodes��
 �� number of nodes in this machine	 ��

�� v � �MESG �� b�recvb��
 �� Receive list from parent process	��
�
 if�v��len � �� merge�sort�v�
 �� Sort the list	 ��
�� b�send�v� v��pnode� v��ppid�
 �� Send result back to parent	 ��
�� �

�� merge�sort�v�
�� MESG �v 

�� � unsigned l�� l�� i� new�node

�� MESG �v�� �v�� �v�

�� double �d� �s� �b�� �b�


�
 l� � � v��len � � � � �
 �� Break the list into two lists	 ��
�� l� � � v��len � � �

�� v� � �MESG �� b�malloc�sizeof�MESG��sizeof�double��l��

�� v� � �MESG �� b�malloc�sizeof�MESG��sizeof�double��l��

�� for�i � v���len � l�� d � BUF�v��� s � BUF�v�
 i��
 � �d�� � �s��

�� for�i � v���len � l�� d � BUF�v�� 
 i��
 � �d�� � �s��


�� new�node � this�node � v��tbase
 �� Next node to be used for ��
�� spawning a sibling	 ��

�� v���tbase � v���tbase � v��tbase �� �
 �� New base for building ��
�� time�on�target tree	 ��

�� if�v���len � �� �� new�node � node�cnt�
�� � �� If list is too long and ��
�� spawn��msort��new�node�this�pid����
 �� if next node is valid ��
�� v���pnode � this�node 
 �� spawn a sibling ��
�� v���ppid � this�pid 
 �� and send it a list	 ��
�� v���type � �v� 
 �� The type field holds the ��
�� b�send�v��new�node�this�pid�
 �� address of the msg ptr	 ��
�� v� � �
 �� Msg ptr is set to null	 ��

�
 � else if�v���len � �� merge�sort�v��
 �� Sort if cannot split	 ��

�� if�v���len � �� merge�sort�v��
 �� Sort the other list	 ��

�� while��v�� � v� � �MESG �� b�recvb��
 �v���type � v�
 �

�� for�b� � BUF�v��� b� � BUF�v��� d � BUF�v�
 l� �� l�
 � �� merge	 ��
�� � while�l� �� ��l� �� �l� �� �b� �� �b���� � l���
 �d�� � �b���
 �
�� while�l� �� ��l� �� �l� �� �b� �� �b���� � l���
 �d�� � �b���
 �
�� �
�
 b�free�v��
 b�free�v��

�� �

Listing ��� The merge�sort program�

� March ����



Section ���� Discretion on Receive ��

In each level of recursion where a sibling is created ����� the type �eld of the message

for the sibling is �lled with the address of the automatic pointer variable� v� ����� These v�

pointers on the program stack are set to null before the merging phase ��	�� which begins

when the recursive merge�sort function starts to unwind� Since there is at most one sibling

created in each level� the list sent to each sibling must contain an address that is di
erent

from the others � the address of the v� pointer in e
ect when the sibling is created�

typev�

v� type

typev�

second sibling

first sibling

new sibling

type

type

v�

v� type

typev�

second sibling

first sibling

send

new sibling

v�

v� type

typev�

second sibling

first sibling

type

L�	L��� L��L
�

stack of parent pro

123123

cess

Figure ��� Giving away a list for the third time �stack grows up��

After the expansion phase� the program progresses to line �� and ��� where the re�

maining numbers are sorted using a sequential merge�sort algorithm performed by the same

merge�sort function� During the merging phase� each sibling returns a message of the type

it was assigned ����� A process selectively waits for the message for the current recursion

level by polling the v� pointer at that level� at the same time� the process repeatly requests

a message and stores it into the pointer whose address is equal to its message type �����

v�

v�

v�

v�

v�

v�

type

v�

v�

v�

ty

123
123

123
123pe

Figure ��� Getting an out�of�sequence reply�

When the program reaches line ��� v� can take on one of the three possibilities�

�� v� is not null� because its list has not been given away�

� March ����



�� Chapter �� Reactive�Process Layers

�� v� is null� because although its list has been given away� a reply has not been

received� or

�� v� is not null� because although its list has been given away� the reply was received

while the program was waiting for a di�erent reply�

The distribution of work is accomplished by divide and conquer� the merge�sort example

can be used as a template for other divide�and�conquer applications� Assigning deferred

messages into holding pointers is su�cient for this application because no more than one

message for each type needs to be queued� When more than one message of each type must

be deferred� the process has to store them in a more general list structure�

����� The RPC�discretion layer �r�layer�

While discretion is used in the merge�sort program� the process still takes messages in the

same order they arrive� However� some programs can be made simpler by creating an

illusion that messages are dispensed by the kernel in an order other than 	rst come� 	rst

serve� Such e�ects can be achieved with layering as well�

The implementation of a remote procedure call �RPC� is one example� Suppose we want

to make available a generic 	le operation� read� implemented by message exchange with a

	le controller� a process responsible for maintaining a 	le� A prototype function might look

like the one in Listing ��
�

� typedef struct � int fs�node � �� Structure of one entry of ��
� int fs�pid � � FSTRUCT� �� the process	s file table
 ��

� FSTRUCT file�tab��
�� �� The process	s file table
 ��

� typedef struct � int operation� �� Format of request message ��
� int my�node � �� to be sent to the file ��
� int my�pid � �� server process to request ��
� int read�size� � REQUEST� �� for a read operation
 ��

�� �define OP�READ � �� Code read request
 ��

�� read�fd�buf�len�
�� int fd� len�
�� char �buf�
�� �
�� REQUEST �request�
�� char �reply�

� March ����



Section ���� Discretion on Receive ��

�� request � �REQUEST �� b�malloc�sizeof�REQUEST���
�	 request
�operation � OP�READ �
�� request
�my�node � mynode���
�� request
�my�pid � mypid ���
�
 request
�read�size � len �

�� b�send��char �� request� file�tab�fd��fs�node� file�tab�fd��fs�pid��

�� reply � b�recvb���
�� bcopy�reply�buf�len��
�� b�free�reply��
�	 return�len��
�� �

Listing ��� An incorrect implementation of the C read function�

The file�tab array contains the node and pid of all �le�controller processes accessible

by this process� The read function sends a request to a �le controller selected from file�tab

using fd as the index� When the �le controller �nishes reading the requested amount of

data� the data is sent back in a message� The function is shown to be waiting for the reply

using the normal b�recvb function�

�� reply � b�recvb���

However� the b�recvb function is not adequate because it may pick up the wrong

message if another message arrives before the reply message� A receive�discretion mechanism

must be used to ensure that only the reply message for the read function is returned� The

reply messages� called the RPC messages� must therefore be distinguishable from other

messages that the process uses� Furthermore� messages that arrive before the reply message

must be queued and released in a transparent way so that the requesting program cannot

distinguish a local read from a RPC read�

The r�primitives implement the new message properties by layering and by adding two

more functions� RPC send and RPC receive� The message header for this layer contains

a RPC �ag and a chaining pointer� Since RPC calls do not interleave in a process� a

process can have no more than one outstanding reply message at any one time� Storing one

distinguished type in a Boolean variable is therefore su�cient for positively identifying a

� March ����



�� Chapter �� Reactive�Process Layers

reply message� The defer�h and defer�t pointers are used to implement a queue for non�

RPC messages� The next pointer in the message header is used to chain deferred messages

into a linked list for the queue�

� typedef struct HEADER � int is�rpc�
� struct HEADER �next� � HEADER�

� 	define BODY�OF
h� 
h�sizeof
HEADER�� 
� given header� find body �

� 	define HEAD�OF
b� 
b�sizeof
HEADER�� 
� given body� find header �


� HEADER �defer�h� �defer�t� 
� queue for holding non�rpc messages �


The r�recvb function replaces the b�recvb function for receiving normal messages� Instead

of calling b�recvb immediately� it checks the queue for any deferred messages� If there are

deferred messages� a message is removed from the queue and returned� Otherwise� b�recvb

is called�

� char �r�recvb
�
�� �
�� char �p�

�� if
defer�h� � p � 
char �� defer�h�
�� defer�h � defer�h��next�
�� return
BODY�OF
p��� �

�� return
BODY�OF
b�recvb
����
�� �

The r�recvrpc function is a function that waits for a reply message� It calls b�recvb

repeatly until a reply message is received� The RPC message is then returned� Meanwhile�

all non�RPC messages that have arrived are stored in the queue�

�� char �r�recvrpc
�
�� �
�� char �p�

�� while
p � b�recvb
��
�� �
�� if


HEADER ��p���is�rpc �� �� return
BODY�OF
p���
�� if
defer�h� defer�t � defer�t��next � 
HEADER �� p�
�� else defer�t � defer�h � 
HEADER �� p�
�� 

HEADER �� p���next � ��
�� �
�� �

The r�send function clears the RPC �ag before sending the message� The r�sendrpc

function sets the �ag before sending the message�

�� r�send
p�node�pid�
�� char �p�

� March ����



Section ���� Discretion on Receive ��

�� int node� pid�
�� �
�� ��HEADER 	
HEAD�OF�p

�
is�rpc � ��
�� b�send�HEAD�OF�p
� node� pid
�
�� �

�� r�sendrpc�p�node�pid

�� char 	p�
�� int node� pid�
�� �
�� ��HEADER 	
HEAD�OF�p

�
is�rpc � ��
�� b�send�HEAD�OF�p
� node� pid
�
�� �

If replies from the �le controller are sent using r�sendrpc� the read function can be correctly

de�ned as�

�� read�fd�buf�len

�� int fd� len�
�� char 	buf�
�� �
�� REQUEST 	request�
�� char 	reply�

�� request � �REQUEST 	
 r�malloc�sizeof�REQUEST

�
�� request�
operation � OP�READ �
�� request�
my�node � mynode�
�
�� request�
my�pid � mypid �
�
�� request�
read�size � len �

�� r�send��char 	
 request� file�tab�fd��fs�node� file�tab�fd��fs�pid
�

�� reply � r�recvrpc�
�
�� bcopy�reply�buf�len
�
�� r�free�reply
�
�� return�len
�
�� �

Listing ��� A correct implementation of the C read function�

The introduction of the RPC message type makes it possible for standard utility func�

tions to be implemented by message passing� however� the use of RPC and other discretion

mechanisms in utility functions has the potential e�ect of diminishing the available concur�

rency in a program� For example� the use of read in a program forces all non�RPC messages

to wait while read is being completed� regardless of whether some of these messages can be

consumed without waiting for read to complete�

� March ����



�� Chapter �� Reactive�Process Layers

����� The CSP�discretion layer �csp�layer�

Layering can also be used to implement the CSP synchronization primitives� In Hoare�s de��

nition of CSP� send and receive are performed by P �expression and P�variable� respectively�

where P is the process reference of the communication partner� In later CSP variants� such

as OCCAM� send and receive are performed by C�expression and C�variable� respectively�

where C is the channel connecting the sender and the receiver� Both send and receive

functions will block until the communication partner has completed the complementary op�

eration on the same channel� The send and the receive functions can be implemented with

a mutual exchange of messages between the two processes� We will show an implementation

of CSP with channels�

n�

	n�� p�


p�

j

k other�end

other�node

other�pid

	n�� p�


n�

p�

k

j

other�pid

other�node

other�end

A logical c

12345678901234567
12345678901234567
1
1

hannel

Figure ��� Structure of a channel in a channel�based CSP implementation�

Since messages associated with di�erent channels may arrive in an order other than the

one in which CSP communication is to take place� messages must be tagged with a type

�eld� and those that have arrived early must be deferred� Let us construct a channel using

two logical communication endpoints� one each in the sender and the receiver� If we identify

the endpoints in each process by a small array index� the connectivity of the channels can

be completely described by four arrays in each process�

� typedef struct � int type� int value� � CSP�MSG�

� int other�end �MAX�CHAN��
	 int other�pid �MAX�CHAN��

 int other�node�MAX�CHAN��
� CSP�MSG �chan�queue�MAX�CHAN��

In each process� the entries other�node�j� and other�pid�j� identify the process at

the other end of channel j� The entry other�end�j� is channel j�s identity at the other side

� March ����



Section ���� Discretion on Receive ��

of the channel� i�e�� the channel j on this side and the channel other�end�j� on the other

side both refer to the same channel� An unambiguous typing system can be constructed by

giving messages for channel j the type other�end�j�� The chan�queue array is an array

of pointers that holds queued messages for channels� Since each channel can have no more

than one pending message� only one pointer for each channel is needed for bu�ering early

messages� The csp�send and the csp�recv functions can be written as�

� csp�send�chan�expr�
� int chan� expr�

�	 

�� CSP�MSG �sp � �CSP�MSG �� b�malloc�sizeof�CSP�MSG���

�
 sp��value � expr �
�� sp��type � other�end�chan��
�� b�send�sp� other�node�chan�� other�pid�chan���

�� while��chan�queue�chan�� 
 sp � �CSP�MSG �� b�recvb���
�� chan�queue�sp��type� � sp� �

�	 b�free�chan�queue�chan��� chan�queue�chan� � 	�
�� �

�
 csp�recv�chan�var�
�� int chan� �var�
�� 

�� CSP�MSG �sp � �CSP�MSG �� b�malloc�sizeof�CSP�MSG���

�� sp��type � other�end�chan��
�� b�send�sp� other�node�chan�� other�pid�chan���


� while��chan�queue�chan�� 
 sp � �CSP�MSG �� b�recvb���

� chan�queue�sp��type� � sp� �


 �var � sp��value�


� b�free�chan�queue�chan��� chan�queue�chan� � 	�

� �

In both functions� a message bu�er is allocated and sent to the other side of the channel�

The process then waits for a reciprocal message from the other side� if one has not already

arrived� The process frees that message� clears the message�queuing pointer� and returns�

The only di�erence between the send and the receive functions is that in csp�send� the

value to be sent is stored in the value �eld before the send� In csp�recv� the value is

retrieved from the message received before it is freed�

A more elaborate implementation of a superset of CSP were created by A�J� Martin 	
��

and Marcel van der Goot�

� March ����



�� Chapter �� Reactive�Process Layers

����� A more general type�discretion layer �t�layer�

When user�de�ned message types are needed in a program with type discretion� the type

information can be encoded in the message body� and discretion can be handled by the

program itself� as in the merge�sort example� Alternatively� we can hide the message type

in the message header� as in the t�layer example below�

In the t�layer� the program supplies a type for the message when it is sent with the

t�send function� The t�send function stores the message type into the header before

the send� In the receive function� the program speci�es the type of message to wait for�

Messages of other types are queued if they arrive before a message of requested type is

received�

� typedef struct HEADER � int type�
� struct HEADER �next� � HEADER�

� t�send	p
node
pid
type�
� char �p�

 int node
 pid
 type�
� �
� 		HEADER ��HEAD�OF	p����type � type�
� b�send	HEAD�OF	p�
 node
 pid��

�� �

The two pointer arrays� defer�h and defer�t� implement the queues� This queue

structure imposes a limit on the range of usable types� but a more general queue structure

can be used instead� The t�recvb function takes a message type as an argument� It waits

for and puts messages into the respective queue while the queue of the desired type remains

empty� When the queue is non�empty� a message is removed from the queue and returned

to the program�

�� HEADER �defer�h�MAX�TYPE�
 �defer�t�MAX�TYPE��

�� char �t�recvb	type�
�� int type�
�
 �
�� char �p� int t�

�� while	�defer�h�type��
�� �
�� p � b�recvb	��
�� t � 		HEADER �� p���type�
�� if	defer�h�t�� defer�t�t� � defer�t�t���next � 	HEADER �� p�
�� else defer�t�t� � defer�h�t� � 	HEADER �� p�

� March ����



Section ���� Other Layers ��

�� ��HEADER �� p���next � 	

�� �

�
 p � �char �� defer�h�type�

�� defer�h�type� � defer�h�type���next

�	 return�BODY�OF�p��

�� �

Section ��� Other Layers

����� A �ow�controlling layer �f�layer	

Layering can also be used to implement transparent �ow control of messages� Suppose

we have an application where it is necessary to limit the number of unconsumed messages

produced by each process� We can introduce a layer in which an acknowledgment message

is sent for every message consumed� and have the send function block until the number of

messages sent is no more than a preset value over the number of acknowledgments received�

In the following example� when more than ten messages are outstanding� the send

routine will call b�recvb to wait for messages� Since b�recvb does not distinguish normal

messages from acknowledgment messages� we will use the r�layer mechanism to selectively

wait for acknowledgment messages in the f�layer routines�

� typedef struct � int node� pid� is�ack

� struct HEADER �next
 � HEADER


� �define BODY�OF�h� �h�sizeof�HEADER�� �� given header� find body ��
� �define HEAD�OF�b� �b�sizeof�HEADER�� �� given body� find header ��
� �define COUNT�MAX �	


 static int o�count
 �� number of outstanding messages� ��
� HEADER �defer�h� �defer�t
 �� queue for holding normal messages���

Since the receiver has to send an acknowledgment to the sender� the f�layer message

header must contain the ID of the of the sending process in addition to the next �eld of

the r�layer header� The header must also contain the �ag is�ack to di�erentiate a normal

message from an acknowledgment message�

�� char �f�recvb��
�� �
�� HEADER �p� �q


�� if�defer�h� � p � defer�h
 defer�h � defer�h��next
 �
�� else � while��� � p � �HEADER �� b�recvb��

�� if��p��is�ack� break

�
 o�count��
 b�free�p�
 � �

� March ����



�� Chapter �� Reactive�Process Layers

�� q � �HEADER �� b�malloc�sizeof�HEADER���
�	 q
�is�ack � 	� b�send�q�p
�node�p
�pid��

�
 return�BODY�OF���char��p����
�� �

In the receive function� if there are any queued messages� one message is removed

from the queue� If the queue is empty� the function calls b�recvb repeatedly until a normal

message is received� In both cases� an acknowledgment is sent to the sender and the message

returned to the caller� While waiting for a normal message� any acknowledgment messages

received cause the outstanding message counter to decrement�

�� char �f�send�p�node�pid�
�� char �p�
�� int node� pid�
�� �

� HEADER �q�


� while�o�count �� COUNT�MAX�


 �

� q � �HEADER �� b�recvb���

� if�q
�is�ack� � o�count

� b�free�q�� �

� else � if�defer�h� defer�t � defer�t
�next � q�

� else defer�t � defer�h � q�

� q
�next � �� �

� �

�	 q � �HEADER �� HEAD�OF�p��
�� q
�node � mynode���
�
 q
�pid � mypid ���
�� q
�is�ack � ��

�� o�count���
�� b�send��char �� q� node� pid��
�� �

In the send function� as long as the counter value is larger than ten� b�recvb is called

to obtain a message� If the message is a normal message� it is queued� if the message is an

acknowledgment message� the counter is decremented� If the outstanding message counter

is or has become less than COUNT�MAX� the outgoing message is sent and the outstanding

message counter is incremented�

If the communication graph is �xed �i�e�� channel�like connectivity�� it is more e	cient

to have a separate counter for each channel� and to send an acknowledgment for every

COUNT�MAX�� messages in each channel� Each acknowledgment message represents the con�

sumption of COUNT�MAX�� messages�

� March ����



Section ���� Other Layers ��

����� The CK primitives

The old CK �Cosmic Kernel� primitives� the original message primitives for the Cosmic Cube�

can also be built from the reactive primitives by layering� The primitives are de�ned around

a data structure called a message descriptor� �This is very similar to the way in which the

C standard I�O functions are de�ned around the FILE structure��

typedef struct�
short node�
short pid�
short type�
short seg�
char �buf�
unsigned short msglen�
unsigned short buflen�
short lock�

� MSGDESC�

We have treated messages as information carriers� Sending and receiving messages are

similar to memory allocation operations in C� in that it is the carrier that is a�ected� The

transfer of information is merely a side e�ect of moving these carriers� The CK primitives�

on the other hand� treat messages as information encoded in binary bit patterns and stored

in arrays of memory cells� When a message is being sent� the system fetches the informa	

tion from a designated storage bu�er
 when a message is received� the system writes the

information into a designated storage bu�er�

Since the send and receive requests are not always completed when the send and receive

functions return� processes are allowed to run asynchronously while the transactions are

being completed� However� in order to avoid access con�icts in the bu�ers� a lock variable

is used for each transaction to indicate whether the transaction has completed� The buf

and lock variables in the MSGDESC structure are used to hold the bu�er and the completion

lock�

When a message descriptor is used to send a message� the node and pid �elds store the

ID of the destination process� The type and msglen �elds store the message type and the

length of the message� The buf pointer references a memory bu�er where the message is

� March ����



�� Chapter �� Reactive�Process Layers

contained� When send is called� the call will return immediately� but the lock remains set

until the send operation is complete�

When a message descriptor is used to receive a message� the type �eld is set to the type

of the message to be received� The buf �eld is set to reference the memory bu�er where

the message body is to be stored� The buflen �eld contains the size of the memory bu�er�

When a receive function is called� the call will return immediately� but the lock remains

set until the receive operation is complete� When receive is complete� the node and pid

�elds contain the ID of the sending node� The msglen �eld contains the actual length of the

message� Incoming messages that do not have matching receive requests waiting for them

will be queued�

typedef struct HEADER � int snode� spid�
int msglen�
int type�
struct HEADER �next� � HEADER�

Other functions in the CK primitives are described in detail in the CK programming guide

���� In making the transition from the CK primitives to the RK �Reactive Kernel� primitives�

which we use on our machines� a compatibility library was created for the old CK programs

by layering� The message header for a CK layer would therefore contain the sender node and

pid� the message length� and the message type� It would also contain a pointer for making

linked lists for discretionary receives� The details and the listings for the implementation

have been omitted for brevity�

����� The RK primitives �x�primitives�

The RK primitives� or x�primitives� can also be built from the b�layer functions by layering�

The RK primitive set includes the following list of functions	

char �xmalloc��� 			
 b�malloc���
char �xrecv��� 			
 nb�recv���
char �xrecvb��� 			
 b�recvb���
char �xrecvrpc��� 			
 r�recvrpc���

xsend��� 			
 b�send���
xsendrpc��� 			
 r�sendrpc���

xfree��� 			
 b�free���
int xlength��� 			
 l�length���

� March ����



Section ���� Layering on Light�Weight Processes ��

The xmalloc� xrecvb� xsend� and xfree functions are equivalent to the b�malloc�

b�recvb� b�send� and b�free functions� respectively� The xrecv function is equivalent

to the nb�recv function� the non�blocking receive� The xlength function is equivalent to

the l�length function� the function that returns message length� The RPC functions are

similarly equivalent to those of the r�layer functions�

The RK primitives can therefore be implemented using a combination of l�layer� nb�

layer� and r�layer� However� in the actual implementation of the Reactive Kernel� all three

of the layers are incorporated into the basic kernel for greater e�ciency�

The x�primitives and associated functions will be discussed in the next section in con�

junction with the description of the Cosmic Environment� the generic multicomputer op�

erating environment in which the x�primitives are supported as the primary programming

system�

Section ��� Layering on Light�Weight Processes

Any layering that applies to heavy�weight processes and that makes sense in the context of

the light�weight processes can be applied to light�weight processes as well� If we represent

the kernel� handler� layer routines� and user program as four separate components� the chain

of control �ow is shown in Figure ����

user
code

layer

functions
context
switcherkernel

reactive

return to deliver
message

context switch
to deliver
message

call handler to
deliver message

return to kernel
to get message

context switch
back to handler
to get message

call layer function
to get message

Figure ��� Control �ow for heavy�weight processes�

� March ����



�� Chapter �� Reactive�Process Layers

kernel
reactive layer

functions
user
code

call handler to
deliver message

return to kernel
to get message

return to layer
function to get
message

call user code to
deliver message

Figure ���� Control �ow for light�weight processes�

The control �ow for light�weight processes� shown in Figure ����� is identical except for the

absence of the handler component�

Although these two programming models are essentially interchangeable� light�weight

processes are more e	cient in most machines because they avoid the context�switch cost�

However� programs composed of light�weight processes are more di	cult to develop because

processes are not protected against each other in case of a programming error� The processes

must� in practice� coexist in the same address space�

� March ����



Section ���� The Cosmic Environment Speci�cation ��

Chapter � Cosmic Environment

The Cosmic Environment� or CE� is a multicomputer programming speci�cation that also

exists as an implementation on a number of multicomputers� Details for using CE can

be found in �The C Programmer�s Abbreviated Guide to Multicomputer Programming��	
�

We will concentrate here on the reasoning behind the design of our implementation� but �rst

we will give a short de�nition of the Cosmic Environment Speci�cation� The speci�cation

covers the process model� the message system� and the library functions�

Section ��� The Cosmic Environment Speci�cation

The agents of a computation in CE are�

Processes� Each process is identi�ed by a unique process ID� which is

a �node�pid� pair� Node identi�es the multicomputer node

containing the process� and pid distinguishes one process from

another on the same multicomputer node�

Messages� Each message is tagged by the ID of its destination process�

receivingsending

a process

a message

message system

a

12345
12345
12345
12345

12345
12345
12345
12345

12345
12345
12345
12345

12
12
12

12 12

12
12

1
1

123
123

queue

Figure ��� Elements of a computation�

Message system� The message system accepts messages from the processes� routes

them according to their destination process ID� and delivers them

to their destination processes� Messages are queued enroute to

� March ����



�� Chapter �� Cosmic Environment

their destinations� message order between any pair of processes is

preserved�

In CE� a process can allocate and release message bu�ers� send and receive messages�

create other processes� and terminate itself� The functions available to a C program are�

char �xmalloc�n�
unsigned n�

� Allocates and returns a message bu�er

su�cient for n bytes of data�

xfree�p�
char �p�

� Releases a message bu�er�

char �xrecvb�� � Waits for and returns a message from the

message system�

char �xrecv�� � Returns a message from the message system

if one is available� returns a null pointer

otherwise�

xsend�p�node�pid�
char �p� int node� pid�

� Frees the message bu�er� p� from the calling

process� and sends the message bu�er to the

process whose ID is �node�pid��

spawn�name�node�pid�option�
char �name� �option� int node� pid�

� Runs the program called name and assigns it

the ID �node�pid��

int mynode�� � Returns the node number of the calling

process�

int mypid�� � Returns the pid number of the calling

process�

exit�� � Terminates the calling process�

This speci�cation is short and simple� When our emphasis is on the study of multicom	

puter programming� we do not need unnecessary features to distract us� what we do need is

a system that does not inhibit creativity� CE preserves the value of our work by making it

easy to provide e�cient implementations for its speci�cation on many multicomputers that

are otherwise software	incompatible�

� March ����



Section ���� Our Cosmic Environment Implementation ��

Our CE speci�cation was designed with the following two rules in mind�

�� Programming systems should be portable�

�� Programming manuals are evil�

The �rst design rule regards the portability of CE� A programming environment is portable if

many types of machines can be made to support the programming environment� Portability

is easy to achieve with CE because its functions are easy to provide in most multicomputers

and multiprocessors� CE can be supported at the user�program level with a compatibility

library� or at the system level with a reactive kernel� The reactive kernel makes kernel

implementation or substitution simple because it does not require much support from the

hardware�

The second design rule regards programming manuals� Manuals are a necessary evil�

Therefore� whenever possible� CE has been made easy to explain in order to shorten the

manuals� Besides this obvious advantage for people who do not enjoy reading manuals� CE

has become simple and intuitive because making it easy to explain has also made it easy to

use�

Having a short programming manual is self�rewarding� In an evolving system where

old features are constantly being revised or dropped and new features are constantly being

added� keeping a large manual up�to�date is a non�trivial task for a small research group�

By keeping the manual simple� we not only make manual revision less laborious� but also

make system improvement easier� since we are not obliged to support any mis�features that

have not been previously documented� Our view is that the less a user has to know in order

to e	ciently complete the work� the better�

Section ��� Our Cosmic Environment Implementation

An implementation of the CE speci�cation is a programming environment that embodies

the speci�cation� Currently we have implementations that contain drivers for the Cosmic

Cube� the iPSC��� the iPSC��� the Symult ����� and for the ghost cube 
 a set of network�

connected workstations treated as a single multicomputer� �For historical reasons� we retain

� March ����



�� Chapter �� Cosmic Environment

the use of the word �cube� to mean a multicomputer even though not all multicomputers

are binary n�cubes�� Other implementations that use shared memory for message passing

exist for the Sequent and for the Cray X�MP�

����� Structure of our CE implementation

We start with the process model� A process group contains a set of processes connected to

the message system �Figure ��	�� Processes communicate with each other by sending and

receiving messages
 and they refer to each other by means of their process IDs�

Message System

send

receive

a pro
123
123
123
123

123
123
123
123

123
123
123
123

123
123
123
123

123
123
123
123

1234
1234
1234
1234

1234
1234
1234
1234

cess

Figure ��� A process group�

In order for the set of processes to communicate with the outside world
 the logically

uniform message system is physically partitioned into two parts� One resides in the multi�

computer and is called the node message system� the other resides outside of the multicom�

puter and is called the host message system� The two parts are connected by a message

gateway
 and the separation is made transparent to the processes �Figure ��
�� Processes

are then allowed to run either on the hosts or on the nodes�

node systemhost

1234
1234
1234
1234

1234
1234
1234
1234

1234
1234
1234
1234

123
123
123
123

123
123
123
123

123
123
123
123

123
123
123
123

system

Figure ��� Partitioning into two parts�

Since our multicomputers are used in classes for student experiments
 there are many

more users who need to use the multicomputers than there are available multicomputers�

But since most experiments require fewer nodes than are available in a multicomputer
 we

� March ����



Section ���� Our Cosmic Environment Implementation ��

want to support several users simultaneously on the same multicomputer� Space sharing is

the sharing of a multicomputer by more than one user such that each user is given a separate

subset of nodes in a multicomputer� The programming environment within each subset is

indistinguishable from one in which the user owns an entirely separate multicomputer having

the same number of nodes in the subset� Our message gateway must therefore interface with

more than one host message system and pass messages to and from each user�s nodes �Figure

�����

multicomputer network

1234
1234
1234
1234

123
123
123
123

123
123
123
123

123
123
123
123

123
123
123
123

1234
1234
1234
1234

123
123
123
123

123
123
123
123

123
123
123
123

123
123
123
123

1234
1234
1234
1234

1234
1234
1234
1234

1234
1234
1234
1234

1234
1234
1234
1234

TCP�IP

Figure ��� A multicomputer shared by two users�

In our implementation� the host system is built on top of the TCP�IP network� and

the host processes run on any network	connected host that uses the Berkeley UNIX socket

mechanism� The node system is built on top of the multicomputer network� and may involve

either a replacement kernel in each node or a set of emulation routines for the CE functions�

In this particular implementation� the gateway is a single ifc process� and each host

message system is a single message�switcher process� The message switcher is the spoke of

the host message system� It is connected to each host process and to the ifc process via

TCP�IP stream sockets� Message	sending functions in a host process convert CE messages

into TCP�IP messages before sending them to the message switcher� Depending on the

� March ����



�� Chapter �� Cosmic Environment

ifc
interface

hardware

internet TCP�IP stream socket connection

host system message switcher process

multicomputer

multicomputer interface �ifc� pro

123
123
123

123
123
123

123
123
123
123

cess

Figure ��� Host message�system implementation�

ID of the destination process� the message switcher will send a message either to another

host process or to the ifc process� The ifc process waits for messages from both the

multicomputer and the switchers� When it gets a message from a switcher� it converts the

message into a multicomputer message and sends it to a multicomputer node owned by the

user who owns the switcher�

When the ifc process gets a message from the multicomputer� the node ID of the sender

is used to determine the destination switcher process� The ifc process then converts the

message into a TCP�IP message and sends it to the switcher� When the switcher gets a

message from the ifc process� it sends the message to the destination host process� The

receive function in the host process then converts the message into a CE message to be

returned to the user program�

cubed

cube

12
12
12

12
12
1212
12
12

12
12

12
12
12
12

12
12

123
123
123
123

d�mon

Figure ��� Cosmic Environment with uni�ed resource management�

� March ����



Section ���� Our Cosmic Environment Implementation ��

Since we have several multicomputers� and since some of them are of the same type�

we centralize the allocation of all multicomputers in a process called the cube d�mon�

When a multicomputer is requested by type� the cube d�mon tries to assign an available

multicomputer of the required type by searching the list of all multicomputers registered to

it� Thus� the user is not concerned with locating an available machine because it makes no

di�erence which one is assigned�

We connect all ifc processes and switcher processes with the cube d�mon via TCP�IP

stream sockets� These sockets do not carry much tra�c� they are merely tokens of partici	

pation in CE for the switchers and the ifc processes�

����� Cosmic Environment exterior

Having been spoiled by the convenience of the Network File System 
NFS� on workstations�

the �rst thing that we decided that we did not want to know is where to go to access the

multicomputers� Like �les in a NFS environment� CE is equally accessible from everywhere

in the same network� The cube d�mon resides on a known host in a network� and a

con�guration �le in each participating machine is initialized to contain the network address

of the cube d�mon�

Every utility that accesses CE connects to the cube d�mon using the network address

found in the con�guration �le� making CE available and equally accessible from anywhere

within the same network� The most frequently used utility is the program called peek�

which prints the status of CE


CUBE DAEMON version ���� up � days �� hours on host ganymede

� 	 
d cosmic cube� b����� � venus fly trap
 ��
h
� 	 �d cosmic cube� b����� � ceres TEST 
 ��
h
� sim mikep 	 �d ipsc� cube � b����� � saturn iPSC� 
 ���h
�group david 	 �d ipsc cube � b����� � titan �iPSC d�
 
��h
� 	 ��n s���� � b����� � psyche �ginzu 
 ���d
�group apl 	 �n s���� � b����b �salieri �ginzu 
 ���h
� 	 ��n s���� � b����� �perseus �S���� 
 ���d
�group sharon	 �n s���� � b����� �perseus �S���� 
 ����m
�group tony 	 �n s���� � b����c � mozart �S���� 
 ���h

The peek utility lists all available� occupied� and fragmented multicomputers� In the

display above� user tony and user sharon each occupy � nodes in a ��	node S���� without

� March ����



�� Chapter �� Cosmic Environment

interfering with each other� User apl is using � nodes of a ���node S����� User david is

using a ��	�node iPSC
�� and user mikep is using a ���node iPSC
��

To use a multicomputer� we must 
rst allocate a multicomputer� We specify the mul�

ticomputer type� and the cube d�mon picks the best allocation according to an algorithm

speci
c to that type� To allocate a ��node s����� we can enter �getcube �n s������ A

peek will now show the following list�

CUBE DAEMON version ���� up � days �� hours on host ganymede

� 	 
d cosmic cube� b����� � venus fly trap
 ���h
� 	 �d cosmic cube� b����� � ceres TEST 
 ���h
� sim mikep 	 �d ipsc� cube � b����� � saturn iPSC� 
 ���h
�group david 	 �d ipsc cube � b����� � titan �iPSC d�
 
��h
� 	 ��n s���� � b����� � psyche �ginzu 
 ���d
�group apl 	 �n s���� � b����b �salieri �ginzu 
 ���h
� 	 ��n s���� � b����� �perseus �S���� 
 ���d
�group wen�king	 
n s���� � b����� �neptune �S���� 
 ����s
�group sharon 	 �n s���� � b����� �perseus �S���� 
 ����m
�group tony 	 �n s���� � b����c � mozart �S���� 
 ��
h

GROUP �group wen�king	 TYPE reactive IDLE ���s

� �� ��� SERVER �s �r �q �neptune ��

�
 
��s
� �� ��� FILE MGR �s �r �q �neptune ��
��
 
��s
���� ���� CUBEIFC �s �r �q �perseus ��
� 
 ���s

In this example� the allocation algorithm carves out a ��node subset from the multi�

computer shared by sharon and tony� instead of from the one used by apl� After the

allocation� any multicomputer programs that we run on the hosts or on the nodes become

part of our process group� The host processes will be connected to our switcher and the node

processes will be spawned on our nodes� Host processes are shown in the extended peek

display below the main list� In this example� a set of server programs was automatically

started and added to the process group when getcube returned�

����� Cosmic Environment processes

While CE is not in use� the only active processes in the hosts are the cube d�mon process

and the ifc processes� Each ifc process resides in a host containing an interface to a

multicomputer� and maintains a TCP
IP connection to the cube d�mon process� The cube

d�mon keeps track of its set of ifc connections� that a connection remains open is an

� March ����



Section ���� Our Cosmic Environment Implementation ��

indication that the multicomputer attached to the ifc process is ready for use� An ifc

process passes the multicomputer status to the cube d�mon via its TCP�IP connection�

The cube d�mon process passes allocation and deallocation commands to the ifc process

via the same connection�

When a user requests a multicomputer by running the getcube program� the getcube

process connects to the cube d�mon and sends it a set of allocation requirements� If the

requirements can be ful�lled� the requested multicomputer or a partition of the multicom�

puter is marked as allocated in cube d�mon�s table� An allocation command is then sent to

the corresponding ifc process� The ifc process initializes nodes allocated to the user and

then connects to the user�s getcube process� The getcube process then fades to background

to become the switcher process� giving the user the appearance that the getcube command

has terminated as an indication that the allocation has completed�

A set of service processes is started by the getcube process as it fades to background�

These processes are responsible for such mundane tasks as the details of process spawning�

�le access� and printing of error messages� Additional host processes and utilities are run

by the user to perform computation�

Porting CE to another multicomputer involves the creation of a new plug�in node system

for the new multicomputer� We have a choice of implementing the CE node system on top

of the native node kernel or writing a new kernel that implements the CE node system�

The Cosmic Cube and the S	
�
 both have the CE node system as their native system� We

replaced the iPSC�	 kernel with a custom kernel� On the iPSC�� and on earlier versions of

the iPSC�	� the CE node system is layered on top of their native systems � the NX kernels�

When we layer a CE node system on top of the native node kernel� the ifc process

is linked with the native host library for the multicomputer� and it interacts with the

multicomputer via the native message functions� To the native system running underneath�

the ifc process appears to be just an ordinary host process of the native system� The

CE node system can operate within the con�nes of user�accessible functions of the native

� March ����



�� Chapter �� Cosmic Environment

system because it has simple requirements� it does not need special capabilities from the

native system and it does not interfere with the functioning of the native system�

����� Program compilation

Di�erent commercial multicomputers will invariably provide dissimilar methods of compiling

programs for their multicomputers� The compiler options are di�erent� those with the same

name may have di�erent meanings to di�erent compilers and some that are available to one

compiler may be missing for another compiler� The sequence of operations that the user has

to go through may be di�erent� and the set of end products may also be di�erent� However�

we recognize that only a small set of the options is useful� and we can easily hide any

di�erence among the compilers by the use of a program that runs programs� By declaring

that only a limited set of commonly used compiler �ags are supported� the compilation

tools for all machines can be described in one table�

host ghost cosmic iPSC�� iPSC�� S����

compiler cch ccgh cccos ccipsc ccipsc� ccs����

linkable�file suffix �o �gh�o �O�	 �o��	 �o
�	 �s�����o

runnable�file suffix �gh �cos �ipsc �ipsc� �s����

archiver arh argh arcos aripsc aripsc� ars����

archive�file suffix �a �gh�a �A�	 �a��	 �a
�	 �s�����a

The following sequence will compile the program myprogram�c for all of these machines�

and the runnable object code generated will be named myprogram� myprogram�gh� mypro�

gram�cos� myprogram�ipsc� myprogram�ipsc�� and myprogram�s����� respectively�

� cch �o myprogram myprogram�c �lcube
� ccgh �o myprogram myprogram�c �lcube
� cccos �o myprogram myprogram�c �lcube
� ccipsc �o myprogram myprogram�c �lcube
� ccipsc� �o myprogram myprogram�c �lcube
� ccs���� �o myprogram myprogram�c �lcube

To illustrate the amount of complexity hiding that can be performed� actual compilation

for the iPSC�	 can be done only on the controller box of the iPSC�	 
 the Intel ��
��	��

The program ccipsc copies the source �les to the ��
��	� for compilation� and copies back

� March ����



Section ���� Our Cosmic Environment Implementation ��

compiled object �les when compilation is completed� It creates an illusion that compilation

takes place where the ccipsc command is issued�

����� Spawning programs

Like compilers� di�erent multicomputers supply their own method of running a node pro�

gram� We can hide the di�erences by using programs that run other programs� but� unlike

the compilers� we no longer have to di�erentiate one multicomputer from another by giving

them di�erent names� While a compiler can be invoked by the user at any time� a program

loader can be invoked only when the user has an active process group�

We can therefore eliminate another level of complexity by having the generic loader�

spawn� check the type of the multicomputer being used and have it run the loader com�

mand speci�c to that multicomputer� Thus� to load the program generated in the previous

example into any of the multicomputers� we can run �spawn myprogram�	 regardless of the

multicomputer we are using�

Utilities such as the node�program compilers are called machine�speci�c utilities� util�

ities such as spawn are called machine�dependent utilities� and utilities such as peek are

called machine�independent utilities� The node system for each type of multicomputer�

therefore� contains the ifc process� the machine�speci�c utilities� the machine�dependent

utilities� and the compiler libraries�

����� Data representation and conversion

We have tried to simplify CE and� at the same time� to hide the di�erences between di�erent

multicomputers� but� it is not always possible to do both� The di�erence in data represen�

tation among processors of di�erent multicomputers and hosts is one that we cannot hide

in vanilla C� When two communicating processes are run on two machines having di�erent

data representations� data in messages sent from one process to another need to have their

� March ����



�� Chapter �� Cosmic Environment

������ �������� �������� �������� �������� �������� �������� �������� ��������

vax� �������� �������� �������� �������� �������� �������� �������� ��������

������ �������� �������� �������� �������� �������� �������� �������� ��������

Listing ��� Three representations of � in double�precision �oating�point�number format�

representations converted before they can be used� We can always move the conversion

problem into the compiler� but we still have to decide how the problem is to be solved�

Data�representation problems have been a subject of study ever since computers were

�rst connected by networks� The most common solution is to de�ne an interchange data

representation� The sender converts data items in its outgoing messages from the sender�s

representation to the interchange representation� the receiver converts data items in its

incoming messages from the interchange representation to the receiver�s representation� A

set of conversion routines with the same name but having di�erent functions on di�erent

machines is provided to make programs portable� A program needs only to be capable of

converting its data to and from the interchange representation� rather than to and from all

possible representations�

In the case of a multicomputer� however� message tra	c is usually much higher and

message latency is usually much lower between the nodes than between the hosts� Having to

convert the data in each internode message to and from an interchange representation can

signi�cantly reduce the performance of message�intensive applications unless the interchange

representation happens to be identical to the representation of the multicomputer�

Our solution is therefore to make the interchange representation adjustable� we de�ne

the interchange representation for a process group to be the representation used by the

multicomputer of the process group� Node processes are not required to convert the data

in their messages� and� if they do� the functions that they call to perform the conversion

will have no e�ect� A host process is required to convert message data to the interchange

representation before it sends a message� and from the interchange representation after it

receives a message� Host processes already have a large per�message overhead� and they

can absorb the extra work of converting the data�

� March ����



Section ���� Our Cosmic Environment Implementation ��

The node programs never need any conversion routines� but host programs must carry

routines that convert data representations to and from those of all multicomputers that CE

supports� The conversion routines check the multicomputer type before deciding how data

is to be converted� Adding a new multicomputer to CE may require that host programs be

recompiled if the data format for the multicomputer is not already supported�

In order to preserve the CE speci�cations� conversions are done in place� because mes�

sage bu�ers are treated like memory bu�ers from malloc� Having to convert a message and

put the converted data in another bu�er weakens the speci�cation� In order to have such

conversion make sense� however� the location and the size of each data item in the messages

must be the same for all processes� However� di�erent machines do have di�erent sizes and

alignment rules for the same data type�

struct test � char AA����
short BB �
long CC �
int DD � � �

�	
�
� AAA
BBCCCCDDDD
vax� AAA
BB

CCCCDDDD

	
�	�� AAA
BBCCCCDD

Listing ��� Three layouts of a structure� in order of increasing byte address�

For data sizes� we made the decision that in all the machines that we support data

items will have the following sizes� and a message should include only the following data

types�

double�precision floating�point number �	 bits

single�precision floating�point number 
� bits

long integer 
� bits

short integer �� bits

character 
 bits

For alignment� we add any necessary padding to force each data item to align on its

strictest alignment boundary� A k�byte data type should be aligned on a k�byte boundary�

The bottom of a data structure should also be rounded out by padding it to the alignment

� March ����



�� Chapter �� Cosmic Environment

boundary of the largest data item in the structure� Whenever possible� a structure should

be rearranged to minimize the amount of padding necessary�

When data items are aligned using these rules� the location of each data item in a

message is the same for all machines� A set of conversion routines can be used to perform

in place conversion on the items�

htocs�p�n� ctohs�p�n� Convert short integers�
htocl�p�n� ctohl�p�n� Convert long integers�
htocf�p�n� ctohf�p�n� Convert single�precision floating�point numbers�
htocd�p�n� ctohd�p�n� Convert double�precision floating�point numbers�

The htoc set of functions converts data from the format used by the calling process

to the interchange format� The ctoh set of functions performs the reverse conversion�

Parameter p is a pointer to an item of the appropriate type and parameter n is the number

of consecutive data items to be converted by the functions� There is no conversion routine

for the character type because the basic units of the messages are bytes and their correct

ordering is enforced by the ifc process�

The data representation problem may require rethinking after machines with a ���bit

data bus become available� Data�type conversion is only an inconvenience� and it can always

be taken care of by writing a new compiler that inserts code to do the conversion for the

user� However� such is beyond the scope of this research�

� March ����



Section ���� Mathematical Framework and Analysis ��

Chapter � Model of Simulation

Section ��� Mathematical Framework and Analysis

����� Systems and elements

A system consists of a system body� a set of system inputs� and a set of system outputs�

It is a �black box� whose only external connections are the inputs and outputs� In a

representation of a simulator� each individual output conveys an atomic property of the

simulated system� A property is atomic if at any point during the simulation the simulator

contains all information about that property up to some simulated time� but none beyond

that simulated time�

System

system input

system

123456789
123456789
123456789
123456789
123456789
123456789
123456789

output

Figure ��� Representation of a system�

A system can be de�ned recursively as a collection of systems linked together by arcs�

each arc connects an output of its source system to an input of its destination system� and

each arc represents the source system�s direct in�uence on the destination system� The

recursion terminates with systems that are called elements� the behavior of each element is

de�ned algorithmically to correspond to a model of some physical device or process�

e�

e�

e�

system input

system output

an elemen

123
123
123
123

123
123
123
123

123
123
123
123
123

t

Figure ��� Representation of a system composed of elements�

If the hierarchy that is induced by this recursive de�nition is �attened by expanding

each system recursively into its constituent systems and elements� we obtain a system that

� March ����



�� Chapter �� Model of Simulation

is composed entirely of elements� In order to simplify the following exposition� we shall�

without loss of generality� discuss a system that is composed entirely of elements�

In a composite system� each element input can be connected to no more than one

arc� whereas each element output can be connected to any number of arcs� The set of

system inputs is the set of unconnected element inputs� whereas the set of system outputs

can be any subset of the element outputs� Systems without any inputs are called closed

systems� In order to simplify the mathematical framework� we shall close each system with

an environment element� e e� that provides inputs to all unconnected system inputs and

accepts outputs from all unconnected system outputs�

e�

e�

e�

e

123
123
123

123
123
123
123123

123
123
123

123
123
123
123
123

e

Figure ��� Closing a system into a closed graph�

The representation is now a graph that can be described as below�

src�a�
a

dst�a

12345
12345
12345
12345

12345
12345
12345
12345

�

Figure ��� Arc source and destination�

E � The set of elements in a system�

A � The set of arcs in a system�

U � ��� E � fe eg

out�e�einp�e

123
123
123
123
123

�

Figure ��� Element inputs and outputs�

inp�e� � The set of all arcs terminating at e�

out�e� � The set of all arcs originating from e�

src�a� � The source element of a�

� March ����



Section ���� Mathematical Framework and Analysis ��

a �a �a �
a �a

123
123
123
123

1234
1234
1234
1234
1234

12
12
12
12

123
123
123
123

123
123
123
123

1234
1234
1234
1234

�

Figure ��� Arcs a��� form a path of length ��

a �a �a �
a �a

123
123
123
123

123
123
123
123
123

1234
1234
1234
1234

12
12
12
12

123
123
123
123
123

�

Figure ��� Arcs a��� form a circuit of length ��

dst�a� � The destination element of a�

path� A path of length n is a sequence of arcs	 �a �� a �� a �� ���� a n� ��� such

that

dst�a i� 
 src�a i� �� for � � i � n � ��

circuit� A circuit of length n is a path of length n in which src�a �� 
 dst�a n� ���

����� States and time

The state of a system includes both its internal state and the state of its outputs� Let

SU�t �� t �� be the state description of the closed system between the time t � and t �	

t � � t �	 and let SL�t �� t �� be the state description restricted to the subset or member	

L� The state of the closed system can be written as a Cartesian product of the environment

state and the system state�

SU�t �� t �� 
 Se e�t �� t ��� SE�t �� t ��

Similarly	 the system state can be written as the Cartesian product of the element states�

SE�t �� t �� 
 Se ��t �� t �� � Se ��t �� t �� Se ��t �� t �� � ��� � Se n�t �� t ��

A simulator is said to be progressive if it can compute the following function for any

valid input description	 Sinp�E��t �� t ��	 which is a description of input state over a time

interval	 and any valid initial state of the system	 SE�t �� t ���

Sinp�E��t �� t ��� SE�t �� t �� ��� SE�t �� t ��

� March ����



�� Chapter �� Model of Simulation

A simulator may be able to compute more state information for some of its outputs

than is speci�ed above� For example� if the system can compute the following function for

some � � �� the output o is said to have a delay of no less than � at time t ��

Sinp�E��t �� t ��� SE�t �� t �� ��� So�t �� t � 	 ��

If � is the largest value for the above to remain true� then � is the delay of the output o

at simulated time t �� The delay of a system at simulated time t � is de�ned to be the

smallest of all output delays of the system at t �� The de�nition of a progressive simulator

precludes the possibility of negative delays�

����� Knots and progress

In this section� we shall de�ne a set of rules that allows us to recursively construct progres


sive system simulators by connecting progressive element simulators in the same manner in

which the elements of the system are connected� We shall call such a simulator a composite

simulator� In order to discuss progress� we make a minimal assumption that information

computed at any element simulator� e� will be available to all dst�out�e��� We shall assume

for the moment that elements are deterministic� that is� Sinp�e��t �� t �� and Se�t �� t ��

completely determine Se�t �� t ��� Thus� in order to determine whether a simulator is pro


gressive� we need to consider only the arc state� SA�t �� t ���

A simulator lacks progress if and only if there exists a combination of Sinp�E��t �� t ��

and SE�t �� t �� such that the simulator fails to compute Sa�t �� t �� for some a � A� Let

t K be the time value� t � � t K � t �� such that the simulator can compute SA�t �� t K�

but not SA�t �� t K
��� Let K � A be the set of arcs such that the simulator can compute

Sa�t �� t K� but not Sa�t �� t K
��� The set K is called a knot in the simulation� The

presence of a knot is synonymous with a lack of progress�

Knot� Simulator can compute Sa�t �� t K
�� for all a �� K�

� March ����



Section ���� Mathematical Framework and Analysis ��

a �

a �

NAND

System input
Composite system

Figure ��� Example of a knot�containing system�

Simulator can compute only Sa�t �� t K� for all a � K�

An example of a knot�containing system is a zero�delay NAND�gate with one of its

inputs connected to its output� as shown in Figure �	
	 Although the element simulator

for the NAND�gate may be progressive� the composite simulator for this system cannot be	

For example� if the input to the system is the following�

Sinp�E���� �� �

�
� for � � t � �

� for � � t � ��

then the composite simulator can compute only the following for the arc a ��

Sa ���� �� �

�
� for � � t � �

� for � � t � ��

The simulator cannot compute Sa � for � � t � � because a self�consistent state assignment

for a � cannot be found	 The set of arcs fa �g is a knot	

Theorem �	�� If a is an arc of knot K� then the following conditions hold�

a	 inp�src�a�� is not empty
 i�e�� src�a� is not a source node in the directed

graph of elements	

b	 The delay of src�a� at t K is �	

c	 Some member of inp�src�a�� is also a member of K	

Proof�

a	 If the set of arcs� inp�src�a��� is empty� then src�a� is a closed system	

A closed system does not need any information from its environment in

order to compute its state � it is able to compute its outputs up to any

arbitrary time	 Therefore� inp�src�a�� cannot be empty	

� March ����



�� Chapter �� Model of Simulation

b� By the de�nition of a knot� the simulator can compute up to t K for

all arcs in inp�src�a��� If the delay for src�a� is greater than zero� the

simulator would be able to compute up to t K� for a� Since it cannot�

by de�nition� the delay of src�a� must be zero�

c� If no member of inp�src�a�� is in K� then� by the de�nition of a knot�

the simulator should be able to compute up to t K� for all members of

inp�src�a��� Furthermore� since delay cannot be negative� the simulator

should be able to compute up to t K� for a� Therefore� if a is in K� some

member of inp�src�a�� must also be a member of K�

����� Rules of thumb � su�cient conditions for progress

Corollary ���	 Every knot contains a circuit�

Proof	 There is a �nite number of arcs in a system� If for every arc� a i � K

there is at least one arc� a j � K� such that a j � inp�src�a i��� then

there must be a circuit in K�

Corollary ��
	 If the system contains no circuits� then the composite simulator is pro�

gressive�

Proof	 Since every knot must contain a circuit� a system that does not contain

any circuits cannot have knots�

Corollary ���	 If every element has a delay greater than 
� then the composite simulator

is progressive�

Proof	 Follows directly from Theorem ���� part b�

Corollary ���	 If in every circuit there is some element with non�zero delay� then the

simulator is progressive�

Proof	 From Corollary ���� if K exists� it must contain a circuit� From Theorem

���� if such a circuit exists� all the elements in it must have zero delay�

� March ����



Section ���� Mathematical Framework and Analysis ��

Therefore� if all circuits have at least one element with non�zero delay�

then K cannot exist�

Although the progress conditions stated in Corollaries ���� ���� and ��� identify a set

of systems with progressive simulators� they do not identify� either by themselves or all

together� the set of all systems with progressive simulators� These are not minimal condi�

tions� because there are systems with progressive simulators that do not satisfy any of the

three corollaries� The corollaries are useful as simple rules of thumb because there exists an

e�ective procedure for testing each of them�

����� Non�existence of necessary and su�cient progress conditions

������� Simulation and Boolean satis�ability

An algorithm that tests for a necessary and su	cient condition� if any such condition does

exist� must be NP�hard� Figure ��
 shows a system that tests for the satis�ability condition

in a set of Boolean clauses� The system contains a zero�delay NAND gate� a counter� a clock

source� and a network of zero�delay gates forming the clauses� A simulator for the system

is not progressive if and only if there exists a counter output such that all of the clauses

are true� If there is an algorithm that can determine whether a simulator for any system of

this form has progress� we can use it to determine whether any collection of clauses can all

be true at the same time� Since the latter operation �Boolean satis�ability 
���� is known

to be NP�complete� the algorithm must be NP�hard� Therefore� any generic algorithm that

tests for a necessary and su	cient condition must be NP�hard�

������� Simulation and simultaneous equations

Another way to demonstrate the futility of searching for a necessary and su	cient condition

is to examine the relationship between simulation and simultaneous equations� We de�ne a

progressive simulator to be one that can compute the following function for any valid input

description� Sinp�E��t �� t ��� and any valid initial state� SE�t �� t ���

Sinp�E��t �� t ��� SE�t �� t �� ��� SE�t �� t ��

� March ����



�� Chapter �� Model of Simulation

counterclock

clause k

clause �

clause �

Figure ��� A circuit to evaluate satis�ability of a set of clauses�

Let He be the mapping associated with a progressive simulator for the element e� we can

express a composite simulator as the following set of equations�

�e � E Se�t �� t �� 	 He�Se�t �� t ��� Sinp�e��t �� t ���

Since Se�t �� t �� describes Sout�e��t �� t ��
 and since SA�t �� t �� and SE�t �� t �� de�

termine SE�t �� t ��
 a composite simulator can also be expressed as the following set of

equations�

�a � A Sa�t �� t �� 	 Ga�Ssrc�a��t �� t ��� Sinp�src�a���t �� t ���

Ga is Hsrc�a� restricted to the arc a� These are simultaneous equations in the form�

�i � Xi 	 Fi�X�� X�� ���� Xn�

Furthermore
 any set of simultaneous equations can be transformed into a physical

system for which a composite simulator can be constructed� The set of all simulators and

the set of all simultaneous equations must be equivalent�

X
X�X�

F� F� F
 Fn

Xn

�i � Xi 	 Fi�X�� X�� ���� Xn� ���

Figure ���� Mapping equations into physical system�

� March ����



Section ���� Operational Framework ��

In any set of simultaneous equations� only one of the three possibilities listed below can

exist�

�� The simultaneous equations have no solution�

�� The simultaneous equations have exactly one solution�

�� The simultaneous equations have more than one solution�

Since a simulation is progressive if and only if its set of simultaneous equations has a

solution� any test for determining progress of a simulator can be used as a test for deter�

mining the existence of solutions for simultaneous equations� and vice versa� Since the test

for the latter has not been found� the test for the former also has not been found� The

search for a necessary and su�cient condition is� therefore� both di�cult and� so far� futile�

Section ��� Operational Framework

Although an e	ective simultaneous�equation solver for the general case does not exist� the

simultaneous�equation representation brings us one step closer to an operational model�

because e	ective procedures 
 such as Gaussian elimination for ordinary linear equations


 exist for speci�c classes of equations�

The equations for a simulation are generally di�cult to analyze because its variables and

constants describe states over the entire simulation interval� and the equations themselves

can be arbitrarily complex� We may be able to obtain a set of simpler equations� however� if

we restrict the analysis to those simulations that span only a short interval� If the interval

of a simulation can be broken down into a �nite number of smaller intervals such that

each interval can be computed by an e	ective procedure� we will have found an e	ective

procedure for the simulation�

����� Breaking a simulation into smaller slices

Any equation whose associated output has a delay �� such that � � �� can be reduced to a

constant equation by restricting the simulation to an interval equal to �� Let L be the set of

output arcs with a non�zero delay at time t� Suppose L is non�empty� let � be the smallest

� March ����



�� Chapter �� Model of Simulation

non�zero delay� The state of all arcs between t and t� � are related by the following set of

simultaneous equations �justi�cations to follow shortly��

� a � A Sa�t� t� �� 	

�
Ga �Ssrc�a��t� t� � if a � L


Ga �Ssrc�a��t� t�� Sinp�src�a���t� t� ��� if a �� L�

If equations like these can be solved� simulation for a system can be performed by

dividing the simulation interval into ��wide slices� and repeatly solving for SA�t� t � ���

computing SE�t� t���� and advancing to time t��� Since the set of equations above covers

a slice of time� let us simply refer to it as a slice� The operation of a composite simulator

that advances one slice at a time can be described by the actions of its element simulators�

Figure ��

 depicts the sequence of actions taken by the simulator for element� e� whose

output arc� a� has a non�zero delay of �� At the beginning of the slice that starts at t �Figure

��

�a��� the simulator has progressed to t and has computed Se�t� t�� Since the delay for a

is �� Se�t� t� contains the output state description� Sa�t� t� ���

S inp�e��t�t���

t��t��

tt��

S a�t�t���

t��

t��

t��

t

element e

S e�t�t�

t�� t

S a�t�t���

t��

S a�t���t�����

S e�t���t���

t����

�c��b�

arc a

�a�
12

12
12

123

12
12

123
123

123
123

�d�

Figure ���� Element�simulator operation for an element with a non�zero delay�

Since � is no larger than �� the equation for Sa does not depend on the state of other arcs�

and the simulator can output the state description� Sa�t� t � ��� �Figure ��

�b�� without

any additional inputs� If the state description over the interval �t� t � �� can be computed

for every arc in the system� Sinp�e��t� t � �� will become available to e �Figure ��

�c���

Since element simulators are assumed to be progressive� the simulator for e will compute

� March ����



Section ���� Operational Framework ��

t�� t

t��

S a�t�t���

t��

S a�t���t���

S e�t���t���

t

S inp�e��t�t���
tt��

element e

S e�t�t�

t

S a�t�t�

�c� �d��b�

arc a
12
12

123
123

�a�

Figure ���� Element�simulator operation for an element with a zero delay�

Se�t� t � �� from Se�t� t� and Sinp�e��t� t � ��� and will be ready for the next slice �Figure

�����d���

If the delay is zero �Figure ������ the simulator for e does not contain any output state

description beyond the starting time of the slice �Figure �����a��� The equation for Sa

depends on the state of other arcs� and the simulator is unable to produce Sa�t� t� �� until

it has received Sinp�e��t� t��� �Figure �����b��� If e is not a member of a zero	delay circuit

�Corollary ����� Sinp�e��t� t��� will eventually be available� When Sa�t� t��� is computed�

the simulator will be ready for the next slice�

A slice that does not contain zero	delay circuits can be solved by simple variable sub	

stitution
 a slice that contains zero	delay circuits �called an obligatory slice� requires simul	

taneous equation solving� A system has a progressive simulator if and only if a solution

exists for every slice of a system� If a slice has no solutions� then the slice contains a knot�

����� Slices and knots

For a system that contains only deterministic elements� a non	obligatory slice always has

exactly one solution� An obligatory slice� however� can have three possible outcomes� no

solution� one solution� and multiple solutions� All three of the outcomes can be found in

the cross	coupled zero	delay XOR�NOR circuit in Figure �����

Sa ��t� t� �� 
 A function of the environment�

Sa ��t� t� �� 
 A function of the environment�

Sa ��t� t� �� 
 ��Sa ��t� t� �� � Sa ��t� t� ���

Sa ��t� t� �� 
 Sa ��t� t� ��� Sa ��t� t� ��

� March ����



�� Chapter �� Model of Simulation

� � �

a �a �

a �a �

� � �

Figure ���� A system that contains all three types of slices�

When the inputs a � and a � are both � over the �t� t��	 interval
 the set of simultaneous

equations for the circuit can be reduced to the set of two equations below
 which has no

solution�

Sa ��t� t� �	 � ��Sa ��t� t� �		

Sa ��t� t� �	 � Sa ��t� t� �	

The slice is a no�solution slice� A no�solution slice contains a knot
 and no simulator is

able to complete the simulation when a no�solution slice is encountered
 When a � is � and

a � is �
 the set of simultaneous equations for the circuit can be reduced to the set of two

equations below
 which has arbitrarily many solutions


Sa ��t� t� �	 � ��Sa ��t� t� �		

Sa ��t� t� �	 � ��Sa ��t� t� �		

The value of the pair �a �� a �	 can be either ��� �	 or ��� �	� but their value can switch

between the two
 spontaneously and for arbitrarily many times
 The slice is a multiple�

solution slice� A simulator can make progress if it is able to continue using one of the

solutions
 When both a � and a � are �
 the only solution for the simultaneous equations

is a � � � and a � � �
 The slice is a single�solution slice�

����� Implementation considerations

Thus far
 we have analyzed the composite simulator using only abstract models
 because any

real simulator is bounded by these frameworks
 We can never �nd progressive simulators

for more systems than those indicated by these frameworks
 We can derive a number of

� March ����



Section ���� The Generic Simulator Model and Its Derivatives ��

simulators directly from the framework� but in order for any implementation to cover the

range indicated by the framework� it must satisfy the following two conditions�

Eventual Delivery� The simulator must make available any information

that is present in the simulation to any element that

requires it for further computation�

Slice Resolution� The simulator must have mechanisms to resolve any

obligatory slice that has a solution�

Simulators that satisfy both of these properties are called complete simulators� Not all

simulators are� or need to be� complete simulators� For example� if every element in a system

has a non�zero delay� slice resolution is not necessary� Complete simulators that operate

on all possible systems are beyond our goal� we often restrict ourselves to speci�c subjects

such as discrete�event simulation� We will temporarily restrict ourselves to systems that do

not require slice resolution� in order to allow for the development of a working simulator

model�

Section ��� The Generic Simulator Model and Its Derivatives

Since it is su�cient to synchronize the elements through their inputs and outputs� strict

synchronization of all elements on slice boundaries is unnecessary� elements should be al�

lowed to progress at their own pace as their input data becomes available� Furthermore� if

� for an element is larger than �� the element does not have to stop producing output at

t 	 �� because it already has computed Sout
e�
t� t	 ���

Tape

Write head

Read head

Recorded region

t � 


gap�

1234
1234
1234

123
123
123
1231234567890123

1234567890123
1234567890123




Figure ���� Representation of an arc�

� March ����



�� Chapter �� Model of Simulation

If we ignore the existence of obligatory slices� we can construct a generic simulator

model using a set of multi�tape automata� We replace each arc in the system with a read

head� a write head� and a tape� such that�

�� As information is produced by the originator of the arc� the information and the sim�

ulation time are recorded along the length of tape as the write head advances� The

recorded time strictly increases�

�� The read head recovers the recorded information and the time from the tape as it

advances�

�� Both tape heads move in one direction only� but the read head will never move past

the write head�

Since information over periods of time is written onto the tape by its source element be�

fore being read from the tape by the destination element� element simulators are decoupled

in simulated time� The gap between a write head and a read head on the same tape is called

the slack� Since the element simulators are moved forward by consuming and producing

slack� this simulator model is called the slack�driven simulator model�

A slack�driven simulator is not a complete simulator because the model does not include

a mechanism to solve simultaneous equations	 when a system encounters an obligatory slice

and equation�solving is required� the element simulators involved will stop� They are blocked

while waiting for each other to produce more tape	 this condition is called deadlock� We

will describe� in brief� a few derivatives of the slack�driven simulator� some of which are

more permissive and some more restrictive	 thus� some are more complete and some are less

complete than the slack�driven simulator�

����� Message�driven simulation

A slack�driven simulator can be expressed as a set of concurrent message�passing processes

in which the processes are the element simulators and the message streams are the tapes�

Whenever a stretch of tape is written by the slack�driven simulator� the information on

the tape is sent in a message	 whenever a stretch of tape is read� the information in a

� March ����



Section ���� The Generic Simulator Model and Its Derivatives ��

received message is read� Since the slack is represented by messages queued in transit�

a message�passing implementation of a slack�driven simulator is called a message�driven

simulator�

simulator simulator

messages

process pro

12
12

1
1

123456
123456

123
123
123

123
123
123

123
123
123

cess

Figure ���� Replacing tape by messages�

Since a message�driven simulator is an exact implementation of a slack�driven simulator�

the simulation will not make any further progress when equation�solving is required�

����� Concurrent event�driven simulation

The slack�driven simulator satis�es eventual delivery because each stretch of tape written is

immediately available to the destination process� The message�driven simulator duplicates

that property by immediately packing and sending the output information as a message�

oblivious to the value of the information content of the message� An event�driven simulation

is a modi�ed message�driven simulation in which message tra�c is reduced by classifying

messages and by treating di�erent types of messages di�erently�

Messages are classi�ed by whether they are needed at the receiving end� Messages that

are considered to be non�essential are held back with the objective of combining as many

non�essential messages as possible with the next essential message� and packaging them

all in a single entity� The total volume of messages in the simulation is reduced without

impeding the progress of the simulation� Whether a message is needed� however� depends

on the state of the simulation� and is often impossible to determine on the basis of local

information alone�

� March ����



�� Chapter �� Model of Simulation

In event�driven systems� however� messages containing state transitions are more likely

to be needed than those that do not� most event�driven simulators make the classi�cation

on that basis alone� Since the transitions are often called events� and since there is generally

one in each message for such a simulator� these simulators are called event�driven simulators�

Messages containing no events are called null messages� Event�driven simulators were �rst

explored by Chandy� Misra� and Bryant ��	� �
�� though their derivation paths are di�erent

from ours� This exposition illustrates that null messages are a consequence of applying a

more general model to a speci�c class of subjects� rather than a necessity when going from

a sequential simulator to a distributed simulator�

Culling null messages� as is true with many other methods for reducing message volume�

violates the rule of eventual delivery because the rules that decide whether a message is

needed at the receiving end can fail� Without additional mechanisms to assure eventual

delivery of necessary null messages� deadlock may still occur� A ring of elements with

stable values for their cyclic outputs will fail to produce progress because each element is

waiting for its preceding element to produce a message� yet none will arrive if they send

only messages containing transitions�

Cannot produce more information

Cannot send this information

Information waiting to be sent

because it has not received any more information�

because it does not contain any transitions�

containing
 state � � from t � 	 to t � ��

delay �

1
1

	

Figure ���� Example of deadlock in an event�driven simulation�

����� Sequential simulator

A sequential simulator is a simple example of a backtracking simulator for event�driven

systems� If we describe it in the context of our model� a sequential simulator keeps all of

its read heads aligned during the simulation� �All read heads are initially aligned at t � �

at the start of the simulation�� Each write head records not only the output state derived

� March ����



Section ���� The Generic Simulator Model and Its Derivatives ��

from the element input� but also the expected output state� assuming that the element will

encounter no further input change�

If there are currently no state transitions recorded under the read heads� the sequen�

tial simulator is free to move the read heads forward without delivering any of the state

descriptions to any elements� The state description on the portion of the tapes covered

by the motion were produced on the assumption that no transition has occurred over that

period� and the assumption was shown to be valid� When a transition is encountered� the

assumption by its destination element is shown to be false and the transition is delivered

to its destination element so that a new output can be computed� Since the delay of an

element must not be negative� the tape already covered by the read heads will never have

to be revised�

In an implementation of the sequential simulator� the set of tapes is replaced by a

merged list of pending events� Each pending event represents an expected change in an

output of an element given that the input state of the element remains unchanged� Items

in the list are sorted in an ascending order with respect to their time values�

The position of the read heads is kept in a single variable called the global clock� Moving

the read heads forward is accomplished by storing increasingly larger values into the global

clock as events are pulled from the list of pending events� The simulator repeatedly sets the

global clock to the time of the earliest event in the list� pulls that event from the list� and

delivers it to the destination element� All events in the list except the top�most event are

subject to revision because the assumptions of the elements that posted them � that their

inputs will remain unchanged � may now be shown to be false� The event pulled from

the top of the list will never need to be revised because the assumption of the element that

� March ����



�� Chapter �� Model of Simulation

e �st

e �

e �

time

e �

e �st

e �

e �

time

e �

an event entry update event list

identify destination element

sorted event list

simulated time

some element simulators

update time

deliver event

Figure ���� Model of a sequential simulator�

posted it is now shown to be correct� The sequence of events pulled from the list represents

the result of the simulation�

Suppose an obligatory slice is encountered during the simulation� If the state under

the read heads forms a self�consistent state assignment for the slice� then there will be no

events scheduled to change that assignment� The simulator will pass over the slice without

detecting it� If the state assignment is not self�consistent� there will be events that change

the state assignment� As the result of delivering such events� more events may be scheduled

for the current simulation time because some destination elements may have a zero�delay�

If the intermediate state assignments eventually lead to a consistent state assignment� the

pool of events under the read head will become empty and the global clock will be allowed

to advance� if not� the simulator will be stuck processing an endless stream of events having

the same event time�

Since there is one event delivery for every transition� a sequential simulator is also

labeled event�driven� however� unlike the concurrent event�driven simulator described pre�

viously� the sequential simulator will never deadlock� The simulator is a complete simulator�

� March ����



Section ���� The Generic Simulator Model and Its Derivatives ��

����� Concurrent backtracking simulators

Message�driven simulators do not backtrack� because every piece of information that each

element simulator produces is correct� Backtracking simulators produce speculative infor�

mation that can be revised when assumptions fail� In a sequential event�driven simulator�

the amount of backtracking is limited by the alignment of the read heads� Since alignment is

costly and reduces concurrency� concurrent backtracking simulators do not align read heads�

The element simulators are allowed to produce outputs and to consume inputs according

to their own heuristics and assumptions� When those assumptions are shown to be wrong�

they have to restart the simulation from the point where the computation went wrong by

backing up the write heads to discard erroneous information�

When a write head needs to be moved back behind a read head� the destination element

of the read head has already consumed and may have produced its state and output based

on false inputs� it too must be rolled back� In order to roll back to the time at which

the input becomes invalid� the element simulator has to store a sequence of past states in

addition to its current state�

Not all of the past state needs to be stored� however� In the Time Warp simulator of

David Je�erson ��	
� a behind�the�scenes mechanism called the global virtual time is used

to compute concurrently the lower bound of time for which rollback may still occur� The

global virtual time attempts to keep track of the minimum time of all events and elements

in the simulation� Any saved state with a time value less than the global virtual time can

be discarded� because no element will ever roll back to an earlier time�

The advantage of a backtracking simulator is that when a processor of the machine is

otherwise idle� spare cycles can be used for speculative computing� Since this simulator must

keep a record of past states for the elements� the concurrent backtracking simulator trades

o� space for speed by using larger processing nodes than would otherwise be necessary�

Concurrent backtracking simulators are complete simulators� and they handle obliga�

tory slices the same way as do sequential simulators� When one is encountered� and if the

� March ����



�� Chapter �� Model of Simulation

state assignment of the elements involved is already self�consistent� the simulator moves

ahead without detecting it� If the state assignment is not self�consistent� some of the ele�

ments involved will be rolled back to the starting time of the slice� and perhaps some more

after that� The �urry of rollbacks ends when a self�consistent state is achieved�

����� Branch�and�bound simulators

If a backtracking simulator is likened to a depth��rst search� then its breadth��rst equivalent

resembles a branch�and�bound simulator� This is one that trades o� space for speed by using

more processing nodes �rather than larger nodes	 than would otherwise be necessary�

Suppose an element simulator computes to a point where its output can take on one of

several states� depending on some inputs that have not yet arrived� Instead of producing a

speculative output as would a backtracking simulator� the element simulator will� in e�ect�

fork the simulation into a set of concurrent branches to follow each of the possibilities� In

each branch� when the decisive input has �nally arrived� should the input not match the

assumption for a branch� then the branch will be terminated �bound	�

Agency 
Agency �Researc

123456
123456
123456
123456

123456
123456
123456
123456

1234567
1234567
1234567
1234567

her

Figure ���� A researcher submitting a grant�

For comparison� suppose that a research grant request has to be approved in tandem

by two government agencies� The �rst agency spends a long time classifying the grant into

one of three classes� A� B� or C� The second agency spends a long time deciding whether

the grant will be accepted based on the classi�cation and the available funding for each

class� A researcher submitting a grant can be represented by the system in Figure ���
�

In a message�driven simulator� only one agency simulator can be active at any one time�

The time it takes to simulate the approval of the grant is equal to the sum of the time taken

in each agency� because the operation is sequential� In a backtracking simulator� while the

simulator for the �rst agency is working� the second agency can choose and pursue one

� March ����



Section ���� The Generic Simulator Model and Its Derivatives ��

message driven simulator�

A�A�R A�A�R A�A�R

petition

C

OK

12312123 121212 1212312
123
123
123

123
123
123

123
123
123

C

backtracking simulator�

A�A�R A�A�R A�A�R

C

OK

inconsistency detected� rollback needed

BC

OK
assume

12
12
12

12312123 121212 1212312
123
123
123

123
123
123

123
123
123

B

branch�and�bound simulator�

A�A�R A�A�R A�A�R

A�A�R A�A�R

A�A�R A�A�R

OK

C

OK

OK

OK

C

B

A

C

C

C

assume C

assume A

assume

123
123
123

123
123
123

123
123
123

123
123

123
123
123

123
123

123
123
123

123
123

12
12

123
123

12
12

12
12

123
123

12
12

123
123

12
12

12
12

12
12

123
123

12
12

123
123

12
12

12
12

12
12

123
123

12
12

123
123

12
12

123
123
123

B

Figure ���� Comparison between three simulators�

but only one of the three possible outcomes produced by the �rst agency� In a branch�

and�bound simulator� three copies of the simulation are produced� each pursuing one of the

three possibilities�

A branch�and�bound simulator is also a complete simulator� If there are any no�solution

slices� all branches will be terminated and none will remain at the end� If there are any

multi�solution slices� but no no�solution slices� more than one set of simulations will remain

at the end� and each will correspond to one possible outcome� If there are only single�

solution slices� then exactly one set will remain� The simulator will fail� however� if the

number of solutions is unbounded� because the computing resource is bounded�

� March ����



�� Chapter �� Model of Simulation

The branch�and�bound simulator is the only interesting type of distributed simulator

that� so far as we know� is still to be explored� E�cient algorithms to fork and terminate

the simulator may provide hope for the simulation of systems with very little intrinsic

parallelism� and whose grain size is too small or whose behavior too unpredictable for

rollback to be pro�table�

����� Time�driven simulators

Thus far� we have discussed simulators that resolve slices by trial�and�error �backtracking�

and by exploring all possibilities �branch�and�bound�� In both methods� each element sim�

ulator needs only local information for progress� Neither method is appropriate� however�

when the number of possibilities that must be explored is in�nite� Exact simulation of such

a system may require solving simultaneous equations analytically� When the equations can

be solved� they yield functions of time� reducing the simulation to a simple task of func�

tion evaluation� When an analytical solution is inappropriate or di�cult to �nd� empirical

approximations must be used�

I V

	

�

CAP LOAD

V

I

LOAD

CAP
I 
 i�V �

V 

Z

Idt

A physical system ��� and its logical represen
1234
1234
1234
1234
1234
1234

123456
123456
123456
123456
123456
123456

tation

Figure ���� An example of a continuous system�

An example of such a system is an electrical circuit� In the system in Figure ���
� the

voltage across a capacitor is the integral of the current through the capacitor� the current�

in turn� is a function of the voltage across the capacitor�

The equations� V 

R
Idt

I 
 i�V �

In order to simulate this kind of system� we need to �nd a replacement system that is

discrete but that will either approximate the behavior of the target system or converge to

� March ����



Section ���� The Generic Simulator Model and Its Derivatives ��

the �nal state of the target system� The usual method of building a simulator for such a

system is to divide the simulation interval into a sequence of small slices� We then assume

that information exchange takes place only at the boundaries of these slices� and information

about the others can be accurately extrapolated between the boundaries�

For example� when integration of a continuous function is involved� discrete methods�

such as taking the Riemann sum� can be used to approximate the integral of the function�

Although discrete integration is seldom exact� we can get increasingly better approximations

by reducing the size of the slices� when the size is reduced� the Riemann sum approaches

the integral� However� due to accumulated numerical errors� the simulation may eventually

diverge and produce an output that is valid only for a limited span of simulated time�

Simulators of this type are called time�driven simulators because they are moved forward

at one time slice per step� Simulators of this type are also complete�

����� Summary

The slack�driven simulator is a generic simulator model that covers a large array of existing

and hypothetical simulators� Simulators that perform computation on speculation� such as

the concurrent�rollback simulator� are called optimistic simulators� Simulators that produce

no output other than that implied by the input are called conservative simulators� We will

concentrate on the message�driven simulator� which is a conservative simulator�

We are particularly interested in the characteristics of the simulator itself� not those of a

simulator plus any system it simulates� Thus� we have chosen the most revealing simulation

subject� devised a series of conservative simulators� and reported in the following chapters

the results obtained�

� March ����



�� Chapter �� Logic�Circuit Simulator Experiments

Chapter � Logic�Circuit Simulator Experiments

A Boolean network is a network of Boolean logic gates connected such that each input is

driven from the output of another gate or from an input to the network� A logic circuit

is a Boolean network that includes a notion of time� Each logic element in the network is

assigned a positive value called the delay of the element� The input and output states of

the gates are time�variant� If F is the Boolean function of a logic gate whose delay is ��

then the input state� I� and output state� O� are related by the equation�

O�t� �� 	 F �I�t��

Thus� unlike a Boolean network� which has a static value that is computed by solving a

set of simultaneous equations� a logic circuit can have time�dependent behaviors� such as

memory and oscillation� Simulation is a way of computing the behavior of a logic circuit�

x

Figure ��� A logic circuit whose behavior is di�erent from its Boolean network�

The Boolean network in Figure 
�� can be described by the equation x 	 NOT �x��

which does not have a solution� As a logic circuit� however� the network is an oscillator�

Although the input�output relationship of a logic circuit when it does reach a stable state is

consistent with the corresponding Boolean network� our de�nition of a logic circuit simulator

is one that reproduces the behavior of a logic circuit rather than one that solves for a stable

state� The other de�nition is used by simulators such as MOSSIM 
���� which simulates

and veri�es digital integrated circuits�

Most existing circuits found in computers and other digital systems belong to a class of

circuits called clocked logic circuits� Clocked logic circuits are very well suited for the stable�

state�solving form of simulation� because they are designed to reach a stable state during

each clock cycle� and because only the �nal state of a clock cycle is needed to determine

the future state� The exact sequence and timing of transitions that lead to a stable state

� March ����



Section ���� Why Logic Circuits� ��

are usually not important� only the �nal stable state of the circuit is important� Such

simulators� however� will not work very well for the unclocked� or self�timed� logic circuits�

Section ��� Why Logic Circuits�

We study logic�circuit simulation because it stresses a distributed simulator� and is itself of

practical interest� It is easy to construct examples of logic circuits with diverse behaviors�

structural di�culties such as large fan�in and fan�out� and highly non�uniform activity levels�

Simple logic gates exhibit responses in which an input event may or may not in�uence the

outputs� depending on the internal state of the element and on the states of other inputs�

yet� they require very little computation to simulate their behavior� Thus� the performance

results shown later involve practically no computation other than the distributed simulation

itself� They are� therefore� uncluttered studies of how well the simulator itself performs�

A number of related simulators� each supporting an array of di�erent simulation modes�

have been written during the course of this study� These simulators run on multicomputers�

such as the Cosmic Cube� Intel iPSC� and Symult 	
�
� Since they are written to run

under the Cosmic Environment� they can be compiled for all of these machines without

modi�cation� The historical relationship between these simulators is shown in Figure 
�	�

The arrows indicate predecessor�successor relationships�

hybrid

sequential

CMB�variant

pruned�

variant

CMB�

sequential
coordinated�

progressive�

Figure ��� A number of circuit simulators and their relationship�

� March ����



�� Chapter �� Logic�Circuit Simulator Experiments

Of the �ve simulators shown� results obtained on three of them � the CMB�variant� the

coordinated�sequential� and the progressive�hybrid simulators � are of interest� The se�

quential simulator and the pruned�CMB�variant are used for comparison only� The pruned�

CMB�variant simulator will not be discussed�

The CMB�variant simulator is a straightforward implementation of the generic simu�

lator in which the basic unit of information transfer is a block of state description over a

time interval� The CMB�variant simulator shows excellent speedup as the number of nodes

is increased� but� since it is totally oblivious to the content and e�ect of its information

carriers� much of the work it has to do can be eliminated when an event�driven system is

simulated on one node using a sequential simulator� However� sequential simulators can�

not be readily distributed� and they cannot� in their original form� bene�t from the use of

multicomputers�

The three succeeding simulators attempt to combine the advantages of sequential and

distributed simulators� The pruned�CMB�variant simulator is a CMB�variant simulator

with sequential simulation mechanisms added� The coordinated�sequential simulator is a

sequential simulator with CMB�variant mechanisms added� The progressive�hybrid simula�

tor is the �nal merger of the two� In the following sections� we will describe each of these

simulators in their chronological order�

� March ����



Section ���� CMB�Variant Simulator ��

Section ��� CMB�Variant Simulator

The CMB�variant simulator for logic circuits is a proof of concept for the generic simulator

model described in Chapter �� Since this is a demonstration of a generic model� in order

to cover the greatest range of possible simulation subjects� special but useful properties

of logic circuits have been ignored in building this simulator� In particular� the simulator

ignores the fact that logic circuits are event�driven systems� We will discuss such systems

in greater detail when we compare the result of this simulator to ones that do make use of

the event�driven properties�

domain of event�driven simulators

domain of the generic simulatorslogic circuit systems

Figure ��� Domain of the generic simulator model�

The tape�writing and �reading processes in the generic simulator model are replaced by

message�sending and �receiving processes in the CMB�variant simulator� These are light�

weight� reactive processes� and the simulator is a reactive kernel for the reactive processes�

As in a usual reactive�process program� the distribution of the simulation task on a multi�

computer is accomplished by partitioning the set of reactive processes across a set of reactive

kernels that run on a multicomputer�

We will present a simpli�ed description of the CMB�variant simulator� the actual im�

plementation contains extensive measurement setups and programming short�cuts that are

inappropriate to report here� The simulator presented� however� is functionally correct� ex�

presses the same principle as does the actual implementation� and is easier to understand�

����� The element simulators

First of all� a reactive process is represented by two pointers� the entry�function pointer and

the data pointer� The entry�function pointer always contains the reference to the function

that handles the next message for the process� but the data pointer can hold any private

data structures needed by the process� For an element simulator� the private data may

� March ����



�� Chapter �� Logic�Circuit Simulator Experiments

include one data structure for each of the element�s outputs� An output data structure

contains the references to all inputs to which it connects� Each input reference contains the

ID of the element that owns it and the index that identi�es the input within the element�

One output structure can contain more than one reference� because an output can connect

to more than one input�

The private data may also include one input data structure for each of the element�s

inputs� Each input data structure contains the ID of the process and the identity of the

output to which it connects� Each input can and must connect to one output�

data

entry

�

�

�

�

�

data

entry

�

�

�

�

�

A	�

process Bprocess A

input reference

input structure
output structure

B	�

output reference

Figure ��� Process structure and a simple example of connectivity�

We may need a variable
sized message format to describe a piece of tape recording�

because the information on the tape can be arbitrarily complex� In the interest of simplicity�

however� we choose to represent each tape recording with more than one simple� �xed
sized

message� We will call the structure a STATE�FRAGMENT� We use the name fragment to

contrast it with the name event used in the study of traditional event
driven simulation

systems� and to convey the fact that every entity is a fragment of a continuum that can be

merged with adjacent entities and sliced into arbitrarily many entities�

The essential �elds of a fragment are shown in Listing ���� When a fragment is received

by a process� the input�id �eld identi�es the element input to receive the fragment� The

state and span �elds describe the duration of a state at that input�

� March ����



Section ���� CMB�Variant Simulator ��

� struct STATE�FRAGMENT
� �
� int input�id� �� Index of the input at the dest element	 ��

 int state� �� State contained in this fragment	 ��
� int span� �� Duration of this fragment	 ��
� STATE�FRAGMENT �next� �� Pointer to make a linked list of fragments	��

 � �

Listing ��� Structure of a FRAGMENT�

When a piece of tape is to be written by an element in the generic simulator model�

the corresponding process in the CMB�variant simulator produces one fragment or a stream

of several fragments to carry the information recorded on the tape� When a fragment has

arrived at its destination� the entry function of the destination process is called to accept

the fragment� It is worth noting that reactive�process programming systems are themselves

event�driven systems whose inputs are fragments� Thus� the simulator is always an event�

driven system� even though the system it simulates may not be�

� inverter�entry�pp�sb�
� PROCESS �pp�
� STATE�FRAGMENT �sb�

 �
� OUTPUT�pp����sb��state�sb��span��
� free�fragment�sb��

 �

Listing ��� An inverter in a CMB�variant simulator�

Listing ��� contains a sample entry function for an inverter element� As in an ordinary

reactive process� the two parameters to its entry function are the process structure and the

input message� When called� the entry function simply outputs another fragment of the

same length� but with a complementary state value� The delay of the inverter is equal to

the di�erence between the amount of fragments produced and the amount of fragments

consumed� Such di�erences are set up during initialization by producing one fragment for

each output of every gate� such that each fragment has a span that equals the delay of its

output�

The OUTPUT function takes on four parameters� The �rst two parameters are the process

structure and an index that identi�es an output of the element� The function needs these

� March ����



�� Chapter �� Logic�Circuit Simulator Experiments

two parameters in order to access the list of destination input references for the output

fragments� The next two parameters describe the state and the span of the fragment� In

this example� there is only one output for the inverter� and its output index is �� The state

of the new fragment is the complement of the state contained in sb��state and the length

of the fragment is the same as sb��span�

Since an inverter has only one input� it does not have to check the input�id of the

fragments it receives� and it can immediately process any fragments it receives without

waiting for other fragments to arrive� For a gate with more than one input� however� it

usually has to di�erentiate the fragments it receives� Listing ��� contains a sample entry

function for a two�input XOR�gate	

� xor�entry�pp�sb�
� PROCESS �pp�
	 STATE�FRAGMENT �sb�

 �
� int out�span� out�state�


 QUEUE�FRAGMENT�pp�sb��

� while��Q�EMPTY�pp��� �� �Q�EMPTY�pp����
�

�� out�state � � Q�HEAD�pp�����state � Q�HEAD�pp�����state ��
�� out�span � MIN� Q�HEAD�pp�����span � Q�HEAD�pp�����span ��

�
 OUTPUT�pp���out�state�out�span��

�� TRIM�QUEUE�pp���out�span��
�
 TRIM�QUEUE�pp���out�span��
�� �
�� �

Listing ��� An XOR�gate in a CMB�variant simulator�

In a two�input XOR�gate� both of the inputs must have at least one fragment present

before the gate can produce output fragments� The gate must therefore maintain a fragment

queue for each of its input structures� When a fragment is received� the entry function can

check the queues before deciding whether the fragment needs to be queued
 but� in the

interest of simplicity� the function always queues the fragment ��
� The QUEUE�FRAGMENT

function puts the fragment sb into an input queue of pp according to sb��input�id�

� March ����



Section ���� CMB�Variant Simulator ��

The Q�EMPTY function returns TRUE if the speci�ed input queue for the process pp is

empty� While both queues are non�empty ���� a length of fragment is removed from each

queue to produce an output fragment� The state of the output fragment is equal to the

exclusive�or of the states of the fragments to be removed �		�� The length of the output

fragment �and of each fragment to be removed� equals the length of the shorter fragment

at the head of the queues �	
�� The Q�HEAD function returns a pointer to the �rst fragment

in the speci�ed queue�

The output of the exclusive�or gate remains the same as long as both inputs remain

unchanged� The length of the shorter fragment is the length of time both inputs are known

to remain unchanged� When fragments are consumed� output is produced �	��� and a length

equal to the length of the output fragment is trimmed from both queues �	��	
��

The loop repeats until one of the queues becomes empty and the gate can no longer

produce any additional output fragments from its queues� The inverter and the XOR�gate are

simple because they are both strict� i�e�� they do not have any partial input�state assignment

such that the state of the outputs is not in�uenced by the state assignment of the remaining

inputs�

An OR�gate� on the other hand� is non�strict� If any of the inputs is 	� its output will be

	� regardless of the state of its other inputs� An OR�gate can therefore continue to produce

fragments in some situations where not all of its inputs are available� Listing ��� contains

a sample entry function for an OR�gate�

� or�entry�pp�sb�
� PROCESS �pp�
	 STATE�FRAGMENT �sb�

 �
� int out�span� out�state�


 QUEUE�FRAGMENT�pp�sb��

� while���
�� �
�� if��Q�EMPTY�pp��� �� �Q�HEAD�pp�����state �� TRUE��
�� �
�	 out�state � TRUE�
�
 out�span � Q�HEAD�pp�����span�

� March ����



�� Chapter �� Logic�Circuit Simulator Experiments

�� � else

�� if��Q�EMPTY�pp��	 

 �Q�HEAD�pp��	��state 

 TRUE		
�� �
�� out�state 
 TRUE�
�� out�span 
 Q�HEAD�pp��	��span�

�� � else

�� if��Q�EMPTY�pp��	 

 �Q�EMPTY�pp��		
�� �
�� out�state 
 � Q�HEAD�pp��	��state � Q�HEAD�pp��	��state 	�
�� out�span 
 MIN� Q�HEAD�pp��	��span � Q�HEAD�pp��	��span 	�

�� � else break�

�� TRIM�QUEUE�pp���out�span	�
�� TRIM�QUEUE�pp���out�span	�
�� OUTPUT�pp���out�state�out�span	�
�� �
�� �

Listing ��� An OR�gate in a CMB�variant simulator�

When the process receives a fragment� it is added to the queue� as in the case of the

XOR�gate� But� then� instead of checking both of the queues for fragments� the function

checks �rst for possible non�strict input conditions� Lines ����� check the input whose index

is 	
 lines ����
 check the input whose index is �� If a fragment for an input is available

and its state is TRUE� then a non�strict input condition exists� The new output fragment

is speci�ed to have a state value of TRUE and a span equal to the span of the fragment in

the queue� The function then continues to line 
� where fragments are trimmed from the

queues and an output fragment is produced� If no non�strict conditions have been detected�

the process will compute and produce fragments in the same manner as the XOR process

��������

When a non�strict condition is detected on one input� the queues in both of the inputs

are trimmed �
��

� because the state of the other input does not matter� However� it is

possible that the queue for the other input is empty or does not contain enough fragments

to cover the amount to be trimmed� In this case� the trimming extends to fragments that

have not yet arrived� The process must therefore record the de�cit incurred and deduct it

from fragments that arrive later�

� March ����



Section ���� CMB�Variant Simulator ��

� typedef struct � int delay� �� Delay of the element���
� I�DATA �inpq� �� One per gate input� ��
	 O�DATA �outq� 
 ELEMENT� �� One per gate output� ��

� typedef struct � STATE�FRAGMENT �qh� �� Points to top� ��
� STATE�FRAGMENT �qt� �� Points to bottom� ��

 int deficit� 
 I�DATA� �� Deficit of the queue��

The details for the process are complete� we are ready to show the essential mechanisms

that support the processes� The process structure contains an entry function� an array of

input data structures� one for each element input� and an array of output data structures�

one for each element output� These data structures are set up during initialization� The

input structure contains the de�cit count and a pair of queue pointers� one for the head of

the queue and one for the tail�

� QUEUE�FRAGMENT�pp�sb�
� PROCESS �pp�
	 STATE�FRAGMENT �sb�

�
� I�DATA �Q�


 Q � ��ELEMENT ���pp��data����inpq � sb��input�id�

� if�Q��deficit�
�

�� if�sb��span �� Q��deficit� � Q��deficit �� sb��span �
�� free�fragment�sb�� return� 

�	 else � sb��span �� Q��deficit�
�� Q��deficit � �� 





�
 if�Q��qh�
�

�� if�sb��state �� Q��qt��state� � Q��qt��span �� sb��span �
�� free�fragment�sb�� return� 

�� else � Q��qt � Q��qt��next � qt�
�� qt��next � �� 



 else
�

�� Q��qh � Q��qt � sb�
�� sb��next � ��






Listing ��� CMB�variant QUEUE�FRAGMENT function�

The QUEUE�FRAGMENT function adds the fragment� sb� to the �sb��input�id�th input

queue of the process pp� It checks �rst for the de�cit ���� If a de�cit exists� the span of

the fragment is used to satisfy the de�cit� if the fragment is totally consumed �		
	��� the

� March ����



�� Chapter �� Logic�Circuit Simulator Experiments

function returns� Otherwise� the balance is advanced to the next step� where fragments are

added to the queue ����� If there are already other fragments in the queue ����� and if

the last fragment has the same state as the new fragment ����� the two are simply merged

���	
��� Otherwise� the fragment is linked into the queue �
�	

� 
�	

��

� TRIM�FRAGMENT�pp�id�debit�
� PROCESS �pp�
	 int id�

 int debit�
� �

 I�DATA �Q�
� STATE�FRAGMENT �sb�

� Q � ��ELEMENT ���pp��data����inpq � id�

�� while�debit �� Q��qh�
�

�	 if�Q��qh��span � debit� � Q��qh��span �� debit�
�
 debit � �� �
�� else � debit �� Q��qh��span�
�
 sb � Q��qh �
�� Q��qh � sb��next �
�� free�fragment�sb� � �

�

�� Q��deficit �� debit�
�� �

Listing ��� CMB�variant TRIM�FRAGMENT function�

The TRIM�FRAGMENT function removes debit amount of fragments from the id�th input

queue of the process pp� As long as there are more fragments in the queue� the spans of

as many fragments as necessary� taken from the head of the queue� are used to satisfy the

debit� Any remaining debit is added to the de�cit of the queue�

����� The simulator message system

The list of references and indices for each output structure described above represents a

one�level tree� The root of the tree is the sending process and the leaves of the tree are

the receiving processes� The job of the OUTPUT function is simple enough � it allocates a

fragment for each leaf process and sends it along the branch that leads to the process� In

such a simulator� however� gates with a large fan�out� such as a clock driver� may have to

send the same information to the same destination computing node many times�

� March ����



Section ���� CMB�Variant Simulator ��

Because messages between computing nodes are usually more expensive than messages

within the same computing node� we reduce the internode messages by organizing the tree

as a two�level tree� The intermediate tree nodes are a set of input port processes� one for

each computing node that contains a destination process� An output sends its fragment to

its input ports� and an input port duplicates and forwards the fragment to the destination

processes in its own computing nodes�

input portoutput port �

the tree

�

�

�

a node

�

a node in

�

Figure ��� A sample circuit and a possible mapping to a multicomputer�

Many mechanisms can be added to the output structure for a more more e�cient

simulator� and such mechanisms account for the majority of the di�erences between the

actual implementation and this description� Here we will present a simple OUTPUT function

that converts fragments into messages that are immediately sent�

� typedef struct � int count� �� Number of siblings� ��
� int �node� �� Dest process�s node� ��
	 int �pid�� �� Dest process�s pid�� ��

 int �input�id� � O�DATA� �� Dest process�s input ��

The output data structure contains the number of ports connected and a list of ref�

erences to those ports� A reference for a process in the simulator contains the node and

the pid of the destination simulator process� It also contains a pid�� because the element

processes are embedded in the simulator by reactive�handler layering� Only the node and

the pid� need to be stored in the output structure� because in our implementation there is

only one simulator process for every node� and all of them have the same �xed pid� Listing

��	 contains a sample OUTPUT function


� March ����



�� Chapter �� Logic�Circuit Simulator Experiments

� OUTPUT�pp�id�state�span�
� PROCESS �pp�
� int id�
	 int state�

 int span�
� �

 int j�
� O�DATA �op�
� STATE�FRAGMENT �sb�

�� op � ��ELEMENT ���pp��data����outq � id�

�� for�j � �� j � op��count� j���
�	 �
�
 sb � new�fragment�� �
�� sb��input�id � op��input�id�j� �
�
 sb��state � state �
�� sb��span � span �
�� s�send�msg�op��node�j��op��pid��j���
�� �
�� �

Listing ��� CMB�variant OUTPUT function�

The OUTPUT function allocates a fragment for each branch of the tree ����� initializes

it with the input index of the destination input ����� sets the state and span ���	�
�� and

sends the fragment ����� The s�send function is a layered message function that sends

the message to another process in the simulator� If a two
level tree structure is used� each

fragment goes to an input port process that is identical to the inverter process except that

the state is not inverted �a bu�er process�� The main function for the simulator is identical

to that of a reactive kernel�

� struct � int ��entry����
� char �data � � PROCESS�

	 struct � int pid� �

 char msg�body��� � MESSAGE�


 simulator�main�loop��
� �
� PROCESS �proc�

�� MESSAGE �mesg�

�� while���
�� �
�	 mesg � �MESSAGE �� xrecvb���
�
 proc � process�table � mesg��pid��
�� ��proc��entry��proc� mesg��msg�body��
�
 �
�� �

Listing ��� CMB�variant main loop�

� March ����



Section ���� CMB�Variant Simulator ��

This is the end of our description of a simple� distributed simulator derived directly

from the generic simulator model� The description is complete except for the storage

allocation�de�allocation mechanisms� the initialization�termination mechanisms� and the

result�recording mechanisms�

����� The variants

Although this simulator exhibits excellent performance for some cases� much can be done

to improve its performance for di�cult cases� The number of actual messages� for example�

can be reduced in a logic circuit simulation by using a more elaborate OUTPUT function� In

particular� if message sending is deferred by putting fragments into output�holding queues�

the opportunity to merge multiple fragments into a single message increases� When two

successive fragments with the same state are put into the same holding queue� the two can

be merged into a fragment with a larger span� saving both space and handling time� Even

if they cannot merge� multiple fragments can be concatenated onto a single� longer message

to share the per�message overhead�

If sending is deferred forever� however� the simulator will fail to make any progress�

Good e�ciency can be achieved with a proper balance of message deferral and message

sending� Before we devised and evaluated a number of �ow control methods� there were

two methods that represented the two extremes of possibilities� the two original CMB�

methods� 	Hence� our methods are called variants�
 In the deadlock�avoidance method� no

fragments are deferred and deadlock does not occur� In the deadlock�detection method� no

message is sent until the simulation runs into a deadlock� or unless the output�holding queue

contains an event� A deadlock�detection mechanism running concurrently in the simulator

message system detects the deadlock and forces deferred messages to be sent�

We generally call those methods that are more likely to send messages eager methods�

and those that are less likely to send messages lazy methods� Thus� the deadlock�avoidance

method is at the eager end of the spectrum� and deadlock�detection method is at the lazy

end� To explore the middle ground� we needed to hold back messages by some criteria we

� March ����



�� Chapter �� Logic�Circuit Simulator Experiments

could select� but in order to prevent deadlock detection from dominating the timing� we

needed a cheaper way of ensuring progress than by using standard deadlock detection�

When simulator processes defer sending output messages� they may cyclically deny

themselves input messages� leading to deadlock� However� deadlock implies that some node

has an empty input�message queue� Since the emptiness of the queue is a local condition�

we make use of that condition to modify the behavior of the simulator to prevent deadlock�

Our strategy is called inde�nite�lazy message sending� and is implemented by replacing the

xrecvb function in the simulator�s main loop with a non�blocking xrecv�

� simulator�main�loop��
� �
� PROCESS �proc	

 MESSAGE �mesg	

� while���
� �

 if�mesg � �MESSAGE �� xrecv���
� �

�� proc � process�table � mesg��pid�	
�� ��proc��entry��proc� mesg��msg�body�	
�� � else
�� �
�
 take�action�to�promote�progress��	
�� �
�� �
�� �

Listing ��� CMB�variant inde�nitely�lazy main loop�

The function xrecv returns a message for an element simulator if the node�s input�

message queue is not empty� The simulator goes on to deliver the message as before if a

message is returned� While an element simulator is consuming a message� it may either send

or withhold any output that the element simulator produces according to the heuristics in

e�ect at the time�

If the node�s input�message queue is empty� a null pointer is returned and deadlock is

a possibility� The simulator will take special actions to break potential deadlocks� Actions

can generally be classi�ed into two types� For the source�driven type� the simulator selects

a deferred output to send as a message	 for the demand�driven type� the simulator selects

� March ����



Section ���� CMB�Variant Simulator ��

a blocked element� and sends a demand message to its predecessor to request that queued

outputs be sent� The end result is that deadlock is prevented�

����� Variant algorithms

We have experimented with many CMB variants� Since many of them are closely related�

and all of them show similar performance results� we will describe the operation and report

the performance of just six variants �A�E� that are representative of the range of possibilities

that we have studied�

A Eager message sending� This is the deadlock�avoidance CMB simulator�

B Eager event� Since successive fragments with the same state value can be merged into

one fragment� the eager�event variant detains all output fragments until a fragment

that cannot be merged with its predecessor is produced� When xrecv returns a null

pointer� the detained fragment that extends to the earliest time is sent� This is called

an eager�event variant because state changes are called events in event�driven systems�

and because this simulator will eagerly send event�conveying fragments�

C Inde�nite�lazy� single�dispensation� All output fragments produced by element simula�

tors are queued� Messages are sent only when xrecv returns a null pointer� The output

queue that extends to the earliest time is selected� and one fragment from that queue

is sent�

D Inde�nite�lazy� multiple�event� This scheme is a variation on C� motivated by charac�

teristics of multicomputer message systems that make it economical to pack multiple

events into fewer messages� All output fragments produced by element simulators are

queued� When xrecv returns a null pointer� the output queue that extends to the

earliest time is selected to generate a message using all of the fragments in that queue�

instead of just one�

E Demand�driven� Although we usually think of simulation as source�driven from inputs�

one can equally well organize the simulation as demand�driven from outputs� In the pure

� March ����



��� Chapter �� Logic�Circuit Simulator Experiments

demand�driven form� all output fragments produced by element simulators are queued�

When xrecv returns a null pointer� the input port that lags furthest behind is picked

to select the destination for a demand message� Upon receipt of a demand message� if

the output queue is not empty� the simulator sends all fragments in the output queue�

if the output queue is empty� the simulator propagates the demand message� For the

demand�driven variant� the message header must also carry a type �eld to distinguish

a normal message from a demand message�

� struct � int pid� �
� int type �
� char msg�body��� 	 MESSAGE�


 simulator�main�loop��

 �
� PROCESS �proc�
� MESSAGE �mesg�

�� while���
�� �
�� if�mesg � �MESSAGE �� xrecv���
�� �
�� if�mesg��type �� DEMAND�TYPE�
�
 �
�
 handle�demand�message�mesg��msg�body��
�� 	 else
�� �
�� proc � process�table � mesg��pid��
�� ��proc��entry��proc� mesg��msg�body��
�� 	
�� 	 else
�� �
�� take�action�to�promote�progress���
�
 	
�
 	
�� 	

Listing ���� CMB�variant demand�driven main loop�

F Demand�driven� adaptive� Demand messages single out critical paths in a simulation�

In an adaptive form of demand�driven simulation� a threshold is associated with each

communication path� Outputs of element simulators are queued only up to the thresh�

old� when the threshold is exceeded� the contents of the queue are sent as a message�

Demand messages operate as in E� but also cause the threshold to be decreased for

processes that get them� In the examples that we show� the threshold is halved� The

� March ����



Section ���� CMB�Variant Simulator ���

simulator is accordingly able to adapt itself to the characteristics of the system being

simulated�

����� Instrumentation

Although execution time is one of the most natural bases of comparison between any two

programs that perform the same function� and although it is used below to illustrate the per�

formance of our distributed simulators on di�erent commercial multicomputers� execution

time on these concurrent computers depends both on the algorithm and on the charac�

teristics of the particular computer� When we wish to isolate the characteristics of the

algorithm from those of the computer� we run our simulator programs under the control of

a multicomputer simulator �sweep mode�� A close examination of the main routine of the

simulator reveals that it can be transformed with minimal modi�cation into a light�weight

reactive�process program under yet another layer of the reactive kernel	

� SIM�DATA �simulator�data�

� simulator�main�loop�simp�mesg�
	 PROCESS �simp�

 MESSAGE �mesg�
� �

 PROCESS �proc�

� simulator�data � �SIM�DATA ���simp��data��

�� if�mesg�
�� �
�� if�mesg��type �� DEMAND�TYPE�
�	 �
�
 handle�demand�message�mesg��msg�body��
�� � else
�
 �
�� proc � simulator�data��process�table � mesg��pid��
�� ��proc��entry��proc� mesg��msg�body��
�� �
�� � else
�� �
�� take�action�to�promote�progress���
�	 �
�
 �

Listing ���� CMB�variant main loop as a light�weight process�

� March ����



��� Chapter �� Logic�Circuit Simulator Experiments

e

e

e

eS

e

e

e

eS

e

e

e

eS

e

e

e

eS

reactive kernel multicomputer
simulator

CMB�variant
simulator

element
simulator

Figure ��� Structure of a sweep�mode simulation�

The process structure in this reactive kernel is described by the SIM�DATA structure in

the above listing� The structure contains a list of element simulator processes and any other

data structures private to this instance of the simulator�

Sweep�mode simulation for an N �node multicomputer is accomplished with a reactive

kernel that runs N copies of the simulators as reactive processes� Execution time is then

measured in a unit called a sweep ��� ��	� which corresponds here to a 
xed time required

to call an element once� The time required for other operations� such as sending a message�

can be set to a particular number of sweeps� Normally� a message sent by one node in one

sweep is available in the destination node at the next sweep� However� to test the sensitivity

of the algorithms to message latency� we can also set the latency to larger values�

In the real�mode simulation� the simulator is linked with a reactive heavy�weight handler

and run directly on the multicomputer� There is one copy of the simulator process in

each node� and each simulator process runs a subset of the elements as embedded reactive

processes� Each node runs at its own pace� and execution time is measured with the host

computer�s real�time clock�

����� Experimental results

Performance measurements have been made on a variety of logic networks� including those

that are representative of networks found in computers and VLSI chips� and those that

� March ����



Section ���� CMB�Variant Simulator ���

e

e

e

eS

e

e

e

eS

e

e

e

eS

e

e

e

eS

RK RK RKRK

multicomputer network

a computing
node

Figure ��� Structure of a real�mode simulation�

are designed speci�cally to test or to stress the simulator� Six di�erent network types�

each in several sizes up to ���� logic gates� have been the principal vehicles for these

experiments� The majority of the logic gates have delays of between � and 	�ns� with 
�ns

being a typical value� Each simulation was run for a predetermined� simulated interval�

and a set of measurements� including the real elapse time� was recorded� A larger variation

in performance was observed among networks with di�erent characteristics than between

algorithm variants�

The parallel multiplier is a good example of an ordinary logic network� The �����

array multiplier used in several experiments employs ���
 logic gates to generate the 
	�bit

product of two ���bit binary inputs� The multiplier network contains only limited con�

currency� and does not contain tight circuits that give the simulator arti�cial performance

advantages or troubles that depend on element distribution� It also contains moderately

high fan�out in the multiplier and multiplicand lines� this puts pressure on the message

system� In all fairness� the distributed simulation of this multiplier network is expected to

do neither too badly nor too well�

For the simulation� the most signi�cant bit of the product is connected back to the

multiplier input via an inverting delay� The delay is such that the multiplier reaches a

� March ����



��� Chapter �� Logic�Circuit Simulator Experiments

stable state before the multiplier input changes� The multiplicand input is set to a value

that causes the circuit to oscillate� The resulting activity level is quite low� The entire

circuit is idle ��� of the time� For the other ��� of time� there is a wavefront of activity

moving diagonally down the array� After the wavefront hits the bottom	left corner� the

multiplier input changes and broadcasts the change to 
�� gates� A trace of the product

outputs shows that the simulator and the circuit are running correctly�

wave frontbroadcastidle

Figure ��� Three phases of the oscillating multiplier�

The plot in Figure ��
 portrays in a log	log format the sweep count in the sweep	mode

versus the number of nodes� N� for the simulation of the 
��
� multiplier network under

all six CMB variants�

It is not useful to continue the plot beyond ��� nodes� since at this point there are as

many nodes as simulated gates� Each horizontal division represents a factor of two in the

number of nodes used� each vertical division represents a factor of two in sweep count or

time� The placement of elements in nodes for these trials is a systematic pattern that tends

to put related elements into the same node�

The �rst remarkable characteristic of these performance measurements is that they are

so similar across this class of variant algorithms� Algorithms A� E� and F produce more

messages than B� C� and D� but in the sweep mode� in which messages are free but element

invocations are expensive� there is little di�erence between the variants� The performance

under sweep	mode execution exposes the intrinsic characteristics of the algorithm� and is not

related to such multicomputer characteristics as the relationship between node computing

time and message latency�

� March ����



Section ���� CMB�Variant Simulator ���

log��sweeps�

log��nodes�

sequential simulator

D

C

E

B

F

A

� � � � � � 	 
 � � �� ��
�

��

��

��

��

��

��

�	

�


��

��

��

Figure ��� A �����gate multiplier� sweep�mode�

The performance is divided roughly into two regimes
 the �rst regime being one of near�

linear speedup in N for the �rst 
�� octaves
 and the second regime being one of diminishing

returns in N as the computing time approaches an asymptotic minimum value� In the

linear speedup regime
 these simulators nearly halve the sweep count with each doubling of

resources until limiting e�ects are reached� Load balance is assured by the weak law of large

numbers when there are many elements per node� While each node has a su�ciently large

pool of work
 node utilization remains high� The simulators approach asymptotic minimal

time as they exhaust the available concurrency in the system being simulated� The gradual

�knee� of the curve originates from progressively less�e�ective statistical load balancing as

the number of elements per node diminishes with largerN � The gross characteristics of these

curves are similar to those of other concurrent programs ���
 and are quite understandable

and predictable�

Like many other concurrent algorithms
 a more e�cient sequential algorithm exists for

the CMB�variant simulator when applied to circuit simulation� The heavy horizontal line

� March ����



��� Chapter �� Logic�Circuit Simulator Experiments

represents the number of sweeps a sequential event�driven simulator requires for this same

simulation� We observe at log
�
N�� �� node� that all of the CMB variants are somewhat

ine	cient in comparison with the sequential event�driven simulator� We shall refer to this

extra work that the CMB�variant simulator does as the overhead of distributing the sim�

ulation� We will discuss the sequential event�driven simulator and additional performance

measurements in the next and subsequent sections�

� March ����



Section ���� Sequential Simulator ���

Section ��� Sequential Simulator

At N � �� the sequential simulator does better than do the CMB�variant simulators for two

reasons� The �rst is that logic circuits are event�driven systems in which the time it takes

for a sequential simulator to handle and process a fragment is zero if the fragment does

not convey an event� 	A fragment conveys an event if its state di
ers from the fragment

that precedes it� A message that carries an event�conveying fragment is an event message�

a message that does not is a null message�� The second is that logic gates are simple and

the time it takes for an element simulator to process an event�conveying fragment is almost

zero�

Since the message�handling times for null messages and event messages are identical in

the CMB�variant simulator� the ratio at N � � 	N is number of nodes used� between the

time taken by the sequential and the CMB�variant circuit simulators re�ects the proportion

of event messages in a CMB�variant circuit simulator� The cost of handling null messages

is the overhead of the CMB�variant simulator at N � ��

����� Sequential simulator mechanism

Like the CMB�variant simulator� our sequential simulator is also a reactive�process program

with embedded� light�weight� reactive processes� Each message in this simulator� called an

event� describes a state transition and includes the following �elds�

� struct EVENT
� �
� int input�id� �� Index of the input at the dest element	 ��

 int time� �� Time of the transition	 ��
� � �

Listing ���� Sequential�simulator event structure�

The time �eld of an event represents the time when a state change will occur at the

input 	identi�ed by the value of the input�id �eld� of the process that receives the event�

The function contained in Listing 
��� can be used as an entry function for an inverter gate�

� inverter�entry
pp�ep�
� PROCESS �pp�
� EVENT �ep�

 �

� March ����



��� Chapter �� Logic�Circuit Simulator Experiments

� SEND�EVENT�pp� �� ep��time�	

 free�event�ep�	
� �

Listing ���� An inverter in sequential simulator�

When the simulator delivers an event to the inverter� the inverter will generate an

output event with an event time that is pp��delay units larger� The SEND�EVENT function

takes three parameters� Like the OUTPUT function of the CMB�variant simulator� the �rst

two parameters are the process structure and the index that identi�es an output of the

element� the third parameter is a time value whose sum with the element delay becomes

the time of the output event� Listing ��	
 contains a simple output routine for the sequential

simulator�


 SEND�EVENT�pp�id�time�
� PROCESS �pp	
� int id	
� int time	
� �

 EVENT �ep	
� O�DATA �op	
� int ot	


� op � ��ELEMENT �� �pp��data����outq � id	


 ot � ��ELEMENT �� �pp��data����delay � time	


� for�j � �	 j � op��count	 j���

� �

� ep � new�event�� 	


 ep��input�id � op��input�id�j�	

� ep��time � ot 	


� ADD�EVENT�ep�op��pid��j��	
�� �
�
 �

Listing ���� The SEND�EVENT function in sequential simulator�

The routine allocates an event structure �	�
 for every input connected� �lls in the

receiver input index �	�
� �lls in the time of the event �	�
� and inserts the event into the

event list �	�
� This routine is structurally similar to the OUTPUT routine of the CMB�variant

simulator� except that node numbers are not used to identify processes because all processes

reside in the same node� In order to reduce the number of events that must be sorted when

� March ����



Section ���� Sequential Simulator ���

more than one input is connected� output�event duplication in the actual implementation

is performed at the time of event delivery�

It is interesting that the entry function for an XOR�gate is identical to that of an inverter�

Listing ���� contains the more complex� OR�gate entry function�

� or����pp�ep� PROCESS �pp� EVENT �ep�
	 

� if��ep
�input�id� 
 pp
�entry � or���� SEND�EVENT�pp���ep
�time�� �
� else 
 pp
�entry � or���� SEND�EVENT�pp���ep
�time�� �
� free�event�ep��
� �

� or����pp�ep� PROCESS �pp� EVENT �ep�
� 


�� if��ep
�input�id� 
 pp
�entry � or���� SEND�EVENT�pp���ep
�time�� �
�� else 
 pp
�entry � or���� �
�	 free�event�ep��
�� �

�� or����pp�ep� PROCESS �pp� EVENT �ep�
�� 

�� if��ep
�input�id� 
 pp
�entry � or���� �
�� else 
 pp
�entry � or���� SEND�EVENT�pp���ep
�time�� �
�� free�event�ep��
	� �

		 or����pp�ep� PROCESS �pp� EVENT �ep�
	� 

	� if��ep
�input�id� 
 pp
�entry � or���� �
	� else 
 pp
�entry � or���� �
	� free�event�ep��
	� �

Listing ���� An OR�gate in sequential simulator�

When both gate inputs are �� the entry function is or���� When an event is received�

the event is distinguished by the input it a	ects� If the event is for the input whose index

is �� the entry�function pointer is set to or���� and an output event is produced 
��� If

the event is for the other input� the entry function is set to or��� and an output is also

produced 

�� The actions for the other three entry functions are similar�

An element can compute its output state based only on a transition from one of its

inputs� because the transition carries the assurance that the other inputs of the element

have not changed� Such assurance can be provided in several ways� The most common

method is to keep the set of yet�to�be�delivered events 
the pending events� sorted by time

� March ����



��� Chapter �� Logic�Circuit Simulator Experiments

glitch or no glitch��� �

�

�

Figure ���� A circuit containing a dynamic hazard condition�

in an event list� and to deliver the event with the smallest time value �rst� Since element

delays cannot be negative� an event cannot trigger events with smaller time values� When

an event is delivered to an element� it is assured that the other inputs of the element� and

indeed of all other elements� will remain unchanged up to the time of the event�

� struct � int pid� �
� char msg�body��� � MESSAGE�

	 simulator�main�loop
simp�mesg�

 PROCESS �simp�
� MESSAGE �mesg�
� �
� PROCESS �proc�

�� proc � 
SIM�DATA ��
simp��data���process�table � mesg��pid��
�� 
�proc��entry�
proc� mesg��msg�body��
�� �

Listing ���� Sequential�simulator main loop as a light�weight process�

The simulator main loop is similar to that of the CMB�variant simulator	 the message

system� however� has a di
erent property� The message system for the CMB�variant simu�

lator dispenses messages on a �rst�come� �rst�served basis	 for the sequential simulator� the

message with the smallest time value is dispensed �rst�

����� Hazards in sequential simulators

Although a sequential simulator will always produce a valid simulation result� it may not

always produce the same result as the CMB�variant simulator� Some input conditions in a

logic circuit may trigger more than one possible outcome� and a sequential simulator has

no consistent way of choosing one� For example� the OR�gate in Figure ���� can produce

either no transitions� or two transitions in response to two simultaneous input events� This

condition corresponds to a static hazard in the terminology of Boolean minimization�

� March ����



Section ���� Sequential Simulator ���

Both of these responses are correct because the temporal relation between the two

input events is beyond the capability of the model to resolve� the one that is produced

depends on the order in which the two input events are consumed� Since both input events

have the same time value� they can be taken from the list in either order� If the low�going

transition is taken �rst� two output transitions will be produced� if the high�going transition

is taken �rst� no output transitions will be produced� The CMB�variant simulator� however�

consistently picks the response in which no output transitions are produced�

Although both responses are considered to be correct� the sequential simulator can com�

pare unfavorably with the CMB�variant simulator when there are too many extra events�

For the comparison to be meaningful� we must devise a sequential simulator that will con�

sistently make the same choices as does the CMB�variant simulator� In a system in which

every element has a non�zero delay� this can be accomplished by withdrawing the �rst of

the two output events when the second output event is to be produced� and canceling both

events� Each output data structure must maintain a reference to the last unconsumed event

that it has produced� When another output event is to be produced� if the previous event

has not been consumed and if the two events have the same time value� then no events

are produced and the previous event is withdrawn� The following SEND�EVENT function

implements this mechanism�

� SEND�EVENT�pp�id�time�
� PROCESS �pp�
	 int id�

 int time�
� �

 EVENT �ep�
� O�DATA �op�
� int ot�

�� op � ��ELEMENT �� �pp��data����outq � id �
�� ot � ��ELEMENT �� �pp��data����delay � time�

�	 for�j � �� j � op��count� j���
�
 �
�� if�op��last�e�j� �� �op��last�e�j���time �� ot��
�
 �
�� DEL�EVENT�op��last�e�j���
�� op��last�e�j� � ��

�� � else

� March ����



��� Chapter �� Logic�Circuit Simulator Experiments

�� �
�� ep � new�event�� �
�	 ep
�input�id � op
�input�id�j
�
�� ep
�time � ot �
�� op
�last�e�j
 � ep �

�� ADD�EVENT�ep�op
�pid��j
��
�� �
�� �
	� �

Listing ���� A SEND�EVENT function that reduces glitches�

Missing from Listing ���� is the part that places a back�reference pointer into each

event structure� The back�reference is used by the simulator to dissociate an event from its

output �by setting the corresponding last�e�j� to �	 when the event is delivered�

����� Instrumentation

The sequential simulator also exists in two modes
 sweep mode and real mode� Like the

CMB�variants
 the sweep�mode simulator consumes one sweep for every element input de�

livery� In the real mode
 the CMB�variant simulator must poll the system�s input message

queue once for every null message or event message delivered� the sequential simulator is

also made to poll the same queue once for every event message delivered
 even though this

is never necessary� Polling for messages consumes a signi
cant amount of time in many

multicomputers but there is nothing inherently costly about the operation� It should be

possible in a future machine to poll the queue by checking only a single pre�de
ned memory

location that has been mapped into each process�s memory space�

The resulting real�mode simulator runs at a speed of about ����s per event for our

examples on the iPSC�� and the Symult ����
 and at about �����s per event on our

iPSC��� The polling time is about ����s for the Symult ���� and ����s for the iPSC���

The iPSC multicomputers were running Cosmic Environment in compatibility mode instead

of in the potentially more e�cient native mode� The exact speed depends on the size of

the event list� The event list is implemented with a tree structure called the leftist tree

����� This data structure shows Olog�n	 timing characteristics for insertion and deletion

operations in even the most highly unbalanced cases
 but it does not provide an easy way to

� March ����



Section ���� Sequential Simulator ���

traverse the tree in a sorted order� The leftist tree is an excellent choice for the simulators

because tree�traversal is not needed in a simulator�

����� Big multiplier results

The sweep�mode simulation results� shown in section ���� indicate a ���� overhead when

N 	 
� the real�mode results generally show a ���� overhead� This is not unexpected

because the time required in the sweep mode to deliver a message to an element is assumed

to be the same in all simulators� in reality� the CMB�variant simulator has to do more work

per message than does the sequential simulator�

We cannot� at this moment� reproduce the same sweep�mode performance comparisons

using real multicomputers� because we do not have access to any multicomputers with �K

nodes� We do� however� have access to an assortment of multicomputers of various sizes and

vintages that we can use to explore various regions of the result graph� Figure 
�

 contains

the timing result for a simulation of the 
��
�gate array multiplier from section ���� The

simulation is run for a duration of ���s in simulated time under a 

�node iPSC���

log��seconds�

log��nodes�

sequential simulator

A

B

C

DE

F

� 
 � � � � 
 �
�




�

�

�


�

Figure ���� A �����gate multiplier for ���s on an iPSC��	

Aside from a larger overhead� the real�mode curves generally re�ect the upper third

of the sweep�mode curves� One consistent characteristic for this and other simulations is

a relatively low overhead for the variant F results at N 	 
� Variant A and F share the

� March ����



��� Chapter �� Logic�Circuit Simulator Experiments

property that messages can be sent eagerly� while message sending in the other variants

must wait until a null pointer is returned by a call to xrecv � even if the messages are

to be sent from a simulator process to itself� Variant F has a lower overhead than variant

A because it makes eager only those elements on critical paths� thus allowing messages on

non�critical paths to merge� As the simulation becomes more distributed� however� more

elements become part of a critical path� and the advantage of variant F disappears�

When N � �� variant A� E� and F fail as more of the eagerly�sent demand and null

messages become internode messages and overload the bu�ering capacity of the message

system� The other variants are able to continue because many messages are eliminated by

being detained and merged with other messages�

log��seconds	

log��nodes	

sequential simulator

D

B

C

E


 � � 
 � � � �
�

�

�

�

�

�


Figure ���� A �����gate multiplier for �
�s on an iPSC���

Figure ���� contains the result of the same simulation on a ����node iPSC��� Due to an

excess of null messages� variant A and F fail for all N � due to a lack of memory� none of the

variants will run when N � �� nor will the sequential simulator run at N � �� �Our iPSC��

has only one�half megabyte of memory per node� whereas the iPSC�� has � megabytes per

� March ����



Section ���� Sequential Simulator ���

log��seconds�

sequential simulator

A

B

C

DE

F

log��nodes�

sequential simulator

D

B

C

E

� � � � � � 	 

�

	




�

�

��

��

��

Figure ���� Combining the iPSC�� and iPSC�� graphs with sequential timing aligned�

node
� The sequential simulator result is an estimate derived from a simulation of a smaller

circuit �to be described later�


The results that we are able to obtain from the iPSC�� simulation indicate a contin�

uation of the near�linear speedup until N � 	�� when there are fewer than �� elements in

each node
 The total speedup obtained is 	� when the two sets of results are combined in

Figure 	
��


A 	��node Symult ���� multicomputer allows us to explore a large overlapping portion

of these two combined graphs
 Since the S���� nodes are much faster than the iPSC��

nodes� the simulation interval has been scaled from ���s to ����s� in order for the timing to

remain meaningful when N � 	�� Figure 	
�� matches Figure 	
�� closely� but every variant

is able to complete its simulation for every N on the S����
 Variant F resembles variant A

because as queuing limits vanish throughout the simulator� the simulator e�ectively becomes

a variant�A simulator
 Variant F is a little worse than variantA because it still must produce

demand messages in addition to any eagerly sent message
 Variant E� however� resembles

other variants


� March ����



��� Chapter �� Logic�Circuit Simulator Experiments

log��seconds�

log��nodes�

sequential simulator

A

B

C

D

E

F

� � � � � � 	 

�

	




�

�

��

��

��

Figure ���� A �����gate multiplier for ����s on a Symult ����	

����� Small multiplier results

Since we do not have a ����
node multicomputer� it is necessary to experiment with smaller

circuits to observe the asymptotic e�ects predicted by the sweep
mode simulation for large

N � Figure 	��� contains the results for the simulation of a ��� array
multiplier consisting

of ��	 logic gates� The iPSC�� and iPSC�� simulations were performed over a simulated

interval of ����s� The S���� simulation was performed over an interval of ����s to preserve

accuracy when many nodes are used�

Not only is the reduction in slope more visible� di�erences between various modes are

also more apparent� There are �� �� and � elements per node when all of the nodes in the

iPSC��� S����� and iPSC��� respectively� are in use�

Compared to the iPSC�� curves� the S���� curves show a steeper slope� a larger overall

speedup� and a closer match with the sweep
mode curves� The �attening of the curves for

the iPSC�� is due to the e�ect of message latency� The average message latency for the

iPSC�� when N � 	� is � �����s� this is comparable to the �����s
per
event processing

� March ����



Section ���� Sequential Simulator ���

log��seconds�

log��nodes�

sequential simulator

A

D
C

B

E

F

� � � � � � 	 

	




�

�

��

Figure ���� A ����gate multiplier for ����s on an iPSC���

log��seconds�

log��nodes�

sequential
simulatorA

B

C
D

E

F

� � � � � � 	 

�

�

	




�

Figure ���� A ����gate multiplier for ����s on an iPSC���

log��seconds�

log��nodes�

sequential
simulator

A

B

C

D

E

F

� � � � � � 	 

�

	




�

�

��

Figure ���� A ����gate multiplier for ����s on a Symult �����

� March ����



��� Chapter �� Logic�Circuit Simulator Experiments

time of the sequential simulator� The user�mode message latency for the S���� is � ����s�

this is smaller than the ����s�per�event processing time�

We can observe the e	ect of latency by varying latency in the sweep�mode simulation�

Figure ���
 contains two plots� one for N � �
� and the other for N � ���
� A message

sent during a sweep is available to its destination in the following sweep when latency is ��

When latency is non�zero� the message is delayed by an amount equal to the latency� When

simulation becomes dominated by latency� time increases linearly with latency�

log��sweeps�� N � �
�

E

� � � � � 

�

��

��

��

��

��

�


log��sweeps�� N � ���


log��latency�

E

� � � � � 

�

��

��

��

��

��

�


Figure ���� E�ect of increased latency on simulation performance�

In all of the results that we have shown� the source�driven variants� B� C� and D� are

the most robust variants� and they show a larger speedup than the other variants when N

is large� The demand�driven variant E is hindered by a large message latency� An idling

process may be delayed for two message cycles � send a demand message� receive a normal

message � before it can continue� When internode message latency is large� variant E

performs poorly� Variant F does better because it becomes variant A when processes are

idle more frequently�

����� Circuit topology vs� activity level

A CMB�variant circuit simulator must supply every element input with enough fragments

to cover the entire simulation interval� Since its simulation time is only weakly dependent

� March ����



Section ���� Sequential Simulator ���

on the content of those fragments� it is more strongly in�uenced by the static characteristics

of the circuit connectivity� such as degree of fan�out� than by the dynamic characteristics

of the circuit operation� such as number of events produced� A sequential simulator� on the

other hand� depends only on the number of events produced�

log��seconds�

log��nodes�

sequential simulator

A

B

C

D

E

F

� 	 
 � � 
 � �
�

�

�

�

	�

		

	


	�

Figure ���� A �����gate multiplier for 	���s on a Symult ���� 	 fast oscillation


For example� if a circuit contains a cross�coupled latch� the delay of the gates in the

latch determines the number and the span of the fragments produced� and the number of

fragments produced determines the simulation time for the CMB�variant simulator� The

number of times the latch is used determines the number of events generated in the latch� and

the number of events generated determines the simulation time for a sequential simulator�

We can expect the sequential simulator performance to change by a greater degree

compared to the CMB�variant simulator if we run the simulation using the same multiplier

circuit� but with a di�erent activity level� Figure ��	� is obtained by driving the array

multiplier at an elevated oscillation frequency� Four times as many events are produced�

and the time taken by the sequential simulator has increased by a factor of �� The time

taken by the CMB�variant simulators� however� has increased by only a factor of 
�

� March ����



��� Chapter �� Logic�Circuit Simulator Experiments

Since fragments are more likely to carry transitions� the possibility of consecutive frag�

ments merging into a single fragment is reduced� It becomes less pro�table for the simulator

to withhold messages� The time taken by variant A has increased by a factor of only ����

and variant A performs better than the other variants when N is not too large�

����� Hybrid possibilities

The CMB�variant simulator implements an algorithm that distributes well� but� like many

other algorithms� there are sequential implementations that are more e�cient than the

concurrent implementation� However� the CMB�variant simulator is unusual in that it is

an exact implementation of an algorithm that can be de�ned recursively 	 each element

simulator can also be a composite simulator� We can view the simulator process on each

node as being a composite simulator that simulates the set of elements assigned to that

node� We refer to the set of elements� collectively� as a macro element� The circuit simulator

becomes one whose elements are not the logic gates but the macro elements
 of these one

exists in each node�

hybrid

CMB�variant

N � �

log�time


log�nodes


sequen

1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567

tial

Figure ���� Modi�ed La�er Curve�

Since the elements in a macro element must reside in the same address space� and since

their operations must be interleaved� it is a tempting thought that there may be a way to

introduce sequential simulator e�ciency into the simulation of elements in a macro element�

� March ����



Section ���� Sequential Simulator ���

Suppose such a hybrid simulator were to exist� When N � �� all logic gates would reside in

the same node� the simulator would have the same performance as a sequential simulator� If

N were large� there would be one logic gate per node and the performance would converge

to the performance of CMB�variant simulator�

Figure ��	
 depicts a hypothetical performance plot of a hybrid simulator� a sequential

simulator� and a CMB�variant simulator� We will call this hybrid�simulator curve the

modi�ed La�er curve �in recognition of economist Arthur B� La�er� who showed that tax

revenue is 
xed on two ends on the plot of revenue vs� tax rate�� The quest for the algorithm

and for the control over the shape of the curve between these two end points guides the rest

of the experimental work� which will be discussed in the next chapter�

� March ����



��� Chapter �� Hybrid Simulators

Chapter � Hybrid Simulators

Section ��� Coordinated Sequential Simulator �Hybrid���

One way to build a hybrid simulator is to use a modi�ed sequential simulator for each

macro element� and to connect the sequential simulators using a CMB�variant simulator�

Since a CMB�variant simulator provides coordination for a set of sequential simulators�

this hybrid simulator is called the coordinated sequential simulator �designated hybrid����

When N � 	� hybrid�	 is identical to the sequential simulator� as the modi�cation does not

introduce extra work for the simulator when the macro element is a closed system�

A macro element is an open system if any of its element inputs connect to an element

output in another node� Macro�element connectivities are handled by the CMB�variant

simulator� and macro�element simulators must satisfy the requirements of the CMB�variant

simulator
 Output state descriptions produced by each macro�element simulator are packed

into fragments and sent to the encircling CMB�variant simulator� The CMB�variant simu�

lator distributes the fragments according to the connectivity of the macro elements� When

a macro�element simulator receives a fragment� events extracted from the fragment are

entered into the event list�

����� The algorithm

Since asynchronous events can be injected by other macro�element simulators� event order

for a macro�element simulator cannot be guaranteed by the the repeated delivery of the

earliest event from the event list� The simulator may not be able to consume the event at

the top of the list because an event with a smaller time value may yet arrive from another

macro element� To avoid a simulation error� we can employ a temporal marker in each

macro element to indicate the smallest time value for any future external events� As long

as the time of the �rst event in the event list is less than the marker time� the event can

be safely consumed� If the event time will be greater than the marker time� the simulator

must wait�

� March ����



Section ���� Coordinated Sequential Simulator �Hybrid��� ���

The encircling CMB�variant simulator assures that the time of the next event on any

macro�element input is greater than or equal to the time of the macro�element input� The

time of a macro�element input is equal to the total span of fragments that have passed

through it� and is updated whenever a fragment is received for that input� The minimum

macro�element input time is a convenient temporal marker�

Output fragments are produced by a macro�element simulator whenever additional

output descriptions are computed� Since elements are strictly synchronized in a sequential

simulator� the output of all elements in a macro element are known up to the same simulated

time� Thus� the entire state of the macro element can be treated as an atomic property

�Chapter ��� and all arcs with the same source and destination nodes can be merged into

one arc�

In order to compute the temporal marker� we store the input time of each macro�element

input in a special stopper event� The stopper is added to the event list along with the

other events� When a macro�element input receives a fragment� in addition to injecting new

events� it adds the span of the fragment to its stopper time� and it repositions the stopper

in the event list� As long as the event at the top of the event list is not a stopper� the

macro�element simulator is free to consume the event� when a stopper appears at the top

of the event list� the simulator is made to wait for more inputs�

����� Sorting with a di�erent key

A macro�element simulator derived from a conventional sequential simulator has an e	ective

delay of zero because its event�consumption rules prevent the simulator from producing any

output description that has a time value larger than its own minimum input time� A circuit

of these macro�element simulators will deadlock unless a set of alternative consumption

rules is used to produce a positive delay�


The event with the smallest simulated time will be delivered �rst� is merely a conve�

nient consumption rule that satis�es the following correctness conditions for a sequential

simulator� When an event is delivered to an element


� March ����



��� Chapter �� Hybrid Simulators

�� The event will not need to be recalled� and

�� No future events for the element will have a smaller event time�

We can satisfy both conditions and provide a non�zero delay by sorting events according to

the following ordered pair�

key � �t
e
	 d

m
� t
e



where t
e
is the event time� and d

m
�the m�delay
 is the delay of a minimum�delay path

�the shortest path
 between the destination element of the event and any macro�element

output� Macro�element output�events therefore have a d
m

of �� The �rst member of a key

is the dominant member when keys are to be compared�

key� � key� ��

�
key�
�� � key�
��
key�
�� � key�
�� and key�
�� � key�
��

Intuitively� if input events for an element are ordered according to this key� they are

ordered in t
e
as well� because d

m
is the same for all input events of the element� An event

whose destination element has an m�delay of d
m

can be deferred in the event list by d
m

amount of time relative to those events for the macro�element outputs because its e�ects

cannot propagate to the outputs before t
e
	 d

m
� The e�ective delay of a macro element is

therefore the minimum m�delay of its macro�element inputs�

Theorem ���� An event produced by an element with a positive delay must have a key that

is larger then the key of the event that triggers it�

Proof� Let the delay of the element be �� the time of the input event be t
e
� and the

m�delay of the element be d
m
�

By the de�nition of element delay� any output event triggered by this

input event must have a time value of at least t
e
	 �� By the de�nition of

m�delay� the destination element of the output event must have an m�delay

of a least d
m
� �� Therefore� the �rst part of the key for the output event

must be no less than d
m
� � 	 t

e
	 �� or t

e
	 d

m
� which is equal to the �rst

part of the key for the input event�

� March ����



Section ���� Coordinated Sequential Simulator �Hybrid��� ���

The second part of the key for the output event is te��� which is greater

than the second part of the key of the input event� Therefore� the key of the

output event must be larger than the key of the input event�

Theorem ���� Any event appearing at the top of the event list is valid�

Proof� An event must come either from another element in the same macro element

or from another macro element� Events from other macro elements are

assumed to be correct because the macro�element simulators follow the rules

of a CMB�variant simulator�

dst	et
src	et


	Av� Bv
 	At� Bt


m�delay � Av �Bv

delay � �
m�delay � At � Bt

ev et

Figure ��� An event that invalidates another event�

If the event is produced locally� let the event at the top of the list be

et� and let 	At� Bt
 be the key of that event� Let ev be the event that an

element consumes to invalidate et� and let 	Av� Bv
 be its key�

By the de�nition of a key� At�Bt is the m�delay of dst	et
� and Av�Bv

is the m�delay of src	et
� Let � be the delay of src	et
� By the de�nition of

m�delay� we have the inequality�

At �Bt � Av �Bv � �

which we can rearrange into�

� � 	Av � At
 � 	Bt �Bv


We also have 	Bt�Bv
 � �� because the delay of src	et
 is �
 and 	Av�At
 �

�� because et is the event at the top of the event list� The only solution to

the inequality above is 	Av �At
 � � and 	Bt �Bv
 � ��

Since the key of et is no greater than the key of ev � it follows that �

must be zero and that the two events must have the same event time� Since

� March ����



��� Chapter �� Hybrid Simulators

the ordering of the two events is beyond the ability of the model to resolve�

it is correct to assume in this case that et is earlier in time� and is therefore

valid�

Suppose et is the event at the top of the event list� and let the �rst part of its key be

called the event�list time� Since all macro�element output events have an m�delay of zero�

and since all new events have keys that are at least as large as the key of et� the state of all

macro�element outputs is known up to the event�list time� The e�ective delay of a macro

element is therefore equal to the delay of the shortest path between any macro�element

input and output�

����� The simulator mechanism

The sequential�simulator discussion in section ��� hints that complexities are being moved

into the message system of the reactive kernel 	the kernel of the light�weight� reactive

element processes
� When a reactive kernel needs an event� its message system provides the

event with the smallest time value of all events in the message system�

multicomputer message system

CMB�variant message system

sequential�simulator message system
sequential�simulator kernel
element pro112

1
112

1212
1212
12

112
12
1212
1212
1212
12

11
1
112
1212
1212
12

112
1
11
11
11
1

121
1
112
1212
1212
12

cesses

Figure ��� Layering in the hybrid�� simulator�

In hybrid��� the message system of a sequential simulator is sandwiched between the

message system of a CMB�variant simulator and the kernel of the sequential simulator�

When the kernel needs an event� its message system provides that event having the smallest

key� as long as that event is not a stopper� If it is� the message system waits for the stopper

to be relocated� When the message system of the CMB�variant simulator receives more

fragments� it moves the stoppers� The hybrid�� simulator can therefore be constructed by

layering reactive kernels�

� March ����



Section ���� Coordinated Sequential Simulator �Hybrid��� ���

� struct � int ��entry����
� char �data � � PROCESS�

	 struct � int pid� �

 char msg�body�
� � MESSAGE�

� SIM�DATA �simulator�data�

� sequential�simulator�main�loop�simp�mesg�
�� PROCESS �simp�
�� MESSAGE �mesg�
�� �
�� PROCESS �proc�

�
 simulator�data � �SIM�DATA ���simp��data��

�� proc � simulator�data��process�table � mesg��pid��
�� ��proc��entry��proc� mesg��msg�body��
�� �

Listing ��� Hybrid�� main loop�

The kernel of the sequential�simulator main loop can be expressed as the light�weight�

reactive�process program shown in Listing ���� It returns to its message system for more

events� The message�system layer for the sequential simulator �Listing ���	 takes care of

sorting the events and getting external events from the message system of a CMB�variant

simulator� The message system of the sequential simulator is also a light�weight reactive

process


� PROCESS �seqsim� �� Sequential simulator process structure �only �� ��

� sequential�simulator�message�system�msys� sb�
	 PROCESS �msys�

 STATE�FRAGMENT �sb�
� �
� break�state�fragment�into�events�msys�sb��
� free�fragment�sb��

�� while�top�of�list�event�is�not�stopper�msys��
�� �
�� �seqsim��entry��seqsim�get�top�of�list�event�msys���
�� �
�	 �

Listing ��� Hybrid�� embedded message system�

� March ����



��� Chapter �� Hybrid Simulators

It returns to the message system of the CMB�variant simulator for a fragment� which

it digests into individual events� After that� as long as the event with the smallest time is

not a stopper� the message system will remove the event from the event list and deliver it

to the sequential�simulator kernel�

����� The simulator output

Sending only the macro�element output events is not enough to satisfy the requirements

for a CMB�variant simulator� Whenever the event�list time has increased� more is known

about the outputs� even if no output event has been produced� The rule for eventual delivery

requires that null messages be generated�

Like the CMB�variant simulator� several variants of the hybrid�� simulator have been

created� and they are characterized by how and when messages are sent� Eventual delivery

is also assured by the same inde�nite�lazy evaluation mechanism �not shown in the listings

above�� Three adjustable parameters are available for the hybrid�� simulator	

Queue�limiting� Messages are sent when an adjustable limit on the number of queued

output events is reached� or when null is returned by xrecv�

Demand�driven� Demand messages are sent after an adjustable delay� as measured by

the number of successive nulls returned by xrecv while a macro�element

simulator is waiting for more inputs� Demand messages are sent to the

source nodes of the inputs whose stoppers are at the top of the event list�

Queued messages for that output addressed by the demand message are

sent when a demand message is received�

Eager�message� Each output has a prompter event that stores the sum of an adjustable

value and the simulated time of the last output action� When a prompter

event reaches the top of the event list� messages are sent for that output

and the prompter is rescheduled�

� March ����



Section ���� Coordinated Sequential Simulator �Hybrid��� ���

����� Expectation

Tight synchronization between elements in the same computing node greatly reduces the

volume of internode messages� especially null messages� by combining internode arcs having

common source and destination nodes into one single arc� Tight synchronization� however�

can also reduce concurrency� When a simulator process is blocked because of a stopper

appearing at the top of the event list� elements that do not depend on the input of that

stopper are also prevented from making progress� Concurrency is reduced because this

forces di�erent sub�circuits in the same node to progress at the same rate� and ignores

non�strict input conditions in which an element can still make progress when some of its

inputs are blocked�

sequential

log�nodes�

log

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

�time�

Figure ��� Expected performance of the hybrid�� simulator�

The purpose of this experiment is to construct a simulator that will do as little work as

possible at small N rather than be as e�cient as the CMB�variant simulators at large N �

After all� we can already get CMB�variant�simulator performance by running a CMB�variant

simulator� We expect the simulator performance graph to start at N 	 
 at sequential

simulator speed� We expect to see sub�linear speedup due to the lost concurrency� load

imbalance� and extra work required to deal with the message system� We then expect the

performance to bottom out at a level above the CMB�variant simulator when N is large�

� March ����



��� Chapter �� Hybrid Simulators

����� Experimental results

Like the CMB�variant simulator and the sequential simulator� hybrid�� is also written in

the form of a reactive program� making it suitable for sweep�mode simulation� however�

a sweep�mode simulator has not been implemented� The real�mode simulator has been

implemented� and a ���node Symult 	
�
 was used as the primary test vehicle� Although

simulation was performed using a multitude of simulation parameters� only a handful will

be shown because related variants produce similar results� The variants are�

Queue limit � �� �
 null xrecvs before demand message�

Queue limit � 
� �
 null xrecvs before demand message�

Queue limit � 	
� Prompter delay � �
ns�

Prompter delay � �
ns�

Figure ��� contains the simulation result of a ����� array�multiplier running on a ���

node S	
�
 for �

�s simulated time� It is shown alone �left� and superimposed over the

CMB�variant result �right��

hybrid�� only both
log��seconds�

log��nodes�

 � 	 � � 
 � �




�

�

�

�

�


��

�	

log��seconds�

log��nodes�

 � 	 � � 
 � �




�

�

�

�

�


��

�	

Figure ��� A �����gate multiplier for �

�s on a Symult ����	

� March ����



Section ���� Coordinated Sequential Simulator �Hybrid��� ���

The general characteristic of these curves matches our expectation� In the multiplier

example� the extra work that the simulator has to do and the di�culty it has in subdividing

the multiplier for load balancing result in no speedup from N � � to �� For larger N � the

curves show a slope of � ��� until N � ��� where the curves level out� Between N � �� and

	
� the curves cross over those of the CMB�variant simulator� The demand�driven modes

perform consistently better than the queue�limiting modes� The eager�message modes per�

form well for small N � but they bend upward for large N due to an excess of null messages�

The more eager of the two curves bends upward sooner than the less�eager one�

Due to the combining of arcs� hybrid�� curves are strongly in�uenced by element dis�

tribution only when N is large� Figure 
�� contains results of simulation using randomized

element placement� Compared to Figure 
�
� the CMB�variant curves are shifted upward

uniformly for all N � and the hybrid�� curves are bent upward when N is large� The hybrid��

curves show little change when N is small�

hybrid�� only both
log��seconds�

log��nodes�
� � � � 
 � 	 


�

	




�

�

��

��

��

log��seconds�

log��nodes�
� � � � 
 � 	 


�

	




�

�

��

��

��

Figure ��� A �����gate multiplier for ����s on a Symult ���� with random placement	

Since one end of the hybrid�� curves is pegged to the sequential simulator time� we can

also expect a larger change for the hybrid�� simulator than for the CMB�variant simulator

� March ����



��� Chapter �� Hybrid Simulators

when we increase the circuit activity level� Figure ��� contains the results of simulation using

the same multiplier circuit that is operated at a higher oscillation frequency� The hybrid��

curves are shifted upward by two octaves� while the CMB�variant curves are shifted only by

one octave� A high activity level is more favorable to the CMB�variant simulator because

fewer of the messages are null messages�

hybrid�� only both
log��seconds	

log��nodes	

 � � � 
 � � �

�

�

�

�

�


��

��

��

sequential simulator

A

B

C

D

E

F

log��seconds	

log��nodes	

 � � � 
 � � �

�

�

�

�

�


��

��

��

Figure ��� A faster oscillating �����gate multiplier for �

�s on a Symult ����	

Results from the multiplier example in this chapter� and better results from other

circuits to be shown in Chapter �� have con�rmed that the hybrid�� simulator is working

and performing to our expectation� Our next step is to go beyond the limitations of the

hybrid�� simulator to construct a new hybrid simulator that will converge to the CMB�

variant simulators when N is large�

� March ����



Section ���� Progressive Hybrid Simulator �Hybrid��� ���

Section ��� Progressive Hybrid Simulator �Hybrid���

The hybrid�� simulator cannot achieve CMB�variant performance at large N because po�

tential concurrency is lost when non�strict conditions are ignored and elements in a macro

element are synchronized� Two separate mechanisms are used to recover the lost concur�

rency� First� when an input of an element becomes blocked� it must be allowed to continue

if it can still make progress �due to a non�strict input condition�� Second� when some el�

ements are blocked� we must allow those that are not blocked to continue ahead of the

blocked elements�

When a stopper appears at the top of the event list� elements connected to the input

of the stopper may be blocked� Since hybrid�� macro elements are simulated by sequential

simulators� when an element in a macro element becomes blocked� the entire macro element

is blocked� When an element becomes blocked in hybrid�	� the macro element is� in e
ect�

reorganized by moving the blocked element out of the macro element� More blocked elements

may result due to arcs leading from the blocked element to the new macro element� When

only unblocked elements remain� however� the macro�element simulator can continue to

make progress� When a blocked element has received more inputs and becomes unblocked�

it is put back into the macro element�

To take advantage of non�strict input conditions� stoppers in hybrid�� are replaced by

blocker events in hybrid�	� A blocker appearing at the top of the event list does not cause

the simulator process to stop� instead� it is delivered like a normal event� For every blocker�

there is a matching anti�blocker� it has the same simulation time as the blocker and they

annihilate each other in the simulator� Macro�element inputs produce both blockers and

anti�blockers� Whereas the hybrid�� simulator relocates the stopper as more state fragments

are received� the hybrid�	 simulator instead adds an anti�blocker with a time value equal to

the previous blocker� adds any events carried by the fragment� and adds a blocker with the

time equal to the new time of the hybrid�� stopper�

� March ����



��� Chapter �� Hybrid Simulators

When an element receives either a blocker� an anti�blocker� or a normal event� the

element determines whether it is blocked� It is not blocked if all of its inputs are unblocked

or if its remaining unblocked inputs contain a non�strict input condition� it is blocked

otherwise� When an unblocked element becomes blocked� it sends a blocker with a time

equal to the current input event� When a blocked element becomes unblocked� it sends an

anti�blocker with a time equal to the previous blocker�

In a hybrid�� simulator� when N is small� most of the element inputs are not blocked�

and the simulation takes on the characteristics of a hybrid�� simulator� When N is large�

many of the element inputs are blocked� and the simulation produces the e�ciency of a

CMB�variant simulator� However� one clear disadvantage of hybrid��� compared to hybrid�

�� is that internode arc merging is no longer possible� and the simulator is potentially more

sensitive to element placement�

����� The mechanism

� struct EVENT � int e�type� �� type of the event� ��
� int input�id� �� id of the element input� ��
	 int time� 
 � �� time of the event� ��

� generic�gate�pp
ep�
� PROCESS �pp�
� EVENT �ep�

�
� if�ep��time � element�time�pp�� ep��time � element�time�pp��

�� set�input�bits�pp
ep��
�� compute�state�and�blockage�pp��

�� if� was�blocked�pp� �� �is�blocked�pp�� add�anti�blocker�pp
ep��time��
�� if� old�output �pp� �� new�output�pp�� add�output�event�pp
ep��time��
�� if��was�blocked�pp� �� is�blocked�pp�� add�blocker �pp
ep��time��

�� save�new�state�pp��
�� free�event�ep��
�� 


Listing ��� Generic logic�gate handler for hybrid���

� March ����



Section ���� Progressive Hybrid Simulator �Hybrid��� ���

A sample element entry function appears in Listing ���� In addition to the usual input�id

and time �elds� the hybrid�� event structure also contains an e�type �eld to distinguish

among normal events� blockers� and anti�blockers� Since non�strict input conditions are

utilized� it is now possible for an element to receive events with a time value smaller than

the time of the element� These events are for inputs that were previously blocked� but

the element was able to progress further because a non�strict input condition was present�

These events do not contribute to the operation of the element� other than to determine

the current input state of the element� Therefore� when such an event is received� its event

time is simply set to the element time 	
� before it is processed like other events�

Each element input contains a pair of variables� One indicates the state� the other

indicates blockage� Each output contains two pairs of variables� one for the old state and

blockage� and one for the new state and blockage� When an event is received by the process�

the set�input�bits function is called to set or clear the a
ected bits in the input structure

of the element� The new output state and blockage are then computed from the new input

state and blockage 	���� If the element has become unblocked due to the event 	���� an

anti�blocker is sent� If the element has changed state 	���� a normal event is sent� If the

element has become blocked 	���� a blocker is sent� The ordering of lines ����� assures that

the event following a blocker is an anti�blocker�

The sequential�simulator main loop� the kernel to these element processes� tests the

blockage �ag before and after an entry function is called� blocked elements are separated

from unblocked elements by treating them di
erently� Listing ��� is the kernel written as a

heavy�weight reactive process�

� sequential�simulator�main�loop��
� �
� MESSAGE �mesg	

 PROCESS �proc	

� mesg � get�next�event��	

 proc � process�table � mesg��pid�	

� if��blocked�proc��
�� �
�� ��proc��entry��proc� mesg��msg�body�	

� March ����



��� Chapter �� Hybrid Simulators

�� � else
�� �
�� if�event�time�mesg	 
 element�time�proc		
�� �
�� queue�event�proc
mesg	�

�� � else
�� �
�� ��proc�
entry	�proc
 mesg�
msg�body	�
�� if��blocked�proc		 move�queued�events�back�to�event�list�pp	�
�� �
�� �
�� �

Listing ��� Hybrid�� main loop�

When an event is returned from the message system �which contains the event list��

the main loop identi�es the receiver of the event ��� and checks its blockage �ag ���	 If the

element is not blocked� it is in the sequential
simulator domain and the event is delivered

to it as if it were in a normal sequential simulator ����	

If the element is blocked� the main loop checks its readiness to consume the event	 The

event cannot be consumed if its time is larger than the time of the element	 The element

lacks information about the future state of its blocked inputs necessary to consume an event

that arrives at a future time	 The event is queued for the element ����	 If the event time

is less than or equal to the element time� the element has enough information to consume

the event� and the event is sent to the element ����	 If the element is now unblocked� its

queued events are moved back into the event list to be delivered again for the element	

Queued events cannot be delivered directly to the element when the element becomes

unblocked because they are ones that arrived while some inputs of the element were blocked	

There may be events for the blocked inputs that have yet to arrive and that need to be

delivered in the proper order �with respect to the queued events� when the element becomes

unblocked	 Moving all queued events back into the event list is ine
cient when the queue

is long and when moves have to be done frequently	 The actual implementation of the

hybrid
� simulator contains an elaborate mechanism for minimizing wasted e�orts� and

� March ����



Section ���� Progressive Hybrid Simulator �Hybrid��� ���

this accounts for the largest di�erence between the hybrid�� presented here and the actual

implementation�

����� Experimental results

Like the other simulators� hybrid�� is written in the form of a reactive�process program�

making it suitable for sweep�mode simulation� but� as in the case of hybrid��� a sweep�mode

simulator has not been created� Figure 	�	 contains the simulation results of a �
��
 array�

multiplier running on a �
�node S���� for ����s simulated time� It is shown alone 
left�

and superimposed over both the CMB�variant result and the hybrid�� result 
right��

Queue limit � �� �� null xrecvs before demand message�

Queue limit � �� �� null xrecvs before demand message�

Queue limit � ��� Prompter delay � ��ns�

Prompter delay � ��ns�

hybrid�� only all �
log�
seconds�

log�
nodes�
� � � � 
 � � 	




�

�

	

�

�

��

��

��

log�
seconds�

log�
nodes�
� � � � 
 � � 	




�

�

	

�

�

��

��

��

Figure ��� A �����gate multiplier for ����s on a Symult ����	

The most noticeable di�erence between hybrid�� and hybrid�� curves in this graph is

that whereas hybrid�� curves level o� at largeN � hybrid�� curves keep going down� Hybrid��

� March ����



��� Chapter �� Hybrid Simulators

curves start out very much like hybrid�� curves because most of the elements in the hybrid�

� simulators are running under the hybrid�� mode� As more and more nodes are used in

the simulation� hybrid�� element simulators start to become idle more frequently� and their

curves start to level o�� In the hybrid�� simulator� instead of becoming idle� more of the

elements enter the CMB�variant mode to provide additional speedup over hybrid���

The other remarkable aspect of hybrid�� curves is that they are all very much alike

until that point where most of the hybrid�� curves level o�� It is after this transition point

that progress�promoting actions begin to dominate� and a variety of di�erent performance

results are produced� depending on the properties of the progress�promoting action in use�

The hybrid�� curves appear to converge toward the CMB�variant curves� but nothing

conclusive can be deduced from this graph because a �	�node machine lacks su
cient nodes

to demonstrate this e�ect� The convergence is much more obvious when elements are placed

randomly� Placement has a much stronger e�ect on the hybrid�� simulator than it does on

the hybrid�� simulator because random element placement greatly increases the number of

internode arcs for the hybrid�� simulator�

Figure ��� shows the result of random element placement 
same placement for all simu�

lations shown in this graph�� The hybrid�� curves converge immediately to the CMB�variant

curves at N � �� Reduction in internode null messages by bundling internode arcs allows

the hybrid�� simulator to show a small speedup at small N �

Convergence is also more evident when we increase the circuit activity level� Figure ���

shows the results of simulating the multiplier with enhanced activity level� Convergence

begins at a smaller N because the sequential�simulator time is now closer to the CMB�

variant time when N � �� The hybrid�� curves start out closer to the CMB�variant curves�

and they converge to the CMB�variant curves at N � ���

Although we do not have a larger machine for looking at cases where there are fewer

elements per node� we can reduce the number of elements per node by using smaller test

� March ����



Section ���� Progressive Hybrid Simulator �Hybrid��� ���

hybrid�� only all �
log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

Figure ��� A �����gate multiplier for ����s on a Symult ���� with random placement	

hybrid�� only all �
log��seconds�

log��nodes�
� � � � 	 
 � �

�

�




�

��

��

��

��

sequential simulator

A

B

C

D

E

F

log��seconds�

log��nodes�
� � � � 	 
 � �

�

�




�

��

��

��

��

Figure ��� A faster�oscillating �����gate multiplier for ����s on a Symult ����	

circuits� We tested a 	�	 array�multiplier that contains ��� gates� At N � �	� there are

no more than two gates in each node�

� March ����



��� Chapter �� Hybrid Simulators

hybrid�� only all �
log��seconds�

log��nodes�
� � � � 	 
 � �




�

�




�

��

sequential
simulator

A

B

C

D

E

F

log��seconds�

log��nodes�
� � � � 	 
 � �




�

�




�

��

Figure ���� A ����gate multiplier for 	���s on a Symult �����

The CMB�variant curves diverge wildly� some of them do better than the hybrid��

curves and some do worse� Overall� the hybrid�� curves seem to follow the better CMB�

variant curves�

� March ����



��� Chapter �� Additional Performance Results

Chapter � Additional Performance Results

This chapter summarizes the simulation results of a few selected circuits that were used in

this research� They are generally presented in the following order�

�� Description of the circuits�

�� Sweep�mode simulation results on an emulated multicomputer�

�� Real�mode simulation on a Symult ���� with systematic element distribution�

	� Real�mode simulation on a Symult ���� with random element distribution�


� A few sets of real�mode simulation on smaller circuits of the same type�

Each set of real�mode simulations contains results from running the CMB�variant simulator�

the hybrid�� simulator� and the hybrid�� simulator� Results from other multicomputers are

similar and are not shown�

� March ����



��� Chapter �� Additional Performance Results

Section ��� ��D Clock Network

����� Description

A clock network is an arbitrarily extensible array of logic gates that oscillates when properly

initialized� The frequency of the oscillation is determined by local characteristics� and

the phase at any node in the network is locked to the phase of the adjacent nodes� A

clock network can be used to provide synchronous communication for an arbitrarily large�

bounded�degree multicomputer network�

register

controller

ack

req

data outdata out

cloc

123
123
123
123
123
123
123
123
123
123

234
234
234
234
234
234
234
234
234
234

123
123
123
123
123
123
123
123
123
123

123
123
123
123
123
123
123
123
123
123

k

Figure ��� A FIFO consisting of � units�

A clock network is a generalized self�timed FIFO circuit� As shown in Figure ���� a

FIFO is made of a number of FIFO units connected into a chain� a FIFO unit contains a

controller and a register� The registers in a FIFO are connected in a chain via their data

inputs and outputs� the controllers are connected via their request and acknowledge signals�

Each controller provides a clock signal to enable and disable the latches in its register� The

acknowledge and request signals allow the controllers to determine when the FIFO unit

immediately preceding it has data for it� and when the FIFO unit immediately following it

has taken the data from it�

Each FIFO unit leads but is never more than a half cycle ahead of the following unit�

and lags but is never more than a half cycle behind the preceding unit� Thus� if registers

were computers and register�to�register links were communication channels� the data one

computer latches in at its kth clock tick is the data put out by the preceding computer at

� March ����



Section ���� ��D Clock Network ���

req

ac

123
123
123
123
123

123
123
123
123
123

234
234
234
234
234

123
123
123
123
123

k

Figure ��� A C�element FIFO consisting of � units�

that computer�s kth clock tick� With a little extra delay� synchronous communication can

also take place in the reverse direction�

A simple FIFO control can be constructed using a C element and an inverter� A C

element is a state�storage device such that when all of its inputs are high� the output

becomes high� when all of its inputs are low� the output becomes low� and the output

remains unchanged otherwise� In the FIFO shown in Figure ���� the output of a C element

is connected to an input of the C element in the following unit� The inverted output of a

C element is connected to an input of the C element in the preceding unit� The output of

the C element is also used as the clock to the register�

Figure ��� A ��� array of self�oscillating FIFO units�

� March ����



��� Chapter �� Additional Performance Results

The FIFO structure can be extended to a higher dimension by cross�connecting a set

of FIFO controls with another set of FIFO controls� Figure ��� contains a two�dimensional

array of �� FIFO units with the registers omitted� The edges are terminated in such a way

that the array will oscillate� This is essentially the same network that is used in the clock�

network simulation� except that each 	�input C element is replaced by a ���gate circuit�

The circuit in Figure ��� has �
� gates�

����� Sweep�mode results

log��sweeps�

log��nodes�

 � � � 	 
 � � � � �
 ��

�

�

�


��

��

��

�	

�


��

��

��

��

�


��

Figure ��� Sweep�mode CMB�variant simulation of an �����gate clock network�

Figure ��	 contains the sweep�mode results of an ���� clock�network containing ��	� logic

gates� The speedup is linear until there are fewer than 	 elements in each node� The null

message overhead is a little larger than � at N � �� and the crossover occurs between N � �

and N � ��� Unlike the multiplier example we used in previous chapters� the clock network

shows a much greater di�erence between the most�eager variant and the lazier variants� This

� March ����



Section ���� ��D Clock Network ���

is typical of circuits with many tight loops� where unnecessary null messages can persist as

they travel around the loops� The lazier variants annihilate such null messages to achieve

an improved performance over the most�eager variant�

Also� unlike the multiplier example� load balancing is simple because a clock network

shows a steady and uniform activity level at every part of the circuit� Although the CMB�

variant simulators are relatively insensitive to the e�ect of load balance and activity level�

the hybrid simulators are more favorably in�uenced� as we can see in Figure ����

����� Real�mode results

The performance at N 	 
 and the linear speedup for most of the lazier CMB variants

�t the sweep�mode prediction well� The real�mode curves di�er from the prediction in

that the eager CMB�variant curve is not uniformly worse over all N� and the curve for

the adaptive demand�driven variant worsens more rapidly than predicted� These two CMB

variants are not robust in circuits that contain many closed loops where null messages can

circulate� because the persistence of the null messages depends on run�time conditions such

as congestion and order of message arrival� As a consequence� the result of the simulation

can vary signi�cantly from run to run� but when N is small� the behavior is more restricted�

and the prediction of the sweep�mode simulation prevails�

The hybrid�
 and hybrid�� curves are similar to those of the multiplier circuit� except

these curves show a greater speedup due to better load balance for the clock network� Thus�

these curves are more similar to those of the multiplier with an enhanced activity level 


there is no signi�cant initial penalty at N 	 �� The activity level for this multiplier is more

uniform because a new wave of activities is injected into the multiplier before old ones have

completed� The hybrid�
 curves �atten and bend upward between N 	 
� and ��� while

the hybrid�� curves continue straight down as they close in toward the CMB�variant curves�

The next set of graphs shows the e�ect of randomized element distribution� The CMB�

variant curves have shifted very little� but the hybrid�
 curves become much shallower� and

the hybrid�� curves show the characteristic upward hump for random element distribution�

� March ����



��� Chapter �� Additional Performance Results

Real�mode results for an ���� network

CMB�variantlog��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

�	

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

�	

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

�	

all �log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

�	

Figure ��� An �����gate clock network for 
��s on a Symult �����

� March ����



Section ���� ��D Clock Network ���

Figures ��� and ��� show the results in regions where there are many more logic ele�

ments than nodes� The three additional sets of simulation results use progressively smaller

clock circuits� the last one has� on average� one logic gate per node for N 	 
�� As the

number of gates is reduced� speedup achieved by the hybrid simulators is reduced because

the advantage that can be obtained from running sequential� macro�element simulators de�

creases� The CMB�variant simulators� which re�ect the ratio of null messages and event

messages� show very little change relative to the sequential simulator�

The lazy CMB�variants are hardy and robust simulators� They show good speedup

relative to themselves all the way down to 
 element per node in a fashion consistent with

the sweep�mode prediction�

� March ����



��� Chapter �� Additional Performance Results

Real�mode results with random element distribution

CMB�variantlog��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

�	

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

�	

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

�	

all �log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

�	

Figure ��� An �����gate clock network for 
��s on a Symult �����

� March ����



Section ���� ��D Clock Network ���

Real�mode results for a �� � network

CMB�variantlog��seconds�

log��nodes�
� � � 	 � 
 � �




�

�

�




��

��

��

�	

hybrid��log��seconds�

log��nodes�
� � � 	 � 
 � �




�

�

�




��

��

��

�	

hybrid��log��seconds�

log��nodes�
� � � 	 � 
 � �




�

�

�




��

��

��

�	

all 	log��seconds�

log��nodes�
� � � 	 � 
 � �




�

�

�




��

��

��

�	

Figure ��� A ����gate clock network for ����s on a Symult ����	

� March ����



��� Chapter �� Additional Performance Results

Real�mode results for a �� � network

CMB�variantlog��seconds�

log��nodes�
� � � � � 	 
 �

	




�

�




��

��

��

hybrid��log��seconds�

log��nodes�
� � � � � 	 
 �

	




�

�




��

��

��

hybrid��log��seconds�

log��nodes�
� � � � � 	 
 �

	




�

�




��

��

��

all �log��seconds�

log��nodes�
� � � � � 	 
 �

	




�

�




��

��

��

Figure ��� A ����gate clock network for ����s on a Symult �����

� March ����



Section ���� ��D Clock Network ���

Real�mode results for a �� � network

CMB�variantlog��seconds�

log��nodes�
� � � � � 	 
 �




�

�




��

��

��

hybrid��log��seconds�

log��nodes�
� � � � � 	 
 �




�

�




��

��

��

hybrid��log��seconds�

log��nodes�
� � � � � 	 
 �




�

�




��

��

��

all �log��seconds�

log��nodes�
� � � � � 	 
 �




�

�




��

��

��

Figure ��� A ���gate clock network for 	���s on a Symult �����

� March ����



��� Chapter �� Additional Performance Results

Section ��� Tree�Ring Example

����� Description

Unlike the multiplier and the clock network� the tree�ring circuit has no identi�able func�

tions� it is one of the circuits we invented to test the simulator� It is made of a cycle of ��to��

pulse distributors whose outputs are then summed together by a ring of 	�input OR�gates�

Each ��to�� pulse distributor is composed of seven ��to�
 distributors connected in a tree

structure� A test circuit with �
 distributors appears in Figure

12
12

12
12
12

123
123
123
123

1
1

12
1

12
12

12
12

123
123

1234
1234
1234
1
1
12
12
121

12
12

12
12

123
123
123
12
12

12
12
12
12
12123

12312
12

1234
1234
1234
1234

1
112
12
12
1212
12

12
12
123
123
123

123
123
123
123

1
1
1
12
1212
12
12
12

12
12

1234
1234
1234
1234

12
12
12
1

123
123

123
123
123

1234
1234
1234
1234

12
1

12
121
1

123
123

12
121234
1234
1234

12
1212112

12
1212

12
12

123
123
123

12
1212

1212
12

12
12

12
12123
123
123
123

12
12

12
1
1

1

12
12

12
12

123
123
123
12312

12

12

12
12

12
12

123
123
123

12
12
12

123
123
123
123

1
1

12
12

�����

Figure ���� A ���unit tree ring�

� March ����



Section ���� Tree�Ring Example ���

Each ��to�� pulse distributor has one input and two outputs� Pulses appearing at the

distributor�s input are alternatively passed to one of its outputs� Thus� a ��to�� distributor

spreads the pulses among its eight outputs� A ��to�� pulse distributor consists of a toggle

	ip 	op� made of 
 logic gates� and a ��to�� demultiplexor� made of � logic

123456789
123456789
123456789
123456789
123456789
123456789
123456789

gates�

Figure ���� A ��to�� pulse�distributor circuit�

����� Simulation results

Sweep�mode simulation has not been done for this circuit� The graphs on the following

pages are for the simulation of a ���unit circuit� using both systematic and random element

distribution
 a 
�unit circuit
 a ��unit circuit
 and� �nally� a ��unit circuit� Tree�ring circuits

have a lower activity level than the others examined here because only one of the eight

leaves in each unit can be active at any time� Accordingly� the CMB�variant curves show

an overhead of four to �ve octaves relative to the sequential simulation results� The CMB�

variant speedup is� otherwise� linear with respect to itself�

The hybrid�� curves are not as smooth as those of the other circuits because each

tree�ring circuit contains two sets of sub�circuits with very di�erent properties �the pulse

distributor and the ring of OR�gates�� Partitioning of the circuit over di�erent�sized multi�

computers produces very di�erent locality relations� which strongly a�ect the performance

of the hybrid simulators� The e�ect of locality can also be seen in the simulation with ran�

dom element distribution� While the hybrid�� curves for the clock network merely worsen�

those for this circuit converge immediately to the CMB�variant curves at N � �� The

CMB�variant simulator� however� is not strongly in	uenced by locality�

� March ����



��� Chapter �� Additional Performance Results

The CMB�variant curves� which are pegged to the ratio of null messages verses event�

containing messages� show very little change as the size of the circuit is decreased� The

hybrid simulator curves show a steady �attening in slope� and hybrid�� curves eventually

lose all speedup when there are only ��	 gates left in the circuit�

� March ����



Section ���� Tree�Ring Example ���

Real�mode results for a ���unit network

CMB�variantlog��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

all �log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

Figure ���� A �����gate tree network for 
��s on a Symult �����

� March ����



��� Chapter �� Additional Performance Results

Real�mode results with random element distribution

CMB�variantlog��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

all �log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

Figure ���� A �����gate tree network for 
��s on a Symult �����

� March ����



Section ���� Tree�Ring Example ���

Real�mode results for a ��unit network

CMB�variantlog��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

all �log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

Figure ���� An ����gate tree network for ���s on a Symult ����	

� March ����



��� Chapter �� Additional Performance Results

Real�mode results for a ��unit network

CMB�variantlog��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

all �log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

Figure ���� An ����gate tree network for ����s on a Symult �����

� March ����



Section ���� Tree�Ring Example ���

Real�mode results for a ��unit network

CMB�variantlog��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

all �log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

Figure ���� An ����gate tree network for ����s on a Symult �����

� March ����



��� Chapter �� Additional Performance Results

Section ��� FIFO Loop

����� Description

While the clock network example uses a ��D array of cross�connected FIFO controllers� the

FIFO loop example uses a circularly connected linear array of FIFO controllers and FIFO

registers� �Refer to the �gure in the clock network section�� The registers are made of a

bank of 	 cross�coupled latches with clocked inputs� Each latch is made of 
 logic gates� as

shown in Figure 	����

load

Q

QD

D

clear

Figure ���� Circuit for one latch�

Since the design of the controller constrains the FIFO to contain no more than � unit

of data for every pair of FIFO units� and since we chose to initialize the FIFO loop with

alternating data units of all ones and all zeros� the number of FIFO units must be a multiple

of four�

����� Simulation results

Figure 	��	 contains the CMB�variant sweep�mode simulation result using a loop of �	

FIFO units� The FIFO loop is an example with a lot of usable concurrency� However�

unlike the clock network� the lazier simulation variants are not any better than the most

eager simulation variant� evidently due to the majority of the circuit loops being found in the

cross�coupled latches� Non�essential null messages do not remain long in the cross�coupled

latch because the load signal and the reset signal must be long enough for the cross�coupled

latch to settle down to a �nal value� In doing so� the input to one of the cross�coupled

� March ����



Section ���� FIFO Loop ���

latches is held low for a su�ciently long time that all free�running null messages in the

cross�coupled latch are eliminated due to the non�strict input condition of the NAND�gates�

Yet� there are still essential null messages in the simulation� and the overhead estimate

of the sweep�mode simulation is between � and � octaves� The curves should show a linear

speedup up to N � �	
 before they start to level o��

log��sweeps


log��nodes

� � � � � 	 
 � � � �� ��

�

�

��

��

��

��

��

�	

�


��

��

��

Figure ���� Sweep�mode CMB�variant simulation of an �����gate FIFO loop�

The real�mode CMB�variant curves for the FIFO loop circuit matches the sweep�mode

predictions well� The curves for the hybrid simulators are also as expected� The hybrid��

curves �atten out and cross over the CMB�variant curves earlier than they do in the previous

examples because the gates in this circuit are under non�strict input conditions most of the

time� and because hybrid�� simulators are unable to make use of such conditions�

One unique characteristic of this circuit is that when the circuit size is reduced to �

FIFO units� all three sets of results show evidence that the curves are bending upward at

N � ��� This characteristic is not observed in the sweep�mode result� and is an indication

that some tight loops are broken up and distributed across node boundaries� At N � 
��

� March ����



��� Chapter �� Additional Performance Results

there are � or � elements per node� With granularity approaching the number of gates in a

cross�coupled latch� a misalignment in a systematic distribution will cause the majority of

the cross�coupled latches to be split across node boundaries�

� March ����



Section ���� FIFO Loop ���

Real�mode results for a ���element loop

CMB�variantlog��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

all �log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

Figure ���� An �����gate FIFO loop for ����s on a Symult �����

� March ����



��� Chapter �� Additional Performance Results

Real�mode results with random element distribution

CMB�variantlog��seconds�

log��nodes�
� � � � � � 	 


�

�

	




�

�

��

��

��

��

hybrid
�log��seconds�

log��nodes�
� � � � � � 	 


�

�

	




�

�

��

��

��

��

hybrid
�log��seconds�

log��nodes�
� � � � � � 	 


�

�

	




�

�

��

��

��

��

all �log��seconds�

log��nodes�
� � � � � � 	 


�

�

	




�

�

��

��

��

��

Figure ���� An �����gate FIFO loop for ����s on a Symult �����

� March ����



Section ���� FIFO Loop ���

Real�mode results for a ���element loop

CMB�variantlog��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

all �log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

Figure ���� A ����gate FIFO loop for ����s on a Symult ����	

� March ����



��� Chapter �� Additional Performance Results

Real�mode results for a ��element loop

CMB�variantlog��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

hybrid��log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

all �log��seconds�

log��nodes�
� � � � 	 
 � �

	




�

�




�

��

��

��

��

Figure ���� A ����gate FIFO loop for ����s on a Symult �����

� March ����



Section ���� Economy and Performance of a Multicomputer ���

Chapter � Summary

Section ��� Economy and Performance of a Multicomputer

Multicomputers are appealing because they improve �and� with advances in VLSI technol�

ogy� promise to continue to improve� the two most prominent �gures of merit of computing

systems� performance and economy� Performance is proportional to the processing speed

of a machine�

Performance � processing speed

Economy is inversely proportional to the cost of running a program	 it is� therefore� both

proportional to the processing speed and inversely proportional to the cost of the machine�

Economy � processing speed
machine cost

In most cases� performance and economy are at odds with each other because higher speed

is achieved by using faster circuits	 however� the increase in the machine cost is greater than

the increase in the processing speed� In a multicomputer� speed is increased not by having

faster circuits� but by having many cooperating computers� Hence� it is possible to improve

economy by increasing performance without causing a proportionally larger increase in the

machine cost�

single�
processor
computer

Path B

Path A

Figure ��� Two idealized multicomputer evolution paths�

Whether one agrees that economy can be improved� however� depends on how one sees

the basic premise of multicomputing� Shown in Figure 
�� are two idealized evolutionary

� March ����



��� Chapter �� Summary

paths leading from the same single�node computer� We will� in our idealized model� consider

computers to be made entirely of memory� because a fairly fast processor can be built in

the area required for a few thousand bytes of fast memory� When we compare two single�

processor computers� we compare two collections of memory attached to two identical�

zero�sized processors� Thus� any two single�processor computers in our comparison have

the same speed regardless of their size di�erences� We will also assume that programs do

not take up more memory as they become more distributed�

Along path A� we build an N �node multicomputer by putting together N copies of the

single�node computer� Performance has improved by a factor of N because there are now N

single�node computers� and each is as fast as the original� economy has not changed because

the total machine cost has increased by the same factor�

Along path B� the circuitry of a single�node computer is regrouped into N smaller

nodes� Performance has improved by a factor of N because each of the N smaller nodes is

as fast as the original� economy has also improved by a factor of N because performance

has improved while the cost of the machine has remained constant�

These paths A and B also have a strong in�uence on multicomputer programming� The

cost C of running a program� in this idealized model� is�

C 	 SNT

S 	 Price per node per unit time 
� size of the node��

N 	 Number of nodes in the machine�

T 	 Time it takes for the program to complete�

When drawn as a ��D log�log�log plot� which we call the cost space� the surfaces of constant

cost are given by�

� March ����



Section ���� Economy and Performance of a Multicomputer

1234
1234
1234
1234
1234

1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567

1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890

���

P

log�N�

log�T �

log�S�

C plane

Figure ��� Multicomputer cost space�

log�S�� log�N�� log�T � � log�C�

Constant�cost surfaces� called the C planes� appear as planes perpendicular to the

������� direction vector� Suppose we have an application whose single�node cost is marked

by point P in Figure 	�
� If we can �nd a point that is lower than P for the same application�

we have found a point with higher performance� if we can �nd a point that is on a plane

closer to the origin� we have found a point with lower

1234
1234
1234
1234
1234

1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567

1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890

1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567

123
123
123
123

123456
123456
123456
123456
123456
123456
123456
123456

cost�

P

log�N�

log�T �

log�S�

C plane
A plane

a cost�e
ective curve

P

a cost�ine
ective curve

attainable region

lower�cost region

log�T �

log�N

123
123123
123
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

�

Figure ��� Intersection with A plane�

� March ����



��� Chapter �� Summary

Surfaces corresponding to path A correspond to constant node cost� thus they appear

as planes perpendicular to the S�axis� We call such a plane an A plane� Figure ��� shows

the A plane containing P � The intersections of an A plane with C planes form lines of

slope �� on the A plane� Since super�linear speedup is impossible by our de�nition	 the

grey area shown in Figure ��� 
right� is the possible range of N and T � The cheese area

is the range intersected by those C planes that are closer to the origin than the C plane

containing P � The non�cheese area 
which is the same as the grey area in this case� is the

range intersected by those C planes that are further away from the origin� The only way to

have the application be cost�e�ective is for it to exhibit a linear speedup starting at N 
 ��

Any deviation from linear speedup means that the performance curve of the application

has crossed into a C plane that is further away from the origin	 and that the program will

be more costly to run� In practice	 there are many contributing factors to the actual cost

of running a program that may more than make up for the ine�ciency	 but	 in the long

run	 what we can a�ord to buy and what we are able to build will ultimately determine the

performance improvement we can get by adding no

1234
1234
1234
1234
1234

1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567

1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890

123
123
123
123
123
123
123
123
123
123

12345
12345
12345
12345
12345
12345

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

des�

P

log
N�

log
T �

log
S�

C plane

B plane

a cost�e�ective curve

P

a cost�e�ective curve

attainable region

lower�cost region

log
T �

log
N
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890

123
123
123123
1231234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890

�

Figure ��� Intersection with B�plane�

Surfaces corresponding to path B appear as planes perpendicular to the 
�	�	�� direction

vector� We call such a plane a B plane� All points on a B plane have the same SN product	

� March ����



Section ���� Overhead and Latency ���

and correspond to multicomputers with the same total cost� The plane that contains P is

shown in Figure ���� The intersections of a B plane with C planes form horizontal lines

on the B plane� An application becomes cheaper to run if it shows any speedup relative

to the ��node case� Performance is improved because the time required to perform the

computation is reduced� Cost is reduced because the computation is now on a C plane that

is closer to the origin� The area that is both grey and cheese is that range that is attainable

by the application� and where both performance and economy are improved�

In practice� neither of the two paths can continue inde�nitely� In path A� we are limited

by the maximum physical size of a machine we are able to build� and by the amount of

concurrency we can �nd in computations� In path B� we are limited by the minimum

amount of hardware required to construct a node 	 computers are not made entirely of

memory and most programs do take up more memory as they become more distributed�

ultimate
machine

node count

node size
A

B

single
processor
computer

Figure ��� Two idealized multicomputer evolution paths in the path space�

To continue� path A must use smaller and smaller nodes and path B must use more and

more hardware� The two paths 
Figure ���� will eventually meet at the ultimate machine

where all nodes are of a sensibly minimal size and the machine contains as many nodes as

we can assemble in one machine�

Section ��� Overhead and Latency

Along path B� we encounter a series of multicomputers with progressively smaller nodes�

Those with single�board nodes are called the medium�grain multicomputers
 examples of

medium�grain multicomputers are the Cosmic Cube� the iPSC��� the iPSC��� and the

� March ����



��� Chapter �� Summary

Symult ����� Those with single�chip nodes are called the �ne�grain multicomputers� an

example of a �ne�grain multicomputer is the Mosaic� Due to the reduced node cost when

nodes become smaller and more abundant	 the programming emphasis for a multicomputer

shifts from one of achieving a linear speedup to one of exploiting the maximum concurrency�

Since medium�grain nodes are few and expensive	 the primary goal of programming

such multicomputers is to pro�tably utilize all available CPU cycles� Cycles can be lost

to sources in the application itself
 load�imbalance	 extra synchronization	 and insu�cient

concurrency� these internal delays are called overheads� Cycles can also be lost to sources

in the system
 message handling	 kernel operation	 and network congestion� these external

delays are called latencies� In a medium�grain multicomputer	 overheads and latencies

are countered by employing at least several times more concurrency in the program than

there are nodes in the multicomputer� The weak law of large numbers	 together with the

clustering of related elements	 covers most of the problems� Nodes are seldom idle because

the chance that all of their elements are blocked is low� The cost of message transactions

is low because clustering causes most of the interactions to take place between elements of

the same node�

To exploit more concurrency	 we must use more nodes in the multicomputer and fewer

program elements in each node� Although we can no longer overwhelm overheads and

latencies by an abundance of concurrency	 we no longer have to be obsessed with linear

speedup	 because nodes become cheaper as they decrease in size� Instead	 programming for

�ne�grain multicomputers emphasizes the exploitation of all available concurrency in the

program� Factors that prevent the exploitation of available concurrency are distinguished

from factors that merely require the use of more nodes�

Latencies are factors that can prevent the full exploitation of concurrency� For example	

when a message is delayed enroute to a waiting element	 the element is blocked and the

program may not progress as fast as it could� Overheads	 on the other hand	 do not prevent

the full exploitation of concurrency� When an element is blocked waiting for a message

� March ����



Section ���� Fine�Grain Multicomputer Programming ���

that has not been produced� it is blocked only because the program has less concurrency

than there are nodes� Synchronization operations� such as the use of null events in the

conservative discrete�event simulators� are also overheads� They keep more of the nodes

busy without interfering with the exploitation of concurrency in the system being simulated�

An element with unconsumed normal events may still be blocked awaiting a null event� If

the required null event has been produced and sent� we would attribute the blockage to

message latency� if the null event has not been produced� then we would attribute the

blockage to lack of concurrency�

Section ��� Fine�Grain Multicomputer Programming

To fully exploit the concurrency of a program� we must remove all latencies and overheads�

Overheads can be mitigated by putting one program element in each node� but latencies

can only be reduced by careful hardware and software design�

On the hardware side� message latency can be reduced with high�speed routers� These

routers move messages in the network via a modi�ed form of circuit switching called worm�

hole or cut�through routing� which moves a message one step through the network in a time

comparable to one memory cycle� Since a router is able to store and fetch messages at a

rate close to the bandwidth of the memory� sending a message from one node to any other

node is comparable to copying the same message from one bu�er to another bu�er�

On the software side� we must� without giving up generality� provide the thinnest cush�

ion possible between the processes and the hardware� The Reactive Kernel and a �ne�grain�

light�weight programming environment� such as Reactive�C or Cantor� make an ideal com�

bination because the program is never further than one function call away from the system�

The execution units for these programming environments� especially the more restricted

ones like Cantor� are small enough that nearly all of the concurrency in the program can

be exploited�

We have aimed in the direction of �ne�grain multicomputers in all of our research� and

our work on the discrete�event simulation is no exception� The CMB�variant simulator is

� March ����



��� Chapter �� Summary

ideally suited for �ne�grain machines because it is written in a �ne�grain notation� and is

able to fully exploit the concurrency of the system it simulates� The simulator takes on a

large overhead at N � �� but this overhead does not prevent the simulation from attaining

a large speedup at a large N � In many of the logic circuits we tested� near�linear speedup

continues until there are only two or three elements in each node�

Since the CMB�variant simulator does not use any special techniques to reduce the over�

head on a medium�grain multicomputer� the qualities that contribute to the performance

characteristics of the simulator persist as the simulation becomes more distributed� The

hybrid simulators were created to demonstrate the e�ect of those techniques� The overhead

is reduced when N is small� but the e�ect of these techniques vanishes and the performance

converges to that of the CMB�variant simulator when N is large�

Section ��� The Next Frontier

We have fully dispersed all available concurrency in a discrete�event simulation program

when we put one element on each node� If there were more nodes in a multicomputer than

elements in the simulation� we would not be able to utilize those leftover nodes� However�

we can still change the program to one that contains more concurrency� In a medium�

grain multicomputer� where it is necessary to use concurrency to overwhelm latencies and

overheads� rollback simulators such as Time Warp seek to produce additional concurrency

by computing on speculation�

The memory in each node of a �ne�grain multicomputer is insu	cient for storing the

previous states of its element in a rollback simulator� However� when there are more nodes

than elements� previous states can be stored on unused nodes� When an element has reached

a synchronization point� where its future is to be decided by a message that has yet to arrive�

the element picks a possible outcome and ships a copy of its old self to an unused node for

storage� Alternatively� the element can make a copy of its new self� which it spawns and

runs on an unused node� But rather than becoming dormant� the old self can continue

to run and produce more copies until all possible outcomes have been exhausted� This is

� March ����



Section ���� The Next Frontier ���

the concurrent branch�and�bound simulator� it is the next frontier to be explored when a

�ne�grain multicomputer becomes available�

� March ����



��� Chapter ��� Bibliography

Chapter �� Bibliography

��� G�A� Agha� Actors� A Model of Concurrent Computation in Distributed Systems�

MIT Press� �����

�	� W�C� Athas� and C�L� Seitz� Multicomputers� Message�Passing Concurrent

Computers� IEEE Computer� August �����

�
� C�L� Seitz� J� Seizovic� and W�K� Su� The C Programmer�s Abbreviated Guide to

Multicomputer Programming� Caltech�CS�TR������ �����

�
� W�K� Su� R� Faucette� and C�L� Seitz� C Programmer�s Guide to the Cosmic Cube�

Caltech CS �����DF��
� ���
�

��� J� Seizovic� The Reactive Kernel� Caltech�CS�TR������� �����

��� G�M� Birtwhistle� O�J Dahl� B� Myrhaug� and K� Nygaard� Simula Begin�

Petrocelli� New York� ���
�

��� Dan Ingalls� The Smalltalk �� Programming System� Design and Implementation�

Proceedings of the Fifth ACM Conference on Principles of Programming Systems�

Janurary �����

��� C�A�R� Hoare� Communicating Sequential Processes� CACM 	������������� August

�����

��� C�R� Lang� The Extension of Object�Oriented Language to a Homogeneous�

Concurrent Architecture� Caltech�CS�TR����
� May ���	�

���� InMos� Ltd�� The Occam Programming Manual� Prentice�Hall� �����

���� William J� Dally� VLSI Architecture for Concurrent Data Structure� Caltech CS

�	���TR���� �����

� March ����



��� Chapter ��� Bibliography

���� R�E� Bryant� Simulation of Packet Communication Architecture Computer Systems�

MIT�LCS�TR��		� November �
���

���� K�M� Chandy� and J� Misra� Distributed Simulation� A Case Study in Design and

Veri�cation of Distributed Programs� IEEE Software Engineering� September �
�
�

��
� D�R� Je�erson� Virtual Time� ACM Transactions on Programming Languages and

Systems� �����
�
�
��� July �
	��

���� W�C� Athas� Fine�Grain Concurrent Computations� Caltech CS ��
��TR�	�� �
	��

���� Donald E� Knuth� The Art of Computer Programming� V�� Sorting and Searching�

Addison�Wesley� �
���

���� M�R� Garey� and D�S� Johnson� Computers and Intractability� A Guide to the

Theory of NP�Completeness� W�H� Freeman and Company� �
�
�

��	� A�J� Martin� A Message�Passing Model for Highly Concurrent Computation�

Caltech CS�TR�		���� �
		�

��
� M� Schuster� R�E� Bryant� and D� Whiting� MOSSIM II� A Switch�Level Simulator

for MOS VLSI� User�s Manual� Caltech CS �����TR�	�� �
	��

� March ����



��� Chapter ��� Bibliography

� March ����


