LA H BHHHHH
|] = e T I
‘ 7 5 IEaEEal
}l“ T il i 1A ‘”l_’l%w-iﬂ e I
V\ l =] i — =
f\ T = i |
[SERTHT: FTR T
CHAEBLHTHEHCHH
\\ AR s =g =1,ww* I]
i i S = -L =
[I : r { i
_ T oD N ¥y,) A | I
L 1] e = - e
|% v —1Iy I T

SUBMICRON SYSTEMS ARCHITECTURE PROJECT
Department of Computer Science

California Institute of Technology
Pasadena, CA 91125

Semiannual Technical Report

Caltech Computer Science Technical Report
Caltech-CS-TR-90-05
15 March 1990

The research described in this report was sponsored by the Defense Advanced Research
Projects Agency, DARPA Order number 6202; and monitored by the Office of Naval
Research under contract number N00014-87-K-0745.

SUBMICRON SYSTEMS ARCHITECTURE
Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-90-05
15 March 1990

Reporting Period: 1 November 1989 — 15 March 1990
Principal Investigator: Charles L. Seitz

Faculty Investigators: K. Mani Chandy
Alain J. Martin
Charles L. Seitz
Stephen Taylor

Sponsored by the
Defense Advanced Research Projects Agency
DARPA Order Number 6202

Monitored by the
Office of Naval Research
Contract Number N00014-87-K-0745

SUBMICRON SYSTEMS ARCHITECTURE

Department of Computer Science
California Institute of Technology

1. Overview and Summary

1.1 Scope of this Report

This document is a summary of research activities and results for the four-and-
one-half-month period, 1 November 1989 to 15 March 1990, under the Defense
Advanced Research Project Agency (DARPA) Submicron Systems Architecture
Project. Previous semiannual technical reports and other technical reports covering
parts of the project in detail are listed following these summaries, and can be ordered
from the Caltech Computer Science Library.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI systems
appropriate to a microcircuit technology scaled to submicron feature sizes. Our work
is focused on VLSI architecture experiments that involve the design, construction,
programming, and use of experimental message-passing concurrent computers, and
includes related efforts in concurrent computation and VLSI design.

1.3 Highlights

e Mosaic is ready to build (section 2.1).

Fully functional Memoryless Mosaic chips (section 2.1.4).

High-density Mosaic memory (sections 2.1.2 and 4.7).

Mosaic program-development boards (section 2.1.5).

e New message-order semantics (section 3.2).

Cache memory for an asynchronous microprocessor (section 4.2).

New results in transistor-sizing for asynchronous circuits (section 4.4).

2. Architecture Experiments

2.1 Mosaic Project
Chuck Seitz, Nanette J. Boden, Jakov Seizovic, Don Speck, Wen-King Su

The development of the Mosaic C, an experimental fine-grain multicomputer based
on single-chip nodes and a reactive-process programming model, is entering its
final stages. This system-building experiment incorporates much of what we have
learned over the past decade about the architecture, design, and programming of
multicomputers. Indeed, many of our recent contributions to the development of
medium-grain multicomputers (see section 2.2), such as low-latency message-passing
networks and streamlined message handling in the node operating system, have
come directly out of our investigations of the design and programming of fine-grain
multicomputers, in which these problems are substantially more difficult.

The Mosaic C project includes numerous interacting subtasks ranging from chip
design and system packaging to programming-system development and application
studies. The fabrication of a large-scale prototype is now forcing decisions on design
options that have deliberately been left open; hence, we offer in this semi-annual
technical report a detailed status report on the entire project.

2.1.1 Architecture rationale

The Mosaic C is a member of a class of programmable, MIMD, distributed-memory,
concurrent computers called multicomputers. (See the article by Athas & Seitz in
the August 1988 issue of IEEE Computer for background.) These machines consist of
an ensemble of N programmable computers called nodes, each of which may support
many concurrent processes. Interprocess communication takes place by messages
that are conveyed and routed between nodes by a direct communication network.
Multicomputers are true VLSI architectures: They can be scaled to very large
numbers of nodes, and can exploit the performance and complexity of submicron-
feature-size microelectronic technologies. Multicomputers have proven to possess a

broad application span, and allow explicitly concurrent programs to be expressed in
a variety of programming notations.

The commercial examples of multicomputers manufactured by Intel Scientific
Computers, Symult Systems, and N-CUBE are based on a computational model,
prototype developments, and system software developed in our research project. They
are all medium-grain multicomputers in which configurations capable of substantially

outperforming conventional vector supercomputers consist of hundreds of nodes with
several MBytes of storage per node.

Shared-memory multiprocessors are not as scalable as multicomputers; however,
multiprocessors can certainly be scaled into the range of hundreds of processors, and
in this range possess some advantages over multicomputers. Among MIMD systems,

-2

the exclusive “niche” of the multicomputer begins at about N > 2° podes. We
understand today how to scale multicomputers to at least N = 22! podes.

Although medium-grain machines can be scaled into the range of thousands of
nodes, economics dictates that multicomputers with large N will employ small nodes.
Consider this constant-silicon-cost argument. A medium-grain multicomputer with
N = 256 and 4MB/node requires about 1m? of silicon in a modern lpym CMOS
process. About 60% of the 4,000mm? silicon area of each node is devoted to the
4MB of primary memory. Suppose that the essential parameters of a multicomputer
design, N and the node size, were shifted by a factor of 26, so that a machine would
consist of 16K nodes, each with 64KB of memory. Such a machine would have the
same total memory and silicon-area cost as a 256-node medium-grain multicomputer;
however, because the performance of the instruction-interpreting processor is not
reduced in proportion to its area, the aggregate peak performance of this fine-grain
multicomputer system would be significantly higher than that of a medium-grain
multicomputer. In fact, because a single node would require only about 60mm? and
could be integrated onto a single chip, the localization of communication between
the processor and memory allows a single-chip node to exhibit performance that is
comparable to that of the multi-chip node used in medium-grain systems.

The Mosaic C closely fits this description of a fine-grain multicomputer. It is based
on single-chip nodes, and we are working toward assembling a prototype consisting
of 16K nodes. We recognized long ago that multicomputers with single-chip nodes
were technologically the most attractive point within the space of multicomputer
designs. As was reported in 1985 (see Seitz’s article in the January 1985 issue of the
CACM), the Cosmic Cube was developed by our research group (in 1981-83) to study
the programming techniques and applications of the multicomputer systems that we
expected could be constructed with single-chip nodes by about 1991.

We expect that the Mosaic C will become the origin of a new scaling track
for multicomputers. The fine-grain, single-chip-node track offers substantially
higher performance and performance/cost than medium-grain multicomputers, and
1s centered in a niche that is beyond the scaling range of multiprocessors, while still
providing the wide application span of MIMD systems.

2.1.2 The Mosaic C node

Because single-chip nodes were a stipulation of the Mosaic experiment, it is most
convenient to describe this system “bottom-up,” starting from the single-chip node
element.

The Mosaic C node was designed and laid out using the MOSIS SCMOS scalable-
CMOS design rules, and uses fully restored logic with two-phase clocking. It is typical
of chips designed with these rules and disciplines to be highly tolerant of process
variations. The 50C design clock rate is 40MHz at 4V in 1.2um SCMOS, and tests

-3-

of parts fabricated in 1.6um CMOS confirm that we will achieve this performance by
a considerable margin.

The major parts were initially fabricated separately for testing and yield
characterization, and are listed below:

Lambda
Part dimensions As fabricated in 1.2um CMOS
16KB 4T dRAM 14000, 7700 8.4mm x 4.6mm = 38.6 sq mm
64KB 1T dRAM 14000, 12000 8.4mm x 7.2mm = 60.5 sq mm
8KB bootstrap ROM 7000, 3000 4.2mm x 1.8mm = 7.6 sq mm
Processor 4000, 3000 2.3mm x 1.8mm = 4.3 sq mm
Router 1500, 3000 0.9mm x 1.8mm = 1.6 sq mm
Packet Interface 1500, 3000 0.9mm x 1.8mm = 1.6 sq mm
TOTAL (16KB dRAM) 14000, 10700 8.4mm x 6.4mm = 53.8 sq mm
TOTAL (64KB dRAM) 14000, 16000 8.4mm x 9.6mm = 80.6 sq mm

These dimensions are slightly exaggerated to allow for the routing space between
the parts. Allowing also for the pad frame and space to route signals to it, the
chip dimensions for the version that uses the 16KB 4T dRAM will be approximately
9.0mmx7.4mm = 67mm?, and for the version that uses the 64KB 1T dRAM will be

approximately 9.0mmx10mm = 90 mm?. The average power consumption for either
design will be about 0.5W.

Because the memory uses the largest area and is the most difficult part of the
design, two alternative memory designs were developed. The 16KB 4T dRAM is
a conservative 4-transistor dynamic RAM designed as a low-risk option in case a
higher density dRAM proved to be infeasible. This 4T dRAM is based on a Cross-
coupled n-channel cell. Data bits are in double-rail form, and reading is accomplished
by precharging both data lines and then applying the word select. Writing is
accomplished by driving the data lines to complementary values and applying the
word select. The RAM performs a memory cycle on every clock cycle. In 1.2um
CMOS, it has an access time less than 20ns, and a cycle time of 25ns. The 64KB 1T
dRAM is an aggressive, one-transistor-per-bit design that was completed in January
1990, and will be submitted for first full-scale fabrication on the MOSIS 1.2um
SCMOS run that is closing on 20 March 1990. (Several test structures have been

fabricated and tested to verify the operation of circuits used in this dRAM.) The
design of the dRAM is described in detail in section 4.7.

The bootstrap ROM is single-transistor mask programmable, and its read-
cycle timing and organization is identical to that of the dRAM. The size listed,
corresponding to 4K words, is much larger than necessary. The self-test, initialization,
and bootstrap functions require approximately 600 words. However, because ROM

4

is denser than RAM, it may be useful in future systems to put standard subroutines
(such as for floating-point arithmetic) in the ROM so as to save space in the RAM.

The 16-bit, microcode-driven processor is the only source of addresses in the
node, and performs a memory cycle on every clock cycle. The processor datapath
includes 24 general registers and 12 addressing and special registers. The instruction
set 1s similar to that of other RISC processors, with 8 addressing modes for the
move instructions, ALU operations including integer multiply, conditional branch
instructions, a subroutine call, and control instructions. Projected performance using

our present compilers and clock-by-clock microprogram simulation is 14 MIPS (16-bit
operands).

The unusual features of the Mosaic processor are motivated by its use in a
multicomputer node. The refresh and packet-interface address control are actually
part of the processor, and the processor microcode interleaves instruction execution
from four sources: two program contexts, refresh operations, and transfer between
memory and the packet interface. The processor’s address registers include two
program counters, one for user code and the other for message-system control, with
zero-time context switching between them. The two pointers and two limit registers
for the send and receive queues are also in the address register set, together with the
refresh address register. The remaining special registers control the interrupt status
of the packet interface and the dx, dy, dz values in the header of messages that are
being sent.

Either of two routers can be used. The 3D synchronous router consists of three
cascaded 1D routing automata with a 4-bit-data path. A unidirectional external
channel is 6 wires, consisting of 4 data lines, one escape bit for control codes, and
the reverse flow-control signal. Bidirectional channels in each of 6 directions for
3D routing thus require a total of 72 external pins. The bandwidth per channel
is one 4-bit data item each clock period, or 20MB/s. The 2D asynchronous
router consists of two cascaded 1D routing automata with an 8-bit-data path. It
is a variant on the FMRC2 routers developed for medium-grain multicomputers.
A unidirectional external channel consists of 8 data lines, tail bit, request, and
acknowledge. Bidirectional channels in each of 4 directions for 2D routing require
88 external pins. The bandwidth per channel in the 1.2um CMOS technology will be
approximately 80MB/s.

The packet interface includes 4 words of FIFO in each direction, the 16-bit-to-4/8-
bit and 4/8-bit-to-16-bit conversion logic, and the logic that generates the message
header on sending. The arbiter for deciding whether the system should perform
memory refresh, channel data accesses, or processor access is also in the packet
interface; the decisions that it generates are inputs to the processor microcode. The
refresh signal is an input to the chip, and is bused through an entire array of Mosaic
elements. The reason for synchronizing the refresh operation is that packets that
are bound for a node that is refreshing would otherwise be blocked into the message

-5

network, and block other messages that are in transit. Thus, one might as well refresh
all of the nodes at once.

The Mosaic parts are quite modular, and can be assembled in a variety of
floorplans. The principal internal interface is the memory bus, which consists of
16 data lines, 16 address lines, the write signal, and the clock and reset. In addition,
there are several signals between the processor and packet interface, and two channels
between the packet interface and the router.

1.2.3 Choice of network dimension

A Mosaic with 16,384 = 2!* nodes can be implemented either as a 128x128 two-
dimensional routing mesh or a 32x32x16 three-dimensional routing mesh. The
minimum bisection bandwidth of these two networks is the same: 128 x80MB/s =
16x32x20MB/s = 10.24GB/s (in each direction). The significance of this figure of
merit is that if message destinations are selected at random (a worst case), then
half of the messages must traverse the bisection. Unless a substantial amount of
internal buffering is available, the network becomes saturated at approximately half
the bisection capacity. -

The usual argument that the bisection limits the total volume of messages that can
be produced and consumed by the nodes applies only to the case of randomly selected
destinations. For a 16K-node network, either 2D or 3D, this limit is 1.25MB/s per
node, or, for a typical message length of 20 Bytes, an average of one message each 16 us.
In fact, simulations of the Mosaic runtime system’s process-placement strategies show
that the localization achieved in process placement reduces the number of messages
that cross the bisection to substantially less than this worst case. It may well be
possible for nodes to produce and consume 20B messages at rates in excess of one
message each 4us.

Analyses that assume the worst case of randomly selected message destinations
favor a higher dimension network than is necessary for more localized message traffic.
Our original plan for the Mosaic was to use a 32x32x16 three-dimensional routing

mesh; however, it now appears that we will be able to save time and reduce risk by
using a 2D network.

The latency using cut-through (wormhole) routing for a packet that is not blocked
in the network is Ter = T,D + L/ B, where T, is the path-formation time through
one router, D is the distance, L is the message length (eg, in Bytes), and B is the
channel bandwidth (eg, in MB/s). For a 20Byte packet, the L/B term is 1us for
the 3D synchronous router and 0.25us for the 2D asynchronous router. T, is two
clock periods, or 0.05us for the 3D synchronous router; the longest path through this
network is Dy = 31 + 31 + 15, so the maximum path-formation time is 3.85us. o
1s expected to be 0.022us for the 2D asynchronous router and the maximum path is
Drax = 1274127, so the maximum path-formation time is 5.6us. In fact, for localized

-6-

messages or longer messages (such as are encountered in program loading), the 2D
network outperforms the 3D network.

Given the similar performance of these two networks, there are several other
arguments in favor of using the 2D network:

1. The asynchronous 2D network eliminates the problems of coherent clock
distribution required by the synchronous 3D network.

2. The protocol for the asynchronous 2D network is identical to that used in
the Symult S2010 medium-grain multicomputer and the Intel Touchstone Delta
prototype; thus, we would be able to employ the same host interfaces and other
special devices (eg, displays) on either type of system.

3. The 2D packaging is considerably simpler, cheaper, and lower risk than the 3D
packaging, and reduces the number of interboard connections by nearly a factor
of four.

There is also an interesting issue of network scaling as it relates to our research agenda.
The bisection argument presented above shows that the scaling of a mesh or torus
network of given dimension is forced to the next higher dimension only when the radix
(number of nodes on one dimension) becomes too large. The actual numbers show
that 128 is close to the practical limit for the radix. Thus, if we can demonstrate
that a 128x128 network and the localization accomplished by our runtime system
still allow efficient execution with fully automatic process placement, we have also
demonstrated that efficient execution would scale readily (with the problem size also
scaling) to an N = 128x128x128 = 2?'-node system!

Another part of our long-term research agenda is to consider whether the third
dimension should be reserved not for another dimension of mesh, but for long-
distance connections; for example, a free-space optical shuffle. This consideration
adds additional hesitancy to using the third dimension prematurely.

1.2.4 The Memoryless Mosaic chip

The Memoryless Mosaic chip has been a key part of our system-development strategy
for the Mosaic. This chip (see the plot on the following page) is a complete Mosaic
element except for the ROM and dRAM. It includes the Mosaic processor, packet
interface, router, clock driver, and bus arbitration logic. The address and data buses
are brought off of the chip; thus, the Memoryless Mosaic chip has allowed us to test
the logic sections of the Mosaic under conditions in which the memory address and
data are observable, and the memory data are controllable. It would otherwise be
extremely difficult to diagnose internal problems in the Mosaic node, because the
router, packet interface, and processor must function correctly in order to test them!

Extensive testing uncovered a design error in November 1989 in the first silicon of
the Memoryless Mosaic, which was fabricated by MOSIS in 1.6um SCMOS. The bug
was in the packet-interface section, and was eventually traced to a missing 4 A x4\

-7-

i

ENEEEL D
5 .4 , 4 M
O

bt

BRI TE ok b e

‘". mMm. _W H@Ww%,&__ aHels _.w
RSP DR D)]|

iem 1l 319 ,
<~m i * £
e i T

]

e

i

F=17]

Ty

:
I

B e 70 1
TR RNE 11

]

|
—

7 §A
=t == »
14k : —

L= .

=j : Bioidy e -
...... i W GG R 11
ot il 5 hel). Q [
o , m~ 2 s
= = & -

8-

Memoryless Mosaic chip

patch of first-metal on one of the clock lines. This bug was not discovered during
switch-level (Cosmos) simulation because the clock was supplied through an alternate
path via a poly wire. This kind of error would ordinarily be expected merely to limit
the speed of correct operation. However, in the Mosaic chip, it caused the control
signals derived from the supposedly non-overlapping clock phases to overlap. The
clock phases are generated on-chip, without the possibility of adjusting the non-
overlapping time. As a result, several shift registers in the packet interface failed
to operate correctly at any frequency. The detailed study of the FIFO section of
the packet interface revealed ways of making it more robust, so this section was
redesigned.

The corrected chip was submitted to MOSIS for 1.6um SCMOS fabrication on 8
January 1990, and the revised parts were received on 14 March 1990. Preliminary
tests indicate that the problem with the packet interface has been corrected, and the
chips are fully functional.

To test the logic sections of the Mosaic in the target 1.2um SCMOS technology,
a Memoryless Mosaic with a new pad frame was submitted to the MOSIS 1.2um
SCMOS run that closes on 20 March 1990.

1.2.5 Program-development systems

The other important application of the Memoryless Mosaic chip is to accelerate
porting the programming systems, particularly the operating and runtime systems,
from simulators to hardware. This bootstraping step is on the critical path of
developing a useful system, and is also typically more difficult for multicomputers
and other distributed-memory systems than it is for shared-memory systems. The
observability and diagnosis of operating-system faults is problematic until the
operating system is itself reliable.

We are able to get a head start on porting programming systems and application
programs to the hardware, and also to simplify the operating-system-porting task,
by building program-development systems that are based on the Memoryless Mosaic
chips. These 6U VME boards (see the illustration on the following page) include
4 Memoryless Mosaics, which are connected by their channels in a 2x2 mesh. The
external memory of each of the Memoryless Mosaics is 128 KB of SRAM, which is two-
ported to be read and written either by the Mosaic or through the VME interface.
The clock rate is 20MHz. The SRAM is accessed by the Mosaic most of the time,
and by the VME interface by cycle stealing. When the VME interface requests a
memory access, the clock generator PAL stops the Mosaic clock signal for one clock
period. While the Mosaic clock is stopped, the VME memory access is granted. The
Mosaic clock and reset can also be controlled by memory-mapped storage locations.
The logic design of these VME boards was just completed, and they are being sent
to a commercial PCB house for layout and fabrication.

The completed boards will be plugged into the VME interfaces of our Sun

-9-

0}

n_m_rl_n

0 ez

i
J b
vsesunﬂf I
= gz)lujuyaaswa
L1 2%
Uggfusussuﬁf

bl o]]

oo
!

MBI JHUHBRBBE
[3}§EL§~Q LIEIEIEIE
%r:‘fla 51 ﬂ P EIL] E1E
i
L EIE
BN 3
g«»g—:g: mosaic
et Pt e]
HEH
3 3 E
R EIEE]
LIGIEIL HIE
: [2]=]2]
: D0E
4k GEE]
; 21215]
i it
BT&TY EiEl
Lt R 1
] RIEIE
HEH e
HESL HEH
?’Eg i HERORB
QIR BATSTS glZ]z]z
HHRUE A
[E]Z] 1[=z]a
i g8h
0 HEIE
BIOE EHE
LIS EIEIR
[B1877] HEIR
vtg ?*@
Fer mosatc 15
HE 15]
i 21815
HHO Ban
3 E] 3] 1EHAG H
e % 51
5 5E SEIEIH
HHEEHHOEET

ou2]ots] v Joce oca

|

]
izl o]

rl
Ln;‘,x L;Qn

1oL

ToalT
] o

E@Jmsimv[m}aum

gsusuafesnuuﬂ
L=t

L 2 n 2

cc:igg

HAIS; B
tyxgrzzzuﬂaf nansgn?aseuu
“““‘EEE gswssaysuswu
rovon
w"r:urznznfgf :anssn?nsssﬁ
O G S

§9BE YU R Y U A YU ETE R R T e RS gazssavasezu
CSey Ligh) = 4v1]
ESgRreBE g} 10389’555553‘ nsnssasaseas

3 "'é' s: sﬁ:anzz gBBEBHYBBEYH
YR

APEQ EEE :enenassaena‘

gusﬁx:snxca:x EB8EIXRALRBERE M
(=YWL ¥ DAY

2 7 ASEEEEEEEEE £ FBOagaRaarel

BUBESEAYCAE &

gaa: sﬁxlz::: gaasuszaaaaa
nE§ﬂ§ EEE‘EE canssaesaanf
PGS gﬂssasxﬁssssn

:nnﬂaasusanf

gas: ss:;nz: gﬂnsssrasen
n§§§§ EEE BT :aesaaesaeei
SO ELEZEBsFrES BT 888 IR ERXEBE G O
Nanel ra’8] DA
a§§§§EEEEEE§ FER9Inasaanagd
gaa:‘:sxx:z:x]

w0 wZYy o
HEEﬁ‘EEEEEEEf

E&XELEGE

8 Y8 BER M

DaDw
FEvsgasagangf

gsnsuaeaaszn

:nesaafaseea‘

g8 g9 aa?uaasu

g :anaaaaaaea

guxz:xsxcc:: L8R IRERY UG E G
N_‘.n—:wwzuu DADE

asaquEEEEEE‘ L8889 veanuaau i

Mosaic program development board

-10-

HHAHEE00

q]

!
I

18]

T-euwn

[B]B]E] lam]
IBHHEILIE]

ILIHEIBOLILE]

JE]

&l

s7a ElEIElElEJ
HH HHRHE]

@ li einjelx|a(si= kANl

]
[
3
Zr-8un

workstations or Symult S2010 systems. The host system will not only be able to
load the memory of the nodes directly, but can also monitor program execution by
examining the memory contents.

We expect in approximately three months to build another version of this
program-development system for Memoryless Mosaics that use the asynchronous
router. It will be possible to connect these boards together to form larger meshes,
and to use these boards as host interfaces for larger Mosaic systems.

1.2.6 Packaging

Preliminary packaging designs for both 2D and 3D Mosaic systems have been
completed. Both approaches use compression connectors to connect small circuit-
board modules that are the testable and interchangeable units of manufacture, repair,
and replacement. The Mosaic elements will be packaged and connected to the small
circuit boards using TAB packaging.

The 4.2inx2.6in module for the 3D Mosaic contains 8 nodes in a 2x2x2
configuration with 320 external connections on two opposite edges. These modules
are stacked between motherboards to create the 3D-packaging configuration. The
3D system is cooled by forced air in a direction parallel to the second dimension of
routing.

The 4.2inx4.2in module for the 2D Mosaic contains 16 nodes in a 4x4
configuration with 400 external connections on all four edges. These modules are
mounted to a power-distribution frame, and adjacent edges are joined by a single
bridging connector.

1.2.7 Programming systems

The Mosaic can be programmed using the same reactive-process model that is used
for the medium-grain multicomputers that our group has developed. However, the
small memory in each node dictates that programs be formulated with concurrent
processes that are quite small.

The Cantor programming system supports this style of reactive-process program-
ming by a combination of language, compiler, and runtime support. The programmer
is responsible only for expressing the computing problem as a concurrent program.
The resources of the target concurrent machine are managed entirely by the pro-
gramming system. Although Cantor was developed specifically for programming the
Mosaic, Cantor programs can also be run today on medium-grain multicomputers,
multiprocessors, sequential computers, and the Mosaic simulators.

The Mosaic can also be programmed at a lower level by using scaled-down versions
of the C-based programming systems (Cosmic C, Reactive C) that we have developed
for and used with medium-grain multicomputers.

-11-

These programming systems are quite stable and powerful. The continued
improvement of these systems depends principally on progress in our related research
efforts (see sections 3.1-3.4).

2.2 Second-Generation Medium-Grain Multicomputers*

Chuck Seitz, Joe Beckenbach, Christopher Lee, Jakov Seizovic, Craig Steele,
Wen-King Su

Our principal current research efforts with medium-grain multicomputers are aimed
at new versions of our reactive-process programming systems and at advances in the
performance of our mesh-routing chips. Qur Caltech project continues to work closely
with the DARPA-supported Touchstone project at Intel Scientific Computers. Our
contributions include the architectural design, message-routing methods and chips,
and system software. (See section 3.3 for a summary our current efforts with the
Cosmic Environment and Reactive Kernel systems, and section 4.5 for a summary of
our efforts with mesh-routing chips.)

The project operates several multicomputers: 8-node and 64-node Cosmic Cubes,
a 128-node Intel iPSC/1, a 16-node Intel iPSC/2, and 32-node and 192-node Symult
52010 systems. The 192-node S2010 system is now the preferred machine for users. It
1s accessed through the Caltech Concurrent Supercomputer Facilities, and utilization

has been at a level of approximately 90% of the available node-hours. All of these
systems run very dependably.

Copies of the Cosmic Environment system have been distributed on request
to approximately ten additional sites during this period, bringing the total copies
distributed directly from the project to over 200.

* This segment of our research is sponsored jointly by DARPA and by grants

from Intel Scientific Computers (Beaverton, Oregon) and Symult Systems (Monrovia,
California).

-12-

3. Concurrent Computation

3.1 Runtime Systems for Fine-Grain Multicomputers
Nanette J. Boden, Chuck Seitz

We have been investigating several research problems that have emerged from our
efforts to develop runtime systems for fine-grain multicomputers such as the Mosaic.
These efforts are aimed at removing a number of restrictions on programming fine-
grain multicomputers.

One easily understood example is the management of the node receive queue.
A computation executing on the Mosaic will always consume a certain amount of
space in each node for the runtime system itself, process code, process tables, and
the persistent variables of the processes. The remaining space, which might be only
one thousand bytes or so, can be used by the send and receive queues. Suppose that
the computation involved a temporary “hot spot” that causes the receive queue in a
node to overflow. When processes are able to exercise discretion in receiving messages
selectively by their type or contents, they may not be able to consume the contents
of the receive queue. In the present runtime systems, this is a deadlock, and the
computation terminates.

It is, however, a serious flaw if a system with 1GB of memory, perhaps hundreds
of MBs unused, might not be able to proceed because of a local fluctuation of a few
hundred bytes. This problem also exists in medium-grain multicomputers, but is
generally masked by the large size of the node memory. The solution is to export a
part of the receive queue temporarily to another node, and, if necessary, to secondary
storage. Indeed, several possible advances in system robustness and performance
depend on introducing distributed solutions to resource-allocation problems.

Adding this kind of robustness to multicomputer programming systems is an
example of the 80/20 rule: 80% of the sophistication in a runtime system is
required to deal with the 20% residue of “difficult” cases and programs. Indeed,
the compilation and runtime algorithms and heuristics for managing space without
undue restrictions on the programmer, automatic process placement, managing the
process-name space, determining code placement, and performing automatic code
partitioning are remarkably subtle. They are also quite challenging when they must
be implemented under serious constraints on both execution time and storage space.

Fast, efficient process placement is the key to several of these problems. Through
analytical methods and simulation, we are exploring the spectrum from randomized to
systematic node selection, that is, from methods depending entirely on randomization
to methods that bias a random choice toward a local region or direction of growth, to
methods that perturb a deterministic choice with “flip bits,” to purely deterministic
methods. A computation can be modeled for these purposes as an evolving population
of processes. Each process on each timestep has a certain probability of creating
another process or of self-destructing. Simulation approaches permit a realistic

-13-

complexity in the algorithms and heuristics being evaluated, and the incorporation of
realistic machine models. However, these investigations are still somewhat removed
from reality. Different resource allocation strategies may be more nearly optimal
depending on the actual characteristics of application programs. In the analytical
approach, the probabilities of process creation and of process self-destruction must
be estimated; in simulation, randomized instances of “typical” programs must be used
as input. The Mosaic system will allow us to refine the more promising approaches
on full-scale application programs.

3.2 Composition Properties of Reactive-Process Programs

Nanette J. Boden, Chuck Seitz

The properties of adaptive-routing message systems, which may appear in future
multicomputers, have numerous implications at levels ranging from the programming
model to the the runtime support. The most attractive distributed approach to
retaining message-order preservation is based on a reply-message protocol. It happens
that this approach introduces a slightly stronger synchronization than the semantics
supported in our current message-passing programming systems, in which message
order is preserved only between pairs of communicating processes. The reply-message
protocol allows the sending process to determine when a message is actually in
the receive queue of the destination process, so that subsequent messages to “third
parties” cannot lead to messages that precede the first message in the receive queue.

This stronger form of synchronization also has composition properties that are
more uniform than those exhibited by our present message semantics. Curiously, it
is also possible to obtain uniform composition properties by weakening our present
message semantics into the unordered-message form of Actor semantics, but we
can show that at least a weak form of message-order preservation is required to
express certain computations efficiently. Uniform composition properties are not only
desirable when attempting to reason about a program, they are also critical for being
able to re-express a large process as a collection of small processes, either by hand or
automatically. We are continuing to study the possibility of supporting this stronger
(but compatible) form of message-order preservation in future systems.

3.3 The Cosmic Environment and Reactive Kernel

Wen-king Su, Jakov Seizovic, Chuck Seitz, Joe Beckenbach, Christopher Lee

Our plans for the development of new versions of the Cosmic Environment host
runtime system and the Reactive Kernel node operating system were outlined in
our previous semiannual technical report, and the work is in progress.

Version 7.2 of the Cosmic Environment has matured after enduring more than
two years of academic and commercial applications. Based on our experiences with
the Cosmic Environment, we are now in the position to suggest and implement major
changes in the internal structure of the Cosmic Environment. One of the problems in

-14-

version 7.2 is the centralized multicomputer allocation and bookkeeping mechanism
that places the Cosmic Environment at the mercy of network conditions. We have
designed a robust distributed mechanism in which allocation is performed in the
host of the multicomputer itself. Thus, the multicomputer would be inaccessible
only when its host is inaccessible. We have also demonstrated a technique that
increases the Cosmic Environment communication bandwidth from 40Kbytes/second
to 300Kbytes/second with a small increase in message latency. We eliminate the
need to perform extra handshakes across slow ethernet links by shifting the burden of
buffering messages from the multicomputer’s host machine to the user’s host machine.
We have also found a way to increase the message delivery rate for selected user
processes, such as a frame buffer controller, by allowing the process to be merged
with the message switcher process, thus saving one communication cycle and context-
switch time for each message.

3.4 The Page Kernel
Craig S. Steele, Chuck Seitz

The previously-described “Page Kernel” (PK) concurrent programming environment
is an evolutionary variant of the reactive kernel (RK). PK utilizes the virtual-memory
capabilities of second-generation medium-grain multicomputers to render message
origination and receipt implicit, and to move the low-level management of data
sharing from the programmer to the kernel. Continuing development of the PK has
resulted in simplification of the programming model and extension of its capabilities.

The executable unit is the action, a light-weight reactive process scheduled in
response to modification of associated data structures (blocks). The programmer is
responsible for writing code to specify which data blocks are accessible to each of the
actions. Defining the multiple address spaces of the actions and coding the operations
of the actions is the programmer’s task; action scheduling and data communication
are handled by the kernel.

Another common function appropriated to the kernel is the management of
mutually-exclusive writing to data blocks shared by multiple actions. Rather
than locking data with potential write conflicts, actions are allowed to proceed to
completion before actual conflicts are evaluated. If an action is excluded from writing
its results to a shared data block due to another action’s access, it fails and none
of its results are written to any data block. The action is undone with no visible
effect, and it is rescheduled for later execution. This mechanism involves considerable
data copying and duplication, but the additional cost is quite modest with second-
generation multicomputer communications hardware; for example, it incurs about
25% in increased execution time on the Symult S2010. This implementation allows
greater concurrency for problems with more potential than actual conflicts.

The PK is expected to be an attractive alternative programming environment for
problems such as iterative optimization, in which the mechanics of distributing and

-15-

updating shared data structures may obscure the relative simplicity of a concurrent
algorithm.

3.5 A C-Based Concurrent Programming Language For Multicomputers

Marcel van der Goot, Alain Martin

As described in the previous semi-annual report, we are defining and implementing
a concurrent programming language for message-passing multicomputers. We have
chosen C as the basis for the sequential parts of the language; the extensions that
support concurrent programming include processes and CSP-like communication
primitives. A first implementation, consisting of a compiler and a small runtime
system, was finished in February 1990. The compiler takes our language as input and
has standard (ANSI) C as target; the runtime system contains functions to support
the concurrent execution of processes. The output of our compiler is compiled for a
SUN workstation where it is executed as a single UNIX process.

So far, the compiler has been used by the students in a concurrent programming
class, and to write a (functional) simulation of the asynchronous INICrOProcessor.
Since the specification of the microprocessor is in a language similar to ours, the
simulation program was relatively easy to write. Currently, we are working on
documentation and on porting the implementation to an actual multicomputer (the
Symult §2010, or any other multicomputer that runs CE/RK), together with some
reorganization of the compiler. We expect that neither the compiler nor the runtime
system will require much rewriting for this parallel implementation.

-16-

4. VLSI Design

4.1 Automatic Synthesis of Asynchronous Circuits

Drazen Borkovié, Steve Burns, Alain J. Martin

The second generation of synthesis tools that we envision will integrate simulation,
performance evaluation, and optimization (transistor sizing). The designer will be
able (or perhaps will be required) to make choices at different stages of the synthesis
based on the results of the previous stage. As a first step toward such a system, we
are designing a program for the synthesis of straightline program into CMOS chips.
The final program will include automatic cell synthesis, transistor sizing, placement
and routing.

4.2 Cache Memory for an Asynchronous Microprocessor
Alain J. Martin, José A. Tierno

The design of a direct-mapped instruction cache for an asynchronous MiCroprocessor
is almost completed. The circuit has been derived from a high-level specification,
and both control circuitry and RAM array are completely delay-insensitive with the
exception of isochronic forks. Special attention was paid to the design of the RAM
cell, to optimizing the signaling protocol, and to eliminating unnecessary transitions
and completion trees. The full (conservative) implementation requires 13 transistors
per memory cell, of which 3 can be eliminated at the expense of a bigger delay. The
RAM array has a special read-write cycle. The rest of the control was designed around
this cell, since the bottleneck in throughput will be in the access to the RAM array.

4.3 Testing Self-Timed Circuits
Pieter Hazewindus, Alain J. Martin

We are studying the problem of increasing the fault coverage of our designs by adding
testing circuitry to the circuits. The fault model we use is the single stuck-at fault
model. For any non-redundant circuit, if we can set and observe the value of each
state-holding element, then all faults are testable. Since it is infeasible to connect
every state-holding element to a pad, we use as testing circuitry a simple queue that
connects all state-holding elements. For such a scheme, the only untestable faults
would be located in the queue.

We have designed a testing queue that has twelve transistors per stage. For
normal circuit operation, the penalty for having the testing circuitry is just one
pass gate, so that the decrease in performance is minor. For the control of the
microprocessor, the number of transistors in the clocked testing queue is about half
the total number of transistors. We are trying to reduce the size of the testing queue
by reducing the number of state-holding elements observed. It seems that possible
global optimizations, at the program level or otherwise, are rare, but some ad hoc or
local optimizations are possible.

-17-

4.4 Sizing the Transistors of Asynchronous Circuits

Steve Burns, Alain Martin

We have developed a method of optimally sizing the transistors contained in the
asynchronous circuits that we construct by systematic transformation from concurrent
programs. These transistors are sized optimally if the sizes minimize the time needed
to operate the circuit, minimize the energy required to operate the circuit, or minimize
some other metric of performance.

The concerns of performance optimization in asynchronous circuits are quite
different than those of synchronous (clocked) circuits. In the synchronous cases,
the main task is to determine and then speed up the slowest or critical path through
the combinational logic that connect the clocked latches. This is in order to maintain
correctness, since for correct operation, the combinational logic must complete before
the clock changes.

In the asynchronous circuits derived using our synthesis method, the circuits
work correctly regardless of delays in the primitive gates. For most applications (i.e.,
those without hard real-time deadlines), it is not necessary to optimize the worst
case (or even to know what it is). Rather, it is the average case that determines a
circuit’s performance. While an operation that requires twice the time but occurs
only once every one hundred operations is catastrophic to a synchronous design, it
only decreases the performance of our asynchronous circuits by one percent.

Much of the computation involved in the performance analysis of synchronous
circuits, in particular that of determining the critical paths induced by unusual data
patterns, can be avoided by using our asynchronous methodology. An average or
typical operation sequence is specified and a performance metric is determined based
on that sequence. Since our asynchronous circuits work correctly regardless of gate
delays, it turns out that the performance metric is a convex function of the transistor
sizes and thus each local minimum to the function is also a global minimum. The
techniques of convex non-linear programming can be used to find these optimal sizes.
A C program has been written to perform these calculations. Optimal transistor sizes
for a typical 40 transistor circuit can be obtained in under 10 seconds on a SUN 3/60.

4.5 Fast Self-Timed Mesh-Routing Chips
Chuck Seitz

A new version in the FMRC series of mesh-routing chips has been laid out, verified
by switch-level simulation, and sent to fabrication for the 1.2pm MOSIS SCMOS
run that is scheduled to close on 20 March 1990. Previous FMRC chips have been
fabricated in 1.6um SCMOS, and operate at 65MB/s, but exhibit some reliability
problems when the aggregate throughput of the chip’s 5 output channels exceeds
about 250MB/s. This reliability problem was traced by analysis and simulation to
collapse of the internal power supply under these demanding conditions; thus, it is
properly a failure of the packaging rather than of the chip design.

-18-

This 132-pin chip devotes the 20 lowest-inductance PGA-package pins to Vdd
and GND. It was not deemed to be practical for the immediate application (the
Intel Touchstone Delta prototype) to increase the pinout to allow additional Vdd and
GND pins; however, it was considered to be desirable to increase the speed to in
excess of 80MB/s. Intel is tooling a special package whose internal power and ground
planes reduce the inductance of the power distribution from the package by a factor
of approximately two. However, in designing new pad circuits and pad frame for the
FMRC, I decided to take all available measures that might improve the reliability of
these chips.

With the support and encouragement of Wes Hansford at MOSIS, we were able
to reduce the pad pitch from 6 mils to 5 mils, with a 90um square pad. The resistance
of the pad-power ring was reduced in comparison with our standard 1.6um pads by
a factor of nearly four by a combination of increased width and use of both metal
layers where possible. The peak pad-drive current was reduced to about 0.75 of its
value for the 1.6um pad drivers, and the p/n ratio was reduced from 5/3 (which
produces symmetrical transitions in the 1.6pm process) to 4/3 to compensate for
the transistors being farther into velocity saturation. Additional speed in the core
of the router will more than make up for the slightly slower pads. These measures
reduce the total current and ohmic drops; they also decrease di/dt effects of the
package-pin inductance. As additional measures to reduce the di/dt effects, nearly
all of the “white space” in this pad-limited design was used to add power-decoupling
capacitance, which is believed to be more than 500pF. The drive of the output pads
was also tuned to minimize di/dt. (A plot of the chip is shown on the following page.)

The design and layout of a successor to the FMRC is underway.

4.6 Adaptive Routing in Multicomputer Networks
Mike Pertel, Chuck Seitz

Previous theoretical studies of adaptive multipath routing are being continued, and an
adaptive router for the Mosaic is being designed. Under simulation, adaptive routers
have exhibited superior throughput, traffic diffusion, and fault tolerance, as compared
with oblivious routers. Further simulation is being used to refine and simplify the
routing discipline before committing to silicon.

4.7 High-Density Mosaic dRAM
Don Speck

Multicomputers have been tending toward more memory per node as they get faster,
and Mosaic is no exception. Having more never hurts, and it extends the application
range and ease of programming. Therefore, when the Mosaic C design began, design
of a dense dynamic memory began with it. The simulation and layout of a 32K x 16
dynamic RAM is now complete, and ready for first fabrication in the A = 0.6pm
MOSIS SCMOS process. This 64KB memory is half as much as in a Cosmic Cube

-19-

e g 8

AT

. P

: L3 S IO Y S W |

Rk Lo RT T (R
: RN

B et S PR

-
N
doge e
B

; ' . . : i P |t
..,lll)l..‘lll.tll-i!llIIIIIIIIIIAHWHU_H.E_IJI S S s 'l

: 1
o e

po o

IJ

4F-

RGN
QOIS L 0

PiTR R4

-t

4
i
-
i

iya i T4l
i
it G e

A

Jrartonimid ity
ot & et

Ll S U Db L

i

B fe JL DL K

it

FMRC2.2 mesh-routing chip

-20-

node, and is the largest power-of-2 size smaller than Mosaic C’s addressing limit. It
is also the largest area (13470\ x 11974)) that doesn’t need repeaters in all of the

wires, and is about 75% of the total chip area (which is how much was budgeted for
RAM).

The design of this dynamic RAM attempted to simultaneously optimize area,
energy, speed, and noise immunity. Small area is the primary reason for choosing
a one-transistor-per-bit style instead of something easier to analyze (otherwise why
bother?), and it also helps shorten the long wires that contribute to delay and power
consumption. Power dissipation is at a premium in large ensembles of closely-packed
nodes, and the only way to significantly reduce total chip power is to reduce the
power supply voltage to 4V or even 3.3V; for wafer-scale packaging, 2.5V would
be required. In addition, a safety factor of plus or minus 20% is needed to allow
for process variations. Over such a wide operating range, it is not possible to
meet a fixed speed and noise immunity specification regardless of voltage, nor is
it necessary. The RAM only has to keep up with the processor, whose speed varies
with voltage, and the noise immunity has to exceed noise generation, which also varies
with voltage (quadratically in the case of resistive drops, less than linearly for the
backgate component of threshold variation).

To accommodate the processor on the same chip and have access to the smallest
feature size of the day, the RAM uses a standard MOSIS logic process and is designed
to satisfy all of the Magic DRC rules for the most restrictive process, in either nwell
or pwell. (The latter disallows boosted signals). The best bit storage capacitor in
that process is an enhancement-mode MOS capacitor, which has low charge-storage
density and cannot store the full power supply voltage range. These are the same
limitations that the early commercial dRAM designers faced, so the support circuits
that worked well then also turn out to be good choices for this RAM.

Making the cell capacitor large to compensate for low charge-storage density is
subject to diminishing returns. The bitline length and capacitance grow with the cell
capacitor. Larger depletion regions collect more minority carriers from alpha-particle
strikes. Larger MOS capacitors are slower and cannot be charged as fully in the
time available; even with a modest capacitor size, writing has to start very early to
approach full charge. Beyond some point, the area is better used elsewhere, such as
for more sense amps, and this point is about 64\2. This is just big enough for a half-
sized dummy cell to be feasible. A full-sized dummy cell would need a half-charge
reference voltage, which is not Vyy/2 due to the MOS capacitor threshold. At the
lowest operating voltage, the capacitor cannot even store V,,/2.

The small bitcell has room for only one bitline through it, and, without a second
poly layer, this mandates an open bitline arrangement. Open bitlines require more
careful matching of noises on opposite sides of the sense amp than do folded bitlines.
There is no place to put transistors to short together bitline pairs; instead, oversized
prechargers short all bitlines to an equilibration line, which then connects to Vdd only
at its center tap, to equalize power glitches. The substrate has similar equilibration

-21-

wires center-tapped to ground spaced 16 bitlines apart, taking up about 5% of the
RAM area.

These noises can’t be perfectly matched, so it is advisable to make the readout
voltage large in comparison, in this case by keeping the bitlines short — only 32
bitcells — resulting in a 6:1 bitline-to-cell capacitance ratio. The sense amplifiers
have to be small and simple to avoid dominating the total area, but a simple cross-
coupled pair suffices when the signal voltage is large and bitline capacitance is low.
Low bitline capacitance also makes full-V,; precharge affordable, which is needed
anyway because at the lower supply voltages (eg, 2V), Viq/2 precharge wouldn’t be
enough to turn on the sense-amp transistors. The column-select transistors double as
cascodes that isolate the bitlines from the I/O line capacitance until the bitlines fall
a threshold below V. Area-consuming level-restore circuits are not needed on the
sense amps, because the storage capacitor cannot store full voltage levels, but one is

used on the I/O lines in case the bitlines fall far enough for the cascodes to slowly
leak.

There are 8192 sense amps but only 16 bits need be read or written at
once. There is neither need nor room for a read/write amplifier per sense amp.
Fortunately, the bitline pitch is larger than minimum metal spacing, leaving enough
room to intersperse column select lines from a shared column decoder, controlling
the multiplexing of 64 sense amplifiers onto 2 read/write amplifiers via I/O lines
perpendicular to the bitlines. Space has to be made periodically for read/write
amplifiers to keep the I/O line capacitance low enough to be driven quickly by the
sense amplifiers, providing a good place to insert row decoders that keep the wordlines
short enough to run in poly without metal strapping. Strapping the wordlines would
have increased bitline capacitance by 10%; the increase in bitcell area needed to
counteract this would have been more than the row decoder area.

The short bitlines and wordlines divide the RAM into 8 by 8 banks. To keep each
data bus wire under 12000\, only 2 bits connect to each bank, so 8 banks must power
up on each cycle. About half of the power consumed goes into address distribution,
decoding, and clocks. If prechargers in unselected banks were turned on and off
every cycle, that would add 25% to the power consumption (all from the clocks);
instead, the first three address bits control them. Precharge turn-on needs to wait
anyway until the wordlines finish falling; hence, it is controlled by a delay line. This

obviates any need for a second clock phase, saving clock wiring and its attendant
power dissipation.

The sense amplifiers are on a 10.5\ pitch; this demands that they be connected
common-source to a current generator. The amount of current a sense amp receives
depends both on its own bitline voltages and on the bitline voltages of other sense
amps. Initial current is set low, so that sense amps receiving the most current get no
more than is safe, although this means that some sense amps receive none at first. As
the sense amps with an early start develop signal, current is ramped up until all sense
amps are conducting. Further current increases are delayed until the late starters

-9292.

catch up, then a larger current ramps up. The sense timing generator ramps up
voltages on transistor gates via current mirrors, and fits underneath the row decoder
address wires along with a delay line to simulate the wordline delay.

AREA BREAKDQWN:
bitcells 61Y

sense amps, prechargers, dummy cells 15Y%
power/ground wires 11Y%
row decoders 8

-23.

California Institute of Technology
Computer Science Department, 256-80
Pasadena CA 91125

Technical Reports
16 March 1990
Prices include postage and help to defray our printing and maziling costs.

Publication Order Form
To order reports fill out the last page of this publication form. Prepayment is required for all materials. Purchase orders
will not be accepted. All foreign orders must be paid by international money order or by check for a minimum of $50.00
drawn on a U.S. bank in U.S. currency, payable to CALTECH.

CS-TR-90-03 $3.00 Program Composition Project
Chandy, K Mani with Stephen Taylor, Carl Kesselman and Ian Foster

CS-TR-90-02 $2.00 Limitations to Delay-Insensitivity in Asynchronous Circuits
Martin, Alain J

CS-TR-90-01 $3.00 Properties of the V-C Dimension, MS Thesis
Fyfe, Andrew

CS-TR-89-12 $3.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

CS-TR-89-11 $9.00 Reactive-Process Programming and Distributed Discrete-Event Simulation, PhD Thesis
Su, Wen-King

CS-TR-89-10 $7.00 Silicon Models of Early Audition, PhD Thesis
Lazarro, John

CS-TR-89-09 $15.00 Framework for Adaptive Routing in Multicomputer Networks, PhD Thesis

Ngai, John

CS-TR-89-07 $6.00 Constraint Methods for Neural Networks and Computer Graphics, PhD Thesis
Platt, John

CS-TR-89-06 $1.00 First Asynchronous Microprocessor: The Test Results

Martin, Alain J, Steven M Burns, T K Lee, Drazen Borkovic, and Pieter J Hazewindus
CS-TR-89-05 $2.00 Essence of Distributed Snapshots

Chandy, K Mani
CS-TR-89-04 $5.00 Submicron Systems Architecture Project

ARPA Semiannual Technical Report

CS-TR-89-03 $3.00 Feature-oriented Image Enhancement with Shock Filters, |
Rudin, Leonid I with Stanley Osher

CS-TR-89-02 $3.00 Design of an Asynchronous Microprocessor
Martin, Alain J
CS-TR-89-01 $4.00 Programming in VLS| From Communicating Processes to Delay-insensitive Circuits

Martin, Alain J
CS-TR-88-22 $2.00 Variants of the Chandy-Misra-Bryant Distributed Discrete-Event Simulation Algorithm
Su, Wen-King and Charles L Seitz
CS-TR-88-21 $3.00 Winner-Take-All Networks of O(N) Complexity
Lazzaro, John, with S Ryckebusch, M A Mahowald and C A Mead
CS-TR-88-20 $7.00 Neural Network Design and the Complexity of Learning
Judd, J Stephen

CS-TR-88-19 $5.00 Controlling Rigid Bodies with Dynamic Constraints
Barzel, Ronen

CS-TR-88-18 $3.00 Submicron Systems Architecture Project
ARPA Semiannual Technical Report

CS-TR-88-17 $3.00 Constrained Differential Optimization for Neural Networks
Platt, John C and Alan H Barr

Caltech Computer Science Technical Reports

CS-TR-88-16 $3.00 Programming Parallel Computers
Chandy, K Mani

CS-TR-88-15 $13.00 Applications of Surface Networks to Sampling Problems in Computer Graphics, PhD Thesis
Von Herzen, Brian

CS-TR-88-14 $2.00 Syntax-directed Translation of Concurrent Programs into Self-timed Circuits
Burns, Steven M and Alain J Martin

CS-TR-88-13 $2.00 Message-Passing Mode! for Highly Concurrent Computation
Martin, Alain J

CS-TR-88-12 $4.00 Comparison of Strict and Non-strict Semantics for Lists, MS Thesis

Burch, Jerry R

CS-TR-88-11 $5.00 Study of Fine-Grain Programming Using Cantor, MS Thesis
Boden, Nanette J

CS-TR-88-10 $3.00 Reactive Kernel, MS Thesis

Seizovic, Jacov

CS-TR-88-07 $3.00 Hexagonal Resistive Network and the Circular Approximation
Feinstein, David I
CS-TR-88-06 $3.00 Theorems on Computations of Distributed Systems

Chandy, K Mani

CS-TR-88-05 $3.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

CS-TR-88-04 $3.00 Cochlear Hydrodynamics Demystified
Lyon, Richard F and Carver A Mead

CS-TR-88-03 $4.00 PS: Polygon Streams: A Distributed Architecture for Incremental Computation Applied to Graphics,
MS Thesis
Gupta, Rajiv
CS-TR-88-02 $4.00 Automated Compilation of Concurrent Programs into Self-timed Circuits, MS Thesis
Burns, Stephen M
CS-TR-88-01 $3.00 C Programmer's Abbreviated Guide to Multicomputer Programming
Seitz, Charles, Jakov Seizovic and Wen-King Su
5258:TR:88 $3.00 Submicron Systems Architecture
ARPA Semiannual Technical Report
5256:TR:87 $2.00 Synthesis Method for Self-timed VLS| Circuits

Martin, Alain. (current supply only: see Proc. ICCD’87: 1987 IEEE Int’l. Conf. on Computer
Design 224-229, Oct’87)

5253:TR:88 $2.00 Synthesis of Self-Timed Circuits by Program Transformation
Burns, Steven M and Alain J Martin

5251:TR:87 $2.00 Conditional Knowledge as a Basis for Distributed Simulation
Chandy, K Mani and Jay Misra

5250:TR:87 $10.00 Images, Numerical Analysis of Singularities and Shock Filters, PhD Thesis
Rudin, Leonid Iakov

5249:TR:87 $6.00 Logic from Programming Language Semantics, PhD Thesis
Choo, Young-il

5247:TR:87 $6.00 VLSI Concurrent Computation for Music Synthesis, PhD Thesis
Wawrzynek, John

5246:TR:87 $3.00 Framework for Adaptive Routing
Ngai, John Y and Charles L Seitz

5244:TR:87 $3.00 Multicomputers
Athas, William C and Charles L Seitz

5243:TR:87 $5.00 Resource-Bounded Category and Measure in Exponential Complexity Classes, PhD Thesis
Lutz, Jack H

Caltech Computer Science Technical Reports

5242:TR:87 $8.00 Fine Grain Concurrent Computations, PhD Thesis
Athas, William C

5241: TR:87 $3.00 VLSI Mesh Routing Systems, MS Thesis
Flaig, Charles M

5240:TR:87 $2.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

5239:TR:87 $3.00 Trace Theory and Systolic Computations
Rem, Martin

5238:TR:87 $7.00 Incorporating Time in the New World of Computing System, MS Thesis
Poh, Hean Lee

5236:TR:86 $4.00 Approach to Concurrent Semantics Using Complete Traces, MS Thesis
Van Horn, Kevin S

5235:TR:86 $4.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

5234:TR:86 $3.00 High Performance Implementation of Prolog
Newton, Michael O

5233:TR:86 $3.00 Some Results on Kolmogorov-Chaitin Complexity, MS Thesis
Schweizer, David Lawrence

5232:TR:86 $4.00 Cantor User Report
Athas, W C and C L Seitz

5230:TR:86 $24.00 Monte Carlo Methods for 2-D Compaction, PhD Thesis
Mosteller, R C

5229:TR:86 $4.00 analOG - A Functional Simulator for VLS! Neural Systems, MS Thesis
Lazzaro, John

5228:TR:86 $3.00 On Performance of k-ary n-cube Interconection Networks
Dally, Wm J

5227:TR:86 $18.00 Parallel Execution Model for Logic Programming, PhD Thesis
Li, Pey-yun Peggy

5223:TR:86 $15.00 Integrated Optical Motion Detection, PhD Thesis
Tanner, John E

5221:TR:86 $3.00 Sync Model: A Parallel Execution Method for Logic Programming

Li, Pey-yun Peggy and Alain J Martin. (current supply only: see Proc SLP’86 8rd IEEE Symp
on Logic Programming Sept ’86)

5220:TR:86 $4.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

5215:TR:86 $2.00 How to Get a Large Natural Language System into a Personal Computer
Thompson, Bozena H and Frederick B Thompson

5214:TR:86 $2.00 ASK is Transportable in Half a Dozen Ways
Thompson, Bozena H and Frederick B Thompson

5212:TR:86 $2.00 On Seitz' Arbiter
Martin, Alain J

5210:TR:86 $2.00 Compiling Communicating Processes into Delay-Insensitive VLSI Circuits
Martin, Alain. (current supply only: see Distributed Computing v 1 no 4 (1986))

5207:TR:86 $2.00 Complete and Infinite Traces: A Descriptive Model of Computing Agents
van Horn, Kevin

5205:TR:85 $2.00 Two Theorems on Time Bounded Kolmogrov-Chaitin Complexity
Schweizer, David and Yaser Abu-Mostafa

5204:TR:85 $3.00 An Inverse Limit Construction of a Domain of Infinite Lists

Choo, Young-Il

5202:TR:85

5200:TR:85

5198:TR:85

5197:TR:85

5195:TR:85

5194:TR:85

5193:TR:85

5190:TR:85

5189:TR:85

5185:TR:85

5184:TR:85

5179:TR:85

5178:TR:85

5174:TR:85

5172:TR:85

5168:TR:84

5165:TR:84

5164:TR:84

5160:TR:84

5158:TR:84

5157:TR:84

5147:TR:84

5143:TR:84

5140:TR:84

5139:TR:84

$15.00

$18.00

$8.00

$7.00

$3.00

$5.00

$2.00

$3.00

$10.00

$11.00

$7.00

$3.00

$9.00

$7.00

$6.00

$3.00

$4.00

$13.00

$7.00

$6.00

$15.00

$4.00

$5.00

$5.00

$4.00

Caltech Computer Science Technical Reports

Submicron Systems Architecture

ARPA Semiannual Technical Report

ANIMAC: A Multiprocessor Architecture for Real-Time Computer Animation, PhD Thesis
Whelan, Dan

Neural Networks, Pattern Recognition and Fingerprint Hallucination, PhD Thesis
Mjolsness, Eric

Sequential Threshold Circuits, MS thesis

Platt, John

New Generalization of Dekker’s Algorithm for Mutual Exclusion

Martin, Alain J. (current supply only: see Information Processing Letters 28 £95-297 1986)
Sneptree - A Versatile Interconnection Network

Li, Pey-yun Peggy and Alain J Martin

Delay-insensitive Fair Arbiter

Martin, Alain J

Concurrency Algebra and Petri Nets

Choo, Young-il

Hierarchical Composition of VLSI Circuits, PhD Thesis

Whitney, Telle

Combining Computation with Geometry, PhD Thesis

Lien, Sheue-Ling

Placement of Communicating Processes on Multiprocessor Networks, MS Thesis
Steele, Craig

Sampling Deformed, Intersecting Surfaces with Quadtrees, MS Thesis
Von Herzen, Brian P

Submicron Systems Architecture

ARPA Semiannual Technical Report

Balanced Cube: A Concurrent Data Structure

Dally, William J and Charles L Seitz

Combined Logical and Functional Programming Language
Newton, Michael

Object Oriented Architecture

Dally, Bill and Jim Kajiya

Customizing One's Own Interface Using English as Primary Language
Thompson, B H and Frederick B Thompson

ASK French - A French Natural Language Syntax, MS Thesis
Sanouillet, Remy

Submicron Systems Architecture

ARPA Semiannual Technical Report

VLSI Architecture for Sound Synthesis

Wawrzynek, John and Carver Mead

Bit-Serial Reed-Solomon Decoders in VLS, PhD Thesis
Whiting, Douglas

Networks of Machines for Distributed Recursive Computations
Martin, Alain and Jan van de Snepscheut

General Interconnect Problem, MS Thesis

Ngai, John

Hierarchy of Graph lsomorphism Testing, MS Thesis
Chen, Wen-Chi

HEX: A Hierarchical Circuit Extractor, MS Thesis
Oyang, Yen-Jen

Caltech Computer Science Technical Reports

5137:TR:84 $7.00 Dialogue Designing Dialogue System, PhD Thesis
Ho, Tai-Ping
5136:TR:84 $5.00 Heterogeneous Data Base Access, PhD Thesis
Papachristidis, Alex
5135:TR:84 $7.00 Toward Concurrent Arithmetic, MS Thesis
Chiang, Chao-Lin
5134:TR:84 $2.00 Using Logic Programming for Compiling APL, MS Thesis
Derby, Howard
5133:TR:84 $13.00 Hierarchical Timing Simulation Model for Digital Integrated Circuits and Systems, PhD Thesis
Lin, Tzu-mu
5132:TR:84 $10.00 Switch Level Fault Simulation of MOS Digital Circuits, MS Thesis
Schuster, Mike
5129:TR:84 $5.00 Design of the MOSAIC Processor, MS Thesis
Lutz, Chris
5128:TM:84 $3.00 Linguistic Analysis of Natural Language Communication with Computers
Thompson, Bozena H
5125:TR:84 $6.00 Supermesh, MS Thesis
Su, Wen-King
5123:TR:84 $14.00 Mossim Simulation Engine Architecture and Design
Dally, Bill
5122:TR:84 $8.00 Submicron Systems Architecture
ARPA Semiannual Technical Report
5114:TM:84 $3.00 ASK As Window to the World
Thompson, Bozena, and Fred Thompson
5112:TR:83 $22.00 Parallel Machines for Computer Graphics, PhD Thesis
Ulner, Michael
5106:TM:83 $1.00 Ray Tracing Parametric Patches
Kajiya, James T
5104:TR:83 $9.00 Graph Model and the Embedding of MOS Circuits, MS Thesis
Ng, Tak-Kwong
5094:TR:83 $2.00 Stochastic Estimation of Channel Routing Track Demand
Ngai, John
5092:TM:83 $2.00 Residue Arithmetic and VLSI
Chiang, Chao-Lin and Lennart Johnsson
5091:TR:83 $2.00 Race Detection in MOS Circuits by Ternary Simulation
Bryant, Randal E
5090:TR:83 $9.00 Space-Time Algorithms: Semantics and Methodology, PhD Thesis
Chen, Marina Chien-mei
5089:TR:83 $10.00 Signal Delay in General RC Networks with Application to Timing Simulation of Digital Integrated
Circuits
Lin, Tzu-Mu and Carver A Mead
5086:TR:83 $4.00 VLSI Combinator Reduction Engine, MS Thesis
Athas, William C Jr
5082:TR:83 $10.00 Hardware Support for Advanced Data Management Systems, PhD Thesis
Neches, Philip
5081:TR:83 $4.00 RTsim - A Register Transfer Simulator, MS Thesis
Lam, Jimmy
5074:TR:83 $10.00 Robust Sentence Analysis and Habitability

Trawick, David

5073:TR:83

5065:TR:82

5054:TM:82

5051:TM:82

5035:TR:82

5034:TR:82

5033:TR:82

5029:TM:82

5018:TM:82

5017:TM:82

5015:TR:82

5014:TR:82

5012:TM:82

5000:TR:82

4684:TR:82

4655:TR:81

4090-TR-80

3760:TR:80

3759:TR:80

3710:TR:80

3340:TR:79

2276:TM:78

$12.00

$3.00

$3.00

$2.00

$9.00

$12.00

$4.00

$4.00

$2.00

$2.00

$15.00

$15.00

$2.00

$6.00

$3.00

$20.00

$3.00

$10.00

$10.00

$10.00

$26.00

$12.00

Caltech Computer Science Technical Reports

Automated Performance Optimization of Custom Integrated Circuits, PhD Thesis
Trimberger, Steve

Switch Level Model and Simulator for MOS Digital Systems

Bryant, Randal E

Introducing ASK, A Simple Knowledgeable System Conf on App’l Natural Language Processing
Thompson, Bozena H and Frederick B Thompson

Knowledgeable Contexts for User Interaction Proc Nat'l Computer Conference
Thompson, Bozena, Frederick B Thompson, and Tai-Ping Ho

Type Inference in a Declarationiess, Object-Oriented Language, MS Thesis
Holstege, Eric

Hybrid Processing, PhD Thesis

Carroll, Chris

MOSSIM 1I: A Switch-Level Simulator for MOS LS| User's Manual

Schuster, Mike, Randal Bryant and Doug Whiting

POOH User’s Manual

Whitney, Telle

Filtering High Quality Text for Display on Raster Scan Devices

Kajiya, Jim and Mike Ullner

Ray Tracing Parametric Patches

Kajiya, Jim

VLSI Computational Structures Applied to Fingerprint Image Analysis
Megdal, Barry

Extension of Object-Oriented Languages to a Homogeneous, Concurrent Architecture, PhD Thesis
Lang, Charles R Jr

Switch-Level Modeling of MOS Digital Circuits

Bryant, Randal

Self-Timed Chip Set for Multiprocessor Communication, MS Thesis

Whiting, Douglas

Characterization of Deadlock Free Resource Contentions

Chen, Marina, Martin Rem, and Ronald Graham

Proc Second Caltech Conf on VLSI

Seitz, Charles, ed.

VLS| Based Real-Time Hidden Surface Elimination Display System, MS Thesis
Demetrescu, Stefan G

Tree Machine: A Highly Concurrent Computing Environment, PhD Thesis
Browning, Sally

Homogeneous Machine, PhD Thesis
Locanthi, Bart

Understanding Hierarchical Design, PhD Thesis
Rowson, James

Proc. Caltech Conference on VLSI (1979)
Seitz, Charles, ed

Language Processor and a Sample Language
Ayres, Ron

Please PRINT your name, address and amount enclosed below:

name

Caltech Computer Science Technical Reports

Address

City

State

Zip

Amount enclosed $

Country

Please check here if you wish to be included on our mailing list

Please check here for any change of address

Please check here if you would prefer to have future publications lists sent to your e-mail address.

E-mail address

Return this form to: Computer Science Library, 256-80, Caltech, Pasadena CA 91125

— CS-TR-90-03
_ CS-TR-90-02
- CS-TR-90-01
— CS8-TR-89-12
— CS8-TR-89-11
— CS-TR-89-10
— CS-TR-89-09
- CS-TR-89-07
_ CS-TR-89-06
— CS-TR-89-05
— CS-TR-89-04
_ CS-TR-89-03
— CS-TR-89-02
_ CS-TR-89-01
—CS-TR-88-22
— CS-TR-88-21
—_CS-TR-88-20
—CS8-TR-88-19
_ CS-TR-88-18
—C8-TR-88-17
__ CS8-TR-88-16
— C8-TR-88-15
— CS-TR-88-14
— CS-TR-88-13

__CS-TR-88-12
—.CS-TR-88-11
— CS-TR-88-10
—_CS-TR-88-07
— CS-TR-88-06
— CS-TR-88-05
____CS-TR-88-04
— CS-TR-88-03
___CS-TR-88-02
— CS-TR-88-01
___5258:TR:88
—5256:TR:87
—5253:TR:88
—_5251:TR:87
— 5250:TR:87
_ 5249:TR:87
— 5247:TR:87
— 5246:TR:87
__ 5244:TR:87
—5243:TR:87
___ 5242:TR:87
—..5241:TR:87
—5240:TR:87
—5239:TR:87

— 5238:TR:87
_5236:TR:86
— 5235:TR:86
— 5234:TR:86
—5233:TR:86
— 5232:TR:86
—5230:TR:86
— 5229:TR:86
_.5228:TR:86
—5227:TR:86
—5223:TR:86
— 5221:TR:86
_5220:TR:86
_5215:TR:86
- 5214:TR:86
__5212:TR:86
—5210:TR:86
- 5207:TR:86
——5205:TR:85
— 5204:TR:85
—-.5202:TR:85
—-5200:TR:85
. 5198:TR:85
- 5197:TR:85

—.5195:TR:85
—5194:TR:85
—— 5193:TR:85
— 5190:TR:85
—5189:TR:85
—5185:TR:85
__ 5184:TR:85
_ _5179:TR:85
__5178:TR:85
—5174:TR:85
- 5172:TR:85
—5168:TR:84
_ 5165:TR:84
___ 5164:TR:84
. 5160:TR:84
—5158:TR:84
—5157:TR:84
—5147:TR:84
___ 5143:TR:84
—5140:TR:84
___ 5139:TR:84
—5137:TR:84
— 5136:TR:84
—.5135:TR:84

—5134:TR:84
__ 5133:TR:84
— 5132:TR:84
—5129:TR:84
— 5128:TM:84
—5125:TR:84
_ 5123:TR:84
—5122:TR:84
— 5114:TM:84
— 5112:TR:83
— 5106:TM:83
— 5104:TR:83
-—5094:TR:83
_ 5092:TM:83
— 5091:TR:83
___5090:TR:83
— 5089:TR:83
—5086:TR:83
— 5082:TR:83
—_5081:TR:83
___ 5074:TR:83
— 5073:TR:83
—5065:TR:82
— 5054:TM:82

— 5051:TM:82
___5035:TR:82
— 5034:TR:82
—.5033:TR:82
—5020:TM:82
——5018:TM:82
— 5017:TM:82
— _5015:TR:82
_ . 5014:TR:82
— 5012:TM:82
—— 5000:TR:82
— 4684:TR:82
_.—4655:TR:81
. 4090-TR-80
——3760:TR:80
—.3759:TR:80
— 3710:TR:80
—3340:TR:79
____2276:TM:78

