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This primer describes a notation for program composition. Program composi­
tion is putting programs together to get larger ones. PCN (Program Compo­
sition Notation) is a programming language that allows programmers to com­
pose programs so that composed programs execute efficiently on uniprocessors, 
distributed-memory multicomputers or shared-memory multiprocessors. 

The programs that are put together using PCN can be in PCN itself or 
in C or in Fortran. Later implementations of PCN will allow composition of 
programs in notations in addition to C and Fortran. 

PCN is implemented on a variety of sequential and concurrent architec­
tures including networks of UNIX-based workstations (Sun and NeXT), Sy­
mult 2010, Intel iPSC, BBN Butterfly, and Sequent Symmetry. 

Several programming examples are presented in the primer. The exam­
ples are presented with methods for reasoning about the correctness of PCN 
programs. 

*Supported by NSF under Cooperative Agreement CCR-8809615, and AFOSR and 
ONR under Grant N00014-89-J-3201. The government has certain rights in this material. 
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1 Overview 

PCN is based on UNITY [3], a theory and a notation for concurrent program­
ming, and on Strand[6]. Composition in PCN is motivated by, but is different 
from, composition in CSP [8] The motivation for PCN and a comparison of 
PCN with other notations is found in [4]. A programming environment and 
the run-time support system for PCN are described in [2] and [7], respectively. 

1.1 New Concepts 

PCN has a three concepts that are not in languages such as C or Fortran. 
Next, these concepts are discussed very briefly and informally. Readers may 
want to skim through sections describing familiar material so as to spend more 
time on the new concepts. 

1. Mutables and Definition Variables: PCN has two kinds of vari-
abIes: mutables and definition variables. Mutables are variables as in C. 
Definition variables are different from variables in C; values of definition 
variables can be algebraic formulae (such as y + z), the initial value of 
a definition variable is a special symbol indicating that it is undefined, 
and a definition variable is defined at most once. For most programmers, 
the concept of mutable variables is familiar and the concept of definition 
variables is new. 

2. Composition Operators: A program in PCN is a program heading 
(program name and arguments), a declaration of types of mutables and a 
block. A block is an elementary block or a composed block. An elemen­
tary block is an assignment statement (similar to assignments in C or 
Fortran), or a definition statement that defines definition variables, or a 
call to a program written in PCN, C, or Fortran. Later implementations 
will allow composition of programs in other languages. A composed block 
is a composition operator followed by a list of blocks or guarded-blocks 
(a block preceded by a boolean expression); the composition operator 
specifies how the blocks are to be put together. 

The only things programmers can do in peN are: 
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• put blocks together using composition operators, or 

• define elementary blocks. 

PCN has three composition operators: sequential composition, choice 
composition and parallel composition. 

Sequential composition of a list of blocks executes the blocks in sequence, 
just as in C or Fortran. Choice composition is an extension of if-then­
else and guarded commands. In a parallel composition of a list of blocks, 
all blocks in the list are executed in parallel, and the parallel composition 
completes execution when all its constituent blocks complete execution. 
For most programmers, sequential and choice composition are familiar 
concepts, while parallel composition is new. 

The central concept of PCN is that of composition -- putting blocks 
together - and once that is mastered all forms of composition are equally 
easy. 

3. Tuples: PCN has a data type called a tuple which is a sequence of 
items between braces '{' and'}'. Linear lists, circular iists, trees and 
other such linked structures are constructed using tuples. 

The concepts of mutables, definition variables and composition are different 
from concepts found in conventional notations, and therefore, readers should 
focus attention on these ideas. 

1.2 Highlighting Examples, Syntax and Operation 

Most of this primer consists of examples; a large number are found in the Sim­
ple Programming Examples section. There are times when readers will want 
to study examples carefully and there are other times when readers will want 
to skip examples. To help identify examples, an example is placed between 
lines as in: 
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Examples of tuples 

The empty tuple: n. 

Most examples are on odd-numbered pages, and are therefore on right-hand 
side pages with most text on left-hand side pages. 

For ease in indentification, syntax is placed between lines as in: 

tuple .. {-< term >-} I ... 

The operation of statements in PCN are described in terms of operations 
in familiar languages such as C. Operational descriptions of PCN statements 
are placed between lines as in: 

repeat skip until rhs is reducible; 
assign the reduced value of rhs to m. 
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2 Syntax 

In this document we use a stylized syntax to convey the central concepts; a 
complete formal BNF is given in Appendix A. All nonterminal symbols are 
in italics, and all terminal symbols are in plain type. The notation -< su >-, 

where su is a syntactic unit, represents a list of zero or more instances of the 
syntactic unit, with multiple instances separated by commas. The notation 
-< su >-(1) is a list of one or more instances of su separated by commas. The 
notation (su) denotes an optional syntactic unit suo 

Variable names, comparison operators, macros, and file inclusion are as in 
C. A comment begins with 1* and ends with * / as in C. Expressions in peN 
have the same syntax as arithmetic expressions in C, except that the only 
operators in PCN are %, +, -, * and /. 

A variable name is a sequence of characters where the first character is a 
letter, and a character is a letter or a digit. A letter is an upper case or lower 
case letter of the alphabet, or it is the symbol "_". An upper case letter is 
different from a lower case letter. 
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3 Data Types 

3.1 Conventional Data Types 

Conventional data types, such as in C, are also data types in PCN: 

1. char for character, 

2. int for integer, 

3. double for double-precision floating point number. 

PCN has one-dimentional arrays of these data types. Arrays in PCN 
and C are treated in the same way and are indexed from zero. 

Strings in PCN are treated in exactly the same way as in C. A string S 
is an array A of char, where the characters of S are A[i], in increasing order 
of i starting with i = 0 and ending with i = k, where k is the smallest index 
such that A[k + 1] is the null character \0. If A[D] is the null character, S is 
the empty string. A constant string can be denoted by placing the characters 
of the string between quotes; for example "peN" is a string consisting of the 
three characters: P, C and N. The empty string is " ". 

In this document, a number is an integer or a double-precision floating 
point value. We define a simple-value as a number or a character or an array 
of numbers or a string. 

Qualifiers for int in C (such as short, long, and unsigned) are not available 
in PCN, nor are single-precision floating point numbers and structures. 

3.2 Tuples and Lists 

A tuple is a pointer to a possibly empty sequence of terms, where a term is a 
simple-value, an expression, or a tuple. A tuple is represented in a program as 
a sequence of terms between braces - '{' and '}' - where terms are separated 
by commas. 

A list is a special case of tuple. A list is: 

1. The empty tuple, 0, or 
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Examples of tuples 

The empty tuple: D. 

A i-tuple: {{x}}, where the single element of the tuple is itself 
a I-tuple, {x}. 

A 2-tuple: {"msg", 3}. 

.,. M 

Examples of lists 

The empty list: D 

A single-element list: {d, D} IS a list containing a single 
element, d. 

A four-element list: {a,{b,{c,{d,{}}}}} is a list contain­
ing the sequence of 4 elements, a, b, c and d, in that order. 
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2. A 2-tuple, {a, b}, where the second element of the tuple, b, is a list. 

peN has a more succinct notation for lists: a list consisting of a sequence of 
zero or more elements can be represented by the sequence of elements between 
the enclosing brackets'[' and ']'. Also, for brevity, we can employ the notation, 
[L}, L2' ... ' Lk 1 z], to represent the tuple, {L 1 , {L2, { ... {Lk, z} ... }}}. 

For convenience, the notation h(xo, ... , Xk), where h is an identifier and 
Xo, ... ,Xk are tuple-elements, denotes the tuple {"h",xo, ... ,xd; this allows 
programs to be represented as data. 

Syntax of Tuples A tuple has the following syntax: 

tuple .. { -< term >-} 1 .. 
[-< term >-] 1 
[-< term >-(1) 'I' term] 1 

identifier( -< term >-) 

term .. simple-value 1 expression 1 tuple .. 
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Examples of list notation 

The empty list: The empty list is []; hence [ 1 = { }. 

A single-element list: [d] is a list containing a single ele­
ment, d; hence [d] = {d, {}}. 

A four-element list: [a, b, c, d] is a list containing the se­
quence of 4 elements, a, b, c and d, in that order; hence 
[a, b, c, d] = {a, {b, {c, {d, {}}}}}. 

Catenation of lists: A list, y, consisting of a sequence of 
values, u, v, w, followed by another list, z, is represented by: 
r" U' " II Zl. t L .,- :f· -" n ~ d1 ~nr1 y' - ru 'v'" I z1 +h~D lU, ,w J, llU"" 1 '" - lV, L-, j, a, u - L , ,W I J, uH'"- i 

Y = [u, v, w, b, c, d]. 

More examples of tuples 

g( x) and {" gil, x} denote the same tuple. 

j(x,y) and {"j",x,y} denote the same tuple. 
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The length Funcdon peN includes a funCtion lengih which has a single 
argument and returns: 

• the number of elements in the argument if its argument is a tuple or an 
array, and 

• 1 (one) if its argument is a single number or character. 

The argument of length must be a variable. Note the difference between 
the length function in PCN and the sizeo! function in C: in C the function 
returns the size of its argument in bytes, whereas in PCN the function returns 
the number of elements. 

Elements of a tuple are referenced in the same way as elements of an array 
in C: t[i] is element i of a tuple t, for 0 S; i < length(t). 
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Examples of length function 

Arrays of numbers: 
/* declare u to be an array of 10 doubles * / 
double u[10]; 
length(u) is 10. 

A single number: 
j* declare i to be an integer * / 
int i; 
length( i) is 1. 

A tuple: Let z be the tuple {x,y}; then length(z) is 2. 

A string: 
1* declare D to be an array of 10 chars * / 
char D[10]; 
length(D) is 10. 
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4 Variables 

4.1 Values of Variables 

At each point in a computation, a variable has precisely one value. The value 
of a variable is a term. The value of a variable in PCN can be an expression 
such as y + z. In C, execution of the assignment x = y + z causes the value of 
x to become the value of y plus the value of z, and thus the values of variables 
x, y and z in C are always numbers; the execution of the assignment in C does 
not make the value of x become the formula y + z. Indeed, in most notations, 
values of variables are numbers or characters, but not expressions. Variables 
in PCN can have expressions as values which allows for a degree of symbolic 
computation in addition to the usual numeric computation of C and Fortran. 

Notation for Value of a Variable In C, x = 2 denotes that x has value 
2. We need additional notation to denote the value of a variable in PCN 
as illustrated by the following example. In PCN, u = x + y + z does not 
necessarily imply that the value of u is the expression x + y + z, because it is 
possible that the value of u is the expression v + z, and the value of v is the 
expression x + y. To avoid this ambiguity, we denote the value of a variable x 
by value(x). Instead of writing, x = 2, to denote that x has value 2, we shall 
say that value(x) is 2. Thus, value is a function that maps from variables to 
terms. 

At any point in a computation, we can substitute the value of x for x. 
Therefore, if u has value v + z and v has value x + y at some point in a 
computation, then u = v + z and v = x + y and hence, u = (x + y) + z at that 
point. If u and v are undefined, we are not permitted to conclude anything 
about the relationship between u and v; in particular we cannot conclude that 
u = v. 

Classes of Variables A variable in PCN is either a mutable or a def­
inition variable. Informally, a mutable is similar to variables in C and a 
definition variable is a variable that is assigned at most once. 
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Examples of Values of Variables 

Possible values of a variable x are presented next. 

Simple-Value: value(x) is 2. 

Expression as Value: value(x) is y + z. 

Expression as Value: value(x) is u + v * (y + z). 

Tuple as Value: value(x) is {y}. 

Tuple as Value: value(x) is {2,"A",y,z}. 
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4.2 M utables 

The type of a mutable is declared in programs in which it is used, its initial 
value is an arbitrary value of its declared type, and its value can be changed 
arbitrarily often during a computation by execution of assignment statements 
that assign values to it. Type declarations are as in C. A mutable type is a C 
type (i.e., char, int, or double). 

4.3 Definition Variables 

A definition variable is different from variables used in C. A definition vari­
able is either undefined or defined; it can be defined at most once in a 
computation. A definition variable is defined to be a term by executing a def­
inition statement in which the definition variable appears on the left-hand 
side; definition statements are described later. 

The value of an undefined definition variable is undefined. The value of a 
defined definition variable is its definition. The value of a definition variable 
does not reference mutables. 

Definition variables are not declared. 

4.4 Review of Differences between Definition Variables 
and M utables 

Declaration Mutables are declared. Definition variables are not declared. 

Initial Value The initial value of a mutable is an arbitrary value of its 
declared type. The initial value of a definition variable is a special symbol 
indicating that it is undefined. 

Expressions as Values The value of a mutable cannot be an expression. 
The value of a definition variable can be an expression. 

Tuples as Values The elements of a tuple are initially definitions variables 
and can be defined using definition statements. The value of a definition 
variable can be a tuple; however, no element of a tuple can be a mutable. 
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Changes in Values The value of a mutable can be changed arbitrarily many 
times. The value of a definition variable can be changed at most once, from 
undefined to a defined value. Once a definition variable is defined, its value 
remains unchanged forever thereafter. 
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5 Programs 

A program consists of a heading followed by a declaration section followed by 
a block. The heading is the program name and a list of formal parameters, 
as in C. In PCN all parameters are passed by reference, unlike in in C where 
parameters can be passed by value. The syntax of a declaration section is 
identical to that in C. The scope of a variable is the program in which it 
appears: all variables that appear in a program are either formal parameters 
or local variables of the program. All mutables referenced in a program are 
declared in the declaration section of the program; definition variables are not 
declared. 

Local variables in PCN are local to the program in which they are de­
clared, whereas local variables in C can be declared to be local to blocks 
within programs. Also, C allows programs to access variables that are not 
formal parameters or local variables of the program, whereas PCN does not. 

The dimensions of a local array of a program can change from one call 
of the program to the next, unlike in C where some of the dimensions of a 
multidimensional local array must remain unchanged in all calls. 

The syntax of a block is: 

block 

elementary-block 

.. elementary-block I composed-block 

.. definition-statement I 
assignment-statement I 
program-call 

Composed blocks are discussed later; the next few sections discuss each of 
the forms of elementary blocks. 
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An Example of Formal Parameters and Local Variables 

p(sum, x) 
int sum, v; 
{? x?= [m I xs] -> 

{; v:= m, sum:= sum + v, p(sum,xs)} 
} 

The operators in this example are not important here; only the 
heading and the declarations are relevant. The first line is the 
heading for a program with name, p, and two formal parameters, 
sum and x. The second line declares sum and v to be integer. 
Therefore, sum and v are mutable. Since the types of x, xs 
and m are not declared, they are definition variables. Since xs, 
m and v are not formal parameters, they are local variables of 
program p. 
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6 Definition statements 

A definition statement has the following syntax: 

definition-statement .. definition-variable term 

The execution of the definition statement x = rhs completes, and at com­
pletion, value( x) is rhs' where rhs' is obtained by substituting value( v) for 
each mutable v in rhs. Mutables do not appear in rhs', and hence the value 
of a definition variable does not name mutables. 

The value of an expression in peN can be an array. For example if mutable 
m is declared to be an array of integers, then the value of the expression 'm' 
is an array. Hence, upon completion of the execution of the statement x = m, 
the value of x is an array. 

Arithmetic operators in peN are identical to those in e, and hence their 
operands are numbers, not arrays of numbers. So the expression 'm+l', where 
m is an array, is incorrect. 
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Examples of Definition Statements Without Mutables 

In these examples, z is a definition variable. 

number: Execution of the definition statement 
z = 3.0 

terminates with 
value(z) = 3.0. 

string: Execution of the definition statement, 
z = "abc" 

terminates with 
value(z) = "abc". 
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Examples of Definition Statements With Mutables 

In these examples, z and yare definition variables, and m is a 
mutable with value 2 at the point in the computation at which 
the definition statements are executed. 

expression: Execution of the definition statement 
z=y+m+5 

terminates with 
value(z) = y + 2 + 5. 

tuple: Execution of the definition statement 
z={y,{m},5} 

terminates with 
value(z) = {y, {2}, 5}. 

tuple: Execution of the definition statement 
z = [m,"b"] 

terminates with 
value{z) = [2,lIb"]. 
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Examples of Definition Statements With Arrays 

If A is a 2-element integer array with A[O] = 1, and A[1] = 2, 
then the definition statement, z = A terminates with z de­
fined as a 2-element integer array with value(z[O]) = 1, and 
value(z[1]) = 2. 
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7 Reducibility 

The meaning of an assignment is based on the concept of reducibility. For a 
term e, the reduced value of e is a simple-value or tuple x, where x = e. A 
term e is reducible at a point t in a computation if and only if a reduced value 
of e can be computed at i, i.e., 

1. e is a simple-value or a tuple, in which case the reduced value of e is e, 
or 

2. value( e) is f and f is reducible, in which case the reduced value of e is 
the reduced value of f, or 

3. e is an expression and all variables in e are reducible, in which case the 
reduced value of e is computed by substituting the reduced value of v 
for each variable v in e and evaluating. 

7.1 Properties of Reducibility 

Value Equals Reduced Value For all variables x, the value of x is equal 
to its reduced value. This is because the reduced value of x is obtained from 
the value of x by substitution and expression evaluation. 

Unique Reduced Values The reduced value of an element e at a point in 
a computation is unique. For example, if the reduced value of e is 2 at a point 
in a computation then the reduced value of e cannot also be 3 at that point. 

Mutables Are Reducible A mutable is reducible at all points in compu­
tation and the reduced value of a mutable is its value. 

Undefined Definition Variables Are Not Reducible An undefined def­
inition variable is not reducible because the value of an undefined definition 
variable is a special symbol indicating that it is undefined, and hence none of 
the rules of reducibility can be employed to compute a simple value or tuple 
for it. 
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Examples of Reducibility 

Example 1 
Let z be a definition variable, and let m be a mutable that is 
declared to be an integer. If at a point t in a computation, 
value(z) is 1 and value(m) is 2, then z + m is reducible and its 
reduced value is 3, at t. 
If m = 4 at a later point t', then the reduced value of z + m is 
5 at t'. 

Example 2 
If at a point t in a computation, y is undefined, then y is not 
reducible at t. If at t, the value of z is y + 1, then z is not 
reducible at t because y is not reducible at t. 

Example 3 
If at a point t in a computation, value(z) is y + 1, and value(y) 
is 0, then z is reducible and its reduced value is 1 at t. Further­
more, if z is a definition variable, the reduced value of z remains 
1 at all points after t. 
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Defined Definition Variables A defined definition variable mayor may 
not be reducible. For example, if value(x) = y + z, where x, y and z are 
definition variables, then x is not reducible if y or z is not reducible. If, 
however, y and z are reducible with reduced values (say) 1 and 2 respectively, 
then x is reducible and has reduced value 3. 

Once Reducible, Remains Reducible Once a term is reducible it re­
mains reducible forever thereafter. The reasons for this are as follows. Muta­
bles, simple-values and tuples are always reducible. Once a definition variable 
is reducible it remains reducible because its value remains unchanged. Once 
an expression (that can name mutables and definition variables or both) is 
reducible it remains reducible. 

Reduced Values of Definition Variables The reduced value of a defini­
tion variable remains unchanged. For example, if the reduced value of z is 2 
at some point in a computation, then the reduced value of z remains 2 forever 
thereafter. Likewise, the reduced value of an expression, that does not name 
mutables, :reulains unchanged. For example, if the reduced value of y + z is 3 
at some point in a computation (where y and z are definition variables), then 
the reduced value of y + z remains 3 thereafter. 

Reduced Values of Mutables The reduced value of a mutable can change; 
for instance mutable m can have value 2 at some point in a computation and 
value 3 at a later point. Likewise, the reduced value of an expression that 
names mutables can change. For example, the value of expression y + z + m 
can change, where m is a mutable, because m can change value. 
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More Examples of Reducibility 

Example 4 
If at a point t in a computation, value (y) = {I, z}, then y is 
reducible and its reduced value is {I, z} at t. Note that y is 
reducible even if z is not reducible. 

Example 5 
If at a point t in a computation, value(y) = A, where A is an 
integer array, then y is reducible, and its reduced value is A at 
t. 

Example 6 
If at a point t in a computation, value(y) = x+ 1, and value( x) = 
2*y-2, then both x and yare nonreducible at t. (Note that from 
the mathematics of simultaneous equations we can conclude x = 
o and y = 1, but according to our definitions x and yare not 
reducible. ) 
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8 Assignment Statements 

The syntax of an assignment statement is: 

assignment-statement:: mutable:= expression 

The execution of the assignment statement m := rhs where rhs is an ex­
pression and m is a mutable variable, declared to be one of the types in C, is 
as follows: 

repeat skip until rhs is reducible; 
assign the reduced value of rhs to m. 

A skip is an operation that does nothing, and it is sometimes referred 
to as a 'no-op.' Therefore, while rhs is not reducible, the program executes 
operations that do nothing - in other words, the program waits. When 
rhs becomes reducible, the reduced value of rhs (coerced to be the same 
type as m) is assigned to m, and the assignment completes. If rhs never 
becomes reducible the assignment does not complete, and execution of the 
assignment statement is an infinite number of skips. Note that if rhs does not 
reference definition variables, the assignment statement is executed without 
skips, because rhs is reducible; in this case the assignment is executed in the 
same way as assignments in C. 
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Simple Examples of Assignment 

Right-Hand Side Does Not Reference Definition 
Variables 

int m, i, j, u[lO], v[lO]; 
... , m := i + j, ... , u := v, ... 

The assignment m := i + j is executed in the same way as the 
assignment m = i + j in C: the sum of the values of the integers 
i and j is assigned to m. 
The assignment u : = v makes u become the array v. 

Right-Hand Side References Definition Variables 

int m; 
... ,m:= z, ... 

The assignment, m := z, where m is an integer mutable, and 
z is a definition variable, is executed as follows. While z is not 
reducible, skip. When z becomes reducible, assign its value (co­
erced to integer) to m. If z never becomes reducible, execution 
of the assignment does not complete. 
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9 Program Calls 

The syntax of a program call is: 

program-call :: program-name( -< term >-) I 
'definition-variable( -< term >-) 

A program call program-name( -< term >-) is the same as a function call in 
C, except that all parameter passing is by reference, and the program does not 
return a value (in the way that a function does). Later, we will describe two 
modifications to this syntax that allow programmers to specify processors on 
which called programs are to be spawned, and modules (files) that contain the 
source texts of the called programs; these do not change the essential meaning 
of program calls. 

9.1 Calling C programs from PCN 

PCN programs can call C programs. The actual parameters in a call to a 
C program can be definition variables or mutables. All parameter passing in 
PCN is by reference; hence, the arguments of the C program must be pointers 
to simple-values (i.e., char, int, or double). The execution of a C program call 
is as follows: 

repeat skip until all actual parameters are reducible; 
execute the C program. 

We do not specify the behavior of PCN programs that call C programs 
which continue execution for ever; therefore, programmers must ensure that 
C programs terminate. 
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Examples of Calls to Programs 

Consider the C program: 

q(v,w,x) 
int *v, *w, *x; 
{ *v = *v - *x; *w = *w -+- *x } 

The execution of the call q(a, b, z), where a and b are muta­
ble integer variables and z is a definition variable, is as follows: 
repeat skip until z is reducible; when z becomes reducible, ex­
ecute q( v, w, z') where z' is the reduced value of z. Note that 
even though z is a definition variable, and its value cannot be 
changed by the C program, z is passed by reference and not by 
value. That is why the type declaration of formal parameter, x, 
is 'int *x', and not 'int x'. Definition variable z must reduce to 
an integer value because the corresponding formal parameter x 
is a pointer to an integer. 

Consider the PCN program: 

p(w, x, y, z) 
{II y=w-+-x, z=w-x} 

A call p( a, b, c, d) of program p causes program p to be executed, 
even if actual parameters are not reducible. We will see later that 
the program completes, and at completion value(c) is a + band 
value( d) is a - b, regardless of whether a or b are reducible. 
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9.2 Calling Fortran Programs from PCN 

Fortran programs are called in the same way as C programs. Parameter passing 
in Fortran is by reference, as it is in PCN. 

9.3 Calling PCN Programs from PCN 

PCN programs can call PCN programs; the actual parameters of the call can 
be mutables or definition variables. The called program is initiated even if 
some or all of the actual parameters are not reducible. 

There is a difference between the execution of calls to C programs and PCN 
programs. A called C program is initiated only when all its actual parameters 
are reducible. A called PCN program is initiated without waiting for all its 
actual parameters to be reducible. (A strict semantic is used for C calls and 
a nonstrict semantic for PCN calls.) 

Types of actual parameters should be the same as types of corresponding 
formal parameters in calls to PCN programs. In particular, an actual param­
eter should be a definition variable if and only if the corresponding formal 
parameter is a definition variable. 

9.4 Program Names as Actual Parameters of Programs 

A program-name can be passed as an argument of a program. To distinguish 
a variable whose value is a program name from a program name, the symbol 
, is employed. For example y(x) is a call of program y, whereas 'y(x) is a call 
to a program g, where the reduced value of y is "g". 

Recall that I(xo, ... , Xk) represents the tuple {lilli, Xo, ... , xd. Similarly, 
'I(xo, . .. ,Xk) represents the tuple {I, Xo, ... ,Xk}. 

The program call 'y(x) where x is a list of actual parameters and y is a 
definition variable, is executed as follows: 

repeat skip until y is reducible; 
execute g( x) where "g" is the reduced value of y. 
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Example of a Program Name as A Parameter 

Next, consider a program map, which has a formal parameter 
operator defined as a string that is a name of a program. 

map( operator, 1st, result) 
int result; 
{? 1st ?= [head I tail] -> 

{; 'operator(head, result), 
map(operator, tail, result) 

} 
} 

Passing a Program Name as a Parameter 

Calling the preceding program with map("add", L, R), causes 
the following block to be executed: 

{? L?= [head I tain -> 
{; add(head, R), map("add", tail, R)} 

} 
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10 Composed Blocks 

A composed block has the following syntax. 

composed-block :: {j -< block )-(1) } I 
{II -< block )-(1) } I 
{? -< guard -> block )-(1) } 

where 'j' denotes sequential composition, 'II' denotes parallel composition, and 
I?' denotes choice composition. 

11 Sequential Composition 

Let d be the block {; bI, ... ,bk }, where k > o. The execution of d is a 
sequential execution of bi, in order, from i = 1 to i = k. 

12 Parallel Composition 

Let d be the block {II bI, ... , bk }, where k > 0, and for all i where 0 < i ~ k, 
bi is a block. In an execution of d, all blocks bi are executed in parallel. Block 
d terminates when the computations of bi terminate for all i. (A computation 
of d is a fair interleaving of computations of bi, for all i, 0 < i ~ k. Execution 
is fair in the following sense: For all i, it is always the case that eventually 
computation of bi will progress if bi has not terminated.) 

Programmers must ensure that the following condition about shared vari­
ables is satisfied. 

Restriction on Shared Variables in Parallel Composition Shared mu­
tables must not change value during parallel composition. 
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Example of Sequential Composition 

p(j, k, x, y) 
int j, k, m; 
/* Let the value of j be J. * / 
/* m is a local integer mutable of p * / 

{; 
m:= 2, 
/* value ( m) is 2 * / 

x = m + 1, 
/* The reduced value of x is 3. * / 

k := y + j 
/* value(k) is sum of the * / 
/* reduced values of y and j. * / 

} 

First m becomes 2, then x is defined as 2 + 1 (and hence its re­
duced value is 3), and then, after executing skips until y becomes 
reducible, x becomes the sum of the values of y and j. 
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This restriction is equivalent to: In a parallel composition block d defined 
as {II b1 , ••• ,bk }, 

for each variable v accessed in distinct blocks bi and bj : 

1. v remains unchanged during the execution of d, or 

2. v is a definition variable. 

For this purpose, each element of a shared array is treated as separate variable; 
therefore, blocks composed in parallel can modify a shared array, but each 
element of the array must remain unchanged or be accessed by at most one 
block. Similarly, each element of a tuple is treated as a separate element. 

An important consequence of this restriction is that blocks, composed in 
parallel, interact with each other in a disciplined manner. Consider a predicate 
z that references only variables that appear in one of the constituent blocks, 
say bi of parallel composition block d. For example, z could be u = v + 1, 
where u and v are variables referenced in block bi . Suppose we can reason from 
the text of block bi (i.e., by considering block bi in isolation, independent of 
the blocks that bi is composed with) that predicate z holds at some point p in 
bi • In our reasoning we are not permitted to conclude that definition variables 
are undefined if they are undefined in bi (because definition variables can be 
defined in blocks that are composed with bd. Then, no matter what blocks 
are composed in parallel with bi , we are assured that our reasoning is valid, 
and z holds at p. 

An equally important consequence of this restriction is that we do not have 
to be concerned about atomicity in parallel composition. 
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Example of Parallel Composition 

{II p(j, k, x, y), y = x + j} 

(Program p is defined in the previous example.) This parallel 
composition block obeys our convention about shared variables. 
The only shared mutable is j which is not modified in the block. 
Let the value of j be 1 when this block is executed. The compu­
tation of this block terminates, and at termination, the reduced 
value of x is 3, and y is 4, and k is 5. 
A possible computation of the parallel composition block is: y 

is defined as x + 1 (assuming j = 1), then, in program p: m 
becomes 2, then x becomes defined as 2+ 1, and finally k becomes 
5. Note that y can become defined before x becomes defined. 
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13 Choice Composition 

A choice composition block is similar to a guarded command [5]. A guard in a 
choice composition block is a boolean expression or the keyword default. At 
a point in a computation, a boolean expression is: 

1. not reducible, or 

2. reducible and has value true, or 

3. reducible and has value false. 

We shall see later that once a guard is reducible it remains reducible for ever 
thereafter. 

There can be at most one default guard in a choice composition block. A 
choice block without a default guard is equivalent to a choice block with the 
addition of the guarded block: default - > skip. therefore, we can restrict 
attention to choice blocks that contain precisely one default guard. 

The basic idea about execution of the choice block: 

is as follows: 

1. If all guards are false then execute bo; execution of the choice block 
terminates when execution of bo terminates. 

2. If at least one guard is true then execute any block bi where G; is true; 
execution of the choice block terminates when execution of bi terminates. 

3. Because guards can be nonreducible, there is a third possibility: at least 
one guard is nonreducible and no guard is true. In this case the program 
repeatedly executes skips until one of the first two conditions holds. 
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Examples of Choice Blocks 

Example 1 
Consider the choice-block: 

{? x >= 0 -> Y = x + 1, 
x <= 0 -> Y = x - 1 

} 

The execution of this block is as follows. While x is irreducible, 
skip. When x becomes reducible, if x > 0, then only the first 
guard holds, and hence y is defined as x + 1; if x < 0, then only 
the second g~ard holds, and hence y is defined as x -1; if x ::-:- 0, 
then both guards hold, and a nondeterministic choice is made 
to define y either as x + 1, or as x - 1. Execution of the block 
terminates after y is defined. 

Example 2 
Consider the choice-block: 

{? x >= 0 -> Y = x + 1 } 

The execution of this block is as follows. While x is irreducible, 
skip. When x becomes reducible: if x ~ 0 then y is defined as 
x + 1 else y is left unchanged; execution of the block terminates. 

37 



13.1 Guards 

A guard is either a sequence of one or more guard elements or default. The 
syntax of a guard is: 

guard .. -< guard-element ~(1) I default 

Case 1: If All Guard-Elements are Reducible If all the guard-elements 
of a guard G are reducible, then G is reducible, and the value of G is a 
'conditional-and' of its guard-elements: Each of the guard-elements in the 
sequence is evaluated in order until all guard-elements in the sequence are 
evaluated or a guard-element evaluates to false; if all guard-elements evaluate 
to true the value of the guard is true, otherwise the value of the guard is false. 
The evaluation of a guard is similar to the evaluation, in C, of an expression 
consisting of the sequence of guard-elements with the logical connective && 

between guard-elements. 

Case 2: At Least One of the Guard-Elements is Irreducible Next, 
consider the case where at least one of G's guard-elements is irreducible: If 
all guard-elements before the first nonreducible element of G evaluate to true, 
then G is not reducible; otherwise, G = false. 

13.2 Guard-Elements 

The syntax of a guard-element is: 

guard-element .. type-check I comparison I 
data-check I pattern-match 
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Another Example of a Choice Block 

Example 3 
Consider the choice-block: 

{? x >= 0 -> Y = x + 1, 
z >= 0 -> Y = z + 1 

} 

Repeat skips until both guards are reducible and both have re­
duced value false, or at least one of the guards is reducible and 
has reduced value true. In the former case the choice block ter­
minates without changing the value of any variable. In the latter 
case, if both guards have reduced value true then execute either 
y = x + 1 or y = z + 1, if only x ~ 0 has reduced value true then 
execute y = x + 1, and if only z ~ 0 has reduced value true then 
execute y = z + 1. 
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Type Checks The syntax for type-check is: 

type-check 
type-name 

.. type-name( def inition-variabl e) 

.. int I double I char I tuple 

If x is not reducible, type-check h( x) is not reducible. If x is reducible, 
type-check h(x) evaluates to: 

1. true if the reduced value of x is of type h or is an array of type h, 

2. false otherwise. 

For example, if x is reducible, then int(x) holds if and only ifthe reduced value 
of x is an integer or an array of integers. 

Comparison The syntax of a comparison is: 

compar'tson .. term equality-test term I 
expression ordering expression 

equality-test:: == I ! = 
ordering .. < I <= I > I >= 

A comparison x Q y, where Q is an ordering, is reducible if and only if 
both x and yare reducible; the reduced values of x and y must be numbers or 
arrays. Numbers and strings contained in character arrays are compared as in 
C; integer and double arrays are compared consecutively by element. 

A comparison x Q y, where Q is an equality-test, is reducible only if both 
x and yare reducible. An equality-test x == y, where the reduced values of 

40 



Example of Type Check and Comparison 

{? int(x), x >= y -> z = x + 1 } 

Consider the case where y is irreducible and x is reducible. If 
the reduced value of x is an integer, then the guard, is not re­
ducible because the first guard-element evaluates to true and the 
second guard-element is not reducible. If the reduced value of 
x is a character, then the guard evaluates to false, because the 
first guard-element evaluates to false. 

Next consider the same program except that the order of guard­
elements is reversed. 

{? x >= y, int(x) -> z = x + 1 } 

As before, consider the case where y is irreducible and x is re­
ducible. As in the last example, if the reduced value of x is 
an integer, then the guard, is not reducible because the first 
guard-element is not reducible. If the reduced value of x is 
a character then the guard is not reducible for the same rea­
son. Note that in the previous example, if x is a character 
the guard is reducible. This example shows that the ordering 
of guard-elements can make a difference to the computation. 
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x and yare tuples, is equivalent to the following sequence of equality-tests: 

length(x) == length(y), and for all i where 0 :::; i < length(x): x[i] == y[i]. 

Thus, equality tests of tuples are equivalent to sequences of equality-tests 
without tuples. A comparison x == y is reducible if x and y reduce to simple 
values. Equality of characters and numbers is as in C. 

Inequality is defined as the negation of equality. 

Data Check The syntax of a data-check is: 

data-check :: data(definition-variable) 

If x is reducible then data( x) = true. If x is not reducible, then data( x) is 
also not reducible. The value of data( x) is never false. 
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Testing Equality of Tuples 

{? x == y -> p(x)} 

In the equality test, x or y can be tuples (and therefore can be 
lists). If x = [0, l, 2], then the equality test succeeds only if y is 
equal to the same list. If y is [0, liz], where z is a nonreducible 
definition variable, then x == y is not reducible. 
As another example, consider the case where the reduced value 
of x is z and the reduced value of y is also z. The equality test is 
reducible if and only if z is reducible. Of course, if z is reducible, 
the equality test succeeds. 
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13.3 Pattern Matches 

A pattern-match is merely a syntactic convenience for operating on tuples. It­
has the following syntax: 

pattern-match :: variable ?= pattern 
pattern :: {-< pattern-element ~} 
pattern-element :: simple-value I definition-variable I pattern 

A pattern-match x ? = pat succeeds (i.e., has reduced value true) if the 
reduced value of x is a pattern of the same 'form' as the pattern, pat, on the 
right. For example, if pat is {u, v}, then the match succeeds if the reduced 
value of x is a tuple of size 2. If a match succeeds, a variable in the pattern 
become an alias for the corresponding element of the tuple for the remainder 
of the guard and its associated block. Thus the pattern-match x?= {u, v} 
succeeds if x is the 2-tuple {x[O], x[l]}, and if the match succeeds then u 
becomes an alias for x[O], and v becomes an alias for x[l] for the remainder 
of the guard and its associated block. Next, matches are discussed in more 
detail. 

Evaluation of a Pattern-Match A definition variable that appears in a 
pattern must be undefined when the pattern-match is evaluated. Mutables 
cannot appear in patterns. 

A pattern match, z?= pat can be transformed into a sequence of guard­
elements without the pattern match by the following syntactic transformation: 
Replace the pattern match by, 

tuple(z), (length(z) == length (pat)) 

and for each i, where 0 ~ i < length(z), if pat[i] is a 

pattern add the pattern-match, z[i]?= pat[i], 
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Simple Patterns 

In the following example, z, hd and tl are definition variables 
that are undefined at the point at which the pattern matches 
are executed. 

z 7= {hd, tl} - > {II hd = u, v = tl} 

is equivalent to: 

tuple(z), length(z) == 2 -> {II z[O] = u, v = z[l]} 

The match z 7= {hd, tl} succeeds if z is a tuple of the same 
form as {hd, tl}, i.e., if z is a 2-tuple. If the match succeeds, 
then hd is an alias for z[O], and tl is an alias for z[l] in the re­
mainder of the guard and its associated block. 
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simple-value add the equality-test, z[i] == pat[i], 

definition variable replace all instances of pat[i] by z[i] in the remainder of 
the guard and its associated block. 
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Patterns with Strings and Numbers 

z ? = { v, {y } , 2, II ms gil} - > {\I v = y} 

is equivalent to 

tuple(z), (length(z) == 4), 
(tuple(z[1]), (length(z[1]) == 1)), 
(z[2] == 2), (z[3] == "msg") -> 
{\I z[O] = z[1 HOn 

The match succeeds if the reduced value of z is the same form as 
the pattern, i.e., if z's reduced value is a 4-tuple where z[3] and 
z[4] are the integer 2 and the string "msg", respectively, and 
where the form of z[1] is the pattern {y}. If the match succeeds, 
v and z[O] are aliases of each other, and likewise, y and z[1HO] 
are aliases of each other. 

Patterns with Lists 

z?= [w I x] -> {;sum:= sum+w, p(sum,x)} 

is equivalent to 

tuple(z),length(z) == 2, -> 
{; sum:= sum + z[O], p(sum,z[1])} 
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14 Syntactic Sugar: Composition of Guarded 
Statements 

The syntax that we gave for composed blocks was: 

composed-block :: {; -< block ~(1) } I 
{II -< block ~(1) } I 
{? -< guard -> block ~(1) } 

Thus parallel and sequential composition compose blocks but not guard-> 
blocks. For notational convenience we relax this syntax to allow parallel and 
sequential composition of guard -> blocks. Each guard -> block is trans­
formed into the choice block {? guard -> block}. The sugared syntax is: 

composed-block :: {; -< unit ~(1) } I 
{II -<unit~(l) } I 
{? -< guard -> block ~(1) } 

unit :: block I guard -> block 

We may find it convenient to think of all composition blocks as consisting 
of a composition operator operating on a list of guard -> block, where some 
guards can be true. 
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Examples of Syntactic Sugar 

The following programs, the first with the added sugar, and the 
second without it, are equivalent: 

f(t,z) 
{? t ?= {left, val, right} 

} 

g(t, z) 
{? t ?= {left, val, right} 

} 

-> {II f(left, 1), f(right, r), 

} 

1 >= r -> z = 1 + I, 
r >= 1-> z = 1 + r 

-> {II g(left,I),g(right,r), 

} 
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The Variable Name' _' There are a few places where we would like to refer 
to a variable that we do not wish to use later. For instance, we may want a 
pattern with 3 elements, but we wish to use only the first of the 3 elements. 
Instead of coming up with names for the remaining two elements we can use 
'_' as a name for both elements. Each instance of '_' is treated as the name of 
a new unique variable. 

15 Built-In Programs and I/O 

make_tuple One of the built-in programs provided in PCN is make_tuple 
which has two arguments, n and x where x is a definition variable that is 
defined by makctuple and n is a variable unchanged by the program. The 
program defines x to be a tuple of n elements, where n is a nonnegative 
integer, where each element of x is a definition variable. (If n :::; 0 then x is 
defined to be the empty tuple.) The elements of tuple x are left undefined by 
make_tuple. For example, make_tuple(2, x) defines x to be a 2-tuple, leaving 
definition variables x[O] and xlI] undefined. 

The program call make_tuple(n,x) is executed as follows: 

repeat skip until n is reducible; 
coerce n to integer (if necessary); 
if(n ~ 0) define x to be a tuple with n elements 
else define x to be a tuple with 0 elements. 

I/O A standard I/O library is available in the system library stdio.pen. This 
library deals with formatted I/O as in C but also allows for manipulation of 
definition variables. 
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p(x,z) 
int n; 

An Example Using Variable Name C ) 

{? x?= [{"msg", m, _} I xs] -> 

} 

{; f(m,n), z = [n I zs], p(xs,zs)}, 
x?= [{"val",_,m} I xs]-> 

{; g(m,n), z = [n I zs], p(xs,zs)} 

This program has an input argument x and an output argument 
z. The input is a list of 3-element tuples, where the first element 
of each tuple is the string "msg" or the string "val". If the first 
element is the string "msg" then the second element of the tuple 
is used by the program to compute n by executing f(m, n), and 
then n is placed in list z. If the second element is the string II valli 
then the third element of the tuple is used by the program to 
compute n by executing g(m,n), and then n is placed in list z. 
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16 Architectures, Implementation and Effi-
• clency 

The speed of execution of a PCN program depends on its implementation. To 
understand how to develop programs that execute quickly, programmers need 
to understand something about the implementation of peN. The implemen­
tation may change in future releases, but the central ideas about efficiency are 
not likely to change significantly. 

Uniprocessors, Multiprocessors, and Multicomputers PCN programs 
run on uniprocessors, multiprocessors or multicomputers. A multiprocessor 
is a collection of two or more (uni)processors where all processors access a 
common address space. A multicomputer is a collection of computers where 
different computers in the collection have disjoint address spaces[10). A node 
of a multicomputer (i.e., one of the computers in the collection that forms the 
multicomputer) can be a uniprocessor, a multiprocessor or a multicomputer. 
One of the processors in a multiprocessor or a multicomputer is designated the 
host processor; this is the processor with which programmers interact. (The 
host processor in a uniprocessor is the uniprocessor itself.) A computer with n 
processors (in addition to the host) has its processors indexed 0 through n - 1, 
the host is indexed n. In systems where the host is itself one of the nodes then 
the host is numbered n - 1. 

Mutables, Definition Variables and Address Spaces A mutable resides 
in precisely one address space. The implementation does not make copies 
of mutables. By contrast, a definition variable can have several copies that 
reside in arbitrarily many address spaces. Since a definition variable is either 
undefined, or defined and unchanging, all copies of a definition variable are 
consistent in the following sense: if two copies of a definition variable differ in 
value then in one of the copies the definition variable is undefined. A program 
does not make use of undefined definition variables; it merely waits for the 
definition variable to become defined. Therefore, no problems are created 
if the value of a definition variable is defined in one copy and undefined in 
another. 
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Consider a block b in a program p. If b references mutables (declared in p) 
then b is executed in the address space in which p is initiated. This is because. 
there is only one copy of a mutable, and all blocks that access a mutable 
are executed in the address space in which the mutable resides. If b does 
not reference mutables then b can be executed in any address space; copies 
of definition variables are made in the address space in which b is executed, 
as needed by b. The greatest degree of concurrent execution is achieved by 
employing parallel composition in which the blocks composed in parallel do 
not share mutables; this allows blocks to be spawned on arbitrary address 
spaces and thus employs concurrency in multicomputers and multiprocessors. 

Granularity If the execution time of a block is small, the time required to 
spawn the block in a remote address space may exceed the time gained from 
concurrent execution of the block. Therefore, programmers should ensure 
that block granularity in parallel composition is appropriate for the target 
architecture. 
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1 7 Simple Programming Examples 

17.1 Membership in a List 

Develop a program member with arguments x, m and r, where x is a list, m 
and rare mutables, and at termination of execution of the program, r = true 
if and only if m appears in list x. Mutable m is to be left unchanged by 
member. Of course, definition variable x must be left unchanged by member. 

member(x,m,r) 
int m, r; 
{? x?= [] -> r:= false, 

} 

x?= [vlxs], v == m 
x?= [vlxs]' v! = m 

-> r:= true, 
-> member(xs, m, r) 

Assume that false = 0 and true = 1, to be consistent with C. 

Operation of the Program 

1. If x is the empty list, then r becomes false and the program terminates. 

2. If x is nonempty, let the head of x be v, and let the tail of x be xs; if 
v = m then r becomes true and the program terminates. 

3. If x is nonempty and the head of x is not m, then the value of r is set 
by member(xs,m,r), and member(x,m,r) terminates execution when 
member(xs, m, r) does. 

Reasoning About the Program In many examples we reason about the 
correctness (and the efficiency) of programs by induction. In this example, we 
carry out induction on the length of x. (The length of a list is the number of 
elements in it.) 

Base Case: If x is the empty list then r is false upon termination because 
m does not appear in an empty list. 
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Induction Step: Assume that member( x, m, r) is correct (i.e., it ter-
minates with the correct values of its arguments) for all lists x that have aL 
most k elements, for some k 2: 0, and prove that it is correct for lists with 
k + 1 elements. If x has k + 1 elements it has a head element. Let the head of x 
be v and let the tail of x be xs; then xs has k elements. If v = m then r must 
be true at termination of the program because m is in list x. If v =1= m, then 
at termination r is true if and only if m is in xs; by the induction assumption, 
member( xs, m, r) sets r to true if and only if m is in xs. 

A Program with Definition Variables Now consider a program with the 
same specification, except that m and r are definition variables, where m is left 
unchanged by the program, and r is defined by the program. All we need to 
do is to remove the declaration of m and r, and replace assignment statements 
by definition statements. 

memberl(x,m,r) 
{? x?= [l 

} 

x?= [vlxs], v == m 
x?= [vlxs]' v! = m 

-> r = false, 
-> r = true, 
-> member1(xs,m,r) 

17.2 Sum all Elements in a List 

Develop a program sum with arguments x and r, where x is a list of integers 
and r is a mutable integer. At termination of execution of the program, r is 
required to be the initial value of r plus the sum of the elements of x. List x 
is to be left unchanged. For example, if x = [1,2,3] and r = 4 initially, then 
r = 10 at termination of the program. 

sum(x, r) 
int r; 
{? x ?= [vlxs] 
} 

-> {; r := r + v, sum(xs, r)} 
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Operation of the Program In this program: 

1. If x is the empty list the program terminates leaving r unchanged. 

2. If x is non empty, let v be the head of x and let xs be the tail of x; 

mutable r becomes r + v, and then sum(xs, r) is executed. 

Reasoning About the Program Let ri be the initial value of r, and let rf 
be the value of r when program sum terminates execution. We reason about 
the program by inducting on the length of x. 

Base Case: If x is the empty list, the program terminates and r is left 
unmodified, and hence rf = ri, as required. 

Induction Step: Assume that program sum(x, r) is correct for all lists 
x with length at most k, for some k 2: 0, and prove that it is correct for lists x 
with length k + 1. If the length of x is k + 1 then x is nonempty; let v be the 
head of x and let xs be the tail of x. List xs has length k. From the induction 
assumption, sum(xs, r) is correct. Hence rf = ri + v+ sum of elements in xs, 
and hence rf is the sum of ri and the sum of all elements of x, as required by 
the specification. 

Another Summation Example Next we write a program total to define 
a definition variable z as the sum of all the elements of a list x. The difference 
between this program and the previous one is that z is definition variable 
whereas r is mutable, and furthermore z is to be the sum of the elements of x, 
whereas the sum of the elements of x was added to r in the previous program. 

total(x,z) 
int r; 
{; r:= 0, sum(x,r), z = r} 

An alternate version totall, using only definition variables and parallel 
composition, is given next. 
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totall(x, z) 
-> z = 0, {? x?= [] 

x?= [VIXS] -> {II z = ZS + v, totall(xs,zs)} 
} 

Operation of the Program The operation of this program is as follows. 

1. If x is the empty list then definition variable z is defined to be O. 

2. If x is nonempty, let v be the head of x and let xs be the tail of x. Define 
definition variable z to be the expression zs + v, where zs is defined by 
totall(xs,zs). 

Reasoning About the Program We are obliged to ensure that blocks in 
parallel composition do not modify shared mutables. This program has no 
mutables, and so the restriction about shared variables holds vacuously. 

We reason by induction on the length of x, as in the previous example. The 
reasoning is not given here because it is largely a repetition of the arguments 
given earlier. 

Difference Between Programs Let x be the list [1,2]. At the termination 
of total(x, z), definition variable z is defined to be the number 3. At the 
termination of totall(x, z), definition variable z is defined by the following 
equations: 
z = 1 + a, where a is defined by 
a = 2 + b, where b is defined by 
b = O. 
If we now execute m := z, where m is a mutable, and then print m, we will 
get the same answer whether we use total or totall because the reduced value 
of z is the same in both cases. 

At first glance, sequential programs such as total may appear more efficient 
in memory and time than parallel programs such as totall. Consider the 
following variation in which a parallel implementation can require less time 
than a sequential implementation. 
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17.3 Sum Function of Elements in a List 

Let x be a list. Define z as follows: z is the sum over all elements of the list· 
of a function 9 applied to each element. For example, if x is [1,2] and 9 is the 
square operation, then z = 5. 

A sequential program sigma, analogous to sum in the previous subsection, 
is given next. 

sigma(x, r) 
int r, w; 
{? x ?= [vlxs] -> {; f(v, w), r := r + w, sigma(xs, r)} 
} 

Program f( v, w) sets the value of w to be g( v). 

Program Operation The operation of this program is as follows. If x is 
empty the program terminates with r unchanged. If x is not empty, let v be 
the head of x, and let xs be the tail of x; first compute w, then increment r 
and then call sigma(xs, r) to sum the remainder of the list. 

Program tote, given next, is analogous to total of the previous subsection. 

tote(x,z) 
int r; 
{; r:= 0, sigma(x,r), z = r} 

A version using parallel composition is given next. 

totpar(x, z) 
int w; 
{? x?= [] 

x?= [vlxs] 

} 

-> z = 0, 
-> {II {; f(v,w), y = w}, 

} 

z = zs + y, 
totpar(xs, zs) 
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This program spawns programs f ( v, w), for each element v of list x, in 
parallel. Thus if f takes a long time to execute, and x is a large list, and there_ 
are a large number of processors, the parallel version will execute faster than 
the sequential version, because execution of f for different elements of the list 
will proceed in parallel. 

In program totpar we are obliged to ensure that no mutable shared variable 
in a parallel composition block is modified. There are no mutable shared vari­
ables in the parallel composition block, and hence the restriction is satisfied. 

Consider an erroneous program in which the parallel composition block of 
totpar is replaced: 

error _totpar(x, z) 
int W; 
{? x?= [] 

x?= [vlxs] 

} 

-> z = 0, 
-> {II f(v, w), 

z = zs + w, 
error _totpar(xs, zs) 

} 

In this program, w is a mutable shared by blocks f(v, w) and z = zs + w 
in a parallel composition block, and w is modified by f ( v, w); this violates 
the restriction on shared mutables in parallel composition. The reason for the 
restriction is that program error _totpar(x, z) does not specify what value of w 
is to be used in the definition z = zs + w: is it the value of w before, during or 
after the execution of f( v, w)? This problem does not arise in totpar because 
the shared definition variable y is used in place of shared mutable w, and y is 
defined as the correct value of w - the value of w after f( v, w) is executed -
by means of the sequential composition block {; f (v, w), y = w}. 

17.4 Reverse a List 

Develop a program rev with arguments x, e and b, where x and e are lists that 
are to be left unchanged by rev, and b is to be defined by rev to be the list 
of elements in x, in reverse order, concatenated with e. For example, if x = 
[" A ", II B"], and e = [" Gil ," D"], then b is to be defined as [" B", II A", II Gil ," D"]. 
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(The name b stands for the beginning of the reversed list, and e stands for the 
end of the reversed list.) 

rev(x, e, b) 
{? x ?= [] -> b = e, 

x ?= [v I xs] -> {II es = [v I e], rev(xs, es, b)} 
} 

Operation of the Program 

1. If x is the empty list, then b = e. 

2. If x is nonempty, let v be the head of x and let xs be the tail of x. Define 
b by rev(xs, es, b), where es is defined as v followed bye. For example, 
if x = ["A","B"], and e = ["G","D"], then v is "A", and xs is ["B"]. 
Hence, es is ["A", "G", "D"]. 

Reasoning About the Program We first ensure that mutable shared vari­
ables are not modified in parallel composition, and then reason about the pro­
gram by induction on the length of x. This reasoning is very similar to that 
given for the previous programs, and is left to the reader. 

17.5 Height Of A Binary Tree 

Develop a program ht with arguments t and z, where t is a binary tree, and 
Z is to be defined to be the height of the tree. A tree t is either the empty 
tuple, { }, or a 3-tuple {left, val, right}, where left and right are the left and 
right subtrees of t. Both t and z are definition variables, and t is to be left 
unchanged by the program. 

ht(t,z) 
{? t ?= {} 

t ?= {left, val, right} 
-> z = 0, 
-> {II ht(left, 1), ht(right, r), 
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{? I >= r -> z = 1 + I, 
r >= 1-> z = 1 + r 

} 



} 
} 

Operation of the Program 

1. If t is the empty tuple, in which case t is the empty tree, its height z is 
defined to be O. 

2. If t is not the empty tree, then t is a 3-tuple. Let t be the tuple 
{left, val, right}. Define definition variables I and r by ht(left, I) and 
ht(right, r), respectively. If 1 exceeds r then define z as the expression 
1 + 1. If r exceeds I then define z as the expression 1 + r. If r = I, then 
define z either as 1 + I or 1 + r. 

Reasoning About the Program We check that mutable shared variables 
are not modified in parallel composition. We reason about the program by 
induction on the height of tree t. 

Base Case: If t is the empty tree, then its height z is defined (correctly) 
as O. 

Induction Step: Assume that the program is correct for all trees t with 
height at most k for some k 2:: 0, and prove that the program is correct for all 
trees with height k + 1. If t is a tree with height k + 1, then t is a tuple of the 
form {left, val, right} where the heights of trees left and right are at most 
k. By the induction assumption, ht(left, l) and ht(right, r) correctly define I 
and r to be the heights of the left and right subtrees of t. Hence z is 1 more 
than the height of the higher subtree. 

17.6 Preorder Traversal of a Binary Tree 

Develop a program preorder with arguments t, band e, where t is a binary 
tree, band e are lists. Binary trees are represented using tuples as in the last 
example. Parameters t and e are to be left unchanged by the program. List 
b is to be the list consisting of the val of all nodes of the tree in preorder, 
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concatenated with list e. (A traversal of a tree in preorder visits the root, 
then the left subtree, and finally the right subtree.) 

preorder( t, b, e) 
{? t ?= {} -> b = e, 

t ?= {left, val, right} 

} 

-> {II b = [valli], 

} 

preorder(left, I, m), 
preorder(right, m, e) 

Operation of the Program 

1. If t is the empty tree then b is defined as e. 

2. If t is not empty, then it is a tuple of the form {left, val, right}. In 
parallel, define m by preorder(right, m, e), and I by preorder(left, I, m), 
and b as val followed by I. 

Reasoning About the Program First check that shared mutables are not 
modified in parallel composition. 

We prove correctness of the program by induction on the height of tree t. 

Base Case: 
nodes to traverse. 

If t is the empty tree, then b = e, because there are no 

Induction Step: Assume that preorder(t, b, e) is correct for trees of 
height at most k, k ~ 0, and show that it is also correct for trees of height 
k + 1. Let t be a tree of height k + 1. Then t = {left, val, right}, where 
left and right are trees of height at most k. Define a definition variable m by 
preorder(right, m, e). By the induction assumption, m is the preorder traver­
sal of the right subtree concatenated with e. Define a definition variable I by 
preorder(left,l,m). By the induction assumption, I is the preorder traversal 
of the left subtree concatenated with m. Define b as [val I I]; hence, b is val 
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followed by the preorder traversal of the left subtree of t followed by the pre­
order traversal of the right subtree of t, and hence b is the preorder traversal 
of t. 

17.7 Quicksort with Copying 

In this section we present C.A.R.Hoare's quicksort [9] program, qO, that uses 
lists (of definition variables); later, we discuss an in place quicksort, q1, that 
uses arrays. (The quicksort algorithm is discussed in most texts on algorithms 
such as [1].) 

In this section, when we refer to a list of numbers we mean a list of definition 
variables that (eventually) reduce to numbers. Program qO has two input 
variables, x and end, and one output variable, z: variables x and end are 
definition variables that are not defined by the program, and z is a definition 
variable that is defined by the program. All three variables are lists of numbers. 
The output z is specified to be the list x sorted in increasing order concatenated 
with list end. For example if end = [5,4] and x = [2,1], then z = [1,2,5,4]. If 
end is the empty list, then z is x sorted in increasing order. 

qO(x, end, z) 
{? x?= [] 

x ?= [mid I xs] 

} 

-> z = end, 
-> {II part(mid, xs, left, right), 

} 

qO(left, [mid I r], z), 
qO(right, end, r) 

Operation of the Program The operation of program qO is as follows. If 
x is the empty list then z is defined to be end. If x is nonempty, let mid be 
the first element of x, and let xs be the remaining elements of x, The call 
part(mid, xs, left, right) defines left to be the list of values of xs that are 
at most mid, and right to be the list of values of xs that exceed mid. Call 
qO(right, end, r), thus defining r to be the sorted list of right appended to end. 
Call qO( left, [mid I r], z), thus defining z to be the sorted list of left followed 
by mid followed by r. 
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Reasoning About the Program There are no shared mutables in the 
parallel composition, and hence the restrictions on parallel composition are 
satisfied. We reason about this program by induction on the length of x. The 
reasoning is straightforward and is left to the reader. 

Next, we discuss program part. Program part inspects each element of xs 
in turn, placing elements that are at most mid in left and all other elements 
in right. 

part( mid, xs, left, right) 
{7 xs 7= [] -> {II left = [], right = []}, 

} 

xs 7= [hd I tI], hd <= mid-> {II left = [hd lis], 
part(mid, tl, Is, right) 

}, 
xs 7= [hd I tI], hd> mid -> {II right = [hd Irs], 

part(mid, tl, left, rs) 
} 

Operation of the Program If xs is the empty list, define left and right 
to be empty lists. If xs is not empty, then let hd and tI be the head and tail (re­
spectively) of xs. If hd is at most mid, define Is and right by part(mid, tI, Is, right), 
and define left as hd followed by Is. If hd exceeds mid, define left and rs by 
part(mid, tl, left, rs), and define right as hd followed by rs. 

Reasoning About the Program We check that shared mutables are not 
modified in parallel composition, and reason about the program by induction 
on the length of xs. 

Base Case: If xs is the empty list, then left and right are correctly 
defined as empty lists. 

Induction Step: Assume that the program is correct for all mid, xs, 
where the length of xs is at most k, for some k 2: 0, and prove that the 
program is correct for all xs of length k + 1. If the length of xs is k + 1, then 
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xs is nonempty; let hd and tl be the head and tail (respectively) of xs. The 
length of ti is k. Next, consider the case where hd is at most mid. From the 
induction assumption, part(mid, ti, Is, right) defines Is and right to be the 
elements of ti that are at most mid, and that exceed mid, respectively. Since, 
xs is hd followed by ti, and hd ~ mid, it follows that the sequence of elements 
of xs that are at most mid is hd followed by the sequence of elements of ti that 
are at most mid, and the sequence of elements of xs that exceed mid is the 
sequence of elements of ti that exceed mid. Hence, in this case, the definitions 
of left and right are correct. A similar argument applies for the case where 
hd> mid. 

17.8 In Place Quicksort 

Program q1 Program q1 has two input parameters, I, and r, both of which 
are definition variables, and it has one input-output parameter C which is a 
one-dimensional array of numbers. Let Cinit be the initial value of C, and let 
cfina/ be the value of C on termination of the program. Then Cfina/ is to be a 
permutation of Cinit, where Cfina/[l, . •. ,r] is Cinit[l, .. . ,r] in increasing order, 
and the other elements of C are to remain unchanged. (If 1 2: r then cfina/ is 
cinit .) 

q1(l, r, C) 
int C[ ]; 
{? 1< r -> {; 

} 
} 

split(l, r, C, mid), 
{II q1(l, mid - 1, C), q1(mid + 1, r, Cn 

Execution of split(l, r, C, mid) permutes C and assigns a value to mid such 
that I ~ mid ~ r, and such that all elements in C[/, ... ,mid -1] are at most 
C[mid], and all elements in C[mid + 1, ... , r] exceed C[mid). 

Operation of the Program If I 2: r, then q1 takes no action, leaving C 
unchanged. If I < r, then split is called, and after split terminates execution, 
C[l, . .. ,mid - 1] and C[mid + 1, ... , r] are sorted in parallel. 
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Reasoning About the Program First check that shared mutables in par­
allel composition are not modified. Array C is shared by qI(l, mid -1, C) and 
qI(mid + 1, r, C), but no element of C is shared by both blocks. Hence the 
restriction on parallel composition is satisfied. 

We reason about the program by induction on r - 1. 

Base Case: If r - 1 ::; 0, then C is left unchanged, and this is correct 
according to our specifications. 

Induction Step: Assume that qI(l, r, C) is correct for all 1, r, and C 
for which r - 1 ::; k, for some k 2:: 0, and prove that the program is correct 
for r - 1 = k + 1. If r - 1 = k + 1 then 1 < r. In this case split is called, 
and execution of split(l, r, C, mid) permutes C and assigns a value to mid 
such that 1 ::; mid::; r, and such that all elements in C[I, .. . ,mid - 1] are 
at most C[mid], and all elements in C[mid + 1, ... ,r] exceed C[mid]. Hence, 
mid - 1 - 1 ::; k, and r - (mid + 1) ::; k. From the induction assumption, 
qI(l, mid - 1, C) and qI(mid + 1, r, C) are correct, and sort C[l, .. . , mid - 1] 
and C[mid + 1, ... ,r]. Therefore, C[l, .. . ,r] is sorted correctly. 

Program split 

split(l, r, C, mid) 
int C[] , left, right, temp; 
{? 1 <= r -> 

{; left:= 1 + 1, right := r, s = C[l], 
part1(l, r, C, s, left, right), temp := 1, 
swap(temp, right, C), mid = right 

} 
} 

Operation of the Program If 1 > r then split terminates execution with­
out taking any action. If 1 ::; r, then program split(l, r, C, mid) calls 
partI(l, r, C, s, left, right) after setting left = 1 + 1, right = rand s = C[l]; 
program part leaves s unchanged, modifies left and right, and permutes ele­
ments of C[1 + 1, ... , r] so that, at termination of partI, left = right + 1, 
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and all elements in C[l + 1, ... , right] are at most s, and all elements in 
C[right + 1, ... ,r] exceed s. 

After termination of part1, program swap is called to exchange C[l] (which 
is s) with C[right]. After the swap, all elements in C[l, ... ,right - 1] are at 
most s, and C[right] = s, and all elements in C[right + 1, ... , r] exceed s. The 
program terminates after mid is defined as right. 

Program part1 Program part1 moves left rightwards and moves right left­
wards until they cross (i.e., left = right + 1), so that the following invariant 
is maintained: 

invariant: 
1+1 < left:::; r + 1 and I:::; right:::; r, and 
all elements of C[l + 1, ... ,left - 1] are at most s, 
and all elements of C[right + 1, ... , r] exceed s. 

From the invariant it follows that left:::; right + 1. 

part1(l, r, C, s, left, right) 
int C[ ], left, right; 
{? left <= right -> {; 

} 
} 

{II lefLrightwards(r, C, s, left), 
righLleftwards(l + 1, C, s, right) 

}, 
left <= right -> {; swap(left, right, C), 

left := left + 1, 
right := right - 1 

}, 
part1(l, r, C, s, left, right) 

lefLrightwards(r, C, s, left) 
int C[], left; 
{? left <= r, C[left] <= s -> 
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{; left:= left + 1, lefLrightwards(r, C, s, left)} 
} 

righLleftwards(l, C, s, right) 
int C[], right; 
{? right >= I, C[right] > s -> 

{; right:= right - 1, righLleftwards(l, C, s, right)} 
} 

swap(i,j, C) 
int i, j, C[ ], temp; 
{; temp:= C[i], C[i] := C[j], C[j] := temp} 

Operation of the Program The invariant holds initially because left = 
1+1 and right = r. Programs left.:rightwards(r, C, s, left) and 
righLleftwards( 1+ 1, C, s, right) are executed in parallel. The only mutables 
that change value in these programs are left and right, and these mutables 
are not shared. Therefore, the restriction on parallel composition is satisfied. 

Program lefLrightwards(r, C, s, left) moves left rightwards from 1+ 1, 
i.e., it increases left, until left = r + 1 or C[left] > s, and it maintains the 
invariant. Likewise, righLleftwards(l + 1, C, s, right) moves right leftwards 
from r, i.e., it decreases right, until right = lor C[right] ~ s, and it maintains 
the invariant. If left = r + 1 or right = I then left> right, and the program 
terminates execution. Consider the case where C[right] ~ s < C[left], and 
left ~ right at termination of the parallel composition block. In this case, 
C[left] and C[right] are exchanged, and then left is incremented and right 
is decremented, maintaining the invariant. Then partl is calls itself. 

Reasoning About the Program We reason about the program by induc­
tion on right + 1 - left. 

Base Case: Consider the case where right + 1 - left = O. In this 
case the program terminates. If the invariant holds, the program terminates 
correctly. (The program may not terminate correctly if the invariant does not 
hold.) 
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Induction Step: Assume that the program is correct, for all parameters 
provided right+ I-left::; k, for some k 2: 0, provided the invariant holds when 
the program is initiated, and prove the program correct for right + 1 -left _ 
k + 1 provided the invariant holds when the program is initiated. 

If right + 1 - left = k + 1 then left ::; right. In this case the parallel 
composition of righLleftwards and lefLrightwards maintains the invariant 
and decreases right + 1 - left, or it leaves left and right unchanged. In the 
latter case, C[right] ::; s < C[left], and therefore, C[Ieft] and C[right] are 
exchanged, and then left is incremented and right is decremented, maintaining 
the invariant, and reducing right + 1 - left. Therefore, when partl is called 
recursively, the invariant is maintained, and right + 1 - left::; k. From the 
induction assumption, the recursive call to partl terminates execution with 
the correct values for C, left and right. 
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18 Instructions About Where to Execute Pro­
grams 

For purposes of efficiency, programmers may want to specify the processors 
on which programs are to be executed. For this purpose the annotation '@' 

is added as a suffix to the program call [6]. Specifying processors does not 
change the semantics of programs. 

The syntax of an annotated program call is: 

program-call :: program-call@location 
location :: variable I integer I relative-location 

A PCN program runs on a computer in which processors are numbered 0 ... n, 
where 0 is the host machine. A program p can be executed on a processor 
numbered i, for any integer i where 0 < i ::;; n by executing p@i or p@v, where 
v is a variable with reduced value i. 

PCN can execute on a network of processors where the topology of the 
network can take any form: It can be a local area network connecting work­
stations, or a hypercube, or a mesh, to name a few examples. Programmers 
find it convenient to develop their programs for a given topology, and to have 
their topology mapped to that of the machine on which their programs execute 
[6]. 

The processor in the virtual network at which a program is to be executed 
can be specified by appending ~relative-location to the program call. For ex­
ample, on a ring: 

relative-location can be fwd for forward, bwd for backward, or random; 

The relative-location specifies a processor in the virtual network by spec­
ifying its relationship (forward, backward, or random) with respect to the 
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processor executing the parallel composition block. For instance, execution of 
a parallel composition statement {II p(left)@bwd,p(right)@fwd} in a pro­
cessor q in a virtual ring would cause p(left) and p(right) to be executed on 
the processor following q and preceding q, respectively, on the virtual ring. 

The location at which a program p( ... ) is to be executed can be specified 
at run-time by executing the statement p( ... )@'x, where x is a definition vari­
able. Execution of p( ... )@'x, is as follows: 

repeat skip until x is reducible; 
execute p@loe where "loe" is the reduced value of x. 

For instance, if the reduced value of x is "fwd", then p( . .. )@'x is executed as 
p( .. ·)@fwd. 

If a program call is executed in an address space then the called program 
will not be executed in another address space if any argument of the called 
program is a mutable. 
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19 Compilation and Modules 

Collections of related PCN programs are written in files, for convenience. All 
PCN programs can be put in a single file, but it is usually more convenient 
to partition programs in some logical manner, and put each set of related 
programs in a separate file [6]. A file containing PCN programs is called a 
module, and the name of the file is also the module name. The syntax of a 
module is: 

module:: -exports( -< program-name >-(1») 
-foreign( -< library-name >-(1») 
-< program >-

where program-name is the name of one of the programs in the module, 
and library-name is the name of a library containing C object code, and all 
names are quoted. 

An example of a module is: 

-exports ("member" , II sum") 
-foreign("algebra.a", "diffeqns.o") 

.... definition of programs including member and sum ... 

If there is no export statement in a module then all programs are exported. 
A program p within a module m can be called by programs in other modules 
if and only if p is exported by m. A program in a module references a PCN 
program in another module by prefixing the name of the referenced program 
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with the name of the module in which the referenced program is located, 
followed by the symbol ':'. For instance, a program in a module B references 
a program p in another module D as D:p. A program references another 
program in the same module without the 'module-name:' prefix. 

PCN programs can also call C and Fortran programs. Consider a PCN 
program p that calls a C program f that appears in a library L. The module 
in which p appears must have library L declared as foreign, by including L in 
the -foreign( -< library-name >-) statement that appears in the module. 

A PCN source file can begin with macro definitions and file inclusion state­
ments as in C. 
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A Complete PCN Syntax 

Non-terminal symbols begin with an uppercase letter. Token classes such as 
an integer, identifier (ID), or string are signified in uppercase and are lexically 
identical to C. All other symbols are terminal. 

ModulePart :: Form I ModulePart Form 
Form :: Program I Directive 
Directive :: -exports Args I -capabilities Args I -foreign Args 

Program 
Heading 
Names 
NameList 

Declarations 
Declaration 
Mutables 
Mutable 
Dimension 

Implication 
Block 
Blocks 
Def 
Op 
Guard 
Tests 
Test 
Con 
Rhs 
Eq 
Ar 
Type 

:: Heading Declarations Implication 
:: ID Names 
:: () I ( NameList ) 
:: ID I NameList , ID 

:: empty I Declarations Declaration 
:: Type Mutables ; 
:: Mutable I Mutables , Mutable 
:: ID I ID Dimension 
:: [] I [ INTEGER] I [ Var ] 

:: Block I Guard -> Block 
:: Var := Exp I Var = Def I ID I Call I { Op Blocks} 
:: Implication I Blocks , Implication 
:: Exp I Tuple I List I STRING I Call 
:: II I? I; 
:: Tests I default 
:: Test I Tests, Test 
:: ID ?= Rhs I Con Eq Con I Exp Ar Exp I Type ( Def) I data ( Def ) 
:: Exp I STRING I [] I { } 
:: List I Tuple I Call 
:: == I != 
:: < I > I <= I >= 
:: int I double I char I tuple 

76 



Call 
LocalCall 
QID 
RemoteCall 
Args 
ArgList 

Exp 
Term 
Factor 
Num 
Numeric 
Var 
Subscript 

List 
Tuple 
Elements 
Element 

:: LocalCall I RemoteCall 
:: QID : QID Args I QID Args 
:: ID I' ID 
:: LocalCall @ INTEGER I LocalCall @ QID 
:: () I ( ArgList ) 
:: Def I ArgList , Def 

:: Term I Exp + Term I Exp - Term 
:: Factor I Term * Factor I Term Factor I Term % Factor 
:: N urn I ( Exp) I length ( ID ) 
:: Numeric I - Numeric I Var 
:: INTEGER I REAL 
:: ID I ID Subscript 
:: [INTEGER] I [ Var ] 

:: [] I [ Elements] I [Elements I Element] 
:: { Elements} I { } 
:: Element I Elements, Element 
:: Num I STRING I List I Tuple I Call 
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