SUBMICRON SYSTEMS ARCHITECTURE PROJECT
Department of Computer Science
California Institute of Technology
Pasadena, CA 91125

Semiannual Technical Report

Caltech Computer Science Technical Report
Caltech-CS-TR-91-10
1 November 1991

The research described in this report was sponsored by the Defense Advanced Research
Projects Agency, and monitored by the Office of Naval Research.

SUBMICRON SYSTEMS ARCHITECTURE
Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-91-10
1 November 1991

Reporting Period: 1 March 1991 — 31 October 1991
Principal Investigator: Charles L. Seitz

Faculty Investigators: Alain J. Martin
Charles L. Seitz
Jan L. A. van de Snepscheut

Sponsored by the
Defense Advanced Research Projects Agency

Monitored by the
Office of Naval Research

SUBMICRON SYSTEMS ARCHITECTURE

Department of Computer Science
California Institute of Technology

1. Overview and Summary

1.1 Scope of this Report

This report is a summary of research activities and results for the eight-month period,
1 March 1991 to 31 October 1991, under the Defense Advanced Research Project
Agency (DARPA) Submicron Systems Architecture Project. Previous semiannual
technical reports and other technical reports covering parts of the project in detail
are listed following these summaries, and can be ordered from the Caltech Computer
Science Library.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI systems
appropriate to a microcircuit technology scaled to submicron feature sizes. Our work
is focuscd on VLSI architccturc cxperiments that involve the design, construction,

programming, and use of experimental multicomputers (message-passing concurrent
computers), and includes related efforts in concurrent computation and VLSI design.

1.3 Highlights

e Mosaic C 1.0 chips functional on first silicon, and in use in small Mosaic
multicomputers (section 2.1).

e USC/ISI ATOMIC project uses Mosaic componcnts to implement a high-speed
LAN (section 2.2)

¢ Mosaic runtime system runs on Mosaic ensembles (section 3.1).

¢ A simple and efficient algorithm for task distribution (section 3.3).

¢ Demonstration of Page Kernel fault tolerance (section 3.5).

¢ Asynchronous memories and arithmetic in CMOS and GaAs (sections 4.1-4.4).

e Slack-generator chip tests new FIFO structures (section 4.5).

2. Architecture Experiments

2.1 The Mosaic Project

Charles L. Seitz, Nanette J. Boden, Jakov Seizovic, Wen-King Su

2.1.1 Summary of Results

The Mosaic C is an experimental fine-grain multicomputer based on the single-
chip node shown in figure 1. This chip includes 32K 16-bit words of fast dynamic
RAM (the lower 3/4 of the chip area) together with (left to right across the top) a
processor and packet interface, clock driver, bootstrap and self-test ROM, and two-
dimensional self-timed router. The 136 pins are devoted to the four bidirectional
channels that connect to the north, south, east, and west neighbors; timing inputs
and amplified outputs to distribute clock, reset, and refresh signals through the
mesh; LED and tachometer outputs; and 36 Vdd and GND pins. The first silicon
of this 9.25mm x10.00mm, million-transistor chip was fabricated by MOSIS during
this reporting period, has been tested extensively, and functions correctly.

We have started the construction of a 16K-node Mosaic system in which the
chips will be packaged by tape-automated-bonding (TAB) on the 8x8 boards shown
in figure 2. These boards self-compose in two dimensions to form an arbitrarily
extensible mesh of Mosaic nodes. The Mosaic chips and boards are being built by
Hewlett-Packard Company under a subcontract; the Mosaic chip, overall packaging
design, and automatic-testing software are, however, our own work. Much of

our effort over this reporting period has been aimed at preparing the Mosaic for
manufacture, including automatic testing of both chips and boards.

Although the completion of the first set of four 8 x8 boards is not expected until
February 1992, Mosaic program-development systems based on memoryless Mosaic
chips have been in routine use for programming-system and application development
over the last year. These program-development boards have four nodes connected
as a 4x1 mesh. The external SRAM memory of each node can be read and written
through a VME interface to a host workstation. Four external channel connections
allow the program-development boards to double as host interfaces to Mosaic arrays.
In addition, 3x3 and 4x4 test boards based on Mosaic C chips bonded in pin-grid-
array (PGA) packages, but employing the same board outline as the 8x8 boards,
were designed and built during this reporting period. These boards have allowed us
to test the Mosaic C chips in an electrical environment similar to that of the 8x8

boards, and to provide additional hardware to support programming-system and
application development.

The basic programming tool kit for the Mosaic node consists of a C compiler,
library, device driver for the program-development and host-interface boards,
example programs, and documentation. This tool kit, which was described in our
previous report, has required few modifications during this reporting period, and

-9

Figure 1: Photomicrograph of the Mosaic C 1.0 chip.

3

R e

Figure 1: Photomicrograph of the Mosaic C 1.0 chip.
-3-

. @ — @ e e EE‘ . @ ‘ .
I Ora | Cla)k @"];z (] = [() }
> L ‘\\;-/» %K >

T

° T
OO 10 o

00 O

ody

ot
2,

d
T

i o

3dodeadddodity ~ 1~

SOOQUIOOQPODPOOLODDOD00N

hol

JEe]

Hotootouoo00

A
-/

O

)

(

O 0
SO %@?@E&@E@?&%&%@?@QQppp.o.o.op.op.op.op,o

ot
T

1©

i i

R

e o

i

£

o0l T T T

YA

AT -
‘ UL OOy
o SR

e
=

@
=
p<d 1=

RRA,

Il

ROh 030

;E;'I_
A

O

i3
ol

7
A\

AR BAREARY
olo T

Ol

T

i
O
oO ol

NSNS NN OAN AR
2 v%%%%%%%%%%%%%%%%p££§§§§§?§§§§§§é§ -
O Ry, O

BT T
2 v%%%%%%%%%%%%%%%%?5%%&05@5%&% -
O AR, O

— a — o — 2
(=210 = O = ol =210
- () T (&) — 9 - (] -

Figure 2: Plot of the Mosaic 8x8 board, nearly to scale.

4-

has served very well for the development of programming systems and applications.
Research on programming systems for the Mosaic is described in several sections
‘of Chapter 3. A new, C++-based programming system has replaced the Cantor
programming system for our internal use. This new system is still evolving, so it
will not be described until our next semiannual technical report.

Program-development boards and the programming tool kit were provided to
USC/ISI for ATOMIC, a project to demonstrate a high-performance local-area
network based on Mosaic components. Their initial efforts, reported briefly in section
2.2, have already been highly successful.

The following subsections describe details of selected aspects of the Mosaic
project.

2.1.2 The Mosaic C Chip

The Mosaic C 1.0 chip, 9.25mmx10.00mm, and with well over 1M transistors
(including the 2'° transistors used as capacitors in the dRAM), was fabricated
through MOSIS using the MOSIS A=0.6pm SCMOS (HP CMOS34) process, and
functioned correctly on first silicon at a clock rate in excess of 30MHz. This
accomplishment is less remarkable than it may appear, considering that the dRAM
and logic sections of this chip had previously been fabricated and tested separately.

The yield on the first batch of Mosaic C 1.0 chips, cut from two wafers, was
12/50. The yield on a second batch, cut from two additional wafers from the same
run, was 24/50. MOSIS users will find it interesting that there is such a significant
difference in yield between one set of two wafers and the other set. The combined
yield, 36/100, is close to the 40% we predicted from separate tests of the JRAM and
memoryless Mosaic chips. Of the 64 bad chips, 50 had dRAM faults, and 14 had
faults in the logic section that may have been masking additional mwewory problems.
Of the 50 chips with dRAM faults, 12 exhibited single-bit errors, 6 had two-bit errors,
3 had three-bit errors, 4 had decoder problems, and 25 had multiple problems that
could not be isolated.

Tests of the Mosaic C 1.0 chips on the 3x3 boards allowed us to make a number of
small changes for the chips in our pilot-production fabrication run through Hewlett-
Packard. These changes included adjustments to the transistor sizes in the output
drivers and input hysteresis circuits, and correcting an inversion in the amplification
chain used to broadcast the reset and refresh timing signals through a Mosaic array.
In addition, a missing piece of metal-2, which was redundantly connected with poly,
was added for aesthetic rather than practical reasons. Fabrication of 48 wafers of
these Mosaic C 1.1 chips is expected to be complete by the end of November. These
chips will be tested on the wafers at Hewlett-Packard. We expect this run to yield
at least 1,000 working chips, some of which will be used to build the first four
88 boards, and others of which will be packaged in PGAs to build additional 4x4
boards.

-5

The extensive tests to which our entire population of functional Mosaic C 1.0
chips were subjected had the principal goal of learning how to distinguish possibly
marginal chips during the wafer test. For example, the necessary refresh period
for the dRAM varied between the best and worst chips by a factor of more than
twenty. The small population of chips that require a short refresh period are possibly
poor risks to build into the 8x8 boards; they will, accordingly, be rejected in wafer
testing. Similarly, the population of working chips was characterized according to
minimum operating voltage so that we would be able to perform wafer testing at an
operating voltage that causes another small population of possibly marginal chips
to be rejected. In addition, Hewlett-Packard will reject any wafer that exhibits
an uncharacteristically poor yield. Another set of tests that stressed the message-
passing communication was performed to assess. the reliability of the interchip
communication. '

2.1.3 Memoryless Mosaic Chip

Since our previous semiannual technical report, we have gone through four more
iterations of memoryless Mosaic chips. MM3.3, MM3.4, MM3.5, and MM3.6 were all
completely functional chips, with minor changes aimed at improving the performance
and/or safety margin. Correct operation at 38MHz was achieved on the program-

development boards with 15ns external SRAMs.

Because the memoryless Mosaic chip is now so well characterized, we submitted
a A = 0.5um (HP CMOS26) version at the request of MOSIS for a test run. This
test chip required designing a new set of pads for the CMOS26 process. These chips

are currently being fabricated.

2.1.4 Mosaic Program-Development Board R2.0

Following the success with the first batch of ten R2.0 Program-Development and
Host-Interface (PD/HI) boards, described in our previous semiannual technical
report, we built eight additional boards using 15ns SRAM chips instead of the 25ns
chips. A 33.3MHz, 32-node Mosaic multicomputer was constructed by connecting
these boards in a linear array in the card cage of a Sun4/390. Other boards were
installed singly in various Sun3/120 boxes in our department. These boards have
been used for programming-system development as well as for class exercises in a
third-term concurrent-programming class.

During the summer, the PD/HI boards were removed from the Sun-3/120s
during a department-wide upgrade from Sun3s to Sun4s. Some of the sparc boards
were loaned to USC/ISI for their experiments with the ATOMIC network, a high-
performance LAN built with Mosaic components (see section 2.2). One board was
configured to serve as the host interface for a 27-node array of Mosaic C elements
(see figure 3). Two additional boards have been earmarked for use in a pair of test
fixtures to be built and used by HP for testing 8x8 boards.

-6-

upr..__m______.___m_ __...___"T. il

Figure 3: PD/HI board connected to a 27-node Mosaic C array.

-7-

2.1.5 Mosaic 3x3 and 4x4 Boards

In order to test the Mosaic C elements in a 2-D array configuration, and to test
the mechanical and electrical characteristics of the checkerboard composition of 8 x8
boards, we designed a PC board to hold a 3x3 array of Mosaic C chips bonded in pin-
grid-array (PGA) packages. This 3x3 test board (figure 4) has the same dimensions
and stacking-connector placements as does the 8x8 board, and is the smallest array
that still allows at least one element to be connected to four neighboring elements of
the same board. The design left enough room on the board for additional connectors
and circuits for performing various tests and measurements on the Mosaic C 1.0
chips. Ten of these boards were built, but until the run of Mosaic C 1.1 chips is
completed, we have only enough functional Mosaic C chips to populate three boards.
These three boards are connected to produce a 9x3, 27-node Mosaic multicomputer.
Although most of the chips are capable of higher speed, some marginal chips that
we musl include to complete a set of 27 forced us Lo run the array at a clock speed
of 25MHz.

In anticipation of the demand for additional Mosaic C development platforms -
and the expected shipment of a large lot of Mosaic C 1.1 chips from HP, we also
designed and built a similar PC board that holds a 4x4 array of Mosaic C chips.
This 4x4 array of 132-pin PGA-bonded chips is the largest that will fit on a board
with the same dimensions and stacking-connector placements as the 8x8 board.
The density of this board with PGA packages is one quarter that of the board with
TAB bonding, which illustrates well one of the advantages of using TAB; another
advantage is cost. The spacing between the PGA chips on the 4x4 board is so tight
that decoupling capacitors are placed under the PGA sockets, and the LEDs are
viewed from the back side of the board through holes drilled through the sockets.

2.1.6 Automatic Testing

Because replacing defective TAB-bonded chips on the 8Xx8 board is relatively
difficult, and because there are 64 chips on the board, it is extremely important
to screen out as many of the defective chips as possible before they are bonded to
the board. (If 1% of the chips that pass the chip test turn out to be defective, then
47% (1 — 0.99%) of the boards will be have to be reworked.)

The Mosaic was designed to test itself at every key point in the manufacturing
process. The chip contains a self-test program in ROM, with which the processor,
ROM, dRAM, and most of the router are checked upon reset. When a wafer leaves
the fab line, chips are checked individually by a Sentry-15 tester. The test programs
and test vectors were written according to Hewlett-Packard’s specifications, and sent
to HP via e-mail. The tester will reset the chip, allow it to complete its self-test
sequence, check the remaining portions of the router, and send a message to the chip
to fetch the self-test result. The same test will be applied when the wafer is diced
and “good” chips are inner-lead bonded into the TAB frame.

-8-

LT] |
Vo h R
; RN S s A e uu]

E-amh
iy
iw = .-u—._._. S . P oameen ®

SR ANy g

Wiy o

[

"o | ool
i {q.mt..f.,. * D pimd

|
p

_ -

-
.
=

=

(11

TSRS EFTEFSIT IS

L

| l
< ~ -
IRk -

nag

LIRS

R

T
-

i

Figure 4: 3x3 test board inside a Mosaic C array.

After the chips are outer-lead bonded to the 8x8 boards, the boards are tested
for defects. A custom-built test fixture allows a Sun workstation to test the node at
the corner of the board through a PD/HI board. Testing then progresses away from
the corner with the help of those nodes that have already passed their tests.

2.2 The ATOMIC Project*

Danny Cohen, Charles L. Seitz, Wen-King Su

ATOMIC is a very-high-speed local-area network (LAN) built by USC/ISI using
Caltech Mosaic components and programming tools. Each of its switches is capable
of routing IP packets at very high rates, while providing added value through
computing and buffering. ATOMIC already supports the IP protocol and all the
communication protocols above it, such as TELNET, FTP, and e-mail.

* The initial proof-of-concept installation at ISI uses VME-based Sun workstations
as hosts for Mosaic PD/HI boards, whose external channels are connected through
standard Mosaic-channel cables. This current prototype ATOMIC uses 25MHz
PD/HI boards, which limit the memory bandwidth and channel rate to 50MB/s
(400Mb/s), which is about 60% of the capability expected from mature Mosaic
hardware. In addition, the Suns cannot provide the ATOMIC network with data
fast enough to stress its performance.

To measure the performance we use traffic generators and move packets from
one Sun/ATOMIC shared memory to another Sun/ATOMIC shared memory. Using
these memories we run 1,500B packets (typical FTP packets) between two Suns at
rates over 370Mb/s (longer packets approach 400Mh/s, which is the limit of the
25MHz PD/HI boards). 54B packets (such as ATM) are transferred by ATOMIC at
rates above 125Mb/s. The shortest packets run at rates exceeding 454K-packets/s.
The above figures indicate half-duplex performance; full-duplex performance is
double the numbers stated, since the input and the output channels are totally
independent of each other. All these performance figures will scale up with faster
Mosaic components.

Unlike most LANs, the ATOMIC performance is per link. The aggregate
performance of the entire network is limited only by its configuration, since
ATOMIC traffic lows do not interfere with each other unless they share links. This
characteristic is unlike Ethernet and FDDI, in which all the traffic flows interfere
with each other, and share the same total bandwidth (of 10Mb/s and 100Mb/s,
respectively).

* Danny Cohen is with USC/ISIL. This effort, which is supported under a separate
DARPA contract at USC/ISI, is reported here as an example of an interesting
application of the Mosaic, and of interaction between DARPA contractors.
Additional information about ATOMIC should be obtained by contacting Danny
Cohen at USC/ISIL

-10-

The ATOMIC network was running at ISI just a few days after the arrival of
the hardware. There have been no errors observed so far in test runs that have
generated and received more than 10'2 bits. Most of the initial effort in developing
this demonstration was devoted to interfacing the ATOMIC driver to the UNIX
kernel and to its IP driver, such that the use of ATOMIC would be totally transparent
to the higher-level protocols.

The ATOMIC network is an addressless network that requires source routing
for the packets to navigate through it. The discovery, establishment, and control of
these roules is a task that will be based ou the capabilities of the switching elements
in the network, the Mosaic chips.

-11-

3. Concurrent Computation

3.1 Fine-Grain-Multicomputer Runtime Systems

Nanette J. Boden, Charles L. Seitz

As discussed in previous reports, the design philosophy of the Mosaic runtime system
is to provide efficient and robust distributed runtime support for user programs.
The primary goal of the runtime system is to balance the efficiency considerations
of process management and message passing while maintaining sufficient data
structures to support resource distribution. Dwuring the period covered by this
report, the design of the Mosaic runtime system was completed, and a very cleanly
structured prototype runtime system was implemented. The prototype runtime
system is written in C, and runs on all existing Mosaic ensembles, but not yet with
all of the planned features. While the prototype runtime system is an important
milestone in the development of the Mosaic multicomputer, the experiments that we
must perform to examine the efficiency and robustness of its algorithms rank at least

equal in significance. The following paragraphs indicate the nature and objectives
of these experiments.

Since executing a user program as quickly as possible is the ultimate goal of the
runtime system, overhead for message passing and user-process management must
be minimized. Previous work from our group has relied on compiler techniques
(as employed in the Cantor programming system) and streamlined runtime support
(such as employed in the Reactive Kernel node operating system) to minimize the
time required for these basic operations. The Mosaic runtime system borrows heavily
from the essential aspects of this previous work. Tn addition, the Masaic runtime
system all but eliminates copying message or process data within a node. Such
copying is expensive in time and memory bandwidth, and is generally unnecessary.
The notion of a “copyless” runtime system has been an important guiding force in
the runtime system design and implementation.

In addition to basic multicomputer operations, the Mosaic runtime system
must handle automatic resource management for the user program. Explicit
naming of nodes for placing processes and for message passing between processes,
the usual practice for medium-grain multicomputer programs, is impractical for
multicomputers containing many thousands of nodes. Beginning with the Cantor
programming system, we have removed explicit naming of nodes — in fact, any
explicit reference to machine resources — from the source programming notations.
This approach provides complete machine independence for user programs, and great
flexibility for the runtime system in managing resources. In principle, the only case
in which a program would not be able to execute to completion is if the memory
demand exceeded the available (possibly virtual) memory of the entire machine.
However, the performance of the runtime algorithms for placing and managing the
name-space of processes is crucial to the overall performance of the execution of the
user program.

-19-

Since the aggregate memory of a fine-grain multicomputer is partitioned into
many small pieces, the fine-grain runtime system must actively cooperate with other
nodes to accomplish many important tasks. Unless measures are taken to balance
local resource demands, the memory of a single node may be exhausted while much of
the total memory of the ensemble remains unused. The low message latency between
Mosaic nodes (~3us) permits aggressive approaches to remote memory allocation,
storage, and retrieval, so that memory demands can be more evenly distributed
throughout the entire machine. The Mosaic runtime system attempts to blur the
physical memory boundaries of the nodes in the ensemble. Although the aggregate
memory of the Mosaic is partitioned into more and smaller pieces than the memory
of a medium-grain multicomputer, the low cost of communication with other nodes
enables the runtime system to treat the ensemble as a machine with a much less
“distributed” memory.

. The low communication costs to other nodes also permit aggressive solutions
to another challenge presented by the limited size of Mosaic local memory — the
location and access of user process code. Maintaining one copy of the code for each
process type on every unode is clearly wastelul, and will be physically impossible
for large programs; the code for the user program must, accordingly, be distributed
throughout the nodes of the machine. However, in order for a user process to execute,
the code and the data must reside in the same node. Rather than send the code
to the data, the Mosaic runtime system generally ships the data to the code. This
approach is motivated by the observations that the memory of the Mosaic is remotely
addressable via the runtime system, and that the size of the data for fine-grain
processes is generally less than the the size of the code to be executed.

Software Tools. As part of the development of the prototype Mosaic runtime
system, various software tools have been developed for debugging and program
profiling.

A simple symbolic debugger is available for use on Mosaic Development Board
systems. A control program running on the Sun host accepts debugging commands
(eg, stop, print, step) from the console. The memory of an individual Mosaic node
is directly addressable by the Sun host so that memory locations can be accessed to
print values. Since the code being executed by the node is also directly accessible
to the host, breakpoints can be inserted by replacing instructions at the desired
breakpoint with instructions to jump to a predefined location, where instructions
dictate that register values be dumped, and to leave the Mosaic spinning in an
infinite loop. To continue processing, the host program writes over the destination

of the spin jump with the previous instruction pointer so that processing resumes at
the breakpoint.

Program profiling tools currently focus on collecting and displaying information
in counters that are inserted into the runtime system and user programs. Counters

(a type of “post-mortem” analysis) are very useful for profiling without significantly
influencing the execution of the program.

13-

In addition, host-interface routines were written so that the host Sun can pass
messages to the Mosaic ensemble. A Mosaic PD/HI Board is used as the hardware
interface between the Sun and the Mosaic ensemble. One node on the PD/HI board
is loaded with code that accepts messages from the message network and queues
them internally; another node is loaded with code that reads from an internal queue
and sends messages into the Mosaic ensemble. A program running on the Sun
workstation can send and receive messages by executing functions analogous to the
Cosmic-C primitives xsend and xrecv. These functions read and write the internal
queues of the nodes on the PD/HI board via the shared memory between the Sun
and the resident Mosaic nodes.

3.2 Systematic Design of Concurrent Programs

H. Peter Hofstee, Jan L.A. van de Snepscheut

One of our ongoing efforts is to develop concurrent programs in a systematic way.
We have continued our experiments with stepwise refinement, a technique that is
well understood for the design of secquential programs. In the casc of concurrent
programs, we start with a simple program that solves the problem, except that it is
a sequential program instead of a concurrent one. In a number of refinement steps,
this program is transformed 1nto a concurrent version.

First, the variables are partitioned over processes. Second, the coupling between
the processes is made less tight by postulating copies of variables that are not
necessarily up to date. Next, the copies are made via message passing. Finally,
execution of the individual actions is controlled in such a way that deadlock is
excluded, and progress is guaranteed. Even though we presently understand this
method only informally, and cannot yet state the transformation rules with sufficient
precision, we have succeeded in applying this method to a number of problems and
have obtained efficient programs. The complexity of the programs, especially their
flow of control, is such that we would never have been able to construct them without
employing systematic methods.

One of the examples is a distributed sorting algorithm. The program was tested
both on the Ametek 52010 and on Mosaics. Even though the problem specifies a
linear ordering of the values to be sorted, the program takes advantage of the higher
connectivity of the networks in the two machines.

3.3 A Distributed Task Pool
H. Peter Hofstee, Johan J. Lukkien, Jan L.A. van de Snepscheut

A method that is often used for constructing a concurrent program is called a
processor farm (or manager—worker, or dealer—player formulation). The program
consists of one scheduler plus a number of work processors. The scheduler farms out
the work to the individual processors. It leads to simple and elegant programs but,

-14-

unfortunately, it does not scale well to large systems because the scheduler becomes
a bottleneck.

We have developed a distributed version of the processor farm that eliminates the
bottleneck. The algorithm works roughly as follows: Every processor has a number
of tasks in its local task pool. Whenever a processor becomes idle, it executes one of
the tasks from its local pool, and whenever it generates new tasks, they are added
to the local pool. This scheme tends to favor locality, thereby avoiding unnecessary
communications. However, the pools need to be adjusted such that no processor is
idle when there is a task available in some other pool. On the other hand, one wants
to avoid a lot of message passing just to deal with a minor imbalance.

To that end, we choose a threshold, 7. Typically, T is a small number, such as
2 or 3. The algorithm sees to it that either all pool sizes are at least T, or that
all pool sizes are at most T. In either case, the load is well distributed over the
processors. The algorithm is such that the above condition is enforced via local
communications only, and by recording information about neighboring processors
only. This is essential to make it scale well to large systems. The resulting algorithm
is very efficient, and requires very few communications, and then only local ones.
It compares favorably to random placement, which requires more communications,
and those communications are typically non-local.

3.4 An Interpreter for a Functional Programming Language

John Brodoff, Jan L.A. van de Snepscheut

We have written a number of widely different implementations of a functional
programming language. Since the functional language has no notion of processes
or of storage allocation, they serve as a test vehicle for seeing how well we can
provide those automatically in an implementation. One of the problems faced in
the implementation is the recycling of parts of the store that are no longer in use
(garbage collection). Many garbage-collection algorithms exist, and one of them is
reference counting. A major problem with reference counting is that the scheme
requires that increment and decrement messages arrive in the order in which they
were sent, even if they were originated by different processors. This is a very strict
requirement, and we have devised and implemented an alternative scheme in which
the requirement is relaxed so that only the order of messages between any pair of
processors need be maintained.

3.5 The Page Kernel
Craig S. Steele, Charles L. Seitz

The previously-described Page Kernel (PK) concurrent-programming environment
is now substantially complete as a research project. This report will recapitulate
some of the basic features of the system, along with some recent refinements that
provide a mechanism for fault tolerance and load balance.

-15-

PK is an evolution of the reactive-programming model for medium-grain
programming on second-generation multicomputers. Virtual-memory hardware is
used to support a distributed, shared-memory programming system based on low-
context processes called actions. The programmer accesses shared data structures,
called blocks, much as in a shared-memory machine, but without the need for explicit
locking for concurrency control. The execution cycle of actions implicitly induces
atomicity and consistency of effect in modifying computational state. Mutually-
exclusive updating of all modified data is implemented by a transaction-style rule
that guarantees that changes are effected either completely or not at all. The rule
is applied to the set of data blocks actually accessed during execution, the write
set. Data in the write set are known to be the current versions. Computations
that are tolerant of data staleness may improve concurrency by relaxed coherency
requirements for read data; the triggering mechanism for scheduling makes this class
of problems surprisingly large.

Scheduling of actions for execution is distributed and nondeterministic. Actions
may set triggers on data blocks. When such a data block is modified, all actions with
set triggers will be scheduled for subsequent execution. This externalization of the
computation’s control flow allows programs to be written as small code fragments
that establish particular relations between input and output data objects. At the
termination of the computation, the desired relations are established on the final
results.

The decision to make data-block sharing and mutually-exclusive writing part
of the programming model has simplified many lower-level tasks, and generated
some interesting properties. The core functions of the kernel create, update, and
cache data blocks. These operations provide the services required by the user-
level programming model, but surprisingly few extensions are needed to support
kerncl-level opcerations, such as the construction of action contcxts and performance
monitoring. Action code is loaded into a data block created by the kernel, but is
otherwise identical to user-instantiated blocks. Features such as demand-fetching of
the code to a multicomputer node and code-sharing among the actions on a node
require no special mechanisms. The primary difference between user and kernel use of
the basic data-block functions is that the kernel can directly probe the status of data
blocks and may block pending satisfaction of a remote service request. The explicit
locking in memory and the privileged-access-level bypass of MMU page protection
arc used to reduce overhead for such features as action dispatch and the maintenance
of kernel performance statistics, but the standard data block services are used for
creation and communication of the supporting data structures.

PK actions have minimal essential (semantically significant) context; data
blocks contain virtually all of the computational state that persists between action
activations. An instance of an action is specified by little more than references
to its argument-list binding, code, and trigger set. Action relocation is a minor
variation of action creation. A short message containing a couple of references sent

-16-

from one node to another is sufficient to allow an action to be loaded. Of course,
large amounts of transient context may be required during actual execution of an
action. Data blocks are mapped, fetched, and cached as needed while the action
is active. After the action completes successfully, any modifications made to the
node data-block cache are written back to master copies. Upon action completion,
the transient context, ie, stack content and block mappings, are redundant. Upon
success (or failure) of the write-back update, the node data-block cache contents are
redundant. The node data-block cache retention policy will affect performance but
not computational correctness.

The externalization of scheduling and computational state, and the well-defined
state-update process by successful actions, provide the possibility for fault tolerance.
The optimistic consistency mechanism used by PK was chosen to preclude deadlock
(at the cost of possible livelock), but an interesting additional benefit is that the node

cache contents are dispensahle except for the brief interval at the end of the update
protocol after action completion. If we consider independent single-node fault-stop
as the most probable failure mode, relatively straightforward extensions of PK can
provide transparent fault tolerance. The state of a PK computation is defined by
the contents of the data-block master copies and by the essential context of the
extant actions. Duplication of the master copies via node-pairing with standard
logging protocols can protect against data loss from single-node failure. The tasks
of embedding failure-detection timeouts in all internode protocols, and providing for
a switch-over to the backup master copy, are tedious but practical.

Replication of actions is more interesting. Instead of recording the binding for -
each instantiated action somewhere and then initiating a recovery procedure upon
detection of a node failure, we can simply replicate the action. The PK consistency
rules provide the necessary mutual exclusion to avoid conflict if replicated actions
should execute concurrently. The semantics of the program are the same regardless of
the number of replicated actions. (A simple scheduling-priority system was added to
improve efficiency in lightly-loaded machines, where replicated actions might unduly
compete for write access to the same data.) The technique has been successfully
demonstrated, following a cleanup of the kernel’s action-scheduling code to regularize
the treatment of trigger-set and action-descriptor data blocks. Redundant copies
of actions are scheduled and executed without any requirement to detect node
failure; the scheme is essentially transparent to the kernel as well as the user. The
freedom to replicate PK actions can also be used to provide a form of computational
load balance that is transparent to the kernel, but more-sophisticated schemes may
directly control action placement.

The current implementation split naturally into two distinct functions: master-
copy data-block maintenance and user action execution. Scheduling and data-block
maintenance operations do not require any interpretation of data-block content,
and could be executed on hardware distinct from the computational engine. High-
performance communications network hardware diminishes locality considerations;

17-

on the Ametek 52010, PK runs well both with uniformly distributed master-copy
services or with dedicated master-copy server nodes. Ideally, master-copy server
nodes would be specialized for high reliability and low communications latency.

The set of design decisions for PK hang together well. The computational model
is appropriate for multicomputers with capable communications systems, and is
reasonably efficient and scalable. The implicit consistency mechanism seems natural
for programming. The externalization of computational state and scheduling provide
additional flexibility in load balancing and fault tolerance.

3.6 Multicomputer C

Marcel van der Goot, Alain J. Martin

Multicomputer C, “mcc,” is a programming language for message-passing multi-
computers. As reported earlier, we wrote a compiler that compiled an mcc program
into an ANSI C program that can be executed on a Sun workstation. Early this
summer, we finished an updated version of the compiler that now generates code for
multicomputers as well.

Currently, the compiler generates code for the Ametek S2010 multicomputer,
for networks of Sun3 or Sun4 workstations (a so-called “ghost cube” provided by
the Cosmic Environment), as well as for single workstations. In the case of the
Ametek S2010, it supports both Sun3 and Sun4 hosts. The compiler has been
written to hide differences in machine formats from the programmer. For example,
although structures are stored differently on an 52010 node and on a Sun4 host, this
is invisible to the programmer when structures are communicated between host and
nodes. There are also provisions, through compiler directives, for functions that can
only be executed on certain nodes, or for which the program depends on the node
type.

Effort has been made to write the compiler in such a way that it can easily
be retargeted for different machines. An mcc program is compiled into a mostly
machine-independent C program, which is then linked with a small runtime system.
The runtime system contains the actual message-passing code, and therefore almost
all the machine dependencies. Adapting the runtime system to a new machine
consists of writing a number of macros, a start-up function, and, if applicable,
functions that convert between data formats. To target the compiler for a new
machine, a new runtime system must he generated, and a small data file describing
mostly sizes of data types must be written. The user interface allows the user to
select the target through command-line options. This system works well enough that
a single compiler is used to generate code for all the abovementioned machines. For
the 52010 and for the ghost cubes, the translation is to “Cosmic C,” which uses the
message passing and data conversion functions provided by the Cosmic Environment
and Reactive Kernel.

-18-

4. VLSI Design

4.1 Asynchronous Static Memories

Peter Hofstee, Alain J. Martin

An extensive study of asynchronous memory protocols using formal methods has led
to a series of designs of asynchronous static memories and caches. Three of these
designs have been fabricated through MOSIS as 2um tiny chips; a fourth is presently
in fabrication. The series of designs (and the circuits) show a dramatic increase in
speed, and decrease in area per bit as well as transistors per cell. A larger memory,
intended for use with the asynchronous microprocessor, is under construction. All
designs were functional on first silicon.

chip size read cycle write cycle cell size
first 16 x 9bit 200ns 250ns 90002
second 16 x 16bit 40ns 50ns 261012
third 256 % 1bit 45ns 55ns 27002

The first chip was a cache.

The speed for 1.2um CMOS should increase by a factor of two (ideally a little
more, but pads do not scale).

All speeds are at room temperature at 5V. The first two chips are operational
belween 1.5 and 9 V; the third chip is functional in a limited range.

A third-generation basic cell is 23002,

4.2 Asynchronous Serial-Parallel Multiplier

Christian Nielsen, Alain Martin

We have completed the design of an asynchronous muitiply-accumulate unit. The
design is a serial-parallel architecture. It differs from previously designed multipliers
in that it uses carry—save arithmetic and the multiplication time is dependent of the
number of significant bits in the multiplicand. The carry-save arithmetic ensures
that the accumulation of each bit multiplication is performed in constant time,
independently of the length of a carry—chain.

A 4x4bit unit was fabricated in 2um CMOS, but due to a transistor-sizing
error, the chip was malfunctioning. A revised design has been submitted for
fabrication, and the design tool will be updated to disallow similar errors. The
expected performance of the unit is 39Mbit/s in 2um CMOS, giving multiplication—-
accumulate times between 37ns and 448ns for 16x16bit multiplications.

-19-

4.3 Asynchronous Circuits in Gallium Arsenide

José Tierno, Drazen Borkovié, Tony Lee, Alain J. Martin

We have adapted all our design tools (including COSMOS) for GaAs, and have
switched to Hspice for circuit simulation. Confident that we could now avoid the
clerical errors that we were previously unable to catch due to the lack of simulation
tools, we embarked on the design of a GaAs version of the Caltech Asynchronous
Microprocessor. In the middle of the transistor-sizing phase, we realized that the
logic family we had chosen was too sensitive to transistor sizes for a design of this
size to ever work. We modified the logic and redesigned all cells in the new logic.

Two GaAs circuits were designed and fabricated on the same Vitesse run. The
first one, a 4-bit, 16-register file, was successfully tested. Access time is about
4ns, including 1.5-2ns pad delays. The measured speed is higher than predicted

by. Hspice, using the parameters supplied by MOSIS. Power consumption was as
calculated.

The second circuit was the microprocessor. Unfortunately, a last-minute change
in a pad layout to adjust the pitch for the chosen die size had not been checked by
simulation. As a result, a missing connection on the output pads makes it impossible
to verify their functionality, except for power consumption, which was close to the
estimate (4W). We are currently working on verifying and speeding up the circuit
as much as possible at the device level. The current speed estimate (by extensive
Hspice simulation) for this design is about 100 MIPS, which is quite encouraging for
a first design. The revised circuit will be sent for fabrication on the next MOSIS
run.

4.4 Asynchronous Floating-Point Arithmetic
Tony Lee, Alain J. Martin

We are investigating the design of efficient asynchronous circuits for floating-point
arithmetic. At the moment, we are looking at floating-point addition (FADD).

If we ignore operations on the exponents, a typical synchronous implementation
would allot enough time to perform two additions per FADD operation. The
first addition adds the significands of the two operands. Then, depending on the
result, a second add is performed to round and/or negate the result if necessary.
Empirical statistics gathered on actual executious ol programs indicates that the
second addition is needed in only about one-third of the cases. In other words, the
average number of additions per FADD operation is about 1.33; but, for the sake
of timing uniformity, synchronous circuits assume the worst-case situation and allot
time for two additions per operation.

Asynchronous designs, on the other hand, are not restrained by such a pessimistic
assumption. Operations on different operands can take different amounts of time.
We have developed a FADD algorithm that yields an average of 1.12 additions per

-920-

operation. We are currently implementing this algorithm, as an asynchronous circuit.
This implementation should provide some interesting performance figures.

Also, we have gathered some empirical statistics that may aid in the design
of an asynchronous floating-point multiplication unit. First, we assume that the
multiplication unit contains a single adder and realizes the simple shift-and-add
algorithm. We then compare the number of actnal additions it would perform for
different recoding of the multiplier operand. Though our work in this area is still in
the early stage, the result of these comparisons already gives us some indication as
to which multiplication algorithms are suitable for asynchronous implementation.

4.5 Elko Slack-Generator Chip

Wen-King Su, Charles L. Seitz

The original “Frontier” mesh-routing chip (FMRC) and its derivatives, used in the
Mosaic and in a number of other DARPA-supported projects, has, for the most
part, been fast, reliable, and robust. However, due to Mosaic’s ability to generate
messages at very high rates, we are able to induce very-low-rate errors in the router
under certain conditions in every batch of Mosaic chips. We suspect but are not
certain that these errors are due to the risky timing schemes used in the internal
routing automata of the Frontier router. To make the “Elko” router more robust,
we decided to make a robustness-vs-area tradeoff by employing two-cycle signaling
between the internal routing automata. This scheme improves timing margins of the
circuits without compromising throughput. It also increases the area and reduces
the power consumption.

The fundamental Elko routing automaton is a 2-cycle self-timed FIFO. We
dcsigned and fabricated a chip containing two pairs of Elko FIFOs, both to test
the FIFO design and to serve as a Slack-Generator Chip.

The standard Mosaic channel employs a non-interference protocol that is
unsuitable for sending data through long cables because this protocol has a slack
of one. When the sender emits a flow-control unit (flit) of data, it must wait for
the corresponding acknowledgement for that flit from the receiver before sending
another flit. When used on a long cable, the extra time for the signal to travel from
one end of the cable to the other and back is added to the cycle time of the data
transfer. However, if a known amount of buffering is set aside on the receiving side,
and if the cable and receiver can accommodate the flit rate of the sender, the sender
can inject multiple flits into the cable up to fthe slack limit withont waiting for an
acknowledgement for each flit. At the same time a flit is emitted, (a token for) that
flit is placed into a FIFO on the sending side in order to count the number of flits in
transit. When the flit arrives at the receiving side, it is placed into the buffer. When
a flit is removed from the buffer on the receiving side, an acknowledgement is sent
to the sender. When an acknowledgement is received at the sending side, that flit

-921-

is removed from the FIFO. If the two buffers are of the same size, we can guarantee
“that the buffer on the receiving side will never overflow.

In the slack-generator chip, one of each pair of FIFOs serves as the receiving
buffer, and the other is used to count the flits on the sending side. The chip is
packaged in an 84-pin PGA, and is 180° rotationally symmetric. The first batch of
slack-generator chips was fully functional except for one layout error that allows a
“glitch” to appear on the output channel. A correct layout of the same function
elsewhere in the chip shows no glitch. The problem was fixed, and a second version
of the chip was submitted to MOSIS. The first version of the FIFO shows a sustaincd
throughput of 60MB/s.

-99-

