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Abstract

This thesis addresses the problem of interactive control of real-time music performance by
sound synthesizers. The approach to the problem is based on an analysis of a real world
orchestra performance. The problem is decomposed into components that are one-to-one
with the real world entities: a conductor, performers, instruments, a score, and parts. A
detailed object-oriented design of each of the components is presented and the objects and
their real world counterparts are compared. An abstract digital music representation is
defined to represent the musical composition that is to be performed by the system. A real-
time control mechanism is described that allows a human user to control various aspects of
the performance in musically expressive ways. The model is implemented in a system
called ZED, which has been shown to simulate some of the dynamic behavior of the live
orchestra. Issues concerning the trade-off between runtime efficiency and runtime
flexibility are addressed in detail, as well as how these issues affect real-time scheduling.
Optimization techniques are presented that help insure timeliness. The object-oriented
features of inheritance and encapsulation are shown to provide the system with
extensibility and flexibility. Several other approaches to the problem are briefly outlined
and ZED is compared with these approaches.
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Chapter 1

Introduction

Twenty-five centuries ago Pythagoras and his disciples developed the first musical scales
through the mathematical measurement of vibrating strings. These experiments became
the basis of Western music and tonality [Grout, 1973]. For hundreds of years, musical
instruments were invented and their tunings and timbres were refined so that the
instruments could be played together in ensembles. At the same time people developed
skills to play these instruments. The result of this evolution is the modern symphony
orchestra, which has remained virtually unchanged for the last one hundred or so years.

Musical instrument invention saw very little activity until three decades ago when a new
generation of musical instrument inventors developed the first electronic musical
instruments. Two separate schools of inventors evolved: those who developed analog
sound synthesizers that operated in real-time; and those who developed digital sound
synthesizers that did not operate in real-time. The digital computer revolution was just
beginning and the analog synthesizers were to go the way of analog computers. Digital
computer technology would later make it possible for digital sound synthesizers to operate
in real-time, thus offering the interactive capabilities of the analog synthesizers.

The first digital sound synthesizers were computer programs that computed sound samples
that could be played back through digital-to-analog converters (DACs). These programs
were written for the state-of-the-art computers: large, expensive, batch mainframe
computers that took tens of minutes to compute a single second of sound. Because of the
limited availability of computers and the non-real-time nature of the synthesis, evolution
in the field was slow. Computer music compositions were generated in segments by a
computer and recorded onto audio tape. Audio tapes lack the real-time spontaneity and
expressiveness that audiences are accustomed to experiencing in live music performance.
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Therefore, early computer music compositions were not really performed but were
rendered and played back in the same way that static frames of visual images can be created
with computer graphics and stored on film or video tape for future animation playback. The
primary difference between playback of a recording and a performance is that recordings
are identical every time they are played.

As computer technology evolved, in particular, VLSI technology, music synthesis
algorithms evolved to take advantage of the additional computational capacity. But faster
sound synthesis hardware did not change the way computer music was thought about and
produced. Faster sound synthesis hardware only changed the quantity of computer music
and the quality of the sounds that could be produced. It was not until sound samples could
be computed in real-time that the computer technology revolution reached computer music.

Max Mathews described the changing emphasis in the field of computer music that resulted
from real-time sound synthesis in the following way:

The ‘problems’ of computer music are no longer that of technology but rather of our ability to
control it [Mathews, 1989a].

Thus, now that real-time sound synthesis hardware was available, how could we control the
technology to make music, rather than simply sound?

The first computer programs that were written to control real-time synthesis hardware were
similar to non-real-time synthesis software. Lists of parameters were created that defined
the sound. These parameters were sent to the sound synthesizer in real-time to create the
performance. Such programs still lacked the expressive and spontaneous components of
live performance. The performance was still the same every time just as with the audio tape
performances of non-real-time sound synthesis. In order to take full advantage of the real-
time nature of the sound synthesis hardware, user interaction was required to provide the
creative and spontaneous elements found in live orchestra performances. Therefore, in
addition to real-time sound synthesis hardware, real-time input controllers were required to
map a human user’s physical gestures into real-time synthesis parameters for the sound
synthesis hardware.

A standard interface protocol called the Musical Instrument Device Interface (MIDI)
[MMA, 1987] was invented to allow a variety of controllers to be used to control
parameters of many different synthesizers. Initially there were two basic types of
controllers: musical instrument controllers such as piano keyboards, wind instruments, and
string instruments; and special effects controllers such as sliders, wheels, and foot pedals.
The musical instrument controllers allowed trained musicians to have direct control over a
sound synthesis voice in much the same way that an acoustical instrument is played. The
special effects controllers allowed other parameters of the sound to be controlled that could
not be directly controlled with the instrument controllers,

More recently, a number of research projects have focused on unique and novel controllers.
Examples include: the Daton [Mathews, 1989b], a mechanical device that detects three
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dimensions (x, y, and force) when it is struck; the Stanford Radio Baton (previously known
as the “Stanford Radio Drum”) [Boie and Mathews, 1989], a device that senses three-
dimensional continuous motion of two sticks; the Polhemus sensor [Logemann, 1989], a
device that senses a three-dimensional location and a three-dimensional orientation of a
sensor; the Video Harp [Rubine and McAvinney, 1990], a device that responds to
movements similar to those of harpists; and BioMuse [Knapp and Lusted, 1990], a system
that senses biological signals, including eye movement, muscle flexing, and alpha brain
waves. These controllers, when used in conjunction with computer software, allows an
untrained musician to achieve subtle interactive control over a variety of independent
sound synthesis voices.

Thus, with the advent of sophisticated real-time controllers, coupled with real-time sound
synthesis hardware, the problem now is that of building software systems that will allow a
user to expressively control many aspects of a real-time music performance by sound
synthesis devices. Clearly the problem of real-time control of synthesis hardware has little
in common with the early non-real-time sound synthesis programs. Despite this fact, much
of the research to date in real-time music performance systems has focused on applying the
concepts used in non-real-time software sound synthesis systems to the problem of real-
time interactive control. But the concepts developed in non-real-time music synthesis do
not extend to encompass the dynamic environment of interactive control.

This thesis presents a new software architecture that was inspired by Carver Mead’s
remarks concerning the VLSI revolution:

After an evolution of six or more orders of magnitude in the most important metrics of the
underlying technology, we are still using the same conceptualization of computing that was
common in the era of vacuum tubes and core memories. A quantitative improvement of many
orders of magnitude makes a qualitative difference in the way one must conceptualize a field
[Mead, 1983].

The work described in this thesis introduces a new conceptual framework to the area of
interactive computer music performance. A real world system that controls musical
instruments in real-time—that of the live orchestra—provides a basis for thinking about the
problem of controlling real-time sound synthesis hardware. The primary contribution of
this thesis is the decomposition of the live orchestra into a model consisting of objects and
methods that simulate some simple behaviors of a live orchestra. These objects and
behaviors are implemented by a software simulation system called ZED that is used to
validate the model. The resulting software architecture provides a general, extensible
framework that is device independent and could be used as the basis for a variety of other
real-time interactive control applications such as real-time animation and robotics.

ZED was designed using an object-oriented design methodology. We will show that the
object-oriented concepts provided a natural paradigm for representing the components of a
live orchestra. The resulting system has been shown to demonstrate responsiveness to a
user’s inputs. Furthermore, the system demonstrates some of the types of expressive
control that a conductor has over a live orchestra. ZED can be used to create live,
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interactive concert performances of synthesized music. In addition, the system can be used
by researchers to experiment with expressive musical control of computer generated sound
in an effort to better understand sound synthesis models, and musical interpretation and
expression.

A key component of the software architecture is the invention of a semantic digital music
representation. This music representation provides many of the same features as the
conventional music notation in use by composers of Western music for hundreds of years.
These properties include instrument independence, extensibility, instrument specific
extensions, and a clear separation between a note and its interpretation. These properties
play an integral role in the success of ZED’s design. The representation separates the
representation of notes and their interpretation as a basis for affecting the interpretation
with interactive control inputs.

Real-time music performance is an interesting computer science problem because it
encompasses several research areas, including discrete event simulation, real-time systems,
and object-oriented software design. Experimental implementations of the design were
done in a variety of programming languages. Initially, portions of the system were
implemented in Pascal [Jensen and Wirth, 1978] and C [Kernighan and Ritchie, 1978].
These languages did not provide sufficient data abstraction, extensibility, and polymorphy
to make them practical for a system of this type. Then, the system was prototyped in
Smalltalk [Goldberg and Robson, 1983]. Smalitalk provided an ideal environment for
experimenting with various designs. The timeliness, however, was affected by the
Smalltalk memory manager and Smalltalk was found to be unsuitable for actual real-time
music performances. Objective-C [Cox, 1987; NeXT, 1989] was found to be an ideal
compromise: it has basically the same semantics as Smalltalk so the prototype could be
trivially ported from Smalltalk to Objective-C; Objective-C provides the ability to statically
bind methods, thus increasing runtime efficiency; and Objective-C does not have a memory
manager. The developer therefore has control over how the CPU cycles are spent. The
Objective-C implementation demonstrates that object-oriented languages on modern
workstations are suitable for implementing real-time systems with the timing requirements
of music performance.

Previous Approaches

A number of real-time performance systems have been developed to date. One type of
system supports low level MIDI patching—the routing of input events from MIDI
controllers to parameters of a synthesis output device. A notable example is MAX
[Puckette, 1986; Puckette, 1988], a MIDI patching application that allows a user to
configure patches via a graphical user interface (GUI). Patches can be defined to use any
input to control any synthesis parameter. MAX is based on an object model whereby
objects, represented by boxes, receive inputs and generate outputs. Interobject
communication is defined by messages, represented with lines between boxes. The user
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can program computations on the data, and can also write code for new objects using a
conventional programming language such as C. MAX could be thought of as a visual
programming language that allows a user to develop applications that manage the data flow
of low-level MIDI data events.

Another type of real-time performance system is an accompaniment system. These systems
extract timing information from inputs generated by a human user with a controller, and
synchronize a synthesizer accompaniment with the user. These systems focus on the tight
integration between a live performer and a sound synthesis accompaniment.
Accompaniment systems are generally closed applications whose behavior cannot be
changed by the user. The functionality of accompaniment systems could be programmed
in MAX, but MAX is not in and of itself an accompaniment system.

One example of an accompaniment system is the Conductor Program [Mathews, 1989b].
The Conductor Program was written specifically for the Stanford Radio Baton. The
Conductor Program allows a user to control the tempo by striking a surface with the baton.
The program knows on which beats to expect the inputs and synchronizes the
accompaniment with the input when it arrives. Other inputs from the baton can be used to
control other aspects of the performance such as phrasing, balance, and dynamics. This
system has been used in numerous concert performances, primarily with a live vocalist and
a live performer of the baton. The system has demonstrated that it is possible to obtain
expressive musical interpretation with synthesized sounds.

Two other accompaniment systems are those of Bloch and Dannenberg [Bloch and
Dannenberg, 1985] and Vercoe and Puckette [Vercoe and Puckette, 1985]. Both of these
systems use a musical instrument for input. The timing of the inputs from the performer
are used to control the tempo of the accompaniment. But unlike the Conductor Program,
these systems use the pitches as well as the time of the inputs. The system can adapt to
errors in the live performer’s performance, such as pitch mistakes and skipped notes.

Another type of software system that has been used for real-time music performance is the
object-oriented tool kit. Tool kits are not complete applications, but rather they provide a
basis for a composer/programmer to develop real-time music performance applications.
They are similar to MAX in this regard, but differ from MAX in that they require that a
textual object-oriented programming language be used to program them. An example of
an object-oriented tool kit that can be used with interactive control is the NeXT Music Kit
[Jaffe, 1989]. The Music Kit can be used to build applications in Objective-C on the NeXT
Computer. Music Kit applications can play score files on MIDI synthesizers and
instruments defined in the NeXT DSP synthesis instrument library. MIDI input can be used
to control synthesis but the tool kit does not have explicit abstractions for configuring real-
time performances. Like MAX the Music Kit can be programmed to track a score, but no
explicit notion of an accompaniment is provided.

These real-time performance systems have different goals. The accompaniment systems
were designed to enable the concert performance of computer music under the real-time
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control of a live user. These systems use a specific controller and specific synthesis
devices. MAX was designed as a tool for non-programmers to specify and execute real-
time music performances with a variety of different controllers and synthesis devices. The
Music Kit was designed as a framework for programmers to develop real-time performance
applications for the NeXT Computer using MIDI and DSP synthesis.

ZED’s design is based on the decomposition of the live orchestra performance and the
implementation of objects that correspond to the live orchestra components. ZED’s
primary purpose is to validate the proposed model of a live orchestra performance. In
addition to being a simulation system that can be used for concert performances, ZED also
provides a framework for experimenting with expressive musical control of sound
synthesis devices.

As a music performance system, ZED provides a number of features of the other systems.
ZED provides the programmability and extensibility of MAX and the Music Kit. ZED also
provides tight integration of a live performer and a synthesis accompaniment like that
provided by the accompaniment systems. ZED defines an abstract digital music
representation for scores that none of the other systems have. ZED also provides specific
abstractions for the performance that are well beyond those of any of the other systems. For
example, a conductor object provides a mechanism for routing real-time inputs to other
objects in the performance. Performer objects are used that interpret abstract musical
symbols and map them into synthesis parameters. Instrument objects are defined that hide
the specifics of the synthesis device. This approach allows the scores and the real-time
patches to be device independent. The specialization of performer objects through
subclassing and message overriding provides ZED with easy extensibility. In addition, the
use of performer objects creates an evolutionary path for the system so that new
technologies and new knowledge of how to control the technology can be easily
incorporated.

A more detailed description of these other systems and a more complete comparison with
ZED can be found in Appendix C on page 111.

Thesis Overview

Chapter 2, Background and Terminology, provides a brief introduction to object-oriented
programming concepts and terminology for readers who are not familiar the field. Models
and simulation are briefly discussed and an overview of the issues involved in real-time
control are presented. Chapter 3, Music Performance Model, describes the live orchestra.
A model of the live orchestra is proposed by identifying, analyzing, and abstracting the
components of the live orchestra into a set of object definitions and behaviors. Chapter 4,
Architectural Design, describes the architecture of the software simulation system called
ZED that implements the performance model. Chapter 5, MUSE: A Digital Music
Representation, defines a generic score representation as a set of object definitions for the
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symbols that are used to represent printed music. Chapter 6, Real-time Performance,
describes how interactive control inputs are used to control the performance. And finally,
Conclusions summarizes the thesis and discusses ideas for future work.

A number of appendices are also provided. Appendix A, Real-Time Scheduling, provides a
detailed design of ZED’s scheduler, as well as an overview of scheduling algorithms used
in other real-time music performance systems. Appendix B, Score Files, defines the MUSE
score file format and also discusses the mapping of MIDI score files to the generic MUSE
digital music representation. Appendix C, Other Approaches, gives an overview of some
of the other real-time music performance systems developed to date. These systems are
compared and contrasted with ZED. Appendix D, MIDI Specification, provides tables that
show the details of the MIDI specification.
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Chapter 2

Background and Terminology

This chapter presents a brief introduction to the concepts and terminology of object-
oriented programming. Then, the concepts of modeling and simulation are defined as a
basis for thinking about real-time music performance. In the final section, an overview of
the issues involved in real-time systems is presented.

In this thesis, Smalltalk classes and methods are used to define objects and algorithms
[Goldberg and Robson, 1983]. Class names appear in the Helvetica bold font. Instance
variable names, method names, and Smalltalk code appear in the Helvetica font. Parameters
are shown in the Helvetica underline font. The syntax for defining class hierarchies is a list
of class names each followed by a pair of parenthesis containing instance variable names.
A class name that occurs indented below another indicates a subclass.

Object-Oriented Programming

Object-oriented programming evolved from the programming language Simula which
used objects and messages for defining simulations [Nygaard and Dahl, 1966]. The object
and message paradigm provides the primary features of data abstraction, encapsulation and
inheritance. The data abstraction provided by the object model and the message passing
paradigm is important because it allows software to closely reflect real world situations. In
addition, abstraction helps manage complexity because details can be hidden below high
level semantic interfaces. Application openness and extensibility are fundamentally
supported by object-oriented languages through inheritance and encapsulation. These
features facilitate rapid prototyping and provide the ability to adapt systems to incorporate
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new technology and new requirements.

The following section presents the terms and concepts of object-oriented programming in
general, and Smalltalk in particular. The material below was largely taken from the book
Smalltalk-80: The Language and its Implementation [Goldberg and Robson, 1983].

Terminology

An object represents something that exists in the real world and consists of private data and
a set of operations that can access that data. The data is private to the object and can only
be manipulated by the object’s own operations. A message is a request for an object to
execute one of its operations. This operation is called a method and the command carried
by the message is called a selector. The receiver, the object that a message is sent to,
determines how to carry out the requested operation. The set of messages that an object
responds to is called its behavior. The behavior defines the object’s interface to the rest of
the objects in the system. The only way to interact with an object is through this interface.
Because the implementation of one object cannot depend on the internal details of other
objects, only on the messages that they respond to, the objects and messages can be used to
facilitate modular design of software.

A class describes the implementation of a set of objects that all represent the same kind of
component. The individual objects described by a class are called its instances. A class
describes the form of its instances’ private data and how they carry out their operations. An
object’s private properties are a set of instance variables that make up its private data and
a set of methods that describe how to carry out its operations. Subclasses of existing classes
can be defined that inherit the instance variables and methods of the superclass. A subclass
can define a new method with the same selector as a method in a superclass. This is called
method overriding. In addition, a subclass may define new messages that its instances will
respond to that will not be understood by instances of the superclasses. An abstract class
is a class that has no instances but is the root of a hierarchy of classes that share basic
semantics. A concrete class is a class that has actual instances.

Models and Simulation

A model can be defined as “a small representation of a planned or existing object”
[Webster, 1979]. In the computer science field, a computational model can be defined as
a computer representation of a planned or existing object. Models of physical objects like
buildings or automobiles are generally smaller and abstracted from the real objects.
Similarly, computer models are also abstracted and omit some of the detail while still
maintaining the basic properties of the modeled object.

The word simulate means “to act or look like” [Webster, 1979]. Computer simulations
generally model situations that change over time and often have actions or events that must
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be synchronized with some notion of time. A model can be implemented on a computer to
simulate the behavior of the modeled system over time. Computer simulations provide a
framework in which to understand the simulated situation.

Sometimes the notion of time is itself simulated. There are a number of ways to represent
the actions of simulated objects with respect to real or simulated time. In one approach, a
clock runs and at each tick of the clock, all objects are given the opportunity to take any
desired action. Alternatively, the clock can be moved forward according to the time that
the next event will take place. In this case, the system is driven by the next discrete action
or event scheduled to occur. The implementation of a simulation using this approach
depends on maintaining a queue of events (managed by a scheduler) that are ordered in
time. When an event is completed, the next event is taken from the queue and the clock is
moved to the event’s time. This type of simulation is called event driven. In event driven
simulations, a collection of independent objects exist, each with a set of tasks to do, and
each needing to coordinate its activity’s times with other objects in the simulated situation.

Real-Time Systems

A great deal of engineering research has focussed on understanding the nature of real-time
systems. Real-time systems consist of a system that is being controlled, and a system that
controls it. The controlled system has an environment in which the computer software of
the controlling system interacts with the controlled system. Real-time systems are different
from other computer software systems in that the correctness of the system depends not
only on the logical result of the computation, but also on the system’s timeliness—the time
that the results are produced [Stankovic and Ramamritham, 1988]. Real-time systems are
used extensively in the world for such things as airplane flight control, manufacturing
process control, and robotics. Thus, real-time systems clearly must be fast and predictable,
reliable and adaptive to their environment.

Real-time systems such as those listed above are often referred to as hard real-time
systems. They are characterized as having catastrophic consequences if the logical or
timing constraints of the system are not absolutely met. Applications in music performance
are not hard as there are not catastrophic implications of errors such as playing a note
slightly early or late. Musicians are rarely fired for such small imperfections. (There are,
however, mistakes that may be catastrophic to a musician’s career, such as a misplaced
cymbal crash in the middle of a pianissimo aria!) In addition, real-time music performance
systems may be thought of as firm in that it is important that events happen on time but the
penalty for not being precisely on time is not enormous. Real-time music performance
systems have some flexibility in timing because, according to psychoacousticians, onsets
of musical notes that are separated by as much as 30 ms. are perceived by the audience as
simultaneous [Rasch, 1978]. Many other aspects of the performance other than note onsets
have even more relaxed timing constraints. These are considered soft constraints.
Criticalness is the measure of how critical an operation is and how urgent is it that it happen
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at a precise time. Many aspects of hard real-time systems have a very high degree of
criticalness. Because of this, hard real-time systems are much more difficult to design,
simulate, and implement than real-time music performance systems. The work presented
in this thesis does not address the timing demands placed on hard real-time systems. Only
the timing constraints required to perform compositions of the complexity of a symphony
in real-time are addresses in this thesis.

Real-time systems have explicit timing constraints attached to tasks that the system must
accomplish. Some form of priority scheduling is used for the task, where the time
constraint and criticalness are mapped into a single factor, namely the priority. Highly
critical tasks typically occur at a lower frequency, thus reducing the contention for
computing resources and insuring timeliness. Some real-time systems are periodic in that
they perform tasks at regular intervals. Music performance systems are instead aperiodic
because notes and interactive inputs do not necessarily happen at regular intervals.

Real-time systems can be static or dynamic. In static systems all events are known before
runtime and early or static binding is used to precompute all values. Such systems are
inflexible at runtime and do not respond to feedback or interactive input but have very low
runtime overhead, making it easier to insure timing correctness. A static real-time music
performance system would be one in which a score is compiled into precise synthesis
parameters and the precise time that they are to be sent before the performance begins.
Such a performance would be virtually the same as playing an the audio tape performances
of non-real-time music because it would be identical every time. Dynamic systems have
greater runtime overhead, but are more flexible at runtime because they use late or dynamic
binding. A dynamic real-time music performance system is responsive to interactive input
from a user and may also create new events during the performance, but such an approach
may make it difficult to achieve the timing constraints.

An interesting property of real-time systems is that you can trade timeliness for quality.
That s, if the system’s response to an input can be delayed, the time can be used to compute
a more accurate value for the input or to process the input more completely. In
implementation terms this trade-off is shown in responsiveness. Therefore, in order to
maintain both responsiveness and timeliness, the system must be optimized to begin the
computation of the synthesis parameters at a time that precedes the time that the update is
to be made by the amount of time the computation takes.

State-of-the-art software engineering methodologies, and object-oriented software
engineering in particular, have introduced features such as modularity, abstract data types,
and message passing. These features are being widely used for building complex, non-real-
time applications that are maintainable and extensible over projected long lifetimes. These
features are often perceived by researchers in real-time systems as being in conflict with
real-time requirements. This thesis presents a real-time system that uses an object-oriented
paradigm providing modularity and abstraction, while still providing the level of timeliness
required by real-time music performance.
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Chapter 3

Music Performance Model

The first section in this chapter presents an overview of the real world orchestra in a
concert performance. The overall dynamics of the orchestra performance are described.
The orchestra is then decomposed into components, each of which is analyzed. The final
section presents a model of the live orchestra that defines objects that are one-to-one with
each of the real world entities. This model is the basis of a simulation system called ZED
that implements the model.

Orchestra Performance Analysis

A live orchestra consists of a group of musicians, called performers, that are coordinated
by a conductor. Each performer has one or more pages of printed music called a part and
an instrument used to generate sound. The conductor has a score consisting of pages of
printed music and contains all of the parts.

Conductor and Performers

The conductor is a human that oversees the performance and has some means of
communicating to the performers. The conductor can affect the performers’ interpretation
of their respective parts, control the balance of the ensemble, and coordinate the group
dynamics and tempo. A performer is a human who reads a part, interprets the symbols in
the part, and generates appropriate inputs for a musical instrument based on those symbols.
In addition, the performer accepts and interprets input from a conductor and adjusts the
performance accordingly. The performer’s interpretation of the symbols in the part is a
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result of training and taste, the style of the composition, the conductor’s input in rehearsal,
the conductor’s gestures during the performance, and the balance of the ensemble as heard
by the conductor (which is affected by such things as the acoustics of the concert hall.) The
performer’s interpretation may vary slightly in different performances.

Instruments

A musical instrument is an acoustical device that responds to gestural inputs from a
performer by generating an acoustic audio signal that reflects those inputs—the type of
gestural input that an instrument responds to varies dramatically across instrument families.
For example, string instruments are bowed or plucked, wind instruments are blown, and
percussion instruments are struck. Performers develop skills that are specific to their
particular instrument, as one would not generate musical sound by blowing on a triangle or
plucking a flute.

Score and Parts

A score is the printed representation of a composer’s musical ideas. A score consists of a
collection of parts, one for each performer. Each part consists of a collection time ordered
symbols, called notes, that describe to performers in a high-level, abstract representation,
how the music should sound. The symbols in the parts are basically instrument
independent—they are the same for all instruments. A part may also contain symbols that
are specific to an instrument such as pedal markings for piano and bowings for string
instruments.

In addition to notes, the parts contain interpretation symbols defining how the notes are to
be interpreted. Examples of interpretation symbols are tempo, dynamics, meter, and key.
The score may also contain additional annotations and cues for the conductor specifying
information that is to be communicated to the performers during the performance.

Performance Dynamics

An orchestra performance can be viewed as a real-time control system where the devices
being controlled are acoustical musical instruments and the system controlling the
instruments is a collection of human beings. The score and parts provide the definition of
the composition that is to be played. There is a high degree of concurrency in a live
orchestra performance. The performers play their instruments simultaneously while a
conductor conducts them. Each performer provides direct control over their instrument
with physical gestures. The conductor provides indirect control over the entire ensemble
by communicating information to the performers with physical gestures that cause them to
change the input to their instrument.

A diagram showing the components involved in a live orchestra performance are shown in
FIGURE 3.1. The orchestra has two types of feedback loops. The performers listen to the
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Performer

Instrument

FIGURE 3.1 Orchestra performance dynamics.

Each performer receives visual input from a printed part and the conductor receives visulal input from the printed
score. Each performer provides outputs to their instrument based on the part and visual input from the
conductor. The acoustic oulﬂut of the instruments provides auditory feedback for the performers and the
conductor. The black drop shadows indicate that the performance has multiple performers, each with one part
and one instrument.

sound they are generating and that of the other performers. They continuously adjust their
sound by changing the volume, intonation, and other properties. The conductor listens to
the sound as well and, through physical gestures, indicates adjustments to the performers
for such ensemble properties as balance, dynamics, and tempo. The performer/instrument
feedback loop has a very short time constant because the performer can immediately
respond to the sound. The conductor/performer/instrument feedback loop has a longer time
constant because the conductor does not have direct control over the instruments. The
conductor reacts to the sound with a physical gesture that is communicated to the
performers. The performers see the gestures, interpret them, and adjust their sound
accordingly.

Orchestra Performance Mode

A model of orchestra performance can be defined that has objects representing the
conductor, performers, instruments, score, and parts. There are, of course, many aspects of
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Performer - Instrument

FIGURE3.2  Orchestra performance model dynamics.

The abstracted components are shown. Communication is done among the objects in the model via messages.
Feedback is provided indirectly via a human user with an input controller device. The user listens to the
performance and can affect the performance. The conductor object receives interactive control inputs from the
user and carries out the user’s wishes by sending messages to other objects.

the live performance that cannot currently be modeled with a computer such as human
hearing and music understanding. Although it is possible to extract some types of
information from acoustical signals in real-time, this is a very hard problem, particularly
for polyphonic music, and is currently unsolved. In addition, it is not currently possible to
build computer models of human vision that can read printed music and understand
physical gestures of a human conductor. Therefore, we will define a simplified model of
the orchestra as shown in FIGURE 3.2.

Because a human auditory model cannot be directly implemented, the models for the
conductor and performers are deaf. This eliminates the two feedback loops of the live
orchestra. The performance model instead relies on a human user to provide an auditory
feedback loop to the system. The user listens to the performance and interactively affects
the performance via one or more input controller devices. The input controllers translate
the user’s physical gestures into control information that is transmitted to the conductor.
The conductor then passes the information on to one or more performers. The basic
dynamics of the performance are not substantially changed because the one feedback loop
can simulate the two of the live orchestra. This is because the user is given two types of
control: direct low level control of the synthesis parameters provided by the performer; and
high-level indirect control similar to that of the live conductor.
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The human user plays another important role in the simulation by providing the musical
spontaneity and expressiveness to the performance. It is not currently possible to
completely model human musical creativity and expressiveness. Artificial intelligence
techniques such as rule based systems could be used to model human performers more
closely [Frydén and Sundberg, 1984]. The ZED system defined in this thesis is designed
to allow such techniques to be incorporated into the system.

Conductor and Performer Objects

The conductor and performers are represented with objects that have methods that mimic
some simple behaviors of their human counterparts. The conductor object has a score
object and each performer object has a part object and an instrument object. Human
performers read a part of music by transforming the visual image of symbols on the page
into a mental representation. Conductor and performer objects emulate this behavior with
methods that read a score file from a computer disk and build an internal digital music
representation of the composition. The score file is read before the performance, thus
removing the need for disk I/O during the performance. This is somewhat analogous to a
human conductor and performers memorizing their respective score and parts so that they
do not require the printed music during the performance.

There is typically only one conductor object in a performance. The conductor object is
responsible for coordinating the performance. The conductor communicates with
performer objects through message passing. At the time that a note is to be played or some
other event is to happen, the conductor object cues the performer object by sending a
message to the appropriate performer object. The conductor object also acts on behalf of
the human user during the performance. When control inputs are received from the user,
the conductor object interprets them and may send a message to one or more performer
objects, or may act on the input itself.

An alternative to having the conductor object send a message to the performer objects for
each note would be to use separate concurrent intercommunicating processes for the
conductor and performers. The performer processes would keep their own time instead of
waiting passively for the conductor’s next cue. The event driven model is used in ZED
instead of the process model because of its conceptual simplicity and because its
implementation is substantially more efficient. The only artifact of the event driven model
is that the conductor cues every note, whereas in the live orchestra, the conductor only cues
each note during brief rubato sections. Otherwise, the live conductor typically only cues
the performers on the beats because it would not be physically possible to cue every note.

The primary task of performers is to map the abstract score data (in their part) into inputs
for their instrument. When the performer object receives a message from the conductor to
play a note, the performer object interprets the note in the context defined by the
interpretation symbols in the part, score, and other information from the conductor. This
interpretation is similar to the interpretation done by human performers. Performer objects,
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like human performers in the live orchestra, must have specific knowledge of their
particular instrument so that appropriate inputs can be computed. ZED uses a number of
different types of performers, each of which is specialized for a particular synthesis
instrument. The use of specialized performer classes for different instruments is analogous
to the live orchestra where, for example, a musician trained only on trumpet is generally
not proficient on timpani.

Instrument Objects

An instrument object is used to represent the acoustic instrument played by a human
performer. The performer object computes inputs for the instrument object, and the
instrument object causes sound to be produced. The instrument object provides the
performer object with an abstraction of the physical interface that connects a workstation
to a synthesis device. After all, human performers needn’t understand the physics of an
acoustical instrument in order to be able to play it. Just as there are different types of
acoustical musical instruments in an orchestra, ZED has different types of synthesis devices
and interfaces, and different instrument classes for each of them. Therefore, specific
instrument classes are provided for each type of synthesis device.

Score and Part Objects

The printed score of the real world orchestra is represented in the model with a digital music
representation. A digital music representation called MUSE was designed specifically for
ZED to address the issues involved in real-time music performance. MUSE defines objects
for the score and parts. In addition, MUSE objects are defined that are one-to-one with the
symbols in a printed score. MUSE, like the common music notation used in printed scores
and parts, is device independent and separates the notes from the interpretation context.

MUSE notes have a pitch, time, duration, and an optional articulation symbol such as
accent, tenuto, or staccato. The properties of a note are represented relative to an
interpretation context that is the same as that used in a printed score and parts. This
interpretation context is the basis of the real-time interactive control. The interpretation
context consists of objects for tempo, dynamics, key, meter, and style. The note’s pitch is
relative to the key; the time is relative to the tempo; the duration is relative to the tempo and
the style; and the note’s articulation is relative to the dynamics, style, tempo, and meter.
The performer objects compute synthesis parameters for their particular instrument by
applying the interpretation objects to each note. The interpretation objects defined in a
performer’s part are local to that performer. The interpretation objects defined in the
conductor’s score are global and therefore affect all performer objects that do not have a
local interpretation defined.
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Chapter 4

ZED Architectural Design

This chapter describes the architectural design of an object-oriented simulation system
called ZED. ZED is an implementation of the orchestra model described in the previous
chapter. In the first section, an overview of the system is presented. Then, class designs
for each of the objects in the model are presented. The adaptability and extensibility of the
design is demonstrated with examples of how to incorporate new sound synthesis
hardware into the system.

System Overview

ZED is a real-time music performance system that simulates live music performance. ZED
was designed using an object-oriented design methodology. A diagram of the computer
workstation environment that ZED is implemented on is shown in FIGURE 4.1. A
computer workstation has connected to it, one or more input controllers and one or more
sound synthesis devices. The audio signals from the sound synthesis devices are mixed,
amplified, and are heard through a loud speaker. A human user interacts with the system
via the input controllers. The control inputs can be used to control aspects of the
performance including the tempo, dynamics, balance, note articulation, transposition, and
the starting and stopping of sequences.

Performance Definition

ZED performances are defined by three files: a score file, a configuration file, and a patch
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FIGURE 4.1 ZED real-time music performance workstation.

ZED uses the real-time inputs from the user to affect the performance by controlling the synthesizers in
different ways. The performance files define the score and how the performance is to be controlled. Two MIDI
input controllers are shown: the Stanford Radio Baton, and a MIDI keyboard. The two types of synthesizers
shown are MIDI and DSP. The user listens to the performance transmitted through the loudspeaker and
provides feedback to the system. The black drop shadows indicate multiple synthesis devices connected to
the same interface: more than one MIDI synthesizer connected to the same serial port or more than one DSP
on a single bus interface board.

file. The score file contains score data for the composition that is to be performed. The
configuration file defines the orchestration of the composition, that is, what instrument is
to play each part and what performer is to play each instrument. The conductor and the
types of input controller objects are also defined in the configuration file. The patch file
contains a set of patches that define how the real-time inputs are to be interpreted and what
action the conductor object is to take when specific inputs are received. Patches may be
defined that affect the conductor or cause the conductor to send messages to one or more
performer objects.
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A given score can be performed in different ways: a different orchestration can be defined
for a score by changing the configuration file to reassign the parts to different performers
and instruments. In addition, a score with a particular orchestration can be performed in
different ways by using different patch files that define different real-time control actions.

Performance Object Design

FIGURE 4.2 shows an overview of the basic performance objects defined in the model.
The classes for the basic performance objects are subclasses of the abstract superclass
ZEDPerformanceObject. All performance objects have a name instance variable that is used
to uniquely identify the object. The name is used in the configuration files for specifying
which instrument and part is associated with each performer object. The name is also used
in the patch file to specify real-time control messages to be sent to the object. The class
hierarchy is shown below. The instance variables in the Helvetica italic font indicate internal
instance variables that are not shown in the diagram.

Object ()
ZEDPerformanceObiject (name)

Conductor (score performers inputControllers scheduler patches
interpretationContext currentEvents)

Performer (conductor part instrument
interpretationContext scheduleMessage)

Instrument ()

InputController (conductor)

Music Representation

An abstract digital music representation called MUSE is defined to represent the score and
parts. The nature of this representation is such that it provides a common abstraction for
musical ideas represented in a variety of different score file formats. Furthermore, the
representation provides an abstraction from the specifics of the particular synthesis
hardware that is to perform the composition. Thus, it is similar to the common music
notation used by Western composers to notate music. It provides a single abstract
representation that is, for the most part, independent of the particular instrument. FIGURE
4.3 shows how score files are converted to the MUSE representation, that is then converted
to device specific parameters by the performer objects. The generic representation
simplifies the overall system architecture because the performance objects all operate on
the same score objects regardless of the score file that the data came from.

Real-time Performance Overview

FIGURE 4.4 shows the ZED objects and the information flow through the system. The
performer objects map the abstract score data to device specific synthesis parameters called
packets. When real-time input is received during the performance, the conductor object
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FIGURE 4.2 ZED performance objects.

The arrows are labeled with the corresponding instance variable name. The conductor has a scheduler that
enables the coordination of events. The conductor also has a set of patches that define what actions are to be
taken when real-time control inputs are received. Double arrows indicate a collection of objects of the
specified type. Drop shadows Indicate multiple instances of the class. An arrow between two objects with
drop shadows indicates that each source object has one destination object. The gray arrows indicate how
data enters and leaves the workstation.



The Conductor

MUSE MIDI
Score Score
Reader Reader

MIDI DspP
Performer Performer

MIDI DSP
Synthesizer Synthesizer

FIGURE 4.3 ZED score file and device independence.

The dia%ram shows score file independence and device independence. Score files are converted to MUSE
objects by score readers and performer objects then convert the muse objects to packets for their particular
instrument.

acts on the input by sending messages to performer objects. These messages affect the
mapping of the score data to the synthesis parameters, thus changing the sound of the
performance.

The Conductor

The definition of the conductor class is shown below. The instance variable score for the
conductor is the entire score and the instance variable performers is a collection of all
performers, one for each part in the score. The instance variable inputControllers contains
input controller objects for real-time control, and is nil if the performance is not under real-
time control. The instance variable scheduler contains an instance of the class Scheduler.
The scheduler is used to manage events and coordinate the performance. The conductor
also has an instance variable patches that contains a collection of patch objects that define
how the real-time inputs affect the performance. The instance variables
interpretationContext and currentEvents are used during the performance to cache the global
interpretation context, and the events that are currently being played, respectively.
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DSP MIDI
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FIGURE 4.4 ZED objects and data flow.
The Joerfonner objects take the high-level score data from their parts and messages communicated from the
conductor, and compute low level synthesis parameters for their particular sound synthesis device. Each
instrument object encapsulates an output device driver for the particular physical interface with the
workstation. Similarly, the input controller objects encapsulate an input device driver for the physical interface
for the input controller device. The MIDI controller in the diagram represents any humber of MYDI controllers
attached to the same MIDI serial port.
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Object ()
ZEDPerformanceObject (name)
Conductor (score performers inputControllers scheduler patches
interpretationContext currentEvents)

Input Controllers

Input controller objects provide an interface between the input controller device and the
conductor object. The class InputController is an abstract class defining the basic semantics
for all controllers. One concrete subclass is defined for each fype of controller interface.
Each concrete input controller class encapsulates a software input device driver that
receives data from the controller device via the controller’s interface. For each subclass of
InputController a corresponding packet class is defined as a subclass of the abstract class
ZEDEvent. The packet class defines the object that is created by the input controller object
from the input data and is passed to the conductor. The class hierarchy for a system that
has only MIDI input controllers is shown below.

Object ()
ZEDPerformanceObject (name)
Conductor (score performers inputControllers scheduler patches
interpretationContext currentEvents)
InputController (conductor)
MIDIController (port)
ZEDEvent (time)
MIDIPacket (statusByte datal data2)

The class MIDIPacket defines objects that hold the data received from a MIDI interface.
These MIDI packet objects are sent to the conductor from MIDI controller objects. (The
same packet class is used by MIDI performers to send MIDI data to a MIDI instrument.)
There is one instance of a concrete input controller class for each physical interface. For
example, if MIDI input can be received through two separate serial ports on the
workstation, there is one instance for each port. Additional classes can be defined for other
types of serial input controllers, or for controllers that have bus interfaces. The data
abstraction capabilities of object-oriented languages allow the details of the particular
devices to be hidden from the conductor object, allowing the conductor object to operate
on all control data in the same way.

Input controllers are referenced in patches by their name. Input controllers also have an
instance variable containing the conductor object. When a control input is received, a
message is sent to the conductor with the data. In the case of MIDI controllers, the
controller has a port that identifies which physical serial port on the computer workstation
will receive the data.

A variety of different control devices can be used to control the performance. Control
devices are divided into two basic categories: triggers and continuous controllers. Triggers
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are devices that send “down” and “up” events and include devices such as pedal and button
switches, or MIDI drums. Continuous control devices send continuous data values and
include volume pedals, modulation wheels, and sliders. An interesting property of the
Stanford Radio Baton is that it can provide both continuous control and trigger control.
Trigger devices are often used for initiating or terminating a note, or a repeated sequence
of notes. Continuous devices are most often used to dynamically update state variables in
the performance. For simplicity it is assumed that all controllers that generate voltages,
such as the Stanford Radio Baton, have their voltages converted to MIDI so that the data
enters the system through a standard MIDI interface.

Scheduling

The scheduler helps the conductor coordinate the performance by maintaining a list of
events ordered by the time that they are to be executed. ZED’s scheduler is a hybrid
scheduler that separately manages events whose time is statically bound, and those whose
time is bound during the performance. ZED’s scheduler also supports multiple time
references, allowing different parts of the score to be under independent real-time tempo
control. The complete hierarchy of classes that define ZED’s scheduler are shown below.

Obiject ()
QueueEvent (receiver selector parameter next)
QueueNode (time eventList next eventListTail)
Queue (nodeList currentNode tempo nextQueue)
QueueWithOffset (offset)
RepeatedQueue (numberOfRepeats counter queuelength)
ZEDScheduler (queuelist currentTime)

The class ZEDScheduler has an instance variable queuelist which is a linked list of queues.
Each queue has a list of time ordered nodes that each have a list of all events that are to be
played at the node’s time. Each queue may have its own time reference. The scheduler
merges the queues at runtime, selecting the node with the earliest time by comparing the
next node of each of the queues. Each queue event in the node’s eventList has a receiver
object, a selector for the message, a parameter to the message, and a pointer to the next
event that occurs at the same time. The instance variable tempo on the class Queue allows
each queue to have a different time reference. The class QueueWithOffset is used to
instantiate sequences at various points in the performance. The class RepeatedQueue is
used to optimize repeated sequences.

A detailed discussion of real-time scheduling and ZED’s scheduler design can be found in
Appendix A, Real-Time Scheduling, on page 77.

Patching

The conductor’s instance variable patches contains a collection of patch objects. Patch
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value : form: select ith: 1
selection receiver perform: selector with:}

Each input is sent to all patches. Each patch applies the associated filter and if the filter selects the input, a
value is extracted from the input. The message is then sent to the receiver with the extracted value as the
parameter.

objects specify which control inputs are to be recognized by the conductor and what action
is to take place when a control input is received. The class definition for patches is shown
below.

Object ()
ZEDPerformanceObject (name)
Patch (inputController filter receiver selector valueSelector)

Patch objects inherit the instance variable name from the superclass
ZEDPerformanceObject. Each patch consists of: an inputController, containing the object
that receives the input from the controller device; a filter that selects inputs based on some
criterion; a receiver, defining the performance object that is to act on the input; a selector,
specifying the message that is sent to the object when an input is selected by the filter; and
a valueSelector, specifying a message that is sent to the input packet object that extracts a
value that is the parameter to the message specified by the selector. Each time a real-time
input is received, it is passed to all patches, effectively applying an “or” function across all
the patches. FIGURE 4.5 shows an overview of the patching mechanism.

31



ZED Architectural Design

Methods for selecting data are implemented on concrete subclasses of the abstract class
Filter, and are specified by the data filter selector. Methods for data extraction are
implemented by the input packet classes (i.e., MIDIPacket). These methods constitute a
library of reusable methods that can be extended with new methods to process the control
inputs in more sophisticated ways.

Filter Objects

In addition to an input packet class, a concrete filter class is defined for each type of input
controller. The complete class hierarchy for handling MIDI input controllers is shown
below.

Object ()
ZEDPerformanceObject (name)
InputController (conductor)
MIDIController (port)
Patch (inputController filter receiver selector valueSelector)
Filter (dataFilterSelector parameters)
MIDIFilter (statusCode channels)
ZEDEvent (time)
MIDIPacket (statusByte datal1 data2)

Filters inherit the instance variable name from the class ZEDPerformanceObject. Patches
reference filters by their name. The filter’s dataFilterSelector and parameters instance
variables specify a message (and its parameters) that is sent to the input packet object to
filter events based on the packet’s data.

All input packets are instances of a subclass of the class ZEDEvent. ZEDEvent provides an
instance variable for the time that the event is received. Control inputs received from a
MIDI controller are instances of the class MIDIPacket. All MIDI inputs have a status byte
defining the type of event that the filter selects. There are two basic types of MIDI inputs:
channel events and system events (shown in TABLE D.1, and TABLE D.2 in Appendix D).
The status byte of MIDI channel events has two parts, a code and a MIDI channel number.
MIDI channel events also have one or two data bytes (depending on the status code). MIDI
system events have a status byte that is a code and has no channel. MIDI system events
may have zero, one, or two data bytes. The same MIDI packet class is sufficient for
representing either type of MIDI input.

The statusCode instance variable for MIDI filters selects all input packets with the specified
status code. The instance variable channels specifies which MIDI channels events are
selected. The instance variable dataFilterSelector specifies a message that is sent to the input
packet object that will select or reject the packet (by returning true or false) based on the
data values and using the filter’s parameters. These methods may be arbitrarily complex,
but they are generally quite simple and select packets with specific status codes, channels,
and explicit values or ranges of values for data1 and data2.
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FIGURE 4.6 Performer and instrument interfaces.

Abstract MUSE notes are interpreted by each performer in their playNote: method. This method computes
instrument packets for the particular instrument. These packets are then sent to the device via the
playPacket: method.

Performers

The class Performer is an abstract class used to define performer objects. For each type of
synthesis device, a subclass of the class Performer is required to translate the abstract score
representation into specific synthesis parameters for the synthesis device being played. The
device specific synthesis parameters computed by the performer object are held by a packet
object. There is one packet class for each type of synthesis device interface and this packet
class can be shared with input controllers that use the same interface. For example, MIDI
synthesizers and MIDI controllers use the same packet class MIDIPacket. The packet class
defines the interface between the performer and the instrument and is somewhat analogous
to the instrument specific physical gestures that a live musician applies to an acoustic
instrument.
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The class hierarchy shown below defines the basic classes for MIDI and DSP performers
and the corresponding packet classes.

Object ()
ZEDPerformanceObject (name)
Performer (conductor part instrument
interpretationContext scheduleMessage)
MIDIPerformer ()
DSPPerformer ()
ZEDEvent (time)
MIDIPacket (statusCode datal data2)
DSPPacket (parameterValues)

There is one performer instance for each part in the score, and one instrument instance for
each performer. The instance variable part for each performer is the performer’s part from
the score. The instance variable instrument is an object that encapsulates the device that the
performer object is controlling. (The instance variable interpretationContext is used as a
cache during the performance and the instance variable scheduleMessage is used for
scheduling events.) The instance variable conductor is the conductor object that has the
performer object in its performers collection.

The primary function of the performer object is to compute device specific packets from
the score data for each note in the score in the context of the interpretation symbols. This
computation is done in a method called playNote: that is implemented by each performer
class. The playNote: method computes one or more packets and sends them to the
instrument object. Thus, the interface between the conductor and the performers is
homogeneous regardless of the type of synthesis instrument being played as shown in
FIGURE 4.6. FIGURE 4.7 shows the inputs and outputs of this method for MIDI performers.

Instruments

An instrument object represents a particular voice or timbre that is implemented on the
sound synthesis device. The class Instrument provides an abstraction of the physical
synthesis device and, like the class InputController, requires a subclass for each type of
synthesis device interface. The class hierarchy shown below defines the basic classes for
MIDI and DSP synthesis devices.

Object ()
ZEDPerformanceQObject (name)
Instrument ()
MIDlinstrument (port channel)
DSPInstrument (parameterAddresses)
ZEDEvent (time)
MIDIPacket (statusCode data1 data2)
DSPPacket (parameterValues)
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MUSE Note

Method
Dynamics playNote B

FIGURE 4.7 MiDIPerformer playNote: method.

The MIDI performer’s method for playing a note is shown. The note is the parameter to the method and the
method uses the performer’s interpretation context. The interpretation context may be the global
interpretation context defined by the conductor, or may be defined locally by the performer object.

The concrete instrument classes MIDlinstrument and DSPInstrument encapsulate a software
output driver. The packet classes MIDIPacket and DSPPacket define the type of object that
is passed from the performer to the instrument. MIDI instruments have an instance variable
port that refers to which serial port on the workstation is to be used. The instance variable
channel refers to the channel of the instrument’s timbre on the MIDI synthesizer. Each DSP
instrument object has a set of parameterAddresses that are one-to-one with the DSP packet
object’s parameterValues. Each instrument class implements the method playPacket:. This
method is sent by the performer object to generate sound. The parameter to the method is
a packet object for the particular device. The playPacket: method moves the data to the
synthesis device’s hardware interface (a serial port or a DSP card on the workstation’s bus)
causing sound to be generated.
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Performer Specialization

Each synthesis device implements a number of different timbres (or voices) that may have
different semantics as well as different control parameters. Some instrument voices are
percussive (not sustained). Other voices like those for wind instruments are sustained and
may have a variety of capabilities that percussive timbres do not have. Most notably,
sustained instruments need to be explicitly turned off. Some voices may control vibrato
and may change timbre parameters to create different types of note attacks. DSPs are the
most general synthesizers and can be used to implement a wide range of synthesis
algorithms. The synthesis parameters and continuous control capabilities may vary greatly
across these algorithms.

Specialized performer classes may be defined as subclasses of the basic synthesis device
performer class to take advantage of timbre parameters of the instrument voice. Each
performer subclass implements a playNote: method by computing data packets for the
particular instrument voice. One performer class can be implemented for families of
instrument voices that have similar control capabilities as shown below.

Object ()
ZEDPerformanceObject (name)
Performer (conductor part instrument
interpretationContext scheduleMessage)
MIDIPerformer ()
MIDIPercussionPerformer ()
MIDIWindPerformer ()
MIDIDX7Performer ( )
MIDIDX7MyPatchPerformer ()
DSPPerformer ()
DSPWaveGuidePerformer ( )
DSPAdditivePerformer ()
DSPFMPerformer ()

In the above class hierarchy, there are three subclasses of the generic class MIDIPerformer.
The class MIDIPercussionPerformer in the example is optimized to only send “note on”
packets whereas a MIDIWindPerformer sends “note off” packets and modulation (vibrato)
packets. The class MIDIDX7Performer is used for a specific MIDI synthesizer, namely the
Yamaha DX-7. Instances of this performer class access the specific timbre parameters
provided by the DX-7. The performer class MIDIDX7MyPatchPerformer controls the timbre
parameters for a specific DX-7 patch.

The methods for the specific DSP performer classes are related to the particular DSP
instrument library that defines the synthesis algorithms being used. In general, a performer
class is defined for each of the different synthesis techniques provided by the DSP
instrument library. It is likely that these classes may be refined and enhanced over time as
new synthesis techniques are developed. In the example, the playNote: method for the class
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DSPFMPerformer implements plays accented notes by increasing the brightness.

Encapsulating DSP Instrument Libraries

This thesis does not address the problem of real-time music synthesis. Therefore, ZED
relies on existing technologies such as MIDI and DSP synthesis to create the performance.
The classes for DSP synthesis presented in the previous sections provide a framework for
developing DSP synthesis algorithms and encapsulating them with instrument objects. An
attractive alternative to developing synthesis algorithms is to encapsulate existing DSP
libraries such as those provided on the NeXT Computer [Smith et al., 1989]. To
accomplish this, a class called NeXTPerformer is defined as shown below.

Object ()
ZEDPerformanceObject (name)
Performer (conductor part instrument
interpretationContext scheduleMessage)
NeXTPerformer ()

Each NeXT performer object has an instrument that is an instance of the Music Kit class
“SynthInstrument.” The Music Kit class “Note” defines the input to the “SynthInstrument”
object. In the Music Kit, a note is played by the method “realizeNote:fromNoteReceiver:”
implemented on the “SynthInstrument” class. Therefore, the NeXT performer implements
the method playNote: to convert a MUSE note object to an instance of the Music Kit “Note”
class, which is passed as the parameter to the “realizeNote:fromNoteReceiver:” method.
FIGURE 4.8 shows how a note is played by an instances of the class NeXTPerformer. The
NeXT Music Kit takes care of the rest! The class NeXTPerformer could be further
subclassed to provide additional specialization for particular synthesis algorithms
implemented by patches in the Music Kit.

Incorporating Other Synthesis Technologies

Other synthesis technologies can be incorporated into ZED as well, such as the IPE
synthesis hardware [Wawrzynek et al., 1984; Wawrzynek, 1987]. The IPE synthesis
hardware has been used to implement physical models of musical instruments. A desirable
property of physical models is that the parameterization of the instrument maps closely to
intuitive parameters that correspond to physical gestures of live musicians. For example,
an IPE struck instrument (a percussion instrument) has parameters that describe the “type
of mallet,” “how hard to strike,” and “where to strike.” An IPE wind instrument has
parameters such as “how hard to blow” and “how breathy is the sound.” High level,
intuitive parameters make the synthesis models easier to use and understand by composers,
and also reduce the control bandwidth required to control the synthesis. The class hierarchy
below is an example of how the IPE hardware might be incorporated into ZED. The
hardware could be connected to the bus of the workstation and the IPEInstrument would
have a software driver that would memory map the coefficientValues into the corresponding
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a NeXT
Performer

Synthinstrument

FIGURE 4.8 Encapsulating the NeXT Music Kit instrument library.

The messages for |g)laying a note on a NeXT “Synthinstrument” are shown. The NeXTPerformer object
converts the MUSE note to a NeXT Music Kit “Note” and sends the NeXT Music Kit message
‘realizeNote:from:” to a NeXT “Synthinstrument.”

coefficientAddresses. The IPE performer classes would have methods that compute the
model coefficients from the abstract score data.

Object ()
ZEDPerformanceObject (name)
Performer (conductor part instrument
interpretationContext scheduleMessage)
IPEPerformer ()
IPEPercussionPerformer ()
IPEWindPerformer ()

38



Summary

Instrument ()
IPEInstrument (coefficientAddresses)
ZEDEvent (time)
IPEPacket (coefficientValues)

Summary

The ZED design defines objects that define methods for some of the simple behaviors of
each of the components in the live orchestra. A digital music representation is defined for
the score and parts that has the properties of the common music notation used by composers
for printed music. This music representation provides a basis for real-time control because
the note symbols and their interpretation are separated. Performer classes are defined that
map the abstract MUSE notes to packets that are specific to the corresponding instrument
class. ZED’s design relies on the object-oriented features of data abstraction, inheritance,
and encapsulation. The design’s extensibility facilitates the definition of specialized
performer classes that take advantage of specific sound synthesis algorithms. The
definition of performer and instrument classes to incorporate new sound synthesis
technologies is also facilitated. More sophisticated performer interpretations of MUSE
notes can be implemented by subclassing a performer class and overriding the playNote:
method.

Instrument classes hide the low level details of the synthesis hardware from the performers
(just as the details of the physics of an acoustic instrument are hidden from the live
performer). New synthesis devices can be incorporated into ZED by defining a new
instrument class with a playPacket: method for transmitting the data, and a corresponding
performer class with the method playNote:. Existing instrument libraries can also be used
by ZED by defining a performer object that provides an interface to the library.
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Chapter 5

MUSE: A Digital Music Representation

The orchestra performance model requires a digital music representation for representing
score data. Because there was no existing digital music representation that provided the
semantic power of the common music notation used by the live orchestra, a new
representation was invented to be used with ZED. We call our digital music
representation MUSE. The score file format for representing MUSE objects in ASCII files
can be found in §MUSE Score Files in Appendix B on page 89.

The first section in this chapter discusses the common music notation used by composers
for notating scores for live musicians. The key features are identified. Then, the MUSE
score representation is defined as a set of classes defining objects that represent the symbols
in common music notation. The extensibility of MUSE is highlighted to show how it can
be extended beyond common music notation symbols, providing the ability to define new
symbols that can be used to gain precise control over the expressiveness of the
performance.

Common Music Notation

A music notation is a system of written symbols, a language if you will, by which musical
ideas are represented and preserved for study and performance [Read, 1979; Rastall, 1982].
Common music notation is a notation that has evolved over the last few centuries for
notating Western music [Byrd, 1984]. Thus the notation acts as a set of instructions to
performers who create the sound of the music. A digital music representation could be
thought of as a digital encoding of the symbols of music notation by which musical ideas
are represented and preserved to be read and performed by computers.
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Lukas Foss [Foss, 1976] commented on the balance between music notation and
performance expressiveness in the following way: ... Performance also requires the
ability to ‘interpret” while at the same time allowing the music to ‘speak for itself.”” This
statement applies to music performance by computers as well as by humans. That is, the
dynamic interpretation of a composition is an important component of performance. The
underlying representations of music must allow the performer flexibility during the live
performance while still conveying the composer’s intent. To this end, common music
notation (CMN) is a symbolic representation in which a graphical symbol represents a
musical concept rather than instructions on how to play the instrument (as in tablature
notations of the sixteenth century [Grout, 1973]). CMN support a separation between the
representation of notes and the interpretation of them. Composers communicate the
abstract ideas of the properties of the sound, and leave it up to the live performers and
conductor to carry out their ideas. CMN is basically instrument independent. A composer
can, however, also notate instrument specific information, such as bow markings for string
players or mallet choices for percussion players. If such a part were to be played on another
instrument these symbols would be ignored.

CMN has proven to be a powerful notation, allowing a variety of interpretations to be
applied to the same composition, thus making each performance dynamic and unique.
CMN is also flexible enough to allow composers to extend the vocabulary of symbols to
express twentieth century musical scores such as Boulez’s use of time-varying functions
for tempo [Stone, 1975] and others [Read, 1978; Smith, 1975].

MUSE Overview

There are four basic properties of CMN that are the basis of the MUSE representation:
high-level semantics; separation between the representation and the interpretation;
instrument independence; and extensibility allowing the symbol vocabulary to be expanded
to include instrument specific symbols, as well as symbols for non-Western and twentieth
century musical concepts. MUSE is based on our earlier work in music representations
[Dyer, 1986; Dyer, 1987]. MUSE’s semantics are designed to be sufficiently rich so as to
support the mapping of a variety of types of score files with different semantics to a single
generic MUSE score that can then be played on any ZED instrument.

A number of digital music representations have been defined for use in particular computer
music applications. Many of the representations for music synthesis applications are based
on note lists after those of Music V [Mathews, 1969a]. This representation has a list of
“notes,” each with the set of synthesis parameters required to realize the note. Notes
contain explicit frequencies, start time and end time, and timbre and envelope parameters.
This type of note list representation has the same flavor as the tablature representations of
the Renaissance in that they describe how to play the instrument rather than abstract
musical ideas.
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Music V’s note representation is a practical and efficient way to represent non-real-time
sound synthesis, but is inadequate for real-time performance. This is because the synthesis
parameters are statically bound before the performance, thus preventing dynamics
interpretation of the notes. Such note lists are therefore not well suited for interactive
control which requires that the sound parameters be computed during the performance right
before they are played.

MUSE Components

The primary symbols in a score are notes and rests, defining the initiation of sound and
silence, respectively. Each note may have more detailed information for the attack and
articulation, defining the complex envelope of the note. Articulation symbols may also
include instrument specific symbols such as bowing marks for string instruments and pedal
indications for piano.

Notes are interpreted by the performer in terms of an interpretation context that consists of
five interpretation symbols: tonality, tempo, meter, dynamics, and musical style. The
note’s frequency, time, complex envelope, and loudness are not known without this
interpretation information. Some interpretation symbols in a score are global in the sense
that they apply to all performers, and others are local in the sense that they apply to only
one performer or a small number of performers.

Numbers

All numeric values in a MUSE score, such as the time and duration of each note, are
represented as instances of a subclass of the abstract class Number. The class hierarchy for
numbers is shown below.

Object ()
Number ()
Smallinteger ()
Float ()
Fraction (numerator denominator)

A variety of different representations for numbers are supported because different score file
formats use different types of numbers. Smalllnteger is typically used for representing time
in milliseconds or some other fractional part of a second. Some computer music systems
represent numbers with Float, but this is often problematic due to round off error. Score
file formats that are used in printing applications generally use some form of Fraction to
allow the precise representation of rhythmic values such as triplets and more complex
rhythms like 11:13, 15:17.

43



MUSE: A Digital Music Representation

MUSE Symbols

Each MUSE symbol is defined as a concrete subclass of the abstract class MUSESymbol,
shown below.

Object ()
MUSESymbol (time)

The class MUSESymbol defines the instance variable time that specifies when the symbol is
to take place measured from the beginning of the composition. The time is in units of beats
rather than physical time, and can be any number as described by the number class
hierarchy. The distinction between abstract time and physical time is important because it
allows the tempo to be under interactive control, thus changing the mapping of beats to
seconds.

Interpretation Symbols

The interpretation context holds a set of the interpretation symbols that define how notes
are interpreted: the tonality consisting of a key scale, a key note, and a tonal system; the
meter defines the metrical pulse; the tempo defines how beats are mapped to physical time;
the dynamics define how loud the notes are played; and the style defines the “feel” of the
composition.

The conductor object has an interpretation context that is global to all performer objects,
and changes to any of the interpretation symbols are communicated simultaneously to all
performers. In addition, each performer object may have their own interpretation context
that may be independent of the global context or may share some state with the global
context. The primary way of controlling a ZED performance is by updating the state of the
interpretation symbols based on real-time input, thus causing the performers to interpret
their notes differently.

The class InterpretationContext is defined below.

Object ()
MUSEODbiject ()
InterpretationContext (tempo dynamics meter tonality style)

Interpretation symbols are sticky—when an interpretation symbol occurs in a score, its state
variables stay in effect until the next interpretation symbol of the same type occurs. Exactly
one interpretation symbol for each of the five types is in effect for each note in a
performer’s part.

The class hierarchy for interpretation symbols is shown below. Each interpretation symbol
object may have a name. Interpretation symbol objects can be referenced in configuration
files and patch files by their name. The subclasses of InterpretationSymbol are discussed
in the sections that follow.

44



MUSE Components

Object ()
MUSESymbol (time)
InterpretationSymbol (name)
Tempo (metronomeMarking)
Dynamics (level)
Tonality (keyNote tonalSystem)
Meter (beatsPerMeasure referenceBeat stressSelector)
Style (articulation)

Tempo

The tempo object controls the overall pace of the performance. The instance variable
metronomeMarking stores the instantaneous or current metronome marking as the number of
beats per minute. The tempo class implements the method secondsFor:. This method maps
a number of beats to physical time, as shown below.

secondsFor: beats
“Map the beats to seconds.”
“beats * (60.0 / metronomeMarking)

Dynamics

The class Dynamics controls the overall volume of the performance. The instance variable
level stores the current dynamics level. The dynamics level is expressed as the percentage
of the maximum. This unitless value enables device independence, allowing each
performer object to compute their own dynamics relative to the maximum level for their
instrument. '

Meter

The meter is the grouping of pulses or units within a single measure, or a frame of two or
more measures [Creston, 1961]. The GRIN computer music system [Mathews, 1976] used
a periodic amplitude function to represent primary and secondary accents for a particular
meter. MUSE defines a class and a set of methods that represents the simple and compound
meters of Western music (such as 4/4 and 6/8 respectively), and also arbitrary periodic
functions such as those used by GRIN.

The instance variables beatsPerMeasure and referenceBeat are used to denote the time
signature of the composition. The instance variable stressSelector is a selector specifying a
method on the class Meter. The method has one parameter, a beat number, and computes
the instantaneous stress for the parameter. The stress is also unitless and is expressed as a
percentage of the value of no stress. Thus, if there is no metric pulse, the method that
implements the stress selector returns the constant 1.0. These methods are used in the same
way that GRIN uses periodic functions for the amplitude. An example method for a
periodic meter for standard 4/4 time is shown below.
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fourFourStressForBeat: beat

“Return
a primary accent on the first beat of every measure (beats 0,48 . . .);
a secondary accent on the third beat of every measure (beats 2,6,10 . . .);
no accent otherwise.”

(beat \\ 4) == 0 ifTrue: [M.5]

(beat \\ 4) == 2 ifTrue: [M.2]

M0

Style

The style is generally notated in CMN with text, often Italian, such as allegro con moto,
marcato, minuet, swing, waltz, and adagio. In the absence of any specific articulation
symbol on a note, the style object provides the articulation and attack. The style may also
set the meter and tempo. For example, if the composition is in a marcato style, the default
articulation may be defined to reflect a slight accent on the beat and a slight separation
between notes, and a tempo of 120 beats per minute.

The way that live performers affect their performance to reflect these symbols is largely a
result of musical training and practices that have been handed down from teacher to student
over hundreds of years. A complete exploration and formalization of musical style and a
thorough investigation of possible computational models is note addressed this thesis.
Some systems have developed sophisticated simulations of musical style [Frydén and
Sundberg, 1984] and such algorithms could be incorporated into ZED through performer
subclassing. The basic MUSE style class could also be subclassed to hold more precise
information. For the purposes of this thesis, the style is defined simply as the default
articulation for each note and further expression is provided by the user who is controlling
the performance. The instance variable articulation contains an instance of the class
Articulation, as described in §Articulation on page 52.

Tonality

The tonality defines how the notes’ pitches are interpreted. The MUSE representation of
the tonality is based on a group theoretic representation of Western tonality [Balzano,
1982]. The approach is generalized to represent a wide variety of pitch representations
including non-twelve-tone scales, microtonal scales, and MIDI key numbers. The basis of
the representation is a group that defines the set of all possible pitches in a composition.
For the Western twelve-tone music, the group C1p = {0, 1,2, 3,4, 5,6, 7, 8,9, 10, 11}
corresponds to the chromatic scale beginning on the note C. The note middle C is called
the origin of the tonal system. Each of the half steps are numbered as shown in FIGURE
5.1. Pitch sets are also ctefined to represent scales. For example, the pitch set {3, 5, 7, 8,
10,0, 2} fepresents an E’ major scale because the half step 3 corresponds to E’, 5to F, 7 to
G, 8 to A’, etc. A special pitch set, called the natural scale, is the set C; = {0,2,4,5,7, 9,
11}. This natural scale describes the pitches in the Cp group that are printed in common
music notation without accidentals and represent the white keys on the piano.
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FIGURE 5.1 The group Cy, and natural scale C;.

FIGURE5.2 Pitches in a C Major scale.

The pitches in a C Major scale are shown. Common enharmonics are shown as two representations for the
same piano key.

The first note in a pitch set is called the key note. The pitch set can be normalized by
subtracting the first note, the key note, from each of the pitches using modulo arithmetic.
Therefore, the E” major scale can be represented as the key note 3 and the pitch set {0, 2, 4,
5,7,9, 11}, and all major scales can be represented with this pitch set and different key
notes. The MUSE pitch representation expresses the key note as a pitch relative to the
natural scale and the pitches in the score relative to a key scetle It also allows enharmonic
pitches—two different spellings of the same pitch such as E” and Df 10 be distinguished.
This is done by specifying an index into the natural scale and an offset in semitones.
FIGURE 5.2 shows how each note in a chromatic scale is represented when used as a key
note.

The MUSE classes representing the tonality are shown below.
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Object ()
MUSESymbol (time)
InterpretationSymbol (name)
Key (keyNote tonalSystem)
MUSEODbiject ()
Pitch (step offset)
Scale (pitchSet)
TonalSystem (chromaticSize naturalScale keyScale tuning)

The class Pitch consists of a step within a scale and an offset representing a distance front
the scale tone. FIGURE 5.3 shows two octaves of pitches represented in the key of E
major.

1,012,0(3,1(4,1150]6,0|7,1

FIGURE 5.3 Pitches expressed in El’ major.

The class TonalSystem has an instance variable chromaticSize that is the total number of
pitches in the tonal system (12 for Western twelve-tone music). The naturalScale defines
the pitches within the chromatic scale that have no accidentals—the C major scale for
Western music. The keyScale is a selection of pitches from the chromatic scale that defines
the pitches that are “in the key,” that is, the set of pitches that have an offset of zero. The
key scale is used to define tonality distinctions such as major and minor in Western music.
The tonality’s instance variable keyNote defines transposition. The key note is represented
as an instance of the class Pitch, defined in the key defined by the naturalScale. Notes in a
composition are represented as pitches with a step and offset relative to the key scale. The
tonal system’s tuning is used to map a pitch in the composition to a specific tuning for a
synthesis instrument.

The generality of this pitch representation is demonstrated by the number of common tonal
systems that can be represented. For example, the Bohlen-Pierce scale [Pierce et al., 1988],
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based on a thirteen pitch chromatic scale and nine pitch key scales, can be represented. The
pitches are tuned with an even tempering as described with the following equation:

pitch, = pitch;_, x13/3

TABLE 5.1 shows several examples of common tonal systems and how they could be
represented in the generic tonal system. TABLE 5.2 shows the pitch step and offset units
for each of the tonal systems. As an optimization, MUSE allows MIDI key numbers to be
represented with a single integer rather than an instance of the class Pitch with an offset of
zero. In addition, frequencies can be represented with a floating point number, or as a fixed
point number using an instance of the class Pitch.

During the performance, a tuning object is used to compute the pitch parameter for a
particular synthesizer such as a frequency for a DSP instrument or a key number for a MIDI
instrument. The instance variable tuning for the tonal system has a tuning object that is an
instance of one of the classes defined below.

Object ()
MUSEODbject ()
Tuning (frequencies)

MIDITuning ()

FrequencyTuning ()

MUSEChromaticTuning ()

MUSEPythagoreanTuning (flatFregs doubleFlatFreqgs
sharpFregs doubleSharpFregs)

The instance variable frequencies holds an array of 128 frequencies that are cached to
increase runtime efficiency as frequency calculations may involve trigonometric functions,
nth roots, or other costly computations. The performer object’s playNote: method sends a
message to convert the MUSE pitch to a device specific pitch. Each tuning object
implements one method for each type of instrument pitch parameter. The methods for
MIDI and DSP synthesis are midiForPitch:inKey: and frequencyForPitch:inKey: respectively.
The frequency table may be initialized to values for any tuning system, including tempered
tuning and just tuning.

The class MIDITuning is used when the pitches in a score are MIDI key numbers. The class
FrequencyTuning is used when the pitches in the score are actual frequencies. The class
MUSEChromaticTuning is used when the pitches are MUSE pitches. None of these tunings
distinguish enharmonic pitches. The class MUSEPythagoreanTuning is used to demonstrate
the use of different tunings for enharmonic pitches. The frequencies instance variable for
MUSEPythagoreanTuning has only seven elements and holds the frequencies for the natural
scale from middle C. The instance variables flatFreqs, doubleFlatFreqs, sharpFregs, and
doubleSharpFregs hold the frequencies for the corresponding accidentals. In Pythagorean
intonation, a base frequency is assigned to a pitch. Then the circle of fifths is traversed and
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TABLE 5.1 Examples of Common Tonal Systems

Name chromaticSize naturalScale keyScale
Bohlen-Pierce 13 0,1,3,4,6,7,9,10,12 0,1,3,4,6,7,9,10, 12
Major 12 0,2,4,57,9,11 0,2,4,5,7,9,11
minor 12 0,2,4,57,9,11 0,2,3,5,738,10
whole tone 12 0,2,4,57,911 0,2,4,6,8,10
cents system 1200 0,100,200 ... 1100 0,100,200 ... 1100
Pentatonic” 12 0,2,4,5,7,9,11 0,2,5,7,9

MIDI 128 0...127 0...127

MIDI 2,097,024 0...127 0...127

with pitch bend

Frequency* 2,000,000 0...20,000 0...20,000

* The pentatonic scale shown is based on the basic Chinese scale system. The pentatonic scale can
be transposed to each of the twelve lii pitches and a five-tone scale can be constructed in the proper
interval sequence. A discussion of representing pentatonic scales based on the Western twelve-tone
scale can be found in [Malm, 1977].

T MIDI pitch bend values are represented in 14 bits (0. . . 16,383). The MIDI pitch bend for no
change is 8,192,. Half of the values cause the pitch to be raised and half cause it to be lowered.
ZED normalizes the values to the range -8,192 < value < 8,191.

} The typical frequency range is 0-20kHz. The representation shown is a fixed point representation
with a resolution of 0.01 Hz.

TABLE 5.2 Pitch Units for Common Tonal Systems

Name pitch step units pitch offset units example pitch

Major diatonic steps semitones C Major: Ig’ =(6,-1)
minor diatonic steps semitones ¢ minor: B”=(6,0)
whole tone whole tones semitones ¢ whole tone: B” = (5, 0)
cents semitones cents ¢ based: Bl’ =(11,0)
Pentatonic pentatonic steps <undefined> Dl’ pentatonic: B’ = (4, 0)
miDI* MIDI key number <undefined> (key number, 0)

MIDI with pitch bend MIDI key number pitch bend (key number, pitch bend)
Frequency* hertz 1/100th hertz 440.15 Hz = (440, 15)

¥ MIDI tonal systems have a key note that is a MIDI key number in the range 0 to 127. This key number
is added to the pitch to compute the absolute pitch. For example, transposition up a fifth is a key note of 7.
 The key note for the frequency tonal system is a floating point number that is multiplied by the
pitch step frequency to compute the absolute frequency. For example, transposition up a fifth is 1.5,
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for each fifth, the frequency of the previous pitch is multiplied by 1.5 and then normalized
back into one octave. MUSE pitches with an offset of (0 use the instance variable
frequencies; an offset of 1 use sharpFrequencies; an offset of -1 use flatFrequencies; an offset
of 2 use doubleSharpFrequencies; and an offset of -2 use doubleFlatFrequencies. A complete
description of Pythagorean tuning can be found in [Helmholtz, 1885].

The implementation of the MUSE tonal system and pitch representations includes an
algebra that provides operations such as addition (transposition) and subtraction
(inversion). Because pitches are expressed relative to a key note and are mapped to
absolute pitches at runtime, an entire composition can be transposed changing only the key
note rather than all the pitches.

Discrete Symbols

Notes, rests, and cues are referred to as discrete symbols. Cues provide a means of
synchronizing a place in a score with a real-time input. The class definitions for discrete
symbols are shown in the class hierarchy below.! The classes Note, Rest, and Cue inherit
the instance variable time from the class MUSESymbol. Notes and rests have a duration that,
like the time, is in units of beats. In addition to a time and duration, notes have a pitch that
is an instance of the class Pitch defined in §Tonality on page 46.

Object ()
MUSESymbol (time)
Cue ()
Note (duration pitch articulation)
Rest (duration)

If a score file (such as MIDI) represents notes with explicit “note on” and “note off” events,
MUSE’s score reader pairs the events and represents them with a single note object with a
time and duration. The “note on” occurs at the time of the note object and the “note off” is
dynamically created during the performance and is executed at the note’s time plus the
duration. The duration is an abstract duration, rather than the actual length of the note. The
actual length is described by the duty cycle [Mathews, 1969b] in the articulation of the note
(described in §Articulation on page 52). For example, two quarter notes in 4/4 time both
have a duration of one beat, but one may have an articulation of staccato and the other
tenuto, resulting in the actual lengths of the quarter notes being different. For monophonic
synthesis instruments, the actual length does not exceed the duration. For polyphonic
instruments like the piano, the actual length may exceed the duration by using the sustain
pedal.

In common music notation, notes and rests have a duration and the time of a note or rest is
implicit: each note or rest symbol begins when the previous one ends. Some score file

1. In many score files, such as MIDI score files, rests are not represented explicitly. In MIDI files rests are represented
implicitly when a “note off” event is not immediately followed by a “note on” event, causing silence.
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formats such as MIDI use a delta time representation where each event has a time that is
the number of time units after the previous event. The absolute time for an event is the sum
of the delta times of all preceding events. The time and duration representation is
isomorphic to the delta time representation. The equation below shows how the time and
duration are computed from the delta time representation.

n
time, = ZdeltaTimei
i=1

duration,,,, = time,,,,qr— time

noteOn

The time and duration representation can be mapped to delta time as well by sorting all
symbols based on their time, including the implicit “note off” events that occur at the time
of the “note on” event plus the duration. Then each symbol is given the delta time described
by the equation below.

deltaTime, = time,, , —time,

Score files that use delta time representations are converted to time and duration by a
MUSE score reader when the score file is read. There are several reasons that time and
duration are used by MUSE instead of delta time. First of all, it is more efficient to
precompute the time of the symbol when the score file is read than it is at runtime.
Secondly, merging individual “note on” and “note off” events into a single note with a
duration makes it possible to interactively control the articulation and duty cycle of the
notes during the performance. (If the “note on” and “note off”” events were not paired into
MUSE notes when the score is read, this would need to be done at runtime when the time
for the “note off” event is bound.)

Articulation

Symbols for articulation and attack include staccato (short), tenuto (full length and perhaps
slight emphasis), legato (smooth and connected), and accent (heavy accent or little
decrescendo). These symbols often affect the duration and intensity, and effect the shape
of the onset and release of the note.

The complex amplitude of a sound is often referred to as the envelope and can be defined
by three segments: an attack, a sustain, and a decay [Mathews, 1969¢]. In the simplest
case, the attack, sustain, and decay (ASD) segments are simple linear functions. In general,
however, each segment can be any function such that, when applied in sequence, they form
a continuous function.

ZED does not attempt to provide sample level control of the envelope and instead relies on
the real-time sound synthesis hardware for fine grain envelopes. (After all, humans cannot
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control acoustic instruments with the precision of 1/44056th of a second!) Real-time
synthesizers implement the detailed ASD envelopes to reduce the control bandwidth
required from the workstation. MIDI interfaces provide a maximum update rate of
approximately 1,300 to 2,000 updates per second, divided across all instruments being
controlled through the same MIDI interface.?

The maximum number of updates to DSP synthesis models is limited by the processor and
bus bandwidths of the workstation. This number can be affected by the throughput of the
operating system and can vary quite dramatically depending on such things as what other
processes are running and their priorities. It is not practical to attempt to achieve maximum
control bandwidth to the DSP because the CPU on the workstation is better utilized for
interactive control. ZED therefore assumes that the necessary control bandwidth for DSP
instruments is approximately that of MIDI, namely it does not exceed a few thousand
updates per second.

MUSE provides two representations for articulation with subclasses of Articulation as
shown below.

Object ()
MUSEODbiject ()
Articulation ()
ASDArticulation (attack sustain decay dutyCycle)
SymbolicArticulation (selector)

The class ASDArtlculatlon is used for score files that explicitly represent the envelope, such
as MIDI files.3 The envelope is represented with instance variables for attack (key down
velocity for MIDI), sustain (continuous pressure values for MIDI), and decay (key up
velocity for MIDI). The attack and decay typically are scalar numbers. All values are
expressed as a percentage of the maximum value, thus maintaining device independence.

The sustain is an array of pairs, each with the time that a sustain update occurs and the
sustain value (normalized to a percentage of the maximum). The time is expressed as a
percentage of the note’s duration. Thus, the sustain times are scaled so that they fit in the
time specified by the dutyCycle of the note. The decay, also normalized, is sent at the time
of the note plus the duration scaled by the duty cycle.

A symbolic representation for articulation is defined by the class SymbolicArticulation. The
instance variable selector contains the selector of a method that dynamically computes the
envelope. Examples include accent, staccato, and tenuto. The message specified by the
selector is sent to the performer at runtime. Methods can be implemented to do most
anything and, because the envelope is dynamically computed, can take advantage of real-
time inputs.

2. The MIDI interface runs at 31,250 bits per second and MIDI updates are either two or three 8-bit bytes in length.

3. As a space optimization for note symbols that originated from MIDI files that do not have release velocities and
pressure values, the articulation instance variable can be the attack velocity rather than an ASDArticulation object.
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Representing Symbols with Messages

When symbols are encountered in a score file that do not correspond to any of the MUSE
symbols described thus far, MUSE represents the symbol with an instance of the class
Message. Messages are also used for device specific information in score files. Message
objects represent messages that are sent during the performance to a performer, an
instrument, the conductor, or any other named object. The class hierarchy is defined below.

Object ()
MUSESymbol (time)
Message (receiver selector parameters)

The instance variable receiver contains the object to which the message is sent. The
instance variable selector specifies what message is sent. The instance variable parameters
holds the parameters to the method or nil if there are none.

An example of a symbol that is represented as a message is a damper pedal indication on a
piano part. Performers who play instruments that use pedal indications implement the
method damperPedalDown: for their specific instrument. Performers playing instruments
that do not use a damper pedal needn’t implement the method, or may implement the
method to do some other task. Program changes in MIDI files are represented with the
message programChange:. (The MUSE messages for other MIDI events can be found in
TABLE D.2 and TABLE D.3 in Appendix D on page 120.) The MUSE score file format
(described in §MUSE Score Files in Appendix B on page 89) may include arbitrary
messages that are sent to any named object. The score language can be easily extended by
implementing methods on the performer, conductor, and other classes and referencing them
in a MUSE score.

Time-varying Functions

CMN scores often have symbols that represent time-varying functions. Examples of such
symbols are crescendo, accelerando, and rubate. Symbols of this type are also represented
with instances of the class Message. The methods that implement the message are
regenerative in the sense that the receiver performs the task and then reschedules the
message. Regenerative methods of this type can be used for a variety of purposes, such as
changing interpretation symbols such as dynamics and tempo over time. Regenerative
methods can also be defined to generate notes using random number generators, or to play
repetitive sequences. In addition, regenerative methods can be used to directly control
synthesis parameters that vary over time, such as vibrato and timbre changes.

An example of a method that will cause a crescendo from the current dynamics level to a
forte is shown below. The dynamics level will be increased by 0.05 four times per beat
until it reaches 0.95. (This is 95% of the maximum, assuming that the dynamics level is
normalized to be in the range 0.0 to 1.0.)
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Conductor method
crescendoToForte
| dynamics |
“Get current dynamics.”
dynamics := interpretationContext dynamics level.
“If already loud enough, terminate.”
dynamics >= 0.95 ifTrue: [*self].
“Set new dynamics level.”
interpretationContext dynamics level: dynamics + 0.05.
“Schedule next increment of the crescendo for 0.25 beats from now.”
self scheduleMessageln: 0.25
receiver: self
selector: #crescendoToForte
with: nil.

Organizing Symbols into Scores

Most digital music representations do not provide any structure beyond simple lists of low
level events. In developing MUSE, it was apparent that the representation, as well as
systems that use the representation such as ZED, would benefit from an abstraction
mechanism for capturing the inherent hierarchical structure found in many musical
compositions. MUSE provides hierarchical structures for assembling notes that are based
on techniques developed for VLSI CAD applications [Whitney, 1985].

Hierarchical composition begins with small building blocks called cells. Cells can act as
templates that can be instantiated and combined to create larger building blocks. These
larger building blocks can then be combined, and so on. In VLSI CAD, cells are composed
in rows and columns. For example, a cell that is a one bit adder can be replicated and
composed in a row to create a sixteen bit adder. When cells are instantiated, a variety of
transformations can be applied, such as spatial translation and rotation. Ateach level of the
hierarchy, higher-level semantics are defined by abstracting from the details of the
structures below. This hierarchical approach has been shown to aid in managing the
complexity of large networks of objects, making the understanding of such structures
tractable.

Composers often create motifs—melodies or phrases consisting of notes and rests—that are
used multiple times throughout a composition. Composers often transform the motif by
applying pitch inversion, transposition, or different tempi. In MUSE, the discrete symbols
for notes, rests, and messages are the cells. Cells can be composed in series by placing them
one after the other in time. The resulting melody or phrase is called a sequence. Cells can
also be composed in parallel, indicating that the symbols are to be played simultaneously.
This type of composition is used to create chords or harmony. The resulting structure is a
parallel sequence. Series and parallel sequences can then be hierarchically composed into
larger, more elaborate series and parallel structures. Such scores take on a tree structure
where the leaves of the tree are notes, rests, and messages.
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MUSE supports a number of transformations on sequences. When sequences are
instantiated, they are translated in time. This means that all times for the symbols in the
sequence are expressed relative to the beginning of the sequence. When the sequence is
instantiated in the score, all of the times of the symbols will be offset by the location of the
sequence within the score. Sequences may also be transformed by setting a private
interpretation context for the sequence that only applies to the symbols within the sequence.
Another type of transformation is accomplished with a selector representing a method that
is applied to each note in the sequence.

At the highest level of the hierarchy are the score and parts. A performer’s part can be
viewed as a series sequence and the conductor’s score as a parallel sequence of parts. The
class definitions for objects used for series and parallel sequences are shown below.

Object ()
MUSESymbol (time)
MUSEStructure (name events interpretationContext transformation current)

Sequence ()
Part ()
CueSheet ()

ParallelSequence ()
Score (cueSheet)

RepeatedSequence (numberOfRepeats count)

All sequences are instances of a concrete subclass of the abstract class MUSEStructure. All
sequences have a name that is used to reference the sequence. The instance variable events
is a list of symbol objects that are instances of any concrete subclass of MUSESymbol except
Part and Score, but including Sequence, and ParallelSequence. The symbol objects within
a MUSE structure have times that are relative to the beginning of the structure. They are
located in the score by adding their time to the time of the enclosing structure. This
calculation is done recursively when an event is scheduled for each symbol.

The class RepeatedSequence is used to encapsulate the sequence stored in the instance
variable events. This class is used to create multiple instantiations of the same sequence.
Repeated sequences do not require that the actual data be replicated. The instance variable
numberOfRepeats defines the number of times that the sequence is to be repeated. The count
instance variable is used to keep track of the current iteration during the performance.
When the end of the sequence is reached, the count is incremented and the sequence is reset.
When the count is incremented beyond the number of repeats, the iteration is terminated.

The instance variable interpretationContext is used to define an interpretation context that
only applies to the sequence. An interpretation context can be defined at the beginning of
the score for all parts in the score, in a part for all symbols in a part, or in a sequence for all
symbols in the sequence. The instance variable transformation is an optional selector that
can be used to perform more sophisticated transformations on the sequence, including those
that use real-time control inputs.
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The score is an instance of Score consisting of a collection of parts stored in the instance
variable events. Each part is an instance of the class Part that is assigned to a performer.
The class Part is virtually identical to the class Sequence and is separated out simply to
illustrate that it has two special properties: it is a root class that cannot be in the event list
of another MUSE structure object; and its instances are one to one with performer objects.
Similarly, the class Score is virtually identical to ParallelSequence except that all objects
in its event list are instances of Part. There is exactly one instance of Score and this instance
is associated with the single ZED conductor object. The class CueSheet contains cue
symbols and interpretation symbols that are global and apply to all performers that do not
otherwise have an interpretation context.
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Chapter 6

Real-time Performance

This chapter describes ZED’s real-time performance mechanism. First, an overview of
the performance is presented. The scheduling phase is outlined and the performer’s
default schedule method is defined, along with the default method to play notes. The
details of the mapping of an abstract MUSE note to MIDI packets are described. The
runtime execution loop is discussed and example patches are shown. Finally, several
simple tempo tracking algorithms are presented and discussed.

ZED Performance Overview

ZED divides the performance into two parts: a compile time scheduling phase that takes
place before the performance; and the actual runtime performance. Before the performance
begins, the conductor sends the message scheduleEvents to each of the performers in the
conductor’s performers collection. The performers iterate through the symbols in their
respective parts. For each symbol, a message is sent to the conductor requesting that an
event be scheduled for the symbol. The performers schedule their events by sending
themselves the message specified by their scheduleMessage instance variable. This
message can be specified in a ZED configuration file or, if none is specified, the message
scheduleNote: is used. This method schedules the message playNote: to be sent to the
performer at runtime. FIGURE 6.1 illustrates the default messages that are sent during the
scheduling phase and during the performance.
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Performer Instrument
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FIGURE 6.1 Default scheduling and runtime methods.

The scheduling phase begins when the message scheduleEvents is sent to the conductor which is then sent
to each of the performers. Each performer schedules an event for each symbol in their part by sending the
message in their scheduleMessage instance variable. The default is the message scheduleNote:. The
method scheduleNote: sends a message to the conductor to schedule an event that causes the message
playNote: to be sent during the performance. The runtime performance messages are also shown. The
message playNote: is sent to the performer from the conductor at the time the event is to take place, causing
a “note on” packet to be computed and sent to the instrument as the parameter to the playPacket: message.
After the packet is played, the performer computes a ‘note off” packet and dynamically schedules a
playPacket: message to be sent directly to the instrument at the time of the note plus the duration.
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FIGURE 6.2 Detailed MIDI performer runtime method for playing a note.

The small gray boxes represent the computations performed by a MIDI performer object to compute the *note
on” and “note off’ packets for a MUSE note. The performer object does not actually compute the physical time
of the packet, as this is computed during the performance by the scheduler using the tempo. The figure also

shows how the real-time control of interpretation symbols affect the interpretation of a MUSE note as itis
mapped to instrument packets.
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Performer Runtime Methods

The details of the playNote: method for a MIDI performer are shown in FIGURE 6.2. The
parameter to the method is a note and the method uses the interpretation context of the
performer in the calculation. The method computes a “note on” packet that is sent to the
instrument immediately, and a “note off” packet that is scheduled for some amount of time
in the future. Each of the interpretation symbols can be under real-time control.

Computing all of the data for the MIDI packets at runtime could potentially effect
timeliness. Depending on which interpretation symbols are under interactive control,
various values in the instrument packets can be precomputed. This static data can be
precomputed by changing a performer’s scheduleMessage to do the static computations and
then schedule a play event that computes the remaining values. For example, if the tonality
and tuning are not under interactive control, the key number can be precomputed. If the
duty cycle in the style is not under interactive control, then the “note off” event can be
scheduled during the scheduling phase. At the opposite extreme of the default situation is
one where the performer’s schedule message computes the entire packet and schedules an
event that sends the packet directly to the instrument at runtime. In this case the
performance is not affected by real-time input and the performance has maximum runtime
efficiency, but is completely static. The messages for such a performance are shown in
FIGURE 6.3. Thus, each performance can be optimized for maximum runtime efficiency
without loss of flexibility.

Performance Execution Loop

FIGURE 6.4 shows the basic performance execution loop and the details of the alarm
calculation. When the performance begins, the conductor object gets the time of day from
the system clock. The physical time for the next node is computed and an alarm is set. The
function for setting the alarm takes as a parameter the amount of time from when the
function is called. The physical time and alarm time calculations are shown below for the
ith node in the scheduler. The variable physicalTime is a time of day representing when the
next event is to take place. The systemclock represents a function that returns the time of
day when the function is called. The variable physicalTime, is the time that the
performance began. The abstractTime is the time (in beats) that the event is scheduled to
take place.

physicalTime, = systemclock

physicalTime; = physicalTime,_, + ((abstractTime,— abstractTime; _,) % ;761—?11)

alarmTime; = physicalTime;— systemclock

An important property of the calculation of the alarm’s time is that it is computed as a
function of the system clock at the moment that the alarm is set. This takes into
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Conductor

Performer

Instrument

Instrument

If a performance only has the tempo under real-time control, the “note on” and “note off’ packets can be
computed by the performer during the scheduling phase and the performer can schedule the events to play
the packet to be sent directly to the instrument. This type of performance has minimumn runtime overhead.

consideration the overhead required to respond to the previous alarm, play the events, and
increment the physical time. Thus the performance is realigned every time an alarm is set,
preventing the accumulation of error that would otherwise result.

Once the alarm is set, ZED goes to sleep. When the alarm goes off, a wake up function is
executed. (This is the same as the semantics defined by the UNIX™ functions signal and
ualarm [Bell Labs, 1982].) The wake up function plays the current events, gets the next
node from the scheduler, sets the next alarm, and goes back to sleep.
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scheduler
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scheduler
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physical time set alarm
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FIGURE 6.4 Real-time performance execution loop.

When the performance begins the time is captured from the system clock. The physical time is incremented
by the physical time of the current node (the number of beats from the beginning of the composition scaled by
the tempo). Then an alarm is set and the system goes to sleep. The alarm's time is computed as a function of
the system clock to prevent the accumulation of error resulting from the time it takes to compute the synthesis
parameters and send them to the device. When the alam is signaled, the events for the current node are
pla(}/ed, the current node is incremented, and the cycle repeats. The scheduler is initialized and the curtent
node set before the performance begins.
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data2 /127

Performer

When a MIDI tempo pedal input is received, the data2 value (in the range 0 to 127) is used to compute the
new metronome marking. The message metronomeMarking: is then sent to the conductor, causing the
conductor's tempo object to be changed. When a MIDI volume pedal input is received, the data2 value is
used to compute a dynamics level for a particular performer.

Example Patches

Any aspect of the performance can be controlled interactively by the user by defining a
patch that will select particular inputs and act on them by sending messages. The most
common way to control the performance is to directly update the interpretation symbols
with real-time control values. An example of a patch that controls the global tempo and
one that controls a single performer’s dynamics is shown in FIGURE 6.5. A selection of
more complicated patches are described in the following sections.

Triggering a Sequence

A patch can be defined to dynamically start a sequence when a particular MIDI event is
received such as a “damper pedal down” input. The sequence can be stopped when a
“damper pedal up” input is received. FIGURE 6.6 shows an example of such a patch. The
method start, implemented by the sequence, adds the corresponding sequence’s static queue
to the queue list in the scheduler. The method stop removes the queue from the scheduler’s
queue list. A more detailed description of the implementation of dynamically triggered
queues can be found in §7riggering Sequences in Real-time in Appendix A on page 85.
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ASequence

FIGURE 6.6 Example patch for triggering a sequence.

Two patches are shown. The message start is sent to the sequence named #ASequence when a “damper
pedal down” event is received. The message stop is sent when a “damper pedal up” event is received.

Sampling a Sequence

A more complicated patch is one that samples incoming MIDI events and stores them in a
sequence. To enable this, a patch is defined that causes another patch to be dynamically
connected. FIGURE 6.7 shows a patch that begins sampling MIDI key up and down events
when a damper pedal goes down and ends sampling when it goes up. When a “damper
pedal down” input is received, the patches #KeyDownPatch and #KeyUpPatch are connected
by the method connect. This method connects the patches by adding them to the
conductor’s patches collection. These two patches filter all MIDI “key down” and “key up”
events and add them to the sequence called #NewSequence. When the damper pedal goes
up, the patches are disconnected. This is done with the method disconnect which removes
the patches from the conductor’s patches collection

Special Tempo Controls

As described earlier in this chapter, the tempo can be controlled by directly updating the
metronome marking from a continuous real-time control input. Each time an input is
received, a message is sent to the conductor to affect the global tempo, or to a performer to
affect a local tempo. If there are multiple independent time references in the performance,
(i.e., if more than one tempo object is under real-time control), then a message is sent to the
scheduler to notify it of each tempo change. The scheduler in turn cancels the currently
pending alarm and computes a new one using the new metronome marking. This allows
the system to instantly respond to tempo changes.

In addition to direct control, there are a number of other ways to control the tempo. Two
techniques are discussed below. The first is setting a new tempo with preparatory beats and
the second is synchronizing the performance with a cue sheet.
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NewSequence

FIGURE 6.7 Example patch for sampling MIDI “key up” and “key down” events.
When a MIDI “damper pedal down” event is received, the two patches named #KeyDownPatch and
#KeyUpPatch are connected (added to the conductor’s patches collection). MIDI *key down" and “key up”
events are added to the sequence named #NewSequence until a “damper pedal up” event is received, at which
time the patches are disconnected.

Preparatory Beats

In the live orchestra, the conductor sometimes gives the performers a couple of preparatory
beats before a tempo change. The conductor indicates the new tempo before it happens,
thus preparing the performers so that they are synchronized at the moment that the new
tempo takes effect. Controlling the tempo with preparatory beats is a convenient way for
a user with a trigger input device such as a MIDI drum or the Stanford Radio Baton to set
the tempo in a ZED performance. The user provides two inputs in the new tempo and at
the moment that the second one is received, a new tempo is computed. This type of tempo
control can be easily implemented with a patch that remembers the time of the first input
and computes a metronome marking when the second input is received. (The patch should
then reset its state so that it can accommodate more than one tempo change.) The
metronome marking is computed during the performance with a value extraction method
that implements the function shown below. The variable physicalTime is used to denote
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the physical time in units of seconds (set by the system clock) that the input is received.
The abstract time between the two successive inputs is assumed to be one beat.

60

i = physicalTime, ~physicalTime,

Synchronizing the Performance with Cues

A cue sheet is used to synchronize the events in the score with real-time inputs. The cue
sheet contains a list of cue objects, each with a time (in beats) from the beginning of the
score. The inputs from a particular input controller are matched one-to-one with these cues.
The tempo is adjusted each time a new input is received. If the cue is received earlier than
it was expected, then all events before the cue are skipped. If the cue is received later than
it was expected, then the system waits for the cue. This mechanism is suitable for
controlling a synthesized accompaniment to follow a live player and has been successfully
employed with the Conductor Program and other accompaniment systems.

Each time an input is received, a new metronome marking is computed. The computation
is similar to the one used for preparatory beats, except that the metronome marking must
be scaled by the number of beats between the cues. The calculation for the ith cue input is
shown below. This calculation uses the variable cueTime to represent the cue object’s time
instance variable (in beat units).

60

mn = physicalTime; — physicalTime,_,

X (cueTime,— cueTime, _,)

Rehearsals

This cueing algorithm is adequate when the changes in tempo are small. The algorithm
does not effectively track unexpected tempo changes of large amounts. When a cue arrives,
a new tempo for the next beat is computed based on the tempo of the previous beat.
Therefore, the system assumes that the performance is going to proceed at the same tempo.
If the tempo gets faster, the last note before each cue is shortened when the score is
synchronized with the input. If the tempo slows down, there may be silence while the
system is waiting for the next cue.

Rehearsals and learning can be incorporated into ZED to better predicting the future tempo.
The user rehearses a performance before a concert by playing the composition several
times. The system follows the user’s inputs and retains the timing information of the cue
inputs during the rehearsals. (Between rehearsals, the information can be stored in
computer memory or in a disk file.) During an actual performance, the stored timing
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information is used to allow the computer to better predict when each cue will arrive during
the performance.

A simple learning algorithm can be implemented to maintain an array of the expected time
(in physical time units) between successive inputs during the performance. The array is
initialized to the physical time of the durations of the cues based on the tempo with no
interactive control. During each rehearsal, the times of the new inputs are incorporated into
the array. There are many ways to incorporate these values. The simplest way is to store
the values of the previous rehearsal. A more robust approach is to maintain a running
average. The equations below show the calculation of a running average. The running
averages are stored in the array Estimate, indexed by the number of the cue in the score.
The variable N is the number of the rehearsal and physicalTime is the time (in seconds)
when the real-time input is received. The time in beats between successive cues is
represented with the variable cueTime. When the ith cue is received, its time is averaged
into the previous estimate and a metronome marking is computed based on the estimated
time of the next cue.

(Estimate; X (N—1)) + (physicalTime;—physicalTime;_,)
N

Estimate; =

60

mm= ————
Estimate, |

X (cueTime; | —cueTime))

A problem with the metronome marking calculation above is that it does not use the data
in the current rehearsal, i.e., the inputs during the performance do not affect the system. A
problem arises if, during the performance, the user plays the basic tempi that were
rehearsed, except that they are all played slightly faster (or slower). This is not uncommon
because live performers are often slightly anxious during the performance. An improved
calculation for the metronome marking is shown below. This calculation offsets the
estimated time for the next input by the error in the current estimate.

60 x (cueTime,, ,— cueTime,)
mm

B Estimate;, |+ ((physicalTime,— physicaltime; ) — Estimate;)

The new calculation handles the particular case when the tempo changes are basically
correct but the performance is slightly slower or slightly faster than the rehearsals.
FIGURE 6.8 shows how the algorithm tracks a small set of sample data. The algorithm
tracks real-time inputs that are correlated with the rehearsal. As the difference between the
performance and the rehearsal increases, the predicted tempo diverges from the
performance tempo. FIGURE 6.9 shows the algorithm’s poor performance when the
performance is completely uncorrelated with the rehearsal data.
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FIGURE 6.8 Tempo prediction for performance that follows rehearsal tempo.

The above graph shows that if the performance tempo has the same basic shape as the rehearsed tempo, the
algorithm tracks quite closely. The algorithm breaks down when the performance tempo changes faster than
the rehearsed tempo.

Summary

This chapter describes the ZED real-time music performance. A technique was shown for
exploiting both the runtime efficiency of static systems, and the runtime flexibility of
dynamic systems. This balance is achieved by providing the user with the ability to easily
customize the scheduling of events so that all static data can be precomputed before the
performance begins without affecting the interactive control of the performance.

The tempo tracking algorithms presented are very simple. It is not possible to define a
perfect algorithm that can adjust to sudden and arbitrary changes in tempo. After all,
human performers cannot follow such changes when they are not notated in the score and
are not rehearsed. It is somewhat surprising that in practice, for many performance
situations that do not include improvisation, the simple learning algorithm presented works
reasonably well with a very small amount of runtime computation. Clearly, however, more
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The above graph shows that if the performance tempo has a slope opposite of the rehearsed tempo, the
tempczj predictions diverge from those of the performance, thus causing the synthesizers to be ahead or
behind the cues.

sophisticated tracking algorithms are needed. The primary issue in developing such
algorithms is providing better and more robust tempo predictions while still achieving
timeliness. In addition, in order for the tracking algorithms to be useful in the context of a
system such as ZED, they must be designed to achieve timeliness independent of the
particular composition and patches in the performance. Further study is needed to
determine how much computation can be devoted to score tracking without jeopardizing
timeliness. In addition, careful analysis is required to determine how score tracking
algorithms that requires a large amount of computation affect the performance as the
number of real-time input controllers and the number of performer objects in the system are
increased.
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Conclusions

This thesis presents a new software architecture for real-time music performance under
interactive control. The approach is an implementation of a model of live orchestra
performance that captures some of the dynamic behavior of the orchestra. A software
simulation of music performance was implemented using an object-oriented paradigm in a
system called ZED. ZED has objects that are one-to-one with the components of the live
orchestra: a conductor, performers, and instruments. In addition, ZED includes an
abstract digital score representation that is score file independent and synthesis device
independent. A user can interactively control the performance using one or more input
controllers. Patches can be defined to control the performance at three levels: the overall
ensemble performance is controlled via the conductor object; the expressiveness of a
particular part can be controlled via the performer of that part; and low-level control can
be achieved by sending messages directly to an instrument. Thus, ZED embodies the
many of the features of existing real-time music systems including patching programs,
accompaniment systems, and object-oriented tool Kits.

ZED’s performer objects implement a method that maps the abstract score representation
for notes to device specific parameters for their instrument. This design provides the basis
for several types of extensibility: performer objects can evolve and become more
sophisticated over time (like their human counterparts) by modifying the “play note”
method; specialized performer objects can be defined that can control the subtle properties
of a specific synthesis algorithm by creating a new subclass and defining the “play note”
method; existing DSP synthesis instrument libraries can be incorporated into ZED by
defining new performer and packet classes to interface to the instruments; and new
synthesis technologies can be incorporated by defining new performer, instrument, and
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packet classes. Thus, ZED’s design inherently supports evolution and specialization.
Furthermore, the architecture is general enough to facilitate the control of other non-music
devices including audio mixers, lighting boards, and video tape and laser disk players.

ZED also provides a mechanism for customizing each performance to have runtime
efficiency without losing runtime flexibility. Methods can be defined on the performer
classes and selected by each performer object to schedule events before the performance
and precompute all packets values that are not affected by real-time inputs. Thus, the user
can easily achieve maximum performance by defining simple methods rather than having
to rewrite the real-time performance loop. ZED includes an efficient hybrid scheduler that
handles statically scheduled and dynamically scheduled events separately. The scheduler
provides a simple memory management scheme that virtually eliminates the need for
runtime memory allocations. The scheduler also supports multiple independent time
references that can be under separate real-time control.

There are a number of areas of ZED that require further study. The performer objects
currently being used are too simplistic. Although it is not possible to completely model
human musical virtuosity, models that are more sophisticated than the ones currently in use
would improve the expressiveness of the performance. Currently in ZED, the performer
objects play each note independently and do not maintain information about adjacent notes
in phrases. ZED’s design provides the ability to extend the methods that play a note to
incorporate a rule-based algorithm or other techniques that take past and future notes into
consideration, as well as the parts of other performers. Such changes can be implemented
by changing the existing methods or by creating new performer classes and overriding the
methods. As a part of such extensions, further investigation is required to better understand
the full dynamic range of the sound synthesis algorithms and how they can be controlled to
provide maximum musical expression. Furthermore, the MUSE representation of musical
style can be extended through subclassing to capture more detailed information
representing more subtle musical style.

ZED’s tempo tracking algorithms are also very simplistic. An interesting result of the
tempo tracking experiments presented in this thesis is how well the system can follow the
tempo with very little runtime computation. In practice, however, it is desirable to allow
the live performer more flexibility during the performance. More sophisticated tempo
tracking algorithms can be developed using techniques such as linear prediction or neural
networks. In addition, a score tracker that tracks pitch as well as time inputs could be
incorporated to allow ZED to accompany live performers playing musical instrument
controllers such as keyboards and wind instruments. The algorithms of other
accompaniment systems described in this thesis could be incorporated by implementing
them as the data extraction portion of a patch. In extending the system, however, care must
be taken to not sacrifice timeliness for better musical interpretation. (Live performers have
the same constraint—the amount of attention paid to each note is determined by when it
must be played.) The more sophisticated algorithms for score tracking used by
accompaniment systems were designed for systems that only control the tempo of the
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synthesizer. In those systems, there is only one real-time controller, and the
accompaniment scores have a relatively small number of parts. Further xperimentation is
required to determine if such algorithms are efficient enough for systems such as ZED that
may have a large number of synthesizers and input controllers.

There are also a number of additional features that would make ZED more user friendly.
To fully optimize a performance, ZED requires that the user define a library of schedule
and play methods that correspond to the set of patches being used. All synthesis parameters
that are not affected by real-time inputs can be precomputed and all parameters that are
affected at runtime are computed dynamically. ZED’s semantics could be extended to use
a simple “black box” input/output model for each of the individual parameter
computations. Such information could be used by ZED to automatically define schedule
and play methods that are optimized for the particular patches used in the performance. The
specification of such information, as well as the entire patching mechanism could benefit
from a graphical user interface similar to that used by MAX. An integrated computer aided
composition application could also be added to make it easier for a user to work on the
composition and the performance simultaneously.

The implementation of ZED demonstrated that the object-oriented paradigm is a natural
basis for developing real-time and simulation applications. The architecture takes
advantage of the inheritance and encapsulation facilities of object-oriented languages to
allow the user to easily extend and enhance the system to experiment with new music
interpretation algorithms and new synthesis technologies. Objective-C proved to be an
ideal language for implementing ZED because it has many essential features of Smalltalk
(such as unbounded polymorphy and dynamic message lookup) while also providing
access to the efficient C runtime environment. In addition, Objective-C provides static
binding for additional runtime optimization.

The evolution of workstation technology has finally reached the point where it can deliver
the powerful features of object-oriented languages to software systems that need to run in
real-time. As VLSI technology continues to evolve, providing faster and more affordable
hardware, the problems in software engineering are becoming less concerned with speed
and more concerned with managing the rapidly increasing complexity of software. Thus,
new software engineering techniques, in addition to object-oriented techniques, are an
increasingly viable alternative to addressing the complexity, while still being able to insure
sufficient runtime efficiency.

The software architecture of ZED provides a level of extensibility that makes it an ideal
platform for the next generation of computer music performance applications.
Furthermore, ZED uses a general software architecture that could be applied to other real-
time control applications and simulation systems.
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Appendix A

Real-Time Scheduling

The scheduling mechanism is the most critical component in simulation and real-time
systems. In ZED, the conductor object uses a scheduler to coordinate the performance and
synchronize events. A discussion of real-time scheduling for real-time music performance
was presented by Dannenberg [Dannenberg, 1989]. This appendix presents a brief
summary of this work as a basis for discussing the design of ZED’s scheduler. ZED’s
scheduler is based on a hybrid approach that maximizes both runtime efficiency and
flexibility.

Overview of Selected Scheduling Algorithms

A simple algorithm can be defined to schedule events based on the time that they are to take
place. The events are put into a requests queue via a schedule function. The requests queue
is actually a priority queue that is ordered by the event’s time. The priority queue can be
implemented with an efficient ordered data structure such as a linked list or a heap. A
linked list allows the cost of scheduling events to be proportional to » (the number of items
in the list) whereas a heap allows the cost to be proportional to log n.

An alarm function is defined that is called on each clock tick. The alarm function searches
the requests queue for events whose time is less than or equal to the current time provided
by a system clock. Dannenberg introduced a refinement called “Implementation 4” that
invokes the alarm function only when there is an event to be executed, rather than on every
clock tick. Another optimization is introduced that addresses the overhead in the priority
queue by changing the data structure of the request queue from a dynamic data structure (a
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heap) to a static data structure (an array). At a time resolution of several milliseconds, a
table of requests can be maintained as an array with one array element for each unit of time.
The table can hold events that are to occur several seconds in the future. This scheme
allows an element to be inserted very fast because the time of the event can be used to
directly compute the array index holding the list of requests for that time. The problem with
this approach is that events that are farther in the future than the length of the array cannot
be scheduled. Dannenberg addressed this problem by introducing a fall back strategy for
long term requests. The basic idea is to put all requests that cannot be immediately entered
into the table into a simple linked list called pending. A background process uses idle
processor time to remove items from the pending list and insert them into a priority queue,
and also moves events from the priority queue and inserts them into the table when the
event’s time is within the time span of the table. This algorithm is referred to as
“Implementation 6.”

Virtual Time

A shortcoming of the above algorithms is that the scheduler uses physical time for
scheduling events, thus preventing the pace or tempo of the events from being changed
during a performance. Controlling the tempo is critical for real-time music performance
because it allows the synthesized performance to be synchronized with a live musician who
interactively changes the tempo. Because all of the scheduling algorithms described above
(except “Implementation 4”) send an alarm on every clock tick, it is possible to introduce
virtual time by re-mapping a hardware interrupt occurring at some fast, fixed interval to call
the alarm at a slower, variable rate. This approach doesn’t work if there are several time
references. A separate scheduler for each time reference could be operated if the number
of schedulers is small. If the number of schedulers is large this would be potentially very
expensive. Animprovement can be made by restricting the changes to the speed (or tempo)
to allow changes only with some small advance notice. Each virtual time can be mapped
to a physical time shortly before the physical time occurs. Dannenberg proposed a
modification to “Implementation 6” can be made whereby the background process converts
an event’s virtual time to a real time when it is put in the table. Once an eventis in the table
its real time cannot be changed. The worst case advance notice of a tempo change is the
table size. Dannenberg presents a final example that removes this latency in changing the
tempo by modifying “Implementation 6” to only call the alarm function when it is time for
the next event, as in “Implementation 4.1

Discussion of Scheduling Algorithms

The scheduling algorithms described above are completely general in that events can be
scheduled in any order, for any time in the future. The focus of Dannenberg’s

1. Dannenberg notes that the resulting algorithm has unnecessary calls to a virtual alarm function but this is not
perceived as a problem because the real-time scheduler is so efficient.
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optimizations was to minimize the time it takes to schedule a new event. Dannenberg states
that in real-time computer music systems, “frequent operations that consume only a small
amount of processing time are not as problematic as less frequent operations that involve
significant computation.” He uses this reasoning to conclude that the savings of calling the
alarm function only when the next event is ready to be played (“Implementation 47) is
minimal. This assertion may be true when implemented on a single tasking operating
system and dedicated hardware that is devoted to scheduling. In multi-tasking operating
systems, however, there may be serious consequences to performing even the smallest task
on every clock tick. It is desirable to implement music performance systems on modern
workstations that provide a multi-tasking operating system such as UNIX™ [Bell Labs,
1982; Bach, 1986] and object-oriented programming languages.2 Dannenberg’s approach
must therefore be questioned in the context of a multi-tasking environment.

Dannenberg’s final optimization requires a background process. In a multi-tasking
environment, the operating system is responsible for scheduling and running the processes.
Dannenberg did not discuss the properties of scheduling this background process or its
overhead and impact on the performance of the primary process. It may be difficult (or
impossible) to insure that the scheduler’s background process is run just the right amount
of time to do its job. If the priority of the background process is set too low, it may not run
enough, causing events to be late or missed. If the background process priority is set too
high, it could run too often, affecting timeliness in real-time input and output event
handling. The size of the table used by the algorithm can be adjusted at the cost of memory.
It is, however, difficult to analyze the dynamic behavior of a music performance to
determine the “right” size for the table and the “right” priority for the background process.
It is particularly difficult because the operating system has its own highly sophisticated and
complex process scheduler. Furthermore, finding adequate settings empirically for a given
composition and performance may not be sufficient for different compositions with
different performance dynamics.

Although in principle the background process uses “idle processor time,” in reality, it
competes with the primary real-time performance process. The background process uses
CPU cycles not only while it is executing, but it also introduces management overhead for
such tasks as context switching and possibly even swapping. The effects of the background
process on the timeliness and responsiveness of the performance could be noticeable.
Because of this, a less costly approach is required that provides adequate timeliness and
determinism in a multi-tasking environment.

Real-time Scheduling for Music Systems

Dannenberg’s algorithms focused on optimizing the average performance of a general
scheduler. The generality of the scheduler described by Dannenberg is not required for

2. Such workstations are readily available and provide the basis for computer music systems with multiple synthesis and
controller devices, and software development tools for building complex systems.
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real-time music performance. The scheduler proposed in the following sections is designed
to optimize the most likely case in music performance. The approach is based on an
analysis of the most likely scenarios in real-time music performance and optimizing those
to run very efficiently, at the expense of having the highly unlikely scenarios run slightly
less efficiently.

Static and Dynamic Components

A score file is in some sense a computer program that contains a set of instructions that,
when carried out in order, results in the performance of a musical composition. Computer
programming languages fall into two broad categories: compiled and interpreted.
Compiled programming languages translate a source program into an object program that
is loaded into memory and executed. Interpreted languages (such as APL [Gilman and
Rose, 1976], SnoBol [Griswold et al., 1971], and LISP [Winston and Horn, 1981])
transform a source program into a simplified language (sometimes called intermediate
code) that is directly executed dynamically at runtime via an interpreter. In ZED, MUSE
is, in some sense, an intermediate code for source programs defined in score files.

Compilers bind the attributes or properties of each program variable statically at compile
time. Conversely, interpreters allow dynamic binding at runtime (while the program is
running). Static binding has two primary advantages: type safety—type checking at
compile time—and more efficient execution. The efficiency comes from the fact that the
data needn’t be examined at runtime to determine the appropriate operation. Although
dynamic binding may be less efficient, it is much more convenient for the programmer and
provides greater runtime flexibility. Interpreters that utilize dynamic binding can facilitate
the implementation of more complex programming language constructs [Aho and Ullman,
1977].

Real-time systems in general have a static component and a dynamic component. The
static portion of the system is inflexible but has low runtime overhead, whereas the
dynamic portion of the system has greater runtime overhead but provides more flexibility
atruntime. A real-time scheduler is proposed in the following sections that takes advantage
of this partition to achieve a balance of minimum runtime overhead and maximum
flexibility. The static component consists of the information that can be statically
scheduled before the performance, that is, events whose abstract time (in units of beats
rather than physical time) has been determined. The dynamic component consists of
information that is created during the performance to occur in the future and therefore must
be scheduled at runtime. (Real-time inputs that cause an action to take place immediately
do not need to be scheduled.)

Static Scheduling

An important property of music performance systems without interactive control is that no
events need to be scheduled during the performance. The events in the score can be
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FIGURE A1 Data structures for a simple scheduler.

Queues have a node list consisting of a linked list of queue nodes, ordered by their time. The instance
variable currentNode indicates the current time in the performance. Each queue node has a pointer to the
beginning and the end of a list of events that are executed at the node's time. When events are added to a
node's event list, they are added at the end to insure a stable sort.

statically compiled into explicit synthesis parameters and scheduled before the
performance begins. This is because if there is no interactive control, the physical time of
all events is known before the performance begins. The amount of time it takes the
scheduler to insert an event isn’t critical because it does not take place during the
performance. A simple queue implemented as a linked list and sorted by time serves as an
adequate scheduler. A diagram of the objects involved in such a scheduler are shown in
FIGURE A.1. The class definitions for the objects used by the scheduler are shown below.

Obiject ()
Queue (nodelist currentNode)
QueueNode (time eventList next eventListTail)
QueueEvent (receiver selector parameter next)

The queue implements an insertion method that uses the standard linked list insert
algorithm. Each new event is added to end of the event list of the node with the event’s
time. This insures a stable sort. If a node does not exist, one is created. If there is no real-
time control, the event’s time is converted to physical time when the event is scheduled.
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The physical time is computed by multiplying the abstract time by a beat length (indicated
by the metronome marking of the score’s tempo).

This static scheduler has virtually no runtime overhead. The next node in the performance
can be returned from the queue a method called next. This method returns the current node
and increments the current node pointer to the next node.

Interactive Control of Tempo

The benefits of static scheduling can be exploited even with the introduction of interactive
control of the tempo. The events can still be scheduled before the performance. Each event
has an abstract time expressed relative to a tempo. Because the tempo changes during the
performance, the physical time of each event cannot be computed until runtime. The only
change to the static scheduler that is required to accommodate interactive control of tempo
is that events are scheduled based on their abstract time. The physical time is computed at
the last possible moment, namely when the previous event is executed. This allows the
system to be maximally responsive to tempo changes during the performance because
whenever a real-time input changes the tempo, the next event to be scheduled reflects the
new tempo. The multiplication operation required to compute the physical time of an event
is simply moved from schedule time to runtime. Thus, the ability to control the tempo of
a score in real-time has a runtime cost of one multiplication operation per queue node, a
very small price indeed! (This is less than or equal to the number of events in the queue
and depends on how may of the events are simultaneous with others.)

Dynamic Scheduling

Real-time music performances under interactive control can also have the scheduling
efficiency of static performances if the abstract time of all events is known before the
performance begins. The static scheduler does not support real-time performances that
include events whose time is determined during the performance. The most common patch
that dynamically binds an event’s time is one that controls the articulation of notes with
real-time inputs. In this example, the “note on” event that initiates a note can be scheduled
before the performance but the “note off”” event cannot be because the duty cycle of the note
is not known. Another case that the static scheduler does not handle is when a new event
is created during the performance that must be scheduled in the future. For example, a
patch can be defined in ZED that creates an arpeggio—several harmonically related notes
spaced over time—each time a MIDI “note on” event is received during the performance.
This type of patch requires that several events be dynamically scheduled for each input of
the type specified by the patch’s filter.

Dynamically scheduled events in real-time performance have several interesting

3. Although events at a given time theoretically occur simultaneously, in reality the workstation’s processor cannot
actually execute the events at the same time. Therefore, it is important that a stable sort is maintained. An example of
when this matters is if a vibrato event is to be applied at the same time as a new note is played, if the vibrato event is
executed before the new note is initiated, it may effect the previous note on the synthesizer.
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properties. Because dynamic events are scheduled on the fly, events are inserted starting
from the current node in the queue. (If an event is not in the future, it is ignored.) In the
case of dynamically scheduled “note off” events, the events are generated one-to-one with
“note on” events. Therefore, the maximum number of “note off” events that are pending
at a given time (i.e., the length of the queue) is equal to the number of independent notes
that can be played at a given time on the synthesis hardware. Even for sophisticated
synthesis environments this rarely exceeds a hundred and is typically a few dozen.

The number of dynamic events that are practical to generate from a static event or
interactive control input is limited in several ways. The synthesis hardware has a finite
capacity, thus limiting the number of events that can be played at a given time. The speed
of the synthesis device interface limits how fast events can be sent and received. In
addition, there is a practical limit to what a human audience can comprehend and what is
aesthetically pleasing. The technology is fast enough such that the number of simultaneous
notes and the rate at that they are played is perhaps limited more by what makes sense
musically than by the speed of the hardware and software.

Rather than inserting these dynamic events into the large static queue, a second dynamic
queue is introduced. The dynamic queue is an instance of the queue class defined for static
queues. The dynamic queue has the unique property that its length (the number of pending
events) is very small, rarely exceeding a few thousand elements and typically less than a
hundred elements. The maximum insertion time for a linked list is a small constant
multiplied by the length of the list, and the average time is half that. Therefore, the insertion
operation for linked lists with a very small number of elements is extremely fast.

Merging Static and Dynamic Queues

Before the performance begins, the static queue contains all of the events specified in the
score file. The dynamic queue is initially empty. The dynamic queue grows and shrinks
as elements are inserted and executed dynamically during the performance. The events in
the two queues are merged at runtime. A merge queue is defined that is based on a merge
sort algorithm. Merge sorts are very efficient [Knuth, 1973] as they simply compare the
next elements of each of the queues and return the one with the earliest time. The class
TwoWayMergeQueue is defined and the method next is implemented to perform this
comparison. If the next node of the static queue has the same time as the next node of the
dynamic queue, the event list for the dynamic queue’s node is appended to then end of the
static queue’s node and the node from the static queue is returned. The class definition for
a two way merge queue are shown below.

Object ()
TwoWayMergeQueue (staticQueue dynamicQueue)
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Multiple Time References

Recall that each queue has nodes with times expressed in beats and the corresponding
physical time is computed when the previous event is executed. This scheme requires that
the events in both the static and dynamic queues have the same tempo or time reference.
Multiple time references are required when there are two or more tempi under independent
interactive control.

In most cases the number of independently controlled tempi is very small, generally one or
two, and rarely more than ten. Because this number is so small and because the merge
queue is easily extensible, multiple tempi can be handled with a trivial modification to the
two way merge queue to handle an arbitrary number of queues at different tempi. The class
definition for a scheduler that implements a merge queue for an arbitrary list of queues is
shown below. The instance variable queuelist is a linked list of queues. The instance
variable currentTime is used to cache the physical time of the current pending alarm. Also
shown is a modification to the class Queue that provides each queue object with an instance
variable tempo to hold the time reference. The class Queue has also been modified to
include an instance variable nextQueue for creating a linked list of queues.

Object ()
Queue (nodelList currentNode nextQueue tempo)
ZEDScheduler (queuelist currentTime)

The class ZEDScheduler implements the method next to look through the queue list for the
next node. Thus, N queues increase the number of comparisons required to find the next
node to N - 1. Also, N - 1 floating point multiplications are required because in order to
find the next node the times for the current node in each queue must be converted to
physical time based on the node’s tempo.

There is, however, a slight problem with responsiveness in this design. After the physical
time for the next event is computed, it cannot be affected by tempo changes. Only
subsequent events are affected. This problem can be solved by having the conductor notify
the scheduler when a tempo has changed. The scheduler then cancels the pending event
and recomputes the next node. This calculation is relatively fast and would only cause
efficiency problems if the tempo were changing many times per second, but this is rarely
the case in most performances. (Live musicians can hardly keep up with such changes either!)

Optimizations

The dynamic queue, because of its small size, does not benefit by introducing complexity
to make insertion more efficient. Data structures such as heaps and indexes introduce
overhead each time a node is inserted or removed, and therefore do not result in significant
gains. A slight performance gain that can be trivially implemented is a pointer cache.
Because dynamic events are often inserted in time order (i.e., a dynamic event often has a
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time that is greater than the previously inserted dynamic event), remembering where the
last event was inserted can sometimes reduce the insertion time at the cost of a single
comparison operation. Another slight improvement could be achieved by using a doubly
linked list, allowing both forward and backward searching from the cached pointer. This
optimization introduces a slight maintenance overhead on insertion and deletion.

Memory Management

A hidden cost in the implementation of dynamic schedulers is the cost of allocating
memory. In addition, under virtual memory systems such as UNIX™ | there could also be
a performance degradation due to paging as a result of the addressing space growing larger
than physical memory. As mentioned earlier, the dynamic queue can only schedule events
in the future. Once a node’s events are executed, the node and events are no longer needed.
Using the standard technique of a free pool [Knuth, 1968] a recycling queue can be
implemented that returns the nodes and events to free pools. When new nodes and events
are needed they are removed from their respective pools rather than created with memory
allocations. To minimize the number of runtime memory allocations required at the
beginning of the performance (due to the free pools being empty), the free pools are
initialized before the performance to a thousand or so elements (which is greater than the
typical length of the queue). If the dynamic queue does not exceed this size at any time,
then the amount of memory required by the performance is fixed and there are no additional
timing delays due to runtime memory allocation.

Another optimization that can reduce runtime memory allocations is pre-allocation of
objects that have their time bound at runtime. For example, if a particular performer object
requires “note off” packets to be sent for each note in the part, a packet object for the “note
off” event can be created before the performance so that is it ready to be scheduled when
the time of the event is known.*

Triggering Sequences in Real-time

Often it is desirable in a real-time performance to start playing a sequence of notes
dynamically as a result of a real-time input. This is called triggering. Special consideration
must be given to triggering sequences in real-time because they may require a large number
of events to be scheduled dynamically, thus violating the assumption that the dynamic
queue remains small.

To handle sequences that are triggered, the class QueueWithOffset is defined as a subclass
of the class Queue. The class hierarchy is shown below.

Object ()
Queue (nodelist currentNode nextQueue tempo)
QueueWithOffset (offset)

4. There is empirical evidence that these techniques have a noticeable effect on timeliness, although no detailed timing
experiments were done.
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Before the performance begins each sequence that may be triggered during the
performance is scheduled into its own static queue using event times that are relative to the
beginning of the sequence. When the sequence is triggered, the current beat number in the
performance is captured in an instance variable called offset. The offset is used to
instantiate the sequence at the current time. The queue is then linked into the queue list of
the merge queue. The class QueueWithOffset is defined as a subclass of the class Queue.
QueueWithOffset overrides the method next to add the offset to the node’s time before
multiplying by the beat length. Sequences can be stopped under interactive control by
sending a message that removes the sequence’s queue from the merge queue’s queue list.

Repeated Sequences

The principle of a queue with an offset can also be used to save memory on sequences that
are repeated. Such sequences are very common in most types of music. The class
RepeatedQueue is defined as a subclass of QueueWithOffset with three additional instance
variables: numberOfRepeats, counter, and queueLength. The class hierarchy is shown below.

Object ()
Queue (nodeList currentNode nextQueue tempo)
QueueWithOffset (offset)
RepeatedQueue (numberOfRepeats counter queuel_ength)

The numberOfRepeats is the total number of times the sequence is to be played. The counter
reflects how many times the sequence has already been played. The queuelength is the
number of beats in the sequence. The counter is initialized to zero before the performance
begins. When the end of the queue is reached the counter is incremented and compared to
the number of repeats. If it is greater than the number of the repeats, the queue is removed
from the queue list. If it is not, the offset is incremented by the length of the queue.

Summary

Typically, real-time systems that are completely static are not flexible and do not support
interactive control. On the other hand, totally dynamic systems are very flexible but have
inherent problems insuring timeliness. The need to heavily optimize runtime scheduling
algorithms is alleviated by considering the application domain and partitioning the events
into those whose time is statically bound, and those whose time is dynamically bound. The
result is not a static scheduler nor a dynamic scheduler, but a sybrid scheduler that has all
the properties of a completely dynamic scheduler, and most of the efficiency benefits of a
static scheduler. Experiments were done that indicate that using free pools for dynamically
scheduled objects had a noticeable affect on the efficiency of the scheduler by eliminating
runtime memory allocations, eliminating the need to rely on the operating system to free
memory, and preventing garbage from accumulating, causing the process size to grow
during the performance.
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Appendix B

Score Files

This appendix provides a brief description of the function of score readers. The MUSE
score file representation provides the ability to read and write MUSE score objects to and
from ASCII files. Then, the mapping of MIDI score files to MUSE objects is described.
Finally, a brief discussion is presented outlining how MUSE scores can be defined from
multiple score files, and how any of the score files can be converted to MUSE files.

Score Readers

Score files are read by a score reader object. A score reader is implemented for each score
file format. The score reader reads the score file and converts the score file data into MUSE
object networks in program memory. The score reader class hierarchy is shown below.

Object ()
ScoreReader (fileName fileHandle)
MUSEScoreReader ()
MIDIScoreReader ()

The class ScoreReader is an abstract superclass and the classes MUSEScoreReader and
MIDIScoreReader are concrete subclasses. Each of the concrete classes implements the
message readScoreNamed:, which returns a MUSE score object that is an instance of the
class Score. Other score file formats can be added (such as NeXT score files [Jaffe, 1989])
by subclassing ScoreReader and implementing methods that parse the file and transform it
into MUSE objects.
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Many score files such as MIDI and NeXT are based on note lists and typically consist of
device specific values. These are mapped to MUSE message objects. These other score
files also have no interpretation context information. ZED configuration and patch files
can be used to augment these score files. When this is the case, the MIDI events are mapped
to MUSE symbols relative to the identity interpretation context that consists of a default
tempo, tonality, meter, style, and dynamics. The score file’s notion of time is normalized
and mapped into the MUSE notion of a duration in beats and a tempo. Similarly the score
file notion of pitch is normalized into the MUSE notion of a tonality, and pitches are
expressed relative to the tonality. The volume (if any) in the score file is mapped into the
MUSE notion of dynamics expressed in terms of a percentage of the maximum. Once the
scores are mapped to MUSE objects with an interpretation context, they can be controlled
in real-time in the same way as scores from MUSE score files, even though they originated
from different score file formats that may not have had interactive control information
originally.

The MUSE score file format is an ASCII representation of MUSE objects that is
specifically designed for interactive control and mapping to MUSE objects. MIDI files are
used as an example of how a score file format that is very different from MUSE score files
can be mapped to MUSE objects.

MUSE Score Files

MUSE score files consist of a score, some number of parts, and an optional cue sheet. Parts
can be built from notes, rests, and hierarchically with sequences. Parts may also have
interpretation symbols that are local to the sequence or part that contains them. Each of the
score, parts, cue sheet and sequences are named. The cue sheet consists of definitions for
MUSE cue objects and interpretation context objects that are global to the entire score.

In addition to notes and interpretation symbols, MUSE score files can also contain arbitrary
messages that invoke methods in the implementation of the performance objects. Thus, the
score file and the ZED system are tightly coupled.

Basic Syntax

The syntax of MUSE score files is based on Smalltalk syntax and instance creation
semantics whereby an object is represented by a MUSE class name, a set of instance
variable names, and values. The MUSE score file format is a simple Smalltalk program
that, when executed in the Smalltalk system, returns a score object with part objects
consisting of symbol objects. It is therefore possible to allow arbitrary Smalltalk code to
exist in the score file because it is simply a Smalltalk program. The score files presented
in the following sections have been simplified to only a few specific constructs. Rather
than defining complex code in the score file, simple messages are specified that invoke
methods that may be of arbitrary complexity. This approach has two important properties:
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the file format is easier to parse (and is more portable between programming languages),
and the system runs faster. The simplified score file syntax, although it is actual Smalltalk
syntax, is easier to parse and does not require an entire Smalltalk parser. As a
simplification, all messages are shown with only one parameter, although this is easily
extensible.

Although the MUSE score representation allows objects to be created with any class
method that is defined in the system, only a few of the standard and most common creation
messages are presented. The score file representation can, however, be extended simply by
adding new object creation methods and referencing them in the score file. In this way
instrument specific or device specific extensions are easily added. Some complex MUSE
objects such as interpretation symbols may also be defined with an initialization selector
that represents a message that are sent to the class. The method that implements the
message creates a new object and initialize its instance variables.

Values are of four basic types: numbers, symbols, strings, and pitches. Numbers include
floats, integers, and fractions (rational numbers). Fractions are specified in Smalltalk as
two integers separated by a slash character, such as 1/3 for one-third. Method selectors and
object names are represented with Smalltalk symbols that consist of a hash character
followed by an alphanumeric string, such as #new. Smalltalk method selectors may contain
a colon, indicating that the corresponding methods have parameters, one for each colon.
Pitches can be specified as an instance of the class Pitch or as a number (implying the
pitch’s offset is 0). As a shorthand, a comma can be used between two numbers to specify
a pitch. For example, (0,0) is the pitch middle C. (The method “,” defined on the class
Number creates a pitch object and sets the step and offset of the pitch to the receiver and the
parameter respectively.) MUSE score files may also container values that are arrays.
Smalltalk array syntax is used. For example #(1 2 3) is a three element array containing the
first three counting numbers. Arrays can be recursive, for example, #(#(1) #(2) #(3)) is an
array containing three arrays, each having one number.

The MUSE score file syntax also supports a delta time representation. In this
representation, the time of a symbol is expressed relative to the previous symbol. For
simplicity all examples in the sections below are expressed with an explicit time relative to
the beginning of the part or sequence.

Interpretation Symbols

Recall the class definitions for the MUSE objects for interpretation symbols as shown
below.

Object ()
MUSEODbject ()
InterpretationContext (tempo dynamics meter tonality style)
MUSESymbol (time)
InterpretationSymbol (name)
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Tempo (metronomeMarking)

Dynamics (level)

Tonality (keyNote tonalSystem)

Meter (beatsPerMeasure referenceBeat stressSelector)
Style (articulation)

In addition to specifying explicit instance variable values, interpretation symbols can be
created by specifying an initialization message that is sent to the object to set the instance
variables. (The messages are sent when during the scheduling phase when the score is
compiled.) A special keyword initialization: followed by a selector represents a method that
computes the instance variable values. The optional keyword with: is followed by a
parameter specifying the method’s parameter.

Interpretation symbols that appear in a part only apply to that part. Interpretation symbols
that appear in the cue sheet are considered to be global and therefore are used by all
performer objects in the absence of an interpretation symbol within their own part. All
interpretation symbols can optionally have a name. The name is important as it allows the
object to be referred to in the score, configuration, and patch files, and is the basis of the
real-time patching mechanism.

Tempo

Tempi can be defined in a MUSE score by explicitly setting the metronome marking or by
setting an initialization message that computes a metronome marking. The syntax for
defining tempo objects in a MUSE score file are shown below. Tempo objects can be
defined either with a name or without a name.

Tempo Syntax Without Names
Tempo time: t mm: mm
Tempo time: t initialization: s
Tempo time: t initialization: s with: p

Tempo Syntax With Names
Tempo time: t name: n mm: mm
Tempo time: t name: n initialization; s
Tempo time: t name: n initialization: s with: p

In the above statements, the time t and metronome marking mm are numbers, the

initialization s is a selector, the parameter p is a number, and the name n is a symbol.

Some examples of tempi definitions are shown below.

Tempo time: 0.0 mm: 120
Tempo time: 32 name: #GlobalTempo initialization: #allegro
Tempo time: 64.0 initialization: #accelerando with: 0.10
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Dynamics

The dynamics can be defined by setting the level to an explicit value or by specifying an
initialization message that computes the dynamics level. The syntax for specifying
dynamics is shown below.

Dynamics Syntax Without Names
Dynamics time: t level: |
Dynamics time: t initialization: s
Dynamics time: { initialization: s with: n

Dynamics Syntax With Names
Dynamics time: { name: n level: |
Dynamics time: { name: n initialization: s
Dynamics time: t name: n initialization: s with: p

In the above expressions the level | is a number. The time, initialization, parameter, and
name have the same types as those for tempo, namely number, selector, number and symbol
respectively. Some examples of dynamics definitions are shown below.

Dynamics time: 0.0 level: 0.25
Dynamics time: 32.5 initialization: #crescendo
Dynamics time: 64.25 name: #QuietPhrase initialization: #piano

Tonality

The tonality is specified by explicitly defining a key note and tonal system, or by using an
initialization message. Tonality objects may also be named. The syntax for defining the
tonality is shown below.

Tonality Syntax Without Names
Tonality time: t keyNote: p chromaticSize: ¢ naturalScale: ns keyScale: ks
Tonality time: { initialization: s
Tonality time: t initialization: s with: p

Tonality Syntax With Names
Tonality time: t name: n keyNote: p chromaticSize: ¢ naturalScale: ns keyScale: ks
Tonality time: t name: n initialization: s
Tonality time: t name: n initialization: s with: p

The key note p is a pitch that is defined as an interval from the tonal system origin (middle
C in twelve-tone music). The chromatic size ¢ is an integer. The natural scale and key
scale, ns and ks respectively, are arrays. The time, initialization, parameter, and name are
the same types as in the other interpretation symbols. An example of a B’ minor scale with
a tempered tuning is shown below.

Tonality time: Q initialization: #minorWithTemperedTuning: with: 6,-1
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Tonality designations in MIDI files result in tonality objects that have a MIDI tuning and
the frequencies set to the tempered scale. Tonality objects created in MUSE files have a
tuning that is an instance of MUSEChromaticTuning and the frequencies set to the tempered
scale. When the tonality is defined with an initialization selector, the corresponding
method may create a tuning object and set the frequencies in addition to setting the other
instance variables of the tonal system.

Meter

The meter can be specified either by explicitly defining the instance variables
beatsPerMeasure, referenceBeat, and stressSelector, or by specifying an initialization
message. The syntax is shown below.

Meter Syntax Without Names
Meter time: t beatsPerMeasure: b referenceBeat: 1 stressSelector: s
Meter time: t initialization: s
Meter time: i initialization: s with: p

Meter Syntax With Names
Meter time: t name: n beatsPerMeasure: b referenceBeat: r stressSelector: s
Meter time: t name: n initialization: s
Meter time: t name: n initialization: s with: p

The time t, the number of beats per measure b, and the reference beat r are all numbers. (The
number of beats per measure is typically an integer and the reference beat is typically a
rational number, but this is not required.) The stress selector s is a selector for a message
computes the stress value for a given beat, and has one parameter, the current beat. This
message can be sent by the performer from the playNote: method. The name n is again a
symbol as with tempo and dynamics. Some examples for defining meter symbols are
shown below.

Meter time: 0 beatsPerMeasure: 5 referenceBeat: 1/8 stressSelector: #twoThree
Meter time: 32 name: #GlobalMeter initialization: #ourFour
Meter time: 256 initialization: #setMeter: with: 6/8

Style

The style is specified explicitly by defining a default articulation or by specifying an
initialization message that computes the default articulation. Style objects may also be
named. The syntax is shown below.

Style Syntax Without Names
Style time: t articulation: a
Style time: t initialization: s
Style time: t initialization: s with: p

Style Syntax With Names
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Style time: { name: n articulation:
Style time: { name: n initialization
Style time: { name: n initialization: s with: p

a
-]

The time, name, initialization, and parameter are the same as the other interpretation
symbols. The articulation is the specification of an articulation object. Some examples of
style symbols are shown below.

Style time: 0 name: #March articulation: (Articulation selector: #marcato)
Style time: 32 initialization: #adagio
Style time: 128 initialization: #dolce: with: 0.9

Discrete Symbols

Recall the class definition for MUSE discrete symbols and their instance variable as shown
below.

Obiject ()
MUSESymbol (time)
Cue ()
Note (duration pitch articulation)
Rest (duration)
Message (receiver selector parameters)
MUSEODbject ()
Articulation ()
ASDArticulation (attack sustain decay dutyCycle)
SymbolicArticulation (message)

All discrete symbols have a time. Rests can be represented explicitly with a time and
duration. (Rests are primarily provided for scores that originated in a notation program that
expresses rests explicitly.) When MUSE scores are read, rests are unnecessary because
each note has a time and duration. They are therefore essentially omitted from parts. Cues
are found only in the cue sheet and have only a time. Notes require a duration, a pitch and
optionally have an articulation. The articulation is an articulation object that is created by
sending a message to the abstract class Articulation. The valid creation messages for
discrete symbols in MUSE score files are shown below. When used in a score, each of the
expressions below must be enclosed in parenthesis.

Cue Syntax
Cuetime: t

Rest Syntax
Rest time: t duration: d

Note Syntax
Note time: { duration: d pitch: p
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Note time: t duration: d pitch: p articulation: a
Note time: t duration: d pitch: p selector: s
Note time: t duration: d pitch: p selector: s with: n

Articulation Syntax
Articulation selector: s
Articulation selector: s with: n
Articulation attack: a sustain: s decay: d dutyCycle: ¢

All times t and durations d are numbers and are interpreted to mean a number of beats. All
pitches p are either a number or two numbers separated by a comma. All selectors s are
symbols and if the symbol has a colon, the selector is followed by the string ‘with:” and a
parameter of any type. The articulation a is an instance of a concrete subclass of
Articulation that is created with one of the expressions shown.!  The methods
time:duration:pitch:selector: and time:duration:pitch:selector:with: are provided as shortcuts for

creating the articulation object. Thus, the following two symbols are identical:

Note time: 1.5 duration: 1/2 pitch: 1,0 articulation: (Articulation selector: #accent)
Note time: 1.5 duration: 1/2 pitch: 1,0 selector: #accent

When the articulation of a note is represented as a selector, the selector corresponds to a
message that is sent to the performer object causing the performer object to in turn compute
the articulation. If the performer object does not understand the message, a warning is
printed when the score is read and the message is ignored during the performance. If the
articulation is not under interactive control, then the message can be sent when the score is
read in and the resulting articulation can be cached. If the articulation is under interactive
control, then the message is sent at runtime. When the articulation of a note is specified
explicitly, the sustain is an array of arrays specifying the time within the note that the
envelope is to be updated and the value of the update.

Some examples of symbols in a MUSE score are shown below.

Cue time: 0
Rest time: 0 duration: 1/3
Note time: 1/3 duration: 2/3 pitch: 0
Note time: 2.5 duration: 1/2 pitch: 1.1 articulation: (Articulation selector: #staccato)
Note time: 3 duration: 0.5 pitch: 2 selector: #accent
Note time: 4 duration: 0.25 pitch: 3,0 selector: #tenuto with: 0.8
Note time: 2 duration: 1/2 pitch: 1 articulation: (Articulation selector: #downBow: with: 0.2)
Note time: 2 duration: 1/2 pitch: 1,1 articulation: (
Articulation
attack: 0.75
sustain: #(#(0.25 0.7) #(0.5 0.8) #(0.75 0.9))

1. As a memory saving measure, if the data originated from MIDI and if the release velocity is not present or is ignored,
the articulation can also be specified as an integer, referring to the velocity.
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decay: 0.5
dutyCycle: 0.8)

Messages

MUSE message symbols are defined by specifying a time, the name of the receiver, the
selector, and an optional parameter. The syntax is shown below.

Message Syntax
Message time: t receiver: n selector: s
Message time:  receiver: n selector: s with: p

The object name n is a symbol representing the receiver’s name. The name is used to find
the object in the object dictionary. An example that shows how a part can be transposed is
shown below.

Tonality time: 0 initialization: #minorWithTemperedTuning: with: 6.-1.
Message time: 128 receiver: #GlobalTonality selector: #transpose; with: 2.0.

An instance of Message is created and the message is sent at the time 128, with the receiver
being the object with the name #GlobalTonality, the selector #transpose: and parameter 2,0.
This will cause the part to be transposed up a minor third.

Instantiation and Dependency

Any named interpretation symbol can be used as a prototype for other interpretation
symbols of the same type. There are two ways to instantiate prototypes: independently and
dependently.

Independent instantiation is used to clone (copy) a prototype object. Cloned objects reflect
changes in the prototype but not interactive control of the prototype. If a selector is
specified, the message is sent and computes values based on the prototype’s values. This
operation is only done once when the score is compiled during the scheduling phase. All
information relating the instantiated object to the prototype is disregarded. Therefore,
interactive control of the prototype does not effect objects instantiated independently.

The syntax for specifying independent instantiation is shown below. The word
aninterpretationSymbolClass is used to mean any concrete subclass of
InterpretationSymbol described in the previous sections, namely Tempo, Dynamics, Meter,
Tonality, or Style.

aninterpretationSymbolClass time: { from: n
aninterpretationSymboiClass time: { from: n selector: g
aninterpretationSymbolClass time: t from: n selector: s with: p

The name n specifies the prototype object. The selector and optional parameter are
specified by s and p respectively. Thus, independent instantiation operates the same as a
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MUSE message expression except that a copy is made and the message is sent to the copy,
leaving the original object intact.

Dependent instances are so called because they depend on the value of the prototype.
Whenever the prototype object’s state changes due to interactive control, the selector of the
instantiated object is evaluated causing all objects that are dependent on it to also be under
interactive control. This mechanism allows interpretation symbols in different parts to be
controlled relative to those in another part or in the global state defined in the cue sheet.
For example, one part of the score can be defined to be 10% faster than the global tempo
and another part to be 10% slower. If a patch is created to control the global tempo, then
the dependent tempo follows. If independent tempo were instantiated, they would initially
be relative to the global tempo but would not change over the course of the performance.

The syntax for specifying dependent instantiation is shown below.

aninterpretationSymbolClass time: t dependentOn: n
aninterpretationSymbolClass time: t dependentOn: n selector: s
annterpretationSymbolClass time: t dependentOn: n selector: g with: p

The values t, n, s, and p are the same as those for independent instantiation.
Some examples of interpretation symbols instantiated from prototypes are shown below.

Tempo time: 0 name: #GlobalTempo mm: 120.
Tempo time: 0 from: #GlobalTempo selector: #twiceAsFast

Dynamics time: 64.25 name: #QuietPhrase initialization: #piano
Dynamics time: 64.25 dependentOn: #QuietPhrase initialization: #imes: with: 1.2

Tonality time: 0 name: #BaseTonality initialization: #pentatonicOnKeyNote: with: 2.-1
Tonality time: 0 dependentOn: #BaseTonality selector: #transposeBy: with: 2.0

In the first example above a tempo named #GlobalTempo is created on beat 0 of the score.
The tempo named #GlobalTempo is then instantiated with a metronome marking twice as
fast as that of the global tempo (as computed by the method #wiceAsFast) and takes effect
on beat 0. The part that contains this tempo definition remains at this tempo (240 beats per
minute) until the part specifies a new tempo, regardless of whether or not the global tempo
is under interactive control.

The second example shows a dynamics object instantiated dependently. If the dynamics
specified by the prototype named #QuietPhrase is under interactive control, the instantiated
dynamics are always 120% of that specified in the #QuietPhrase object. If the prototype is
not under interactive control, the instantiated dynamics are 120% of the dynamics set in the
method named #piano. In either case, the instantiated dynamics object is in effect until the
next occurrence of a dynamics object in the same part.

The third example above shows a tonality that is transposed by a third relative to another

98



MUSE Score Files

tonality. If the prototype’s key note is under interactive control, the instantiated tonality
recomputes its key note to be a third above that of the prototype each time the prototype’s
key note changes.

Organizing Symbols

Symbols in the MUSE score are organized into a score, parts, a cue sheet, and sequences.
The simplest score is one that has a collection of parts that are not hierarchically composed
but rather, each part has a simple linear list of symbols. The MUSE classes for hierarchical
structures are shown below.

Object ()
MUSESymbol (time)
MUSEStructure (name events interpretationContext transformation current)

Sequence ()
Part ()
CueSheet ()

ParallelSequence ()
Score (cueSheet)

RepeatedSequence (numberOfRepeats count)

Scores, Parts, and Cue Sheets

A score is created by specifying a set of parts and an optional cue sheet. The syntax for
creating score objects, cue sheet objects, and part objects is shown below. It is assumed
that there is only one score in the file and that all parts in the file are in the score. There is
at most one cue sheet.

Score name: n.
CueSheet name: n events: e.
Part name: n events: e.

The name n is a symbol. The events e for a part are specified by enclosing each of the
discrete symbols and interpretation symbols in parentheses, and separating them with the
back-slash character (\). The events for cue sheets consist of a similar collection except
that the collection includes only cues and interpretation symbols. All carriage returns, tabs,
and spaces are treated as simple delimiters as in Smalltalk. The expressions are terminated
with a period (as are all Smalltalk expressions).

An example of the syntax for a complete score is shown below.

Score name: #SimpleScore.
CueSheet
name: #Cues
events: (
(Tempo time: 0 mm: 120) \
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(Style time: Q initialization: #allegroConMoto) \
(Meter time: 0 initialization: #fourFour)\
(Tonality time: Q initialization: #minor: with: 1,0) \
(Dynamics time: 0 initialization: #forte) \

(Cue time: 0)\

(Cue time: 1)\

(Cue time: 1.75)

).
Part
name: #FlutePart
events: (
(Note time: 0.0 duration: 1/2 pitch: 0,0) \
(Note time: 0.5 duration: 1/2 pitch: 1,0) \
(Note time: 1.0 duration: 1/2 pitch: 2,0) \
(Note time: 1.5 duration: 1/2 pitch: 1,0)
).
Part
name: #PianoPart
events: (

(Note time: 0.0 duration: 1/2 pitch: 2,0) \
(Note time: 0.5 duration: 1/2 pitch: 1,0) \
(Note time: 1.0 duration: 1/2 pitch: 0,0) \
(Note time: 1.5 duration; 1/2 pitch: 1,0)

).

The score is named #SimpleScore and has two parts named #FlutePart and #PianoPart and a
cue sheet named #Cues. The score is in four-four time with quarter note equal to 120. The
style is allegro con moto and the key is D minor. The global dynamics are forte. There
are cues on beats 0, 1, and 1.75. The part #FlutePart has four notes and the part #PianoPart
has four notes.

The interpretation context of the individual parts can be set by including interpretation
symbols within individual parts. The example below shows the flute part transposed up a
third and the piano part slightly quieter. The piano part’s tempo is relative to the global
tempo, therefore it is always 105% as fast as the global tempo.

Score name: #SimpleScore.
CueSheet
name: #Cues
events: (
(Tempo time: 0 name: #GlobalTempo mm: 120) \
(Style time: 0 name: #GlobalStyle initialization: #allegroConMoto) \
(Meter time: 0 name: #GlobalMeter initialization: #ourFour) \
(Tonality time: 0 name: #GlobalTonality initialization: #minor: with: 1,0) \
(Dynamics time: 0 name: #GlobalDynamics initialization:_#forte) \
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(Cue time: 0)\
(Cue time: 1)\
(Cue time: 1.75)
).
Part
name: #FlutePart
events: (
(Tonality time: 0 from: #GlobalTonality selector: #transposeBy: with: 2,0) \
(Note time: 0.0 duration: 1/2 pitch: 0.0)\
(Note time: 0.5 duration: 1/2 pitch: 1,0) \
(Note time: 1.0 duration: 1/2 pitch: 2,0)\
(Note time: 1.5 duration: 1/2 pitch: 1,0)
)-
Part
name: #PianoPart
events: (
(Tempo time: 0 dependentOn: #GlobalTempo selector: #times: with: 1.05) \
(Dynamics time: 0 initialization: #mezzoForte) \
(Note time: 0.0 duration: 1/2 pitch: 2,0) \
(Note time: 0.5 duration: 1/2 pitch: 1,0)\
{(Note time: 1.0 duration: 1/2 pitch: 0,0) \
(Note time: 1.5 duration: 1/2 pitch: 1.0)

).

Sequences

MUSE score files allow MUSE sequence objects to be specified in the event list for a part
or sequence. To accomplish this, template sequences are defined and then instantiated in
various parts and at various times in the score.

Sequences are defined in the same way as parts and cue sheets as shown with expression
below.

Sequence name: n events: e.

The symbols in the sequence definition contain times relative to the beginning of the
sequence. The sequence can then be instantiated at any point in the score and the times of
the symbols are offset by the time of the instantiated sequence. As with other events, the
time is specified explicitly. Sequences are instantiated by specifying the class Sequence, a
time, the keyword play: and the name of the sequence that is to be instantiated. Sequences
can also be instantiated with some number of repeats (resulting in an instance of the class
RepeatedSequence). Sequences are referenced and instantiated by their name. The two
ways of instantiating sequences are shown below.

Sequence time: t play: n
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Sequence time: t play: n repeat:

Sequences can reference other sequences. Reference patterns should be acyclic, that is, a
sequence should not reference sequences that directly or indirectly reference it as this
results in infinite recursion. (Few audiences have the patience to listen to an infinitely long
performance!) This is not a requirement, however, as a patch could be created that would
cause the sequence to stop playing when a specific input is received. The sequences can be
that is, forward references are allowed. Sequences
are not actually instantiated until the score is compiled during the scheduling phase after
the entire score has been read in. An example of a score that instantiates sequences is

defined in any order in the score file,

shown below.

Score Files

I

Score name: #AnotherSimpleScore.

Sequence
name: #Ascent
events: (

(Note time: 0.0 duration:
(Note time: 0.5 duration:
(Note time: 1.0 duration:
(Note time: 1.5 duration:
(Note time: 2.0 duration:
(Note time: 2.5 duration:
(Note time: 3.0 duration:
(Note time: 3.5 duration:

)-
Sequence name: #Descent
events: (

(Note time: 0.0 duration:
(Note time: 0.5 duration:
(Note time: 1.0 duration:
(Note time: 1.5 duration:
(Note time: 2.0 duration:
(Note time: 2.5 duration:
(Note time: 3.0 duration:
(Note time: 3.5 duration:

).
CueShee
name: #SomeCues
events: (

1/2 pitch: 0,0)\
1/2 pitch: 1,0)\
1/2 pitch: 2,0)\
1/2 pitch: 3.0)\
1/2 pitch: 4,0)\
1/2 pitch: 5.0)\
1/2 pitch: 6,0)\
1/2 pitch: 7.0)

1/2 pitch: Z.0)\
1/2 pitch: 6,0) \
1/2 pitch: 5,0) \
1/2 pitch: 4,0)\
1/2 pitch: 3.0)\
1/2 pitch: 2,0)\
1/2 pitch: 1,0)\
1/2 pitch: 0.0} \

(Tempo time: 0 mm: 120)\

(Style time: 0 initialization: #allegroConMoto) \

(Meter time: Q initialization: #fourFour) \

(Tonality time: 0 name: #GlobalTonality initialization: #minor: with: 1,0) \

(Dynamics time: 0 initialization: #forte)
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)-
Part
name: #FlutePart
events: (
(Tonality time: Q instantiate: #GlobalTonality selector: #transposeBy: with: 2,0) \
(Sequence time: 0 instantiate: #Ascent)
).
Part
name: #PianoPart
events: (
(Tempo time: 8 mm: 132)\
(Dynamics time: Q initialization: #piano) \
(Sequence time: 2.0 play: #Descent)

)-

In the above example there are two sequences, #Ascent and #Descent. The sequence #Ascent
is referenced in the part #FlutePart and is transposed. The sequence #Descent is referenced
in the #PianoPart and begins two beats from the beginning of the composition.

An example of using repeated sequences is shown below. Each of the sequences #Ascent
and #Descent are repeated for a total of two iterations.

Score name: #YetAnotherSimpleScore.
Part

name: #Up
events: (
(Tempo time: 0 mm: 132)\
(Sequence time: 0 play: #Ascent repeat: 2)

)-

Part
name: #Down
events: (
Sequence time: 2 play: #Descent repeat: 2

).

Sequences can be constructed hierarchically as well. For example, a new sequence could
be constructed from the two sequences #Ascent and #Descent (described above), and then
that sequence can be instantiated. The example below shows a sequence #UpThenDown that
is created with the sequence #Ascent followed by the sequence #Descent, and a sequence
#DownThenUp consisting of the sequence #Descent followed by #Ascent.

Score name: #Scales.
Sequence

name: #UpThenDown
events: (
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(Sequence time: 0 play: #Ascent) \
(Sequence time: 4 play: #Descent)
)-
Sequence

name: #DownThenUp

events: (
(Sequence time: 0 play: #Descent)
(Sequence time: 4 play: #Ascent)
).

Part
name: #Part1
events: (
Sequence time: 0 play: #UpThenDown repeat: 2
)
Part
name: #Part2
events: (

Sequence time: 0 play: #DownTheUp repeat: 2
)-

Parallel Sequences

Parallel sequences are defined implicitly in MUSE score files by simply specifying two
objects (including sequences) within the same part with same time. Whenever the score
reader encounters this situation, an instance of ParallelSequence is created that has as its
event list all events with the same time. For example, the sequence #UpThenDown above
can be changed to play the sequences #Ascent and #Descent simultaneously rather than
serially by setting their time to be the same.

Sequence
name: #UpAndDownTogether
events: (
(Sequence time: 0 play: #Ascent) \
(Sequence time: 0 play: #Descent)

)-

MIDI Files

MIDI files [MMA, 1987] are binary encoded files that have “events” and “meta-events.”
MIDI events correspond to notes and messages, and meta-events correspond to
interpretation symbols. MIDI events are either channel messages or system messages.
Channel messages refer to a particular MIDI channel or voice. System messages refer to
an entire MIDI device. The MIDI channel and system messages are shown in TABLE D. 1
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and TABLE D.2 in Appendix D.

MIDI files treat “note on” and “note off” events as separate events whereas MUSE notes
are single symbols with a time and a duration. All MIDI events associated with a given
channel number are a MUSE part. MIDI files are not sorted by channel but are merged into
a single time ordered list. Therefore, an important function of the MIDI score reader is to
sort the events into parts and to associate MIDI “note on” events with their corresponding
“note off” events. MIDI files do not support the naming of parts, so each part object from
a MIDI file has a default name of #Partn where n is the channel number, e.g., #Part1 for
channel one, #Part2 for channel two, etc. MIDI files do not support rests or hierarchical
construction so the parts are made up of simple lists of note and message objects.

All MIDI files may express a time signature and tempo in the header of the file. If these do
not appear in the MIDI file, the default is 4/4 time at quarter note equals 120 beats per
minute (the MIDI default).

Time Mapping

MIDI files support two notions of time: metrical time and time code based time. Each of
these representations is mapped to the MUSE representation of a time and a duration in
beats relative to a tempo. MIDI files represent event times as delta time. For a given event,
the delta time is the amount of time after the previous event takes place that the event is to
take place. A MUSE note event is constructed by pairing each MIDI “note on” event with
its corresponding “note off” event and computing the time and duration.

The time in MIDI time units of the ith MIDI event can be expressed as a function of the
delta time and the accumulation of the delta times of all of the events preceding it as shown
in the equation below.

midiTime; = midiTime,_, + deltaTime,

where midiTime, = 0 and deltaTime, is the time in the MIDI file for the ith MIDI event. The
duration of a note is computed as the time difference between the time of a “note on” event
and its corresponding “note off” event.

For MIDI files that use the metrical format for time, the delta time is the number of “ticks”
that make up a quarter note. This value is expressed as the “division” in the header of the
MIDI file. For example, if the division is 96 then an eighth note (one half beat) is
represented as 48. The time and duration for a MUSE note in beats for the ith “note on”
event and its corresponding “note off” event can be expressed as shown below.

1

midiTime, 0, 4

time = —— X
division referenceNote

The referenceNote is the note specified in the meter’s time signature (e.g., 2/4 time is a
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1
midiTimenoteO".—nlidiTimenoteoff Z

duration = — X
division referenceNote

quarter note or 1/4, 3/8 time is an eighth note or 1/8, etc.) The time and duration are in
MUSE abstract units of beats relative to the tempo and are the instance variables of the note
object.

For MIDI files that use time codes instead of metrical time, the delta time is expressed as a
fraction of a second. In this case the duration and time are mapped in terms of the default
MUSE tempo of quarter note equals 120 beats per minute, resulting in each beat being 0.5
seconds in length. The values framesPerSecond and unitsPerFrame are specified in the
header of the MIDI file. The calculation is shown below.

- A deltaTime,
midiTime;, = midiTime,_,+

JframesPerSecond X unitsPerFrame

Other score file formats may not have an explicit notion of tempo and time signature and
may instead express an event’s time in seconds. In these cases the tempo and time signature
are defaulted to 4/4 time with a metronome marking of 120 beats per minute. The time and
duration for the MUSE events in units of beats can be computed from events expressed in
units of seconds by dividing the time by the beat length, namely 0.5 seconds.

Mapping MIDI Pitch to MUSE Pitch

In MIDI files the pitch is represented as a key number. The key number is an integer
between 0 and 127 inclusive and is mapped to a MUSE pitch based on the key signature.

The MIDI meta-event for “key signature” is mapped to a MUSE tonality object. If no key
signature is specified in the MIDI file, the key of C major is used. The MIDI value “key
number” that is found in “note on” and “note off” events corresponds to the MUSE pitch.
The MIDI key number 60 corresponds to m1dd1e C. T&le key number representation does
not preserve enharmonic pitches, for example ¥ and D’ above middle C both have the key
number 61. There are two ways that the key number can be mapped when the score is read
in. The first is to ignore the key signature specified in the score file and use a tonal system
that describes MIDI, namely, a chromatic scale size of 128, and natural and key scales of
0...127. Under this scheme each pitch would simply be the key number (with no offset)
and the tuning would be a MIDI tuning object. The pitch bend events in the MIDI file could
be stored in the MUSE score as message events that are forwarded to the device. If the
score has a pitch bend event for each “note on” event, the pitch bend could be stored as the
pitch’s offset.

An alternative is to use the key signature to construct a diatonic tonal system and map the
key numbers into pitch and offset pairs that best fit the key signature. Mapping to step and

106



MIDI Files

offset pairs would allow the pitches to be tuned to non-tempered scales that are a function
of the key note and key scale. This fine grained tuning is sometimes desirable for synthesis
instruments. '

Articulation Mapping

For MIDI events the attack portion of the articulation is the velocity of a “note on” event.
The calculation for the MUSE attack is normalized to be the percentage of the maximum
attack as shown below.

noteOnVelocity

attack = 27

The decay in the MUSE articulation corresponds to the release velocity of the note, also
expressed as the percentage of the maximum. If the release velocity is 0, the score reader
uses the MIDI value 64. The calculation of the decay is shown below.2

releaseVelocity
127

decay =
If the MIDI file has channel pressure (after touch) events, the score reader constructs the
varying sustain by creating a list of pairs with the time of the pressure update and the
pressure value. The pressure values are normalized in the same way that the velocity is
normalized. The time is computed relative to the “note on” event. The equations below
show how the time and value pair are computed for the jth after touch event for a “note on”
event.

sustamszej = mzdthmeaﬂerTouchj— midiTime,, 0,
sustainValue. = channelPressure
/ 127

Dynamics Mapping

The MIDI file event for changing the “main volume” corresponds to the dynamics event in
the global interpretation context. For each MIDI event that sets the main volume a MUSE
dynamics object is created that sets the dynamics to the MIDI value as a percentage of the
maximum.

2. If the MIDI file does not have explicit “note off”” events but rather uses “note on” events with a velocity of O to
indicate a “note off,” the articulation can be represented as the attack value rather than an articulation object to save
memory.
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Other Events

There are other events in MIDI files that are device specific in that non-MIDI synthesizers,
and even some MIDI synthesizers, do not support the functionality. These are primarily
the MIDI events for program changes, synthesis parameter control, and MIDI system
messages. Non-MIDI instruments may, however, implement these messages. All channel
events from the file that are not mentioned in the previous sections are mapped into a
MUSE message event whose receiver is the performer object for the part defined by the
channel number, All non-channel events are mapped to MUSE message events that have
the conductor object as the receiver. All parameters to the messages listed below are
normalized from the MIDI values. The MIDI controllers and their corresponding message
are listed in TABLE D.3 and TABLE D.4 in Appendix D.

Scores with Multiple Score Files

As we have seen in this chapter, generic MUSE scores can be built from a variety of
different score file formats. Because all score file formats map to a generic representation,
a MUSE composition can be defined with multiple types of score files. This capability is
important because it allows MIDI files that were created with other applications to be
augmented with a cue sheet and interpretation information from a MUSE file. Also, parts
from different score file formats (and different applications) can be merged into a common
score for performance.

When MIDI files are read the events are sorted into parts based on the channel number and
each part is given a default name of the form #Partn, where nis the channel number. In a
MUSE file a part could be created with the same name that contains no note information
but only interpretation information for applying tempo changes, style and meter changes,
dynamic changes, etc. A cue sheet with global interpretation information could also be
defined. Both scores would be read in and merged into a single set of MUSE score objects.
Additionally, the MUSE score file could define additional parts that would be merged into
the same MUSE score.

The generic MUSE score representation enables MUSE scores to be created from any
supported score file format. For example, MIDI files can be converted to MUSE files by
reading them with the MIDI score reader, and then writing the MUSE objects with a MUSE
score writer. Each of n score file formats can be converted to any other format by
implementing n score readers and n score writers. Without the generic MUSE object
representation, it would require n? conversion functions to translate all formats to all others
rather than 2n.
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Appendix C

Other Approaches

This appendix presents a sampling of other approaches to real-time music performance
with interactive control. The approaches are then summarized and compared to ZED.

Other Approaches

Three types of real-time music performance approaches are discussed in the sections that
follow: applications primarily concerned with patching and sequencing; applications
primarily concerned with performance and accompaniment issues; and tool kits that
provide a framework for building applications. All of the systems provide the ability to
control music synthesizers in real-time, but they are all based on different metaphors. The
patching and sequencing applications allow a user to configure the system via a graphical
user interface. The user can specify score to play and can route MIDI inputs from
controllers to particular channels of MIDI synthesizers. Performance and accompaniment
systems have pre-programmed behavior and only allow the user to specify the score. This
type of system accepts input from a live performer and attempts to expressively control and
coordinate digital synthesizers with the live performer. Tool kits provide a library of
functions that can be used by a programmer to create an application. Several example
systems are described in the following sections.

NeXT Music Kit

The NeXT Music Kit [Jaffe, 1989a; Jaffe, 1989b] is a tool kit that is implemented in
Objective-C on the NeXT Computer. Although the Music Kit contains some of the same
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classes as the ZED system, the semantics and underlying software architecture vary greatly.
The Music Kit is based on Music V [Mathews, 1969] with added MIDI capability. Music
V was a very successful non-real-time computer music program, but its design did not
incorporate interactive control or an object-oriented paradigm. Conversely, ZED breaks
from the legacy of these systems and is designed to take full advantage of the capabilities
of object-oriented programming systems. ZED’s design is centered around real-time
expressive control and a simple conceptual model based on live orchestra performance.
The Music Kit has strong roots in playing score files with real-time control as an addition
rather than a foundation. Some of the specific differences between ZED and the Music Kit
are outlined in the sections that follow.

Score Files

The score file representation used by the Music Kit merges the MIDI event representation
with the classical note list representation used by Music V. Neither the Music Kit, nor these
other representations provide abstractions for real-time control, making it difficult to
control certain aspects of the performance.

Only one basic event class, called “Note,” is provided. The note has “parameters” that are
implemented in a Lisp property list style rather than an object-oriented style using instance
variables. All information is merged into instances of the same note class. (There is no
separate interpretation context.) The result is that objects with very different semantics are
represented with one class. A “noteTag” property is used to specify what type of event it
is. Although implemented in an object-oriented language, this approach does not use the
features provided by object-oriented languages, such as data abstraction, encapsulation,
and inheritance.

Performance Objects

In the Music Kit, performer objects acquire generic note objects and send them to one or
more instruments. There is only one performer class and performer instances send note
objects to an instrument that has specific information about the synthesis device and, in the
case of DSP synthesis, the synthesis algorithm. Thus, the performer object has no inherent
knowledge of the instrument that is being played. The intelligence of how a note object is
realized is done by the instrument. (This is the inverse of the real world where an
instrument is an inanimate object that doesn’t understand notes and the intelligence lies
with the human performer.) The interpretation phase provided by live musicians in the real
world (and also provided by ZED) is missing from the Music Kit, whereby the symbols
written by the composer are mapped to specific gestures that are applied to an instrument.
An unfortunate artifact of the Music Kit design is that if a single instrument is to be played
differently in different compositions, a_new_instrument class must be created for each
different interpretation. This is because all access to the instrument is done through one
message (called “realizeNote:fromNoteReceiver:”). In contrast, ZED simply requires a
new method to play events in a different way. In ZED the performer objects may increase
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in sophistication and capability in a way that is somewhat analogous to live performers
developing increasing subtlety and diversity as they mature musically. In ZED the
instrument classes remain relatively stable over time, just as the design of orchestral
musical instruments has remained virtually unchanged for the last century.

In the Music Kit, the performer objects have a “noteSender,” connected to one or more
“noteReceivers,” each connected to an “instrument.” Pipelines of arbitrary length can be
created by using an object called a “noteFilter” after the note receiver (in place of the
instrument) that can process the note and then send it on to a note sender, etc. The note
filter is a subclass of instrument, thus overloading the semantics of an instrument as being
something that synthesizes sound or something that manipulates a note and passes it to
another object. These pipelines of note senders, note receivers, and note filters do not map
into any concepts in the real world and, because the semantics of these objects is unclear,
it is difficult to refine and extend the system. Also, these objects have narrow interfaces
(only understanding a few messages). Changing functionality therefore generally requires
new classes to be created rather than new methods.

Real-time Control in the Music Kit

The Music Kit conductor object provides control over the timing of a performance, but
provides no other capabilities to control other aspects of the performance. Note filter
objects are used for other types of real-time control. The note filters are linked together into
pipelines and each note filter modifies the note and sends it to the next stage in the pipeline.
This approach is similar to the basic mechanism that Music V uses for defining synthesis
voices. The filtering and pipelining metaphors of Music V are very natural for sound
synthesis: the configuration of the pipeline and filters is static during the performance and
the system is synchronous. The metaphor does not extend gracefully to the interactive,
dynamic, and asynchronous discrete-event based world of real-time control.

A message passing paradigm is more appropriate for real-time control for a number of
reasons. Although it is possible to do some types of real-time control with the Music Kit’s
note filters, it is very difficult to use and debug because of the complexity introduced by
the interconnection of the filters. No abstraction is provided and often many note filter
classes are required to get different types of effects. The note filter pipelines must be
carefully constructed in software by creating and linking the objects together. To achieve
global control of the performance, a note filter is copied and linked into multiple pipelines.

The most important shortcoming of using filter pipelines for discrete event simulation is
that it is not possible to change the real-time control configuration during the performance.
This is because the filter pipeline introduces a delay. Not only does this delay cause latency
in the response to real-time inputs, but, more importantly, the performance cannot be
dynamically reconfigured because the pipeline may not be empty. Doing so could result in
timing problems and glitches.
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MAX

MAX (formerly known as “Patcher”) [Puckette, 1986; Puckette, 1988] is a graphical music
programming environment that allows users to gain complete control of the capabilities of
MIDI equipment. MAX is similar in spirit to the early block diagram compilers used to
specify oscillators and filters for computer music. The power of MAX is that it employs a
unified object programming model in a visual programming environment. The underlying
idea is to give users complete control of all the possibilities of a synthesizer by providing
them with the ability to specify explicitly and independently where all synthesis control
parameters come from: the basic pitch and tempo material, timbre changes, articulation,
etc. They can all be controlled physically, sequentially, or algorithmically; if
algorithmically, the inputs to the algorithm are themselves controllable in any way.

MAX is based on a graphical programming paradigm, whereby boxes are used to represent
objects that are connected with lines that represent messages. Objects wait passively for
something to happen to them (i.e., they are event driven), at which time they may respond
by activating other boxes. The boxes in MAX are of four types: controls like sliders and
buttons; indicators that detect specific numeric values or that an event has occurred; objects
described with text that do some kind of computation; and messages, also in text, that are
to be sent to other boxes. Messages can be symbols, numbers, or any combination of the
two. Objects may have inlets and outlets: when an outlet is connected to an inlet, any
message the source object puts on its outlet is sent to all the inlets connected to it.

Accompaniment Systems

The area of real-time music performance systems is still relatively young. The first real-
time computer performance system was the GROOVE System [Mathews and Moore,
1970]. This system made it possible to perform music in real-time under computer control.
The Conductor Program [Mathews, 1989] grew out of the early GROOVE system. A
primary goal of the program is to control digital synthesizers in such a way so as to exhibit
sensitivity and responsiveness, as well as expressive musical interpretation. The Conductor
Program allows a live performer of the Stanford Radio Baton to act as the “conductor” of
the synthesizer performance, giving the user direct, explicit control over the performance.

The focus of the Conductor Program is to allow a user to expressively control a synthesizer
accompaniment time and loudness. The system has often been used with great success to
accompany live musicians, particularly vocalists. The system has very successfully
demonstrated that, with a sensitive input controller, computers can synthesize music rather
than just sound.

The Conductor Program defines a score containing the pitches and durations of the notes
to be played by the synthesizer accompaniment. The score also specifies exactly which
notes the baton inputs fall on, that is, when to expect inputs from the live performer of the
baton. (The system has no knowledge of any other live performers.) The program uses the
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time of certain inputs from the baton to control the tempo of the synthesizer performance,
and others inputs are used to control the volume and other aspects of the synthesizer
performance. The live performer of the baton listens to the performance and tracks the
pitches and times of the other live performer, adapting to changes and mistakes. The baton
does not generate sound. The live performer of the baton has direct and explicit control
over a number of different aspects of the performance.

A somewhat different type of real-time performance system is an accompaniment system
such as [Bloch and Dannenberg, 1985] and [Vercoe and Puckette,1985]. The primary
focus of these systems is to control a synthesizer accompaniment to follow a live performer
playing an electronic musical instrument (a wind instrument or keyboard). The system
must have a score tracker that can adapt not only to tempo changes, but also to pitch
mistakes, skipped notes, and other mistakes by the live performer. Bloch and Dannenberg
use a pitch based score tracker that employs a time-independent, statistical pattern
matching scheme. This score tracker is designed to work for improvised music and that
works for monophonic and polyphonic pitch matching. Conversely, Vercoe and Puckette
use a time based approach that uses a learning algorithm. The computer accompanist
listens and learns the specific interpretation of the live performer. This score tracker was
designed for music that has ornamentation and embellishments similar to those found in
Baroque music [Grout, 1973].

Summary of MAX and the Accompaniment Systems

All of the systems were successful at solving the particular problem they were addressing:
MAX focused on providing a graphical programming environment for sound synthesis
equipment; the Conductor Program focused on demonstrating expressive control of sound
synthesis in live performances; and the other accompaniment systems focused on
controlling a synthesizer accompaniment to follow a live performer playing a musical
instrument.

The Conductor Program gives the live performer direct expressive control over the
performance. The other accompaniment systems provide only tempo control but allow the
performer to play a musical instrument. All three accompaniment systems address
expressive timing and the tight integration of a live performer and a synthetic ensemble.

MAX is configurable and extensible. The user can configure the performance by
specifying what aspects of the performance are to be controlled. And the user can extend
the system by writing software for new objects and functionality. MAX does not
fundamentally support score tracking like the other systems, although because it is
extensible a score tracker the user could add one to the system [Puckette, 1990].

None of the systems described are device independent. The accompaniment systems are
designed for particular types of devices. Although MAX supports a variety of devices,
MAX is not device independent because no abstraction is provided to shield the user from
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the specifics of the device. Therefore, MAX patches deal with low level data values rather
than abstracted musical concepts.

Comparison with ZED

Both MAX and ZED have a performance configuration stage. MAX performances are
configured by creating graphically and ZED uses a configuration file. (It would, however,
be easy to add a graphical user interface to ZED.) MAX uses four types of boxes or objects:
controls; indicators or filters (that detect specific numeric values or that an event has
occurred); computations; and messages. Messages can be symbols, numbers, or any
combination of the two. ZED patches consist of controls (from input controllers), filters,
messages, and a receiver object that is to act on an input. The Music Kit is configured by
writing methods that create and assemble note filter objects into pipelines. The primary
difference between the patching mechanisms of ZED and MAX is the granularity of the
action that is taken when an input is received. ZED abstracts the action to a single message
that is sent to and object. The details of the action are implemented in the method (and
perhaps other methods). MAX does not make such a distinction.

MAX was not implemented in an object-oriented language, but it has an object-oriented
flavor provided by its “objects” and “message passing.” MAX is extensible but the user
must define new objects and functionality but with a conventional (non-object-oriented)
programming language such as C. Although the Music Kit was implemented in an object-
oriented language, the design is not object-oriented because very little subclassing,
inheritance, encapsulation, and data abstraction is used. The design is difficult to extend
because classes are overloaded and do not have clear semantics.

ZED is both configurable and extensible. A particular performance is programmed by
creating a set of performance files for the score, configuration, and patches. And, ZED’s
functionality can be extend by defining new methods on ZED classes or by defining new
subclasses of ZED classes and overriding methods. The semantics of the performance
objects are well defined and the number of method interfaces for each class is small.

ZED differs from the Music Kit design in three ways. First, ZED does not rely on generic
classes with little semantics (such as those for performers and notes) but rather relies on
inheritance and subclassing for creating specialized classes with well defined semantics.
Second, ZED’s real-time control mechanism is based on message passing rather than filter
pipelines. And third, ZED provides an abstract music representation that separates the
interpretation information from the notes to allow high- level control.

Summary

The primary difference between ZED and other music performance systems is in its
approach. ZED’s focus is on providing a system that behaves in a way similar to that of a
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live orchestra. Abstractions are provided for the components of a live orchestra. This
allows the user to interact with the system at a high- level. The user can cause messages to
be sent to the conductor or a performer, and can affect musical aspects of the performance
such as tempo, key, dynamics, and style. The user could for example, cause a trumpet
performer object to “make all staccato notes quieter and shorter.”

ZED uses object-oriented design methodology and it was found to be very suitability for
discrete event simulation problems. This design approach enabled the system to closely
reflect the orchestra model. ZED provides device independence across synthesis devices
and input controllers, and provides score file independence.

As a result of modeling the real world orchesira and using an object-oriented design
methodology, the resulting implementation had a number of desirable features. Defining
an abstract digital music representation that had the properties of Western music notation
resulted in the system being able to read a variety of different score files and map them to
a single representation. Separating out the interpretation symbols from the note symbols
provides an elegant way to provide real-time control of the performance. Using performer
objects that hide the specifics of the synthesis device allows the scores and the real-time
patches to be device independent. The specialization of performers through subclassing
and message overriding provides easy extensibility. In addition, the use of performer
objects creates an evolution path for the system so that new technologies and new
knowledge of how to control the technology can be incorporated.
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Appendix D

MIDI Specification

TABLE D.1 MIDI Channel Voice Messages

Name Status Data Bytes Description
Note Off 1000nnnn Okkkkkkk note number (0-127)
Ovvvvyvy note off velocity
Note On 1001nnnn Okkkkkkk key number
Ovvvvvvy if O then note off else velocity
Poly Key Pressure 1010nnnn Okkkkkkk key number
Ovvvvvvy pressure value
Control Change 1011nnnn Occecece control #(0-121) (See table 3)
Ovvvvvvy control value
Program Change 1100nnnn OppppppPpP program number (0-127)
Channel Pressure 1101nnnn Ovvvvvvy pressure value
Pitch Bend 1110nnnn Ovvvvvvy LSB
Ovvvvvvy MSB
Notes:

®* nnnn is voice channel N-1, i.e., 0000 is channel 1. .. 1111 is channel 15
*  kkkkkkk is note number (0-127), kkkkkkk = 60 is Middle C
* vwvvwy: key velocity, logarithmic scale whereby:
* Oisoff;1is ppp; 64is mp; 127 is ff
* vvvvwy = 64 default (when device has no velocity sensors)
*  vvwwwy = 0: note off with velocity = 64
*  vvvwwy: control value (MSB)
¢ for controllers: 0to 127
¢ for switches: 0=off, 127 = on, 1 to 126 ignored
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TABLE D.2 MIDI System Common Messages

Status Description Message Name
11110010 Song Position Pointer songPosition:
11110011 Song Select songSelect:
11110110 Tune Request tuneRequest:
11111000 Timing Clock timingClock:
11111010 Start (from beginning) startSequence:
11111100 Stop stopSequence:
11111110 Active Sensing activeSensing:
11111111 System Reset systemReset:

TABLE D.3 MIDI Controller Messages

Control Number Control Function Message Name
5 Portamento Time portamentoTime:
8 Balance balance:
10 Pan pan:
64 Damper Pedal (sustain) damperPedal:
65 Portamento portamento:
66 Sostenuto sostenuto:
67 Soft Pedal softPedal:
92 Tremolo Depth tremoloDepth:
93 Chorus Depth chorusDepth:
9% Celeste (Detune) Depth celesteDepth:
95 Phaser Depth phaserDepth:
all others < 122 controllerNumber:
all others >= 122 channelModeNumber:

TABLE D.4 MIDI Channel Mode Messages

Control Number Control Value Description
122 0 Local Control Off
122 127 Local Control On
123 0 All Notes off
124 0 Omni Model Off (all notes off)
125 0 Omni Mode On (all notes off)
126 Mono Mode On (Poly Mode Off, All Notes Off)
126 M M is number of channels
126 0 number of channels is the number of voices
127 0 Poly Mode On (Mono Mode Off, All Notes Off)
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