The Scheduling Problem
in
Learning From Hints

Thesis by
Zehra Cataltepe

In Partial Fulfillment of the Requirements
for the Degree of
Master of Science

California Institute of Technology
Pasadena, California

1994
(submitted 26 May 1994)

Caltech-CS-TR-94-09

Copyright (©) Zehra Cataltepe, 1994
All Rights Reserved

ii

Abstract

Any information about the function to be learned is called a hint. Learning
from hints is a generalization of learning from examples. In this paradigm,
hints are expressed by their examples and then taught to a learning-from-
examples system. In general, using other hints in addition to the examples
of the function, improves the generalization performance.

The scheduling problem in learning from hints is deciding which hint to
teach at which time during training. Over- or under-emphasizing a hint may
render it useless, making scheduling very important. Fixed and adaptive
schedules are two types of schedules that are discussed.

Adaptive minimization is a general adaptive schedule that uses an es-
timate of generalization error in terms of errors on hints. When such an
estimate is available, it can also be optimized by means of directly descend-
ing on it. An estimate may be used to decide on when to stop training,
too.

A method to find an estimate incorporating the errors on invariance
hints, and simulation results on this estimate, are presented. Two computer
programs that provide a learning-from-hints environment and improvements
on them are discussed.

iii

Acknowledgments

Many thanks to my academic and research advisor, Yaser S. Abu-Mostafa,
for his guidance, support and advice.

Thanks to Eric T. Bax, Bahadir Erimli, and Ayhan Irfanoglu, for proof-
reading and suggestions. Any overseen mistakes are solely mine.

Thanks to the members of the Learning Systems Group — Eric T. Bax,
Joe Sill, and Xubo Song — for valuable discussions.

And finally, thanks to my mother and father, my beloved husband
Tanju, and my brothers Ahmet and Rifat, to all my friends, and whomever
I forgot to thank.

This research was supported by the AFOSR under grant number F49620-
92-J-0398.

v

Contents

1 Introduction 1
1.1 Learning, Hints, and Scheduling 1
1.2 Definitions and Notation 4

2 The Scheduling Problem 7
2.1 Schedules 8
2.2 Experiments on Schedules o000 10

3 Adaptive Minimization 18
3.1 Calculating Derivatives of B 19

3.1.1 The First Derivativesof £ 21
3.1.2 The Second Derivatives of £ 23

4 Estimates 24

4.1 Noise Approach oo oo 25
4.1.1 Experiments on Noise Approach Estimate 26

5 gentrain and train: Programs to Simulate Learning from

Hints on Neural Networks 31
5.1 gentrain Program, 31
5.1.1 Inputs and Outputs 31
5.1.2 Implementation oL 31

5.2 train Program Lo Lo 32
5.2.1 TInputs and Outputs 33
5.2.2 Implementation oo 36

6 Improved train program: NNS 38
6.1 Description of the NNS program 39
6.2 Basic Data Types o . 39
6.3 Global and Input Variables 40
6.4 Main Program Lo oL 44
6.5 Additional Functions oL 46

7 Conclusions and Future Research 50

A The C Code for the gentrain and train Programs. 52
A.1 The gentrain Program 52
A.1.1 Main gentrain Program 52

A.1.2 Included Function, 56

A.2 The train Program 57
A.2.1 Main Functions L L oo 57

A.2.2 schedulexx() Functions. 89

A.2.3 hintxx() Functions, 93

vi

List of Figures

1

10

11

12

13
14

Generalization improves when in addition to Hy (examples of
f), Hi(cyclic shift) and Hy (evenness) hints are taught.

Oscillating generalization error when H1(cyclic shift) and H2
(evenness) hints are overemphasized.

Using additional hints improves the average minimum gene-
ralization error reached during arun.

Average generalization error for different schedules with train-
ing sets of size 20. oL oo oL oL

Average generalization error for different schedules with train-
ing sets of size 80. L oo oL L

Average generalization error for different schedules with train-
ing sets of size 20 (with variances).

Average generalization error for different schedules with train-
ing sets of size 80 (with variances).

A feed-forward neural network with 4 layers of units.

A unit w41y, and units and weights around it.

Behavior of £ compared to F and Fp, with Ng=50 and sche-
dule=0. I follows I as overtraining takes place.

Behavior of E compared to E and Ey, with No=50 and sche-
dule=1. Both FF and Egfollow

Behavior of £ compared to F and Fp, with Ng=10 and sche-
dule=1. Neither F nor Fg can follow £.

The interaction between the train and gentrain programs .

The train program execution.

vii

3

16

17
19
22

33

This page would be left blank intentionally.
But it is not blank now!

viii

1 Introduction

1.1 Learning, Hints, and Scheduling

Solving problems like “What is the inverse of this matriz?”, or “What is ©
computed to 10710 accuracy?” by means of direct programming is a reason-
able and feasible approach. However, for unstructured problems, such as “Is
this a picture of a tree?”, or “Will the stocks go up or down tomorrow?”,
direct programming may not be a good solution, if not impossible. Let’s
formalize problems and questions like that as functions f that we want to
implement. A method to implement f, other than direct programming, is
to search for it among a set of candidate functions G. For example, for a
neural network [17] with a fixed architecture, G would be the set of all func-
tions that can be obtained by setting the weights of the network to different
values. If there is a g € G such that ¢ = [then [is implementable in G.
If f is implementable in G, one would like to find the function ¢ = f, or
otherwise a g which agrees with f the most. Learning from examples is the
learning method which uses examples of f in order to estimate how close
f and g are and searches for g € Gy C G, where (g contains the elements
g € G closest to the examples of f.

For a fixed f and set of examples of it, the agreement between exam-
ples of f and g € G can be defined in terms of an error function FEy(g).
Then learning from examples becomes an optimization problem of the form
mingeq Fo(g). Gradient descent and its implementation for feed-forward
neural networks, backpropagation [20], is one of the approaches to solve this
problem.

Sometimes the number of examples of f is not enough to pinpoint f
among g € Gp. If there are few functions in G, then the probability that
g € G agrees with f at points beyond the training set (i.e. ¢ generalizes
well) is high. Hence, without eliminating f from Gq, one would like to
restrict Gig as much as possible. Any additional information to restrict Gy
would be useful in terms of probability of generalization of g. Fortunately,
there is usually more known about f than only a set of examples. For
instance, a picture that has a tree in it still has a tree even after it is
rotated, scaled, or reflected [13, 19]. If these constraints (being invariant
under rotation, scaling, or reflection) are imposed on Gy, then the set of
functions obtained, G4 C Gy C G, is more likely to generalize than Gy.
In figure 1, the positive effect of evenness and cyclic shift invariance hints
on generalization is shown. The algorithm achieves a smaller generalization

Positive Effect of Hints on Generalization Error
T T T T T T

HO only —

Generalization Error

0 1 1 1 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
time (pass)

Figure 1: Generalization improves when in addition to Hy (examples of f),
Hy(cyclic shift) and Hy (evenness) hints are taught.

error as the system learns f with the help of additional hints.

Any information about f (including examples of f) is called a hint [1].
Learning from hints [1], expresses each hint by examples, and restricts the

search space in such a way that the agreement with the examples of all hints
becomes better as the search for f proceeds.

If there are enough examples of f [5] or if the additional hints are
directly implementable on the system G without excluding f [19], then ex-
pressing hints by their examples may not be a preferable option. However,
if the number of examples of f is small, or if hints are not directly imple-
mentable on the system, or if it would be preferable to teach additional hints
up to some degree instead of all the way at the expense of the examples of f,
then learning from hints is a good option. The ability to use any learning-
from-examples algorithm without any modifications either to the algorithm

10000

or to the system is one of the advantages of this method.

Negative Effect of Using the Wrong Schedule
0.35 T T T T T T T T T

Generalization Error

0 1 1 1 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time (pass)

Figure 2: Oscillating generalization error when Hl1(cyclic shift) and H2
(evenness) hints are overemphasized.

When there is more than one hint, the question of when to teach each
hint arises. We call this problem the scheduling problem in learning from
hints. The scheduling problem is an important problem because overlearning
a hint at the expense of other hints, or underlearning it, could make hints
non-beneficial. For example, in figure 2, the shift invariance hint and the
evenness invariance hint are overemphasized during training, and the system
oscillates without being able to converge to a small generalization error.

We give two classes of schedules: (i) Fixed Schedules, and (ii) Adap-
tive Schedules. Fixed schedules determine which hint will be taught at a
pass without using any knowledge about how training proceeds. Adaptive
schedules use information during run time and decide on which hint to teach
according to the current state of training. Rotation schedule is an example

of the fixed schedules, and maximum error schedule is an example of the
adaptive schedules that are discussed. A generalization of maximum error
schedule is adaptive minimization [3]. Adaptive minimization requires an
estimate of the generalization error, in terms of the errors on hints. Having
this estimate is useful in two aspects: (i) descending on it would mean de-
scending on generalization error according to the information given by the
hints, and (ii) experimental evidence [7] suggests that the estimate may be
used to determine when to stop training.

1.2 Definitions and Notation

Asgsume that the function to be implemented using a learning-from-examples
algorithm is f : X — Y, with a probability distribution Px on the input
space X. In this thesis X = R"™ and Y = [0, 1] are used. The function being
implemented by a given learning-from-examples system is g : X — Y, where
X and Y are usually the same as in the definition of f. The set of all possible
g’s forms the search space, GG. We use feed-forward neural networks with
a given architecture as our model. In this case, G is the set of all possible
functions, g, that can be obtained by setting the weights of the network.

The given examples of f are divided into two disjoint parts: training
and validation sets [16]. The examples in the training set are used for
teaching f to the network, and the examples in the validation set are used
to approximate the generalization error, so as to determine when to stop
training.

Training set examples form a special hint, called the examples hint, Hy.
If there are Ny examples in the training set, then Hg is represented by the
set of pairs {(a;, f(2;)): 1 < ¢ < Ny} picked according to Px. The error on
the hint Hy is defined as:

N
1 0
Eo(g) = = > _(f(ai) = g(x:)). (1)
NO =1
For a fixed f and Hy, Fo(.) is a function of ¢ only.

The validation error is defined in the same manner as:

1 M

Eig) = N, > (f(ai) = glai))? (2)

=1

where N, is the number of validation set examples.

The generalizaton (or learning) error of g on f is defined as:
E(g) = Ex((f(2) = g(2))*) (3)

where Ex(.) denotes the expected value with respect to the probability dist-
ribution Py of the input space X. By the law of large numbers, F; is very
close in probability to F for large N;. Throughout this thesis, we assume
that Ny is large and treat F; as the generalization error F.

In general, an example of a hint H,, is defined by an objective (er-
ror) function on some input vectors zg,z1,...,2k,,, and it is denoted as
em(9, %0, ¥1,...,2K,,). The relationship between g, 21,..., 2k, is defined
by the hint. An unbiased estimate [22] of expected value of e,, over the
input probability distribution is given by:

N,
1 m
Em(g): N—Zem(gvxi&xilv-"7$Ux"m)- (4)
mo=1

According to this definition, for Hy (examples hint):
co(g,7) = (f(x) = g(x))". (5)

Invariance hints form a very widely used class of hints [13]. For an
invariance hint H,, defined on an input vector = and its transformed version
2’ according to the invariance, the hint objective function is:

2
em(g,x,wl): (g(x)_g(xl)) : (6)
The invariance relationship determines '

¢ Evenness: 2’ = —z.

e Scale invariance: 2z’ = a * z for a constant a.

e Cyeclic shift invariance: if z = [2°, 2',...,2!7], then

o = [z, 22, 2t).

e and so on.

In this thesis we use the cyclic shift and evenness invariance hints and refer
to them as Hy and Hs respectively.

Binary hint asserts that f is a binary function. If g(2) € [0, 1], Yz, ¢,
the objective function for an example of the binary hint is:

em(g,x) = g(x)* (1 —g(2)). (7)

Monotonicity hint: asserts that f(z) is an increasing function of x.
(The ordering > imposed on can be defined in different ways):

, (9(x) = g(e")" if « <&’ and g(z) > g(2')
em(g.z,2") = or z > z" and g(z) < g(2'); (8)
0 otherwise.

Approximation Hint: asserts that g(z) € [a,b] is the acceptable
range for f(z):

(a—g(a))® il g(z) < a;
em(g,2,a.0) =9 (g(x)—0)* if g(x) > b; (9)
0 otherwise.

Smoothness hint: asserts that f is a function with small curvature.
If curvature is measured by function ¢, then:

em(g, %) = Q(g(2))) (10)

For the examples hint, Ng examples of Hy are created by picking Ng
pairs (a, f(z)) from the training set. For the other hints above, since e,, is
defined for any input vector z, it is possible to produce as many examples
of the hint as required to teach it.

A hint H,, is taught by means of an optimization step on the error
1

. Nom
estimate E,,(g) = 75— 22,201 €i(9, Tio, i1, - - - Tike,p)-

For gradient descent, this optimization step is modification of weights
w of the network, as follows:

B,
SRS wt—n* L@ |wt
Jw
S Nf@em<g,mov---v$ﬂ*’m) | (1)
= w — AT
n Nj:l aw)

In this equation, w’ denotes a weight at time ¢ of the optimization, and
e should be differentiable with respect to each weight w.

2 The Scheduling Problem

When hints Hg,..., Hys are given about f, they are expressed by their
error (objective) functions FEy,..., Fp. In order to use all the available
information, one would like to optimize all Fy,..., Fp in such a way that
the generalization error, I, on f is as small as possible.

The function f should be consistent with all the hints given about it.
This requires the following consistency relation between F (generalization
error) and E; (error on hint H;) [3]:

E—-0= (E;,—=0 Vi:0,....,M). (12)
Equation (12) can be interpreted as:
(30:0,....M not(E; —0)) = not(E — 0). (13)

Therefore all E;’s should be made as small as possible in order to have
a small . This statement can be stated as the optimization problem:

in Ei(g) Vi:0,...,M 14
min Fi(g) Vi (14)

with the implicit assumption F;(g) >0, Vi:0,...,M; g € G.

There are at least two possible ways of minimizing all F;:

¢ Constrained Optimization:

If the hints Hy, ..., Hp; can be implemented and kept as constraints on
G, then E;(g) fori:1,..., M can be imposed as constraints on ¢ € (.
In this case equation (14) which is an unconstrained simultaneous op-
timization problem, is transformed into the constrained optimization
problem:

gréiél Fo(g) with Ei(¢g)=0, Vi:l,...,M. (15)
In many cases implementing and maintaining additional hints as con-
straints is impossible. Besides that, constraints may be restricting the
model so much that f can not be implemented by the learning system.
In this case a smaller £y at the expense of nonzero Fq,..., EFjpy may
lead to a smaller generalization error.

These ideas suggest simultaneous minimization of all F;’s instead of
keeping some of them as hard constraints.

¢ Penalty Functions:

Using penalty functions [12, 18] is a popular method of simultaneous
minimization. According to this method, an objective function of the
form:

) M
E=)" oL (16)
=0

is minimized. In this function a;’s are nonnegative penalty coefficients.

A problem with penalty functions is how to figure out the penalty
coeflicients.

Another drawback of using penalty functions may be “Steep valleys
and discontinuous derivatives are created at the constraint boundary
and these features are often difficult to overcome with gradient meth-
ods. Values of function at nonfeasible points are required, which may
not be possible in practice. Penalty functions are not recommended
as a general method.” [15] However, these problems may be resolved
by using sophisticated optimization techniques.

2.1 Schedules

We define a schedule as: A procedure that decides on which hint to teach at
a given iteration during training. It takes into consideration all hints H;, for
t:0,...., M and all the information available about the G and the training
algorithm.

The penalty function in equation (16) implies that the effect of F; on
FE is proportional to a;. F; should have a value inversely proportional to «a;,
i.e. F; should be smaller if «; is larger. The schedules below are attempts
to have F; inversely proportional to «; and all a;F; small and close to each
other:

¢ Fixed Schedules:

— Rotation: This schedule is based on the idea that the more
descents done on F; the smaller it would be, therefore the number
of descents on F; should be proportional to o; during total training
time. Even if the total number of descents is proportional to a;’s,
it is important when those descents are done. For example, if an
F; is minimized till it becomes almost zero at the beginning and

then another F; is minimized, either it may not be possible to
reduce F/; because the search is in a local minimum, or reducing
FE; may increase F;, contrary to the objective of minimizing all
FE;’s. One possible solution is: Descend on Fy with an amount
proportional to ag, and then descend on F; with an amount
proportional to aq, and so on.

Descent on F; in proportion to «; can be accomplished in the
following ways:

* Use different learning rates 7;, proportional to «; for each Fj,
and descend on Fy once, then Fq once, and so on.

*x Teach a number of examples of H; proportional to a; when
it is F;’s turn.

* Teach each hint using the same number of examples of the
hint and the same learning rate, however, give F; a number
of turns proportional to a;. (We used this method in our
experiments.)

When a rotation schedule is used: a; and «a; have implications
on:

* (a) How difficult it is to descend on E; compared with £;
(implementation issue).

* (b) What the effect of £; and E; on generalization error is
(generalization issue).

— Random Rotation: Since there is no reason to teach the hints
in any particular order, which hint to teach at any pass can be
chosen randomly according to the probability —7 for each

Z]=0 R
hint H;.
e Adaptive Schedules:

— Maximum Error: In rotation schedules, «; have implications
both in terms of implementation and generalization. Adaptive
schedules are an attempt to eliminate the implementation issue
from consideration. The maximum error schedule can be de-
scribed as follows: If a;F; is the maximum over all a;F; : j :
0,..., M then teach H; (ties broken randomly).

In this schedule, a;’s only make an assertion on the generaliza-
tion effect of each hint. The implementation issue is automati-
cally handled because if a hint H; is difficult to learn, then F;

will remain large, and hence H; is taught more frequently until
FE; becomes small. FEspecially if each hint is implementable or
learnable in different degrees, fixed schedules may not be useful
unless one can adjust a;’s so as to deal with both implementation
and generalization issues.

Another advantage of maximum error schedule compared with
the fixed schedules is that it takes care of dependencies between
hints. For example, if £; and F; are positively correlated then
reducing F; would also reduce F;. Since it became smaller, F;
will not be chosen to be taught. For negative correlation the
opposite would occur.

— Random Maximum Error: Randomized version of maximum

error schedule. Each hint H; has a probability of —gFi — of
ijo agxliy
being taught at any iteration.

Experimental results on some of these schedules are given in the follow-
ing section.

2.2 Experiments on Schedules

We experimented with the following function:

o) = {0 if [0 af > LIM, (17)

1 otherwise.

LIM is chosen such that when Py (the probability distribution on the input
space X) is uniform on [—1,1], the probability that f(z) will be 0 and the
probability that it will be 1 are equal.

f has the cyclic shift and evenness invariances. Hence, we experimented
with 3 different hints: Hy: the examples hint; Hy: cyclic shift hint; H:
evenness hint.

The following schedules were used in the experiments. (The first entry
gives the name of the schedule, and the second entry gives the weight («;)
given to each hint.)

¢ Schedule 0: Rotation, 1-0-0.

e Schedule 1: Rotation, 1-1-1.

10

e Schedule 2: Rotation, 2-1-1.

Schedule 3: Random rotation, 1-1-1.

Schedule 4: Random rotation, 2-1-1.

e Schedule 5: Maximum error, 2-1-1.

The experiments were performed using the train program described in
section 5. Backpropagation, with a learning rate (1) of 0.3 and a momentum
(o) of 0.6, was used as the learning algorithm. The sequential mode of
training was used. In this mode, for each training example, the inputs of
the example are forwarded, the training erroris measured and then a descend
is made on this error.

A feed-forward neural network with 3 layers of sigmoidal units: 8 input,
3 hidden, and 1 output (an 8-3-1 network) was used. Training sets used were
of sizes Ng=10, 20, 50, and 80. 5 different training sets were generated for
each Ng. and for each training set 4 experiments with different initial weights
of the network were run. Hence, for each training set size and schedule pair,
20 experiments were performed. Each experiment was run for 2000 passes;
at each pass 20 examples were used for training.

In order to compare the performance of different schedules for different
training set sizes, the minimum generalization achieved during 2000 passes
were found and averaged over all 20 experiments for each different training
set size (Np : 10,20,50,80) and schedule (Schedule : 0,1,2,3,4,5) pair.

| Schedule No || No =10 [| No =20 [| No =50 || No =80 |

Schedule 0 0.256 0.252 0.210 0.106
Schedule 1 0.203 0.109 0.061 0.059
Schedule 2 0.255 0.137 0.050 0.047
Schedule 3 0.251 0.144 0.059 0.048
Schedule 4 0.253 0.157 0.060 0.036
Schedule 5 0.255 0.168 0.069 0.071

Table 1: Average minimum generalization error reached for each schedule
and training set size.

11

| Schedule No || Ny =10 || Ng =20 [| No =50 || No =80 |

Schedule 0 0.008 0.005 0.057 0.093
Schedule 1 0.091 0.107 0.094 0.093
Schedule 2 0.007 0.112 0.084 0.085
Schedule 3 0.006 0.106 0.089 0.084
Schedule 4 0.006 0.107 0.095 0.071
Schedule 5 0.007 0.103 0.099 0.104

Table 2: Standard deviations corresponding to the averages in table 1.

In table 1, the averages of minimum generalization error reached for
each training set size and schedule pair are listed. Table 2 gives the standard
deviations corresponding to the averages in the previous table.

In figure 3, the average minimum generalization error reached for each
training set size is shown as a function of schedules. For a very small training
set size (10), in general using additional hints was not helpful. This can be
explained as follows: when the number of examples of the function is very
small, the additional restriction obtained on the G space is not enough
to reduce the generalization error. With larger training set sizes, using
additional hints decreased the minimum generalization error achieved.

In figures 4 and 5, the average generalization error versus pass number
is shown for each schedule. FEach curve is an average of 20 runs. In figures 6
and 7, the same figures are shown with variances (error bars). The signifi-
cance of the latter two figures is that they illustrate that the probability that
using additional hints will improve generalization is high. In general, after
the initial passes, using hints with all the schedules decreased the generali-
zation error. In the presence of additional hints, all schedules used in this
experiment gave comparable results. For that reason we have no conclusive
evidence about how these schedules compare to one another.

Schedule 5 would be expected to perform better than the others, since
it is an adaptive schedule, but it didn’t. Two reasons that we can think of
for this behavior are: First, the weights a; given to each hint may be too far
from their effect on generalization error. Second, in all the runs performed
using schedule 5, the errors Fy, 1, F5 were about the same at the end of
training. However, they came to a large value and stayed there for a while
before the end of training. Our interpretation for this phenomenon is: the

12

Average min E Reached by Different Schedules

0.3 ! T T T T T
0.25
0.2 -
5] \
\
. \
\
N S
9 0.15 |- [i
1] SN a—
i AN r
< M [
0.1 a
o
L S TR =
0.05 | g o i
x
0 1 1 1 1 1 1
-1 0 1 2 3 4 5 6

Schedule Number

Figure 3: Using additional hints improves the average minimum generaliza-
tion error reached during a run.

errors all went into local minimums and none of them could get out. An

algorithm that avoids local minima (like TRUST [10]) could be helpful in
that case.

13

Average Test Errors for Schedules, N0=20

0.45 T T T
Schedule 0 —
chedule 1 -——
0.4 Schedule 2 -----
Schedule 3
Schedule 4 ——-
0.35 Schedule 5 ---

w
G
o
q
I
]
9]
o
o]
[
2
< A R N
0.15 | RV Y N VA A NINA e e NN A
0.1 A
0.05 | A
0 1 1 1
0 500 1000 1500 2000

pass

Figure 4: Average generalization error for different schedules with training
sets of size 20.

14

Average Test Errors for Schedules, N0=80

0.45 T T T
Schedule 0 —
Schedule 1 ---—

0.4 Schedule 2 ----- N
Schedule 3
Schedule 4 ——-

0.35 F Schedule 5 ---

Average Errors

1000
pass

2000

Figure 5: Average generalization error for different schedules with training

sets of size 80.

15

Average Test Errors for Schedules,

NO0=20

0.45 -

Schedule 0 Fo—

Average Errors

sehéedure
Schedule
Schedule
Schedule
Schedule

I
2

3
4
5

i

0 500

1000
pass

1500

2000

Figure 6: Average generalization error for different schedules with training

sets of size 20 (with variances).

16

Average Test Errors for Schedules, N0=80

0.45 T T T

Schedule 0
Schedule 1 ——
0.4 Schedule 2 H—1
Schedule 3 Fx—
Schedule 4 =
0.35 Schedule 5 =
0.3 -1
0 i
G
8 B ERLE e
¥ 0.25 | XE% E
i 3
o
&
o 0.2 [
2
<

0.15 I

AN
R RAARRRAARRRRARRAA

0.1 e AR g g AAe B A AANE g T
i ég@ ;; S i
0.05 | s R R e S
0 1 1 1
0 500 1000 1500
pass

2000

Figure 7: Average generalization error for different schedules with training

sets of size 80 (with variances).

17

3 Adaptive Minimization

Consider the maximum error schedule given above. Assume o; F; = max; a; F;.
Define F}, an estimate including all hints but Hy, as:

M
Ey= Y oE;. (18)
i=0,j#k
Then clearly:
)) M
iy B = Bim 2 oik 19
J=0,57#1

Because a; F; was the term which contributed the most to

M
E(Eo, Ey,...,Ex) =Y aj ;. (20)
j=0

Therefore the maximum error schedule can be articulated as:

For an estimate E(Eg, Fi,...,Em) = Z]‘]\io a; 15, if ming, Ep = E; then
choose to teach H;.

In general, assume that E(Eg,El, ..., Er) is an estimate of F, and
Ek is F including all hints but Hy. If ming—o . a Ek = EAZ', then according
to the information obtained from all hints except Hy, H; is the hint whose
absence decreases I/ the most. Hence at the same time H; is the hint whose
presence increases E the most, therefore H; should be taught. This process
of deciding which hint to teach, taking into consideration the information
provided by all hints together, is called Adaptive Minimization [2].

If £is a weighted sum of F;’s, then implementing it as a rotation
schedule or a maximum error schedule is straightforward. However, if is
not in that form, then adaptive minimization can be used to implement E
as a schedule. One remark is that adaptive minimization is also a schedule
like rotation or maximum error, and it is a general adaptive schedule.

In general, given E(Eg, ..., Ear) as an estimate of £, there are at least
two possible ways of descending on it. One of them is adaptive minimiza-
tion, as described, and the other one is descending on E directly. Adaptive
minimization requires F; and direct optimization requires derivatives of E
as explained below.

18

3.1 Calculating Derivatives of B

When direct optimization of E is chosen as the method to implement an
estimate [, various optimization techniques may require the value of I,
or its derivatives with respect to parameters of the learning-from-examples
system G. If G is a feed-forward neural network with a fixed architecture,
these parameters are the weights of the network. In this section, calculations
of the first and second derivatives of E with respect to weights of a feed-
forward neural network are given. For a more general discussion of this topic
see [9].

o7 N

Ygﬁ@‘%[ia

"4”"L~A"Y'./;'A -
A

) %
\

g(x)=y(x,W)=u 20

%{/}A
| 754

0 1 2 3 Unit Layer
0 1 2 Weight Layer

Figure 8: A feed-forward neural network with 4 layers of units.

Given M + 1 hints Hg, Hy,..., Hyy with respective error estimates Fy,
FEq, ..., Epand error on an example of the hint eg, e1,..., ey, assume that:

o The elements of the learning-from-examples system G are feed-forward
neural networks with a fixed architecture. Each unit (neuron) (except
the units at the input layer) computes weighted sum of its inputs,
adds a bias value to this sum, passes this sum through an activation
function and sends the result to all the units in the next layer.

Let’s have the following notation for a neural network (see figure 8):

19

— There are L + 1 layers of units numbered 0,1,..., L, L > 2, with
layer 0 being the input layer and layer L being the output layer.

— Fach layer |, except the output layer, has U; + 1 units numbered
0,1,...,U;. The output of jth unit of ith layer is called u;; (when
there is no confusion we use the same notation for the unit itself.)
wirr; is +1 (bias unit) for each layer 7, and w;p,, U;th unit of ith
layer, is not connected to any previous units, but all the units
of the 7 4+ 1st layer. The last layer L has only one output unit,
connected to all units in layer L — 1. When input vector z is
fed from the input layer of the neural network, the output of the
neural network for an input vector z is g(z) = y(z, W) = uro.

— There are L layers of weights numbered 0, 1,..., L—1. The weight
from jth unit of ith layer to kth unit of 74 1st layer is called w; ;.
There are weights between consecutive layers of units only.

— Each unit w;; :e:1,...,L;5:0,...,U; =1 computes:

Ujj = t(netij) (21)
where net;; is defined as:
Ui
neti; = Y W(—1)kiU(i—1)k (22)
k=0

and ¢ is a threshold function, which may be linear (#(z) = az +
b), sigmoid (t(z) =), tanh (#(z) = zii—;%), etc.. t should
be first order differentiable with respect to its input if 8?0Ek

_1
14e—%
18

needed, and t should be second order differentiable with respect

2F .
0L is needed.
P

to 1ts 1nput lf W

e I is a function of Fy, E,..., Fa and some constants only.

o If -2E g needed then ZE exists, and if —PE__ s peeded then

awi]k 8El 8wijk8wnop
E : .
SEaE, exists forall {;m:0,..., M.

e For notational convenience, let’s denote the error on one example of
hint H,, by e (yo(W), ..., yK,,(W)) instead of e,,(g, z0, ..., 2K,,). In
the new notation, W is the set of all weights of the network, and y; (W)
stands for g(z;). Therefore y; can be taken as a variable dependent
on W only.

20

o I/, is estimated using N, examples of H,, by:

JRRALL
En(9) = N Z en(Yyo(W), ..., 4k, (W)) (23)
mo=
o 2emWoV)yicny (W) o iots for each q:0,...,K,,.

Jyq

3.1.1 The First Derivatives of I

Based on these assumptions, the first derivatives of I/ with respect to each
weight w;;, can be computed as:

L JZ”: IE OF,,
8w¢]‘k N m 8Emaw”k

M 8E 1 N 36m(ylo(W)a ceey lem(W))

B f: OF Ni%”f den(yo(W), .. ,ysz(W))@yzq(W)/%)
- ., N
_0 m I=1 q=0 83/1 8w2]k
In equation (24), aaEE is a function of Fy, ..., Fj; and some constants

only, and so it can be computed directly. aem(ylo(wa);ﬂ Vi WD) 5o o function
of the outputs yp, :p:0,..., K;0:0,.. m of the hetwork for inputs @y,
Fyig(W)

and hence it can also be computed directly. In order to compute —5% —
3]

backpropagation [20] can be used. For notational convenience, the calcula-

tion of %EI} for a fixed input vector z is given:
3]

oy(Ww) _ 9y(W) Inetip
8wijk 8n€t(i+1)k 8wijk
dy(W
Ou) wij (25)
3net(i+1)k
The last step follows since nef(; 1), = Egéo WipkUip, and hence angzi’:w =
3]

Usje

21

Let’s define 6(;; 1)), for unit g, as:

83/(”)
o; = — 26
(4 1)k 8net(i 1)k ()

If i = L —1, since we consider only one output unit k = 0, hence w10
is the output unit. Then 679 for the output unit urg is computed as:

dy(W)
Onetrg
dt(netro)
Onetrg
= (netro) (27)

0o =

(i+1)ar

®
.

Unit Layer i Unit Layer i+1 Unit Layer i+2

Weight Layer i Weight Layer i+1

Figure 9: A unit u(;41), and units and weights around it.

If ¢ < L —1 and hence ugyy); is not an output unit, then é¢;yqy is
computed as (see figure 9 for indices):

dy(W)
8net(i+1)k
i1y ONet(ip1yk

d(it1)k

22

oy(W
= au(() t/(net(i+1)k)

+1)k

- t’(net(iﬂ)k)iigz))k

- it)

= t'(netiii) Ugl 3SZ£ZQ))T ém(ink lg W(it1)qrt(it1)g

= t'(netiyiyr) Uii;_l %w(m)m

= net (i+1)k Hi 1 5 (i+2)r (i+1)k (28)

3.1.2 The Second Derivatives of £

The second derivatives of £ with respect to weights w;;, and w,,, can be
computed as follows:

o 9B o [ok
Wik Oy OWnopOijy, gy

0 (& 9B 1 T Oen(yo(W), ..y, (W)
_ (S Z I IF)

dwgj,

OWnop m = Ow;jk

_ 1 % 0 (aE)Z m(Yio(W), .. 73/114'm(W))_|_

Ny OWnop =1 Qwijk
1 Mook %”f@ em(Yio(W), ..., ik, (W))
Ny = oF,, et Ow; ;L 0Wy0p
1 Moy OE \ 32 dep (yio(W), .. . yir,, (W
N N—mﬂ;o Ownop (aEm) z; = ;wz’jk riall) 4
1 % oL Smo9 (86m(ylo(w)a---a@/le(W)))
N Sy OB = wigp Qwijk

23

M=

0 (OF) I Dem (yio(W), - . -, yire, (W) n
!

8wijk

3
Il
=}
Il

S

[]=
i~
b
3

3
Il
)

aF Nmop %":l36m(ylo(W)a--w@/ll{m(W)) dyiq
oy, dwgj,

I

[l
M=
QD
=

3
Il
)

0 (OF) %”f derm (yio(W), ..., yix,,,(W))

= Owijk

I

M=
Dl

s
Mz

n B9 (Oenm(yioW).. .. ik, (W))
aqu

3
Il
)

E Nin Km aem(ylo(W)7 U lem(W)) 82qu(W)
aqu awijkawnop

(29)

S L

M=

3
g
s
i
i
o

In the final step, % is a function of Fy, ..., Ky and some constants

only, hence it can be regarded as a new estimate E' and its derivatives with

respect to the weights can be calculated the same way 83Ek is calculated
3]

dem (Y10 (W), (W)
8qu
ooy Y1k, (W) only, hence it can be regarded as a new error function €/, and
its derivative can be calculated using the same methods used for aaimk in
3]
equation (24). The only remaining term which does not seem so explicit to

. 82qu(W)
Compute 1S W.

is a function of y,o(W),

in equation (24). Similarly,

A symbolic mathematical programming package such as [11] can be
used to determine intermediate derivatives.

If the optimization technique requires higher order derivatives of E with
respect to the weights, a derivation similar to the one used for the second
derivatives should be enough.

4 Estimates

In the previous section, it was shown that given an estimate E(Eg, Fv, ..., Eym)
of the generalization error F, there are methods for incorporating this esti-
mate in the learning process, and hence getting the advantage of hints. In
this section, @ method for finding an estimate E for two invariance hints is
given.

24

Before finding an estimate, let’s state some of the desired properties of
the estimate [3]:

e F should be computed easily in terms of time and memory.

e In general, minimizing E implies minimizing £. (monotonicity condi-
tion).

4.1 Noise Approach

In this section, derivation of an E for a binary function f is given. For a
more detailed discussion of this method see [7].

Assume that the function f : R™ — {0,1} is to be implemented by a
learning-from-examples system. The error of g : R™ — [0, 1] on an example
of f can be modeled by a noise function n:

_ , N E=glae), it fla) = 1
) = 5 = e = {)90 AT 0

Assume that the noise function n has a mean p and a variance o?. Then
the learning performance of the network can be measured by:

E = &((f(2) - g(2)?) = E(n¥(a)) = 4? + 0? (31)
Similarly, the error on any invariance hint can be measured by:
Ef=E((g(x) = g(a)*) = E((n(x) = n(2"))?) = 20 (32)

assuming that n(z) and n(z’) are independent random variables.

Since only estimates Fq for E, Fy for Ef, and Fy for F) are available,
these estimates are used in equations (31) and (32).

In order to get an estimate of i, the mean of n, the training set examples
are used as follows:

1 Yo
(1] = No Z |f(@i) = g(zs)] (33)

Combining these formulas, an estimate of o2 is:

_ 2(Eo — [u]) + By + B

2
34
)) (34)
and finally, an estimate of £, using F; : (0 < ¢ < 2) and [y] is:
E=[o"]+ [u)* (35)

25

4.1.1 Experiments on Noise Approach Estimate

The same experiments used in section 2 were used to evaluate the estimate
I in equation (35).

E0, E, and its estimate (N0=50, schedule 0)
0.4 T T T

Estimate of E -----

Errors
o
N}
T
1

0.1 F 1
|
\
|
‘\l

0.05 [T

0 S L 1 1
0 500 1000 1500 2000

Pass

Figure 10: Behavior of E compared to F and Fy, with Ny=>50 and sche-
dule=0. I follows E as overtraining takes place.

In order to illustrate the relationship between F. Fy and E as training
takes place, example plots of them are shown in figures 10, 11 and 12. In
figure 10, only Hy was used for training. Notice that although Fy continued
to decrease, E did follow E. The reason for that is: F is a function of Fj
and Fs too, and they did not decrease while Fy did. In figure 11 all hints
were used for training. In this case, both E and FEy followed FE, and they
would both be good estimates of F/. Figure 12 shows a case in which the
estimate F is inadequate because the number of examples of f is too small
(10). In this run, all hints were taught, and hence Fy, £y and F; decreased
during training. However, information provided by Hg, Hy, and H, was not

26

EO0, E, and its estimate (N0=50, schedule 1)
0.35 T T T

Estimate of E -----

Errors

Figure 11: Behavior of E compared to F and Fy, with Ny=>50 and sche-
dule=1. Both F and Fq follow E.

enough to generalize, hence F increased as training proceeded. However, E
is a function of Fg, Fy, and E; (and [p], but for small Fy, [p] is small, too)
only and hence could not follow the change in F.

E clearly satisfies the first property proposed for an estimate: it can be
computed easily. In order to test the second property, whether minimizing
F implies minimizing F or not, we use the following measure:

Define E, as the generalization error when minimum F is reached, di-
vided by the minimum generalization error during the run:

Bl
ET — minky 26

The closer F, is to 1, the higher is the probability that minimizing F
implies minimizing F. In general small F. would be in favor of F.

27

E0, E, and its estimate (N0=10, schedule 1)
0.5 T T T

EO0 ——— i
Estimate of E -----

Errors

e SO SO U 1S - - TS PN
0

0 500 1000 1500 2000

Figure 12: Behavior of E compared to F and Fy, with Ny=10 and sche-
dule=1. Neither ¥ nor Fgy can follow F.

An estimate £ may be useful for another task at the same time: If all
the examples of a function are used for training and it is not possible to have
a validation set, then F can be used to determine when to stop training. If
E was not known, then Fy would be the only measure to determine when
to stop. Hence, another ratio, Fy,, is defined as the ratio of generalization
error when minimum F is reached, divided by the generalization error when
the minimum Fy is reached:

B .
ET:M 37
0 l;hninﬂb ()

Again small Fy, would be in favor of E.

In tables 3 and 4 the average values of F, and the standard deviations
for these averages are listed. The last line in table 3 is the average over all

28

| Schedule No || Ny =10 || Ng =20 [| No =50 || No =80 |

Schedule 0 1.396 1.556 1.343 1.258
Schedule 1 1.561 1.405 1.348 1.312
Schedule 2 1.788 1.541 1.379 1.534
Schedule 3 1.726 1.436 1.269 1.543
Schedule 4 1.799 1.571 1.585 1.262
Schedule 5 1.702 1.434 1.354 1.400

Average 1.662 1.491 1.380 1.385

Table 3: Average F,. ratios for each schedule and Ny.

| Schedule No || No =10 [| No =20 [| No =50 || No =80 |

Schedule 0 0.083 0.155 0.208 0.216
Schedule 1 0.275 0.263 0.213 0.180
Schedule 2 0.162 0.271 0.218 0.311
Schedule 3 0.198 0.226 0.123 0.343
Schedule 4 0.169 0.307 0.368 0.090
Schedule 5 0.219 0.308 0.189 0.206

Table 4: Standard deviations corresponding to averages in table 3.

schedules. When averaged over all runs, F,. was 1.48, which means if E was
used, instead of F. to decide on when to stop training, the trained networks
would have 48% more generalization error. However, effectively, using E
instead of the validation error may be more beneficial than indicated by this
figure.

If the examples of f are not set aside as the validation set and instead
used for training, and E is used as the criteria to stop training, using E may
be better. The variance in the data is too much to arrive at a conclusion,
but to give the reader an idea, the following calculation is carried out as an
example: For No = 20 the average minimum F achieved is 0.161 (average
of the second column of table 1.) However, for Ny = 80 the average genera-
lization error achieved is 0.0612 (average of the fourth column of table 1),
and for No = 50 it is 0.0848 (average of the third column of table 1.) 48%
more of minimum generalization error would be 0.091 for Ny = 80, and it

29

would be 0.126 for Ny = 50. Both numbers are smaller than 0.161. Hence,
if the validation set consisted of 30, or 60, or more examples, using them
for training, and using ¥ to stop training could cause smaller generalization
error.

| Schedule No || Ng =10 || Ng =20 [| No =50 || No =80 |

Schedule 0 0.822 0.958 0.908 0.872
Schedule 1 0.935 0.934 0.968 0.935
Schedule 2 1.012 0.999 0.934 0.896
Schedule 3 1.011 1.002 0.898 0.985
Schedule 4 1.014 0.961 0.863 0.722
Schedule 5 1.000 1.013 0.886 0.933

Average 0.966 0.978 0.910 0.891

Table 5: Average Fp, ratios for each schedule and Ng.

| Schedule No || Ny =10 || Ng =20 [| No =50 || No =80 |

Schedule 0 0.051 0.035 0.105 0.163
Schedule 1 0.130 0.137 0.159 0.090
Schedule 2 0.016 0.123 0.152 0.169
Schedule 3 0.013 0.176 0.135 0.144
Schedule 4 0.023 0.188 0.176 0.187
Schedule 5 0.015 0.030 0.182 0.062

Table 6: Standard deviations corresponding to averages in table 5.

In tables 5 and 6, the average values of Fyp, and the standard deviations
for these averages are given. The last line in table 5 is the average over all
schedules. When averaged over all runs, Fy, is 0.94, which means that as a
criteria to stop training E is on the average 6% better than Fj.

30

5 gentrain and train: Programs to Simulate Learn-
ing from Hints on Neural Networks

In order to do experiments on learning from hints using neural networks, we
have developed two programs: gentrain and train.

Both programs are written in C, and run on Unix, Mac, and DOS
environments.

In the following descriptions of these two programs are given.

5.1 gentrain Program

This program produces a set of examples of a function f: X — Y where
X, Y CcRP,D>0,D € Z. The set of examples can then be used either as
training or validation set for the train program.

5.1.1 Inputs and Outputs

The gentrain program takes the following parameters as input:

¢ |X| (input_dimension): Some functions can be defined for any input
dimension, e.g. sum of elements of a vector. In order to generate exam-
ples of such a function for different input dimensions, input_dimension
variable is used.

e number of examples: Number of examples of function f to be pro-

duced.

e [input lower limit, input upper_limit]: The range of input vec-
tors. Input vectors are chosen uniformly from real numbers in this
range.

e seed: The seed for the random number generator. This parameter
may used to repeat or not to repeat an experiment.

5.1.2 Implementation

The gentrain program outputs the input and output pairs generated for
function f.

31

In pseudocode the gentrain program can be described as follows (After
Pre: preconditions and after Post: the postconditions of the program is
listed in terms of the input and output variables):

gentrain(seed, number_of_examples, input_dimension,
input_lower_limit, input_upper_limit),
£())
int seed, number_of_examples, input_dimension ;
float input_lower_limit, input_upper_limit ;

/*Pre : number_of_examples>0, and input_dimension>0 and */
/* f: X" input_dimension -> Y output_dimension where */
/* float(X), float(Y) and */
/* input_lower_limit<= X <= input_upper_limit */
/* and output_dimension is determined by f(). */

/*Post: number_of_examples examples of f() generated and printed*/

begin
int output_dimension, i ;
float x_i[input_dimension], y_il[output_dimension] ;

initialize_random_number_generator(seed) ;

for (i=0; i<number_of_examples; i++)

begin
x_1 = create_random_input_vector(input_dimension,

input_lower_limit, input_upper_limit) ;

y_i = £(x_1i) ;
output(x_i, y_1i) ;

end

end

Figure 13 shows the interaction between the gentrain and train pro-
grams and their communications with their environment. It also shows how
a typical run of generating training and validation sets by gentrain and
then running train would proceed.

If the examples of the function are available, then there is no need to
use the gentrain program.

5.2 train Program

The train program teaches a set of hints Hy, ..., Hys to a randomly initial-
ized feed-forward neural network with a fixed architecture, according to a

32

N

f0 + gentrain + validation set

input_dimension Ho

H..H
1 M

whints[]

input_range

trainbatchsize

testbatchsize
No

0 »>— gentrain

input_dimension

learning_rate

momentum

initialweights

schedule
E Eo Bw

input_range
- ~———

Figure 13: The interaction between the train and gentrain programs

schedule and given emphasis for each hint. The examples hint, cyclic shift,
evenness, and binary hints, and rotation and maximum error schedules, are
available with the program. Additional hints or schedules can be added
easily. train uses the backpropagation [20] algorithm as the optimization
technique.

The program starts with random initial weights and performs gradient
descent on errors on hints; it outputs the generalization error and errors on
each hint Fg, Fq,..., Fp; as it does the descent and stops and outputs the
weights of the network which has been trained after a certain number of
descents (passes) are performed.

5.2.1 Inputs and Outputs

e training set: Fxamples of f which will be used to teach it to the
network. Training set is the examples hint Hy = {¢ : 1,..., Ngy :

(zi, f(2:))}-

e validation set: Examples of f which will be used to calculate an esti-
mate of the generalization error /. Validation error may be used to
determine when to stop training.

33

trainedweights

e learning rate (n): The step size in the backpropagation algorithm.
The weights are changed according to:
41 ¢ OEn,

wl = Wi — an—ijk |w;]k (38)
In this formula, ¢ denotes time (pass) and wfjk denotes a weight w;
at time ¢. F,, is defined as the average error on N, examples of the
hint H,,:

Ep=-—Y en (39)

In this expression, e,, represents the error on a random example of
H,,.

e momentum: A backpropagation parameter that may be used to speed
up learning. The backpropagation learning rule with momentum is:

t+1 t OEn,

Wiip = Wi ¢ Fa(wi, — wf]_kl) (40)

where « is the momentum.

o wl][][]: Weights of the network. The network is a feed-forward mul-
tilayer neural network with sigmoid threshold functions and floating
point number weights. w[i] [j] [k] denotes the weight from the jth
unit in the ith layer (i : 0.nlayer -1) to the kth unit in the i+1st
layer. Weights are randomly initialized to floating point numbers from
[w lower limit, w_upper_limit].

e nlayer, nunits[]: Number of layers excluding the input layer and
number of units at each layer in the network, respectively.

e maxpass: Number of passes after which the program stops and out-
puts the weights of the network. A pass is defined as one descent on
the objective function F,,.

There are at least two possible modes of descent: (i) Batch Mode: In

this mode the derivative gf”; is calculated and descent on F,, is done
3]

at once, and this is called a pass. (ii) Sequential Mode: In this mode,

the derivative 88£+mk is calculated, and weights are modified according
3]

to this derivative. This descent, repeated N times makes up a pass.

34

For small learning rate sequential and batch modes give the same
results. The program supports sequential mode only. However, batch
mode may be necessary in the future, when different optimization
algorithms are used.

e trainbatchsize: Number of examples of a hint to be taught at a
pass (N, in equation (39) above). An equal number of examples of
each hint are taught.

e testbatchsize: Number of examples of e,, (or f to be picked from

the validation set) used to determine an estimate of validation error
for f or a hint H,,.

e schedule: The index of the schedule to be used during the run.

e whints[M]: Emphasis given to each hint. whints[i] corresponds to
a; in section 2. If whints[i] is zero, F; has no effect on generalization
error, and hence H; is not taught.

If the emphasis on each hint, i.e. whints[i] is known, a rotation
schedule can be expressed in at least 3 different ways:

— Descending on a number of examples N; of H; when H; will be
taught, and choosing N; proportional to whints[i].

— Having different learning rates r; for each H; in such a way that
7; is proportional to whints[i].

— Having constant number N of examples to descend on and con-
stant learning rate 5 for descend on each hint, but descending on
H; a number of times proportional to whints[i].

In the train program, for the implementation of rotation schedules
the third strategy is used.

If the schedule is the maximum error, then all whints[i]*F; are com-
pared, and a pass is made on the hint having the maximum whints [1i]*F;.

All the input parameters above can be given as command line param-
eters. If an input is not given, then it is initialized to a consistent default
value.

train program outputs pass number versus F; for all hints as training
continues. When pass exceeds maxpass it prints the final values of weights
w and the execution stops.

35

5.2.2 Implementation

Implementation of Hints: Fach hint H; is implemented by a function
hinti(). If it is called with argument 0, the hinti() function outputs the
value of ¢; for one example without teaching it; otherwise it descends once
on an example of H; in the weight space, and then it returns the value of ¢;
before the descend.

For Hy (the examples hint), an example of the hint is produced by chos-
ing an element from the training set (Hg input to the program) uniformly.
For other hints, either a set of examples of the hint, like the training set,
or a function which can generate an example of the hint must be provided.
When the example of the hint is available, hinti() calculates the error on
this example with the current weights of the network, and if, required, makes
a backpropagation step on this error.

Implementation of Schedules: Each schedule is implemented by a func-
tion schedulei(). schedulei() has access to: pass, w (weights of the
network), the hinti() functions (and hence information on all F;’s), and
whints[]. schedulei() returns the hint it has chosen to be taught.

In pseudocode the train program can be described as follows:

train(learning_rate, momentum,
maxpass, pass, trainbatchsize, testbatchsize,
whints[M], schedule,
w, w_lower_limit, w_upper_limit,
nlayer, nunits, seed)
float learning_rate, momentum ;
int maxpass, pass,
trainbatchsize, testbatchsize,
whints[M], schedule ;
float w[MAXLAYER] [MAXUNIT] [MAXUNIT], /*Weights of network*/
w_lower_limit, w_upper_limit; /*range of weights*/
int nlayer, /*number of layers in the network*/
nunits [MAXLAYER], /*number of units at each unit*/
seed; /*for random number generator*/

/* Pre: schedule>=0 and nlayer>1 and nunits[i]>=1:i:0..nlayer-1 */

/* trainbatchsize>0 and testbatchsize>0 and */
/* w_lower_limit < w_upper_limit. */
/* functions to implement schedules and hints and any input*/
/* required by a schedule or hint must be provided. */

36

/*Post: wl[l[][] initialized to random values, and according to */

/* hint and schedule parameters maxpass-pass descents done */
/* on examples of hints. At each pass the errors on hints */
/* printed. After all descents done weights printed */
begin

for (; pass<maxpass; pass++){

turn = (*(fschedules[schedule])(
pass, w, nunits, nlayer, H_0,H_1,...,H_M) ;
/* Assert: turn=index of hint to be taught*/

for (i=0; i<trainbatchsize; i++)
(*(fhints[turnl)) (1) ;
/* Assert: turn’th hint taught on trainbatchsize examples*/

err = 0.0 ;
for (i=0; i<testbatchsize; i++)
err += test_err() ;
err = err / testbatchsize ;
output(err);
/* Assert: Generalization error measured and printed#*/

for (j=0; j<M; j++)
begin
err = 0.0;
for (i=0; i<testbatchsize; i++)
err += (*#(fhints[j]1))(0);
err = err/trainbatchsize;

output(err);
end
/* Assert: Errors on each hint measured and printed*/
end
output (w) ;
/* Assert: Trained weights have been printed*/
end

In the Appendix the entire code for the train and gentrain programs
are given.

Some improvements to the train program that will make it more flex-
ible are given in the following section.

37

ntdn

Schedules

schedule0()
schedulel()

scheduleMAXSCHED()

Optimizers

optimizer0()
optimizer1()

optimizerMAXOPT()

Program execution sequence

Access & dependency links

Figure 14: The train program execution.

6 Improved train program: NNS

The train program supports an adequate environment to simulate learning-
from-hints in neural networks. However, in some aspects it needs to be
improved. For example, it needs the the ability to handle:

e any estimate £, in addition to the weighted sum formula that can be
implemented through the maximum error schedule;

o different optimization techniques such as Adaptive Back Propagation
(ABP) [4], QuickProp [14], TRUST [10]... etc. in addition to back-
propagation (Backpropagation has problems of local minima and slow
convergence. QuickProp and ABP may solve the speed problem and
TRUST may solve the local minima problem.);

e feed-forward network architectures with different connections;
e different threshold (activation) functions for each unit (such as tanh

or linear) in addition to sigmoid;

38

e binary, integer, and complex weights, in addition to floating point
number weights;

e a graphical user interface in addition to the console;

e dynamic arrays (so that there will be no need to define constant maxi-
mum array sizes);

o reading weights from outside, in addition to randomly initializing them
(this will enable to continue a run using the trained weights);

The NNS ! (Neural Network Simulator) program whose description
is given below is a step towards achieving these goals. It will be a gen-
eral purpose program to simulate learning from hints, using different hints,
estimates, schedules and optimization techniques.

6.1 Description of the NNS program

In this section the specifications (input/output arguments, global variables
accessed, the job done) for functions in the NNS program, and the data
types, the global variables, and the input/output file specifications are given.
More detailed discussion of these can be found in [8].

The NNS program will have a defaults input and output file which are
used to enter all the input parameters and to output the state of learning
when it is terminated. Besides being more convenient than command line
parameters, defaults input and output files can be used to continue a run.

6.2 Basic Data Types

The most important data type is the Netw_type which represents a neural
network.

/*type definition for pointer to a function returning a float*/
typedef float (*PFF)();
typedef int (*PFI)();
typedef void (*PFV)();

'T would like to thank to Yaser S. Abu-Mostafa, Eric T. Bax, Mihail Iotov, Joe Sill,

and Xubo Song for many discussions on the train and NNS programs.

39

typedef struct{

int numLayer, *numUnits ;

Weight_type ***w, ***kwt_1 ;

/* w is the weight array at this time, wt_1 is the
weight array at time t-1%/

byte ***kconnectivityMatrix ;

byte **thresholdFunctionIndex ;
} basic_Netw_type ;

typedef struct{
basic_Netw_type basic ;

float weightRange[2] ;
float **neuronOutputs ;

PFF **ptr_thresholdFunction, **ptr_dthresholdFunction,
*¥*ptr_d2thresholdFunction ;
/*Pointers to threshold functions and functions computing
their 1st and 2nd derivatives with respect to their inputs*/

} Netw_type ;

baste_Netw_type is the structure that defines the hardware of the net-
work, and NVetw_type is the structure to be used as the network.

6.3 Global and Input Variables

In this section, we give the type declaration, default value and a brief de-
scription for global variables in the NNS program.

PFI « ptr_schedules; (Default: all nil):
Pointers to functions implementing schedules.

PFV « ptr_optimizers; (Default: all nil):
Pointers to functions implementing optimizers.

PFV « ptr_hints; (Default: all nil):
Pointers to functions implementing hints. Each of these functions provide
the error(e;) on an example of the hint and its derivatives with respect to
weights.

40

int schedulexz();:
xx’th schedule function.

void optimizerza();:
xx’th optimization function.

void hintza();:
xx’th hint function. FEach of these functions provide the error(e;) on an
example of the hint and its derivatives with respect to weights. Any training
or validation set examples provided as inputs to the program should be read
by these functions.

float s * Hi,x+ +tH; (Default: all 0):
Arrays containing training and validation set examples for each hint.

int M; (Default: 3):
Maximum number of hints used excluding the examples hint. This variable
must be input first because a many things depend on it.

int optimization; (Default: 0):
The index of the optimization technique to be used.

int schedule; (Default: 0):
The index of the schedule being used. (Different schedules can be used at
one run by changing the value of this variable.)

int s« whints; (Default: [1,0,0...]):
The weight given to each hint. If whints[i] = 0 then the hint is not taught.
(whints may be modified to become a floating point array, instead of int.)

int * hints_teach; (Default: [0, —1]):
A list of hints that will be taught during the run. The indices of all hints
with nonzero whints[i] are in hints_teach array.

int *ohints; (Default: [1,0,0...]):
If ohints[i] = 1 then the training (and if applicable validation) error for this
hint is printed during training.

int s« hints_print; (Default: [0,—1,...]):
A list of hints whose training (and the validation if applicable) errors will be
printed during the run. If hints_print[i] = j then the ¢’th hint to be printed
is 7.

A convenient method of setting whints, xhints_teach, xohints, xhints_print

arrays is: Request the user to enter hint_index weight pairs (either in de-

41

faults file or command line). According to these pairs set whints, xhints_teach,
xohints, xhints_print as follows:

o If 7 is entered as hint_index:

— whints[i] = |weight],
— if weight > 0 then ohints[i] = 1 (print),
— if weight < 0 then ohints[i] = 0 (do not print).

o If 7 is not entered as hint_index:

— Ifno other hint indices have been entered, either set whints[0] = 1
and ohints[0] = 1 and set all other entries of whints and ohints
to 0;

— else set whints[i] = 0 and ohints[i] = 0. Once sxwhints and
xohints are set *hints_teach and xhints_print can be set accord-
ing to them.

int pass; (Default: 0):
i) One descent over an objective function could be counted as a pass, or
epoch. pass indicates the amount of effort spent till a solution is reached.
So instead of pass, some other criteria, such as ii) CPU time spent may
be used. Especially when different optimization techniques are used, pass
number may not be a good scale for comparison.

int maxpass; (Default: 1000):
The pass number after which the program terminates. By using the defaults
output file from a run as the defaults input file for the next run and specifying
a larger number for the maxpass one should be able to run the experiment
for additional passes.

int errorOutputTic; (Default: 1):
Denotes after how many passes the program outputs errors on different hints.

float * xoptimizer_parameters; (Default:[1.0,0.0][0.0...]):
The parameters needed by an optimization algorithm. The usual interpre-
tation for backpropagation could be (assuming that usual backprop is the
0’th optimization algorithm):
optimizer_parameters[0][0] = learning rate,
optimizer_parameters[0][1] = momentum.

42

The meaning of optimizer_parameters[][] can be different for each op-
timizer, the related optimization function should keep track of them.

int trainbatchsize,testbatchsize; (Default: 20, 100):
Same as in the train program.

Netw_type « netw; (Default: to be specified):
Variable declaration for the networks. Since this describes an array of net-
works, any number of networks can be used in the program. The user should
enter the number of networks (Num_N et default value 1). For parallel app-
lications, or an application of genetic algorithms to neural networks, more
than one network may be necessary.

char * hint Fname[2][20];
(Default: hintFname[0][0]="train00.inp”, hintFname[0][1]="test00.inp”): The
names of the files containing training and (if applicable) validation sets for
each hint.

float *** H;, «* «tH;;
(Default: all 0): If there are training and validation input files for the jth
hint, then the examples in these files are read into arrays H;[j] and tH;[j]
respectively when hintj() function is called the first time. Fach example
(either of training or validation set) is an entry H;[j][k] which is a vector
of floating point numbers. The function hintj() determines the meaning of
these numbers.

char defaultsInput Fname[20];
(Default: ”.NNSDefaults.I.hintFname.time”)
char defaultsOutput Fname[20];
(Default: ”.NNSDefaults.O.hintFname.time”):
The names of the defaults input and output file names.

The values of the variables in the program are set according to the
following steps: i) Initialize to defaults within the program; ii) Read the
defaults input file and initialize any variables specified there; iii) Read the
command line options and initialize any variables specified.

If some command line parameters are entered before the name of the
defaultsInputFile steps ii) and iii) may be interleaved.

The defaults input file contains a set of variables and their initial values
which the user wants to use to run the program. The defaults output file
records a set of variables, their values and the command line options (if any)
entered, before the program terminates.

43

If neither input nor output defaults file name is specified, then the de-
fault output file name is .NNSDefaults.O.hintFname.time where hint Frname
is the variable defined above. If "dfname” is the defaults input file name
specified, then "dfname.O.time” is the name of the defaults output file.
(time denotes the system time written down in a suitable form.)

6.4 Main Program

/*Types for pointers to functions returning integer,float,void*/
typedef int (*#PFI)();

typedef float (*PFF)();

typedef void (*PFV)();

/***/

/* */
/* GLOBAL VARIABLES */
/* */

/***/

int schedule00(), schedule01(),....schedule99() ;
PFI ptr_schedules[]={schedule00,....,schedule99} ;

void optimizer00(int hint, float params[]),
optimizerO01(int hint, float params[]),
optimizer99(int hint, float params[]);

PFV ptr_optimizers[]={optimizer00,...,optimizer99};

void hint00(int mode, hint, float *e,
float ***dei_dw, float *****x*d2ei_dw2),
hint01(int mode, hint, float *e,
float ***dei_dw, float *****x*d2ei_dw2),
hint99(int mode, hint, float *e,,
float ***dei_dw, float ***k***d2ei_dw2) ;
PFV ptr_hints[]={hint00,...,hint997} ;

/*Training and validation examples read from files for each hint*/
float ***Hi, ***xtHi ;

int M;

int optimization, schedule,
*whints, *hints_teach, *ohints, *hints_print,

44

pass, maxPass, errorOutputTic;
float **optimizer_parameters ;

Netw_Type *netw ;
/*Some functions whose definitions will be given herex/

/***/

/* */
/* MAIN */
/* */

[F ok ks ok sk ok sk skok ok sk sk sk koK sk sk sk ko sk sk sk sk ook sk ks sk koK sk sk sk ko ok ok ok ok /
main(argc, argv)

int argc;
char *argv[];
{

char hintFname[20];
char defaultsInputFname[20], defaultsOutputFname[20] ;

FILE #*fpo,**tfpo;/*pointers to training and valid’n out files*/

int seed ;
int hint ;

float *Ei, *tEi ;
/*arrays to store training and validation errors for hints */

initialize(argc, argv, fpo, tfpo, hintFname, defaultsInputFname,
defaultsOutputFname, &hint, &seed) ;

/*Assert: All variables initialized to proper values */

while (pass < maxPass){
hint = (*ptr_schedules[schedulel)() ;

/*Assert: */
/*hint is the index of objective function to be taught */
/*to the network when schedule is used to schedule */

(*ptr_optimizers[optimization])
(hint, optimizer_parameters[optimization]) ;

/*Assert: */
/*one step of optimization of hint’th objective function, */

45

/*using optimizer has been made, training errors for hint’th*/
/*objective function and the simple hints it uses are */
/*in the array Ei */

if (pass % errorOutputTic == 0){
i=0;
while (print_hints[i] !'= -1){
j = print_hints[i] ;
estimate_err(j,1,0,&(tEi[j]),&(dEi_dw[j]l),&(d2Ei_dw2[j])) ;
estimate_err(j,0,0,&(Eil[j]),&(dEi_dwl[j]),&(d2Ei_dw2[j]1)) ;

/*Assert: Train&Test errors for jth hint in Eil[i], tEi[il*/

i++

b

printerr(fpo, tfpo, Ei, tEi) ;

/*Assert: Errors printed to proper output files */

}

print_defaults(defaultsOutputFname, hintFname,
defaultsInputFname, hint, seed) ;

/*Assert: The values of all variables have been printed */

/* into file whose name is given by defaultsOutputFname */

closefiles(fpo, tfpo) ;
/*Assert: All opened files have been closed */
}

For each hint, schedule, and optimizer function, there should be empty
functions which are to be filled in if necessary. In that way (up to 100 hint,
schedule, and optimizer functions) there won’t be a need to modify the array
and pointer definitions regarding these functions.

6.5 Additional Functions

/***/

/* */
/% initialize() */
/* */

/K ok sk ok ok ok ok sk ok sk ok ok sk ok ok ok sk sk ok s skok sk ok sk skok s s ok ok o sk skok s s sk ok ok sk sk ok ok ok ko sk ok ok sk ok /
void
initialize(argc, argv, fpo, tfpo, hintFname, defaultsInputFname,

46

defaultsOutputFname, hint, seed)
int argc ;
char *argv[] ;
FILE *fpo[l, *tfpol[] ;
char hintFname[], defaultsInputFname[], defaultsOutputFnamel[] ;
int hint, seed ;

/*¥Pre : true */
/*Post: all global variables, and variables passed are */
/* initialized to their correct values, */
/* either to their default values; */
/* or default values read from defaultsInputFile; */
/* or values read from the command line. */
/* The order in which the second or third type of */
/* initialization will take place depends on where the */
/* defaultsInputFileName has been given */
/*Global Accesses: */
/* M, optimization, schedule, hintsUsed, pass, maxPass, */
/* errorOutputTic, optimizer_parameters, netw, Hi, tHi */
{

¥

/oo ko ok ok ok ok ok ok ok ok ok ok ok okok sk ok sk ko sk sk ok sk o ok ok ok sk sk skok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk sk kok ok /
/* */
/* schedulexx() */
/* */
/oo ko ok ok ok ok ok ok ok ok ok ok ok okok sk ok sk ko sk sk ok sk o ok ok ok sk sk skok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk sk kok ok /
int

schedulexx()

/*¥Pre : 0<=xx<=99 */
/*Post: xxth scheduleing alg. is used to determine the index */
/* of the objective function to be taught. The scheduler */
/* accesses the pass number, environment, and network */
/* (some or all of these variables) in order to determine */
/* that objective function. The index of the objective */
/* function is returned */
/*Global Access: */
/* M, hitsUsed, pass, netw, Hi, tHi */
{

¥

/oo ko ok ok ok ok ok ok ok ok ok ok ok okok sk ok sk ko sk sk ok sk o ok ok ok sk sk skok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk sk kok ok /
/* */
/% optimizerxx() */

47

/* */

/***/

void

optimizerxx(hint, params)

int hint;

float params[] ;

/*Pre: 0<=xx<=99 and O0<=hint<=MaxHintIndex and */
/* params [xx] exist (if needed by the optimizerxx) */
/*Post: One step optimization on hint’th objective function */
/* is done using the technique optimizexx, and the */
/* values of weights in w[l[J[] and/or wt_1[]1[]1[] have */
/* been modified. */
/*Global Accesses: */
/* M, hitsUsed, pass, netw, Hi, tHi, hintxx() ; */
{

If the the optimization technique needs error on hint’th hint,
or its 1st or second derivatives, using hint’th hintxx()
function determine the value these errors or derivatives.

then combine them in the way optimization process requires.
(Using how many examples of the hint, batch or sequential

mode is decided and implemented by the optimizerxx())

Modify the weights in *netw.

¥

/st sk ok s ok sk sk sk o o s ok ok stk s ok ok stk s s ok sk o s ke ks o s s ksl ok o sk sk sk o sk sk sk ok sk ok sk sk sk ok ok sk sk skok ok ok /
/* */
/* hintxx() */
/* */

/K ok sk ok ok ok ok sk ok sk ok ok sk ok ok ok sk sk ok s skok sk ok sk skok s s ok ok o sk skok s s sk ok ok sk sk ok ok ok ko sk ok ok sk ok /
void

hintxx(mode, derivative, hint, e,de_dw, d2e_duw2)

int mode, hint, derivative ;

float *e, **x*kkde_dw, ******x*xd2e_dw2 ;

/*Pre: 0<=xx<=99 and 0<=mode<=1 and 0<=derivative<=2 and */
/* e[i] exists if xx th hint uses info on ith hint. */
/*Post:if (mode == 0) */
/* if (derivative == 0) */
/* the training error for xx th hint is found and */
/* written to e[xx]. */
/* else if (derivative => 1) and (derivative<=2) */
/* the derivative’th and lesser order derivatives of */

48

/* training error on one hint example w.r.t. each weight */

/* is found and returned in de arrays */
/% else */
/* if (mode == 1) */
/* if (derivative == 0) */
/* the teset error for xx th hint is found and */
/* written to e[xx]. */
/* else if (derivative => 1) and (derivative<=2) */
/* the derivative’th and lesser order derivatives of */
/* validation err on one hint example w.r.t. each weight */
/* is found and returned in de arrays */
/*Global Access: */
/* M, hintsUsed, netw, Hi, tHi, forw(), back() ; */
{

If xx is a simple hint then calculate e, or its derivatives
directly (using back(), forw, Hi, tHi), otherwise, use the
hintyy() where yy is a simple hint taking place in xx’s
calculation.

¥

/st sk ok s ok sk sk sk o o s ok ok stk s ok ok stk s s ok sk o s ke ks o s s ksl ok o sk sk sk o sk sk sk ok sk ok sk sk sk ok ok sk sk skok ok ok /
/* */
/* estimate_err */
/* */

/oo ko ok ok ok ok ok ok ok ok ok ok ok okok sk ok sk ko sk sk ok sk o ok ok ok sk sk skok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk sk kok ok /
void

estimate_err(hintno,mode,derivative,tEi,dEi_dw,d2Ei_dw2)

int mode, hint, derivative ;

float *E, **x*k*kdE_dw, ******%x*xd2E_dw2 ;

/*Pre: hintno is index of a hint whose training/validation err*/

/* can be found. and 0<=mode<=1 and O<=derivative<=2 */
/*Post: hintno’th hintxx() function called estbatchsize many */
/* times to get average estimate of training/validation er*/
/* or their derivatives. */
{

}

/o ok ok o ko ko ook sk Kok ok K ok ko ok ok Kok K ook ok ok Kok Kook ok ok ok ok Kok ok koK
/* */
/* forw() */
/* */

[Kok Kok o ok ok ook ok ook o Kok ok ok oK ook o K ok ok oK o o K ok ook ook ok ok ok ook oK ok ok oK ok Kok Kok ok ok ok o/
void
forw(netw, inp)

49

Netw_Type *netw ;
float inp[] ;
/*Pre: netw exists, inp[] contains at least as many elements */

/* as the number of inputs to the network netw */
/*Post:The values of neuron outputs for each neuron in the */
/* network are modified according to the inp[] vector */
/*Global Access: None */
{

}

[Kok Kok o ok ok ook ok ook o Kok ok ok oK ook o K ok ok oK o o K ok ook ook ok ok ok ook oK ok ok oK ok Kok Kok ok ok ok o/
/* */
/* back() */
/* */

[Kok Kok o ok ok ook ok ook o Kok ok ok oK ook o K ok ok oK o o K ok ook ook ok ok ok ook oK ok ok oK ok Kok Kok ok ok ok o/
void

back(netw, dy_dw)

Netw_Type *netw ;

float #*¥*xdy_dwl] ;

/*Pre : netw exists, dy_dw[l1[J[1[] has one location for each */

/* output unit and weight. */
/*Post:dy_dw[i]l[j1[k] [1] contains the derivative of the ith */
/* output unit wrto weight wl[il[j][k] of the netw. */
/*Global Access: None */
{
}

7 Conclusions and Future Research

In this thesis, we have shown that using other hints in addition to the
examples hint can improve the learning performance. Different schedules,

and adaptive minimization as a general scheduling mechanism, have been
presented. A method of finding an estimate F of the generalization error,

and the experiments on this estimate have been discussed. When such an

estimate is available, it can be optimized either using adaptive minimization

or directly descending on the estimate. The specifications for programs

that form an environment for learning-from-hints on neural networks, and

improvements on these programs have also been discussed.

The future work on this subject can be grouped into two categories:

Theoretical:

50

e Having a complete set of desirable properties for an estimate of the
generalization error.

¢ Finding other estimates, and testing them in terms of how well they
reflect the generalization error and in terms of their effects when used
as the objective function during training.

e Exploring the impact of different optimization algorithms on the per-
formance of estimates.

e Exploring the impact of hints on learning speed and decrease in the

VC-dimension [6] of G.
Applications:

e Rewriting the train program to produce the NNS (Neural Network
Simulator) program in such a way that, together with the gentrain
program, it makes up a complete neural network simulator that can
use a library of optimization procedures, hints, and estimates.

Some future improvements on NNS could be:

— Given necessary inputs and objective functions e; : j : 0,..., M
for each hint, the ability to produce the programs for using these
hints.

— Given the all inputs, the ability to decide on which estimate to
use.

— Having a library of optimization routines, and the ability to de-
cide on which one to use.

o Experimenting with real life applications, such as stock market pre-
diction, pattern recognition, and medical applications.

51

A The C Code for the gentrain and train Pro-
grams.

In this appendix the C code for the train and gentrain programs that are
described in section 5, is given. The purpose of having this appendix is to
show an implementation example of including hints and schedules in learning
from examples using feed-forward neural networks and backpropagation.

A.1 The gentrain Program

A.1.1 Main gentrain Program

/***/

/* */
/* gentrain.c */
/* */
[Kok Kok o ok ok ook ok ook o Kok ok ok oK ook o K ok ok oK o o K ok ook ook ok ok ok ook oK ok ok oK ok Kok Kok ok ok ok o/
/* This program generates input output vector pairs. */
/* The function to compute output vectors from input vectors */
/* should be in the same directory and in the file f.h. */
/* The following are adjustable parameters of the program: */
/* ————number of I/0 pairs in the training set : N {100} */
/* --——dimension of input vectors : I {8} */
/* ————(output vector dimension (0) determined by function f) */
/* —-———output filename {train00.inp} */
/* ———-range of input vectors :[downrange,uprangel{[-1.0, 1.0]1}*/
/* */

/* max dimension for an input or output vector is MAXROWSIZE */
/* which is used by the same name in backpropagation algorithm */
/* to denote the maximum number of units in any layer in net. */

/* */
/* OUTPUT FILE FORMAT: */
[k m—mmm */
/* seed={random number seed used} */
/* {input vector dimension} {output vector dimension} {# pairsl}*/
/* inp vector */
/* output vector */
/* inp vector */
/* output vector */
V4 SR */
[k m—mmm */

/* seed is just to see what was used to genrate the input and t*/

52

/* repeat things if necessary. 2nd and following lines are used*/
/* by the backpropagation algorithm which is in file "train.c'".*/
/* */

/***/

#include <stdio.h>
#include "math.h"

#include "f1.h" /*contains f(inpvec,I,outvec,&0, LIM)*/

#define MAXROWSIZE 16 /*max dimension for I or 0 vectors*/

FILE *fp, /*output file pointer*/
*fopen();

float drand48(); /*returns random numbers in [0.0, 1.0]*/

long now ; /*used to initialize random number generator*/

float templim ;

[Hm—— float myrand(downrange, uprange)--—-——-—--—-————-—- */

/*Return a float type random number in [downrange, uprange] */

float

myrand (downrange, uprange)

float downrange, uprange ;

{

float temp ;

while (fabs(temp =((drand48())*(uprange-downrange) + downrange))
== templim) ;

return (temp) ;

} /*myrand*/

[R m void geninp(inpvec, I, downrange,uprange)--—--- */
/*generate and put into array inpvec an I dimensional vector
whose components are in the range [downrange, uprangel*/

void
geninp(inpvec,I,downrange, uprange)
float dinpvec[] ;
int I ;
float downrange, uprange ;
{
int i ;
for (i=0; i<I; i++){
inpvec[i]l= myrand(downrange, uprange) ;
Y /xforx/
} /*geninp*/

[void printvec(vec,dim)-———-————————————- */
/*print the "dim" float numbers in "vec" array into file pointed

53

by the file pointer "fp"*/

void

printvec(vec, dim)

float

vecl[];

int dim ;

{

int 1i;

for (i=0; i<dim; i++)

fprintf(fp, " %f", vecl[il) ;

fprintf(fp, "\n");
} /#*printvec*/

[main(argec, argyv)-—--——-——————————————— */

main(argc,argv)

int argc;

char *argv[];

{

char outfile[256], /*the output filex/
tempst[20], ch ;

int i, /*an ordinary loop counter*/
=100, /*number of I/0 pairs to be produced#*/
I=8, /*input vector dimension#*/
o,
seed , /*seed for the random number generator*/
erase_mode = 0 ; /*Ask the user before deleting a filex/

float inpvec[MAXROWSIZE],

outvec [MAXROWSIZE], /*I/0 vectors*/

downrange = -1.0,

uprange = 1.0 , /*upper and lower bounds for components*/
/* of I vector*/

LIN ; /*threshold limit. Inputted to funcn f*/

strcpy(outfile,"train00. inp") ;

/*37 because suggested so in UNIX man.*/
seed = time(&now)%((time(&now)*37)%107+2);
/*read in any arguments*/

if

(arge>1){
sscanf (argv[1], "%s'", tempst) ;
if (tempst[0]=="q’){

/*give info on options and exit*/

printf ("\nUSAGE:") ;

printf("\n>>gentrain'") ;

printf("\n[-N #I/0 pairs in training set{%d}1",N) ;

54

printf("\n[-I input vector dimension{%d}]1",I) ;
printf("\n[-f output file name{%s}]",outfile) ;
printf("\n[-s random number seed{now}]");
printf("\n[-b lower bound of range of inp. vectors{)2.3f}]",
downrange) ;
printf("\n[-t upper bound of range of inp. vectors{)2.3f}]",
uprange) ;
printf("\n[-e ask to the user before erasing a file {/d}]\n",
erase_mode) ;
exit(0) ;
}
i=1 ;
while (i<argc){
sscanf (argv[i++],"%s",tempst) ;

if (tempst[0] '= ’-?){
printf ("\nERROR IN INPUT FORMAT. Program exited with 1");
exit(1) ;
}

switch (tempst[1]){
case ’N’:sscanf(argv[i++], "%d", &N) ; break ;
case ’I’:sscanf(argv[i++], "%d", &I) ;
if (I>MAXROWSIZE) I = MAXROWSIZE ; break ;
case ’f’:sscanf(argv[i++], "¥s", outfile) ; break ;
case ’s’:sscanf(argv[i++], "%d", &seed) ; break ;
case ’b’:sscanf(argv[i++], "%f", &downrange) ; break ;
case ’t’:sscanf(argv[i++], "%f", &uprange) ;
case ’e’:erase_mode = 1;
} /*switchx/
} /*whilex/
> /*ifx/
/*open the output filex*/
if ((fp = fopen(outfile, "r"))==NULL)
fp = fopen(outfile, "w") ;
else{
if (lerase_mode){
printf("\n Output file %s already exists. Overwrite(Y/N?7):",

outfile) ;
scanf ("%c",&ch) ;
if ((ch == ’y’) Il (ch == ’Y’))
fp = fopen(outfile, "w") ;
else{
printf("\n No computations done. Exited with O \n")
exit(0) ;
}

55

}

else
fp = fopen(outfile, "w") ;
} /*elsex/

LIM = 0.67#sqrt((I*1.0)/3) ;
templim = LIM ;
/*initialize the random number generator*/
srand48(seed);
fprintf (fp,"/*seed: %d*/\n",seed) ;
geninp(inpvec,I,downrange, uprange) ;
f(inpvec, I, outvec, &0, LIM) ;
fprintf(fp,"%d %d %d %f %f \n", I, O,N, downrange, uprange) ;
printvec(inpvec, I) ;
printvec(outvec, 0) ;
for (i=1; i<N; i++){
/*Produce an input vector*/
geninp(inpvec,I,downrange, uprange) ;
/*Calculate the network output for this inp vector*/
f(inpvec, I, outvec, &0, LIM) ;
/*Print input and output vectors*/
printvec(inpvec, I) ;
printvec(outvec, 0) ;
¥
fclose(fp) ;
} /*mainx/

A.1.2 Included Function

/***/

/* */
/* f1.h */
/* */
/o ok ok o ko ko ook sk Kok ok K ok ko ok ok Kok K ook ok ok Kok Kook ok ok ok ok Kok ok koK
/* */
/* This file contains the definition of the function f. */
/* f(inpvec,I,outvec,&0) where */
/* inpvec,outvec are arrays of float */
/* I is input vector dimension (determined in gentrain.c file) */
/* 0 is the output vector dimension determined by f */
/* */
/* see file gentrain.c for a complete picture. */
/* */

/***/

56

void
f(inpvec,I,outvec,0, LIM)
float dinpvec[] ;

int I ;

float outvecl] ;

int *0 ;

float LIM ; /*threshold limit*/

{

/* output vector is 1 dimensional and contains: */
/* 1.0 if sum of numbers in inpvec is in [-LIM, LIM] */
/* 0.0 otherwise. */
float sum=0.0 ;

int i ;

for (i=0; i<I; i++)
sum += inpvec[i] ;

if ((sum >= -LIM) && (sum <= LIM))
outvec[0]=1.0;

else outvec[0]=0.0 ;

(¥0) =1 ; /*output vector is 1 dimensional*/

LA 574

A.2 The train Program

A note: In the programs “validation error” and “test error” has been used
interchangably to denote the validation error defined in section 1.2.

The program given here differs from the one used for experiments. The
indices of schedules have been changed.

A.2.1 Main Functions

train.c contains the main file for the train program.

/***/

/% */
/* train.c */
/% */
/A kkkokokokokokokokokokokokokok sk sk sk skl sk sk sk sk sk s sk sk ok ok ok ki sk sk sk sk sk sk sk s s sk sk ok sk ok sk sk sk skok ok /
/*This program reads input output pairs from an input file */
/*and then trains a fully connected feedforward neural network */
/*using backpropagation algorithm. */

57

/*"include.h" contains all #include’s of files and also gives */
/*which #include file contains which functions and their params*/
#include "include.h"

[k m e —————— */
/* */
/* THE MAIN PROGRAM */
/* */
[k m e —————— */
[main(arge, argyv)-——-——-———————————————————— */
main(argc,argv)

int argc;

char *argv[];

{

[k m e —————— */
/* INPUT OUTPUT FILE NAMES AND POINTERS */
[k m e —————— */
FILE *fpi[NUMINFILE], /*Input file pointers*/

/*0: training input file, 1: test input filex/

*fpo [NUMOUTFILE] ; /*output file pointers*/
/*0. . MAXM-1 : error on the the ith hint */
/*MAXM : Error on the test set */

/*1+MAXM. . 2+#MAXM:a value computed for each hint by schedules*/

char fnamein[NUMINFILE] [MAXLEN], /*input file names*/
fnameout [NUMOUTFILE] [MAXLEN]; /*outputfilenames*/
/*see fpi, fpo. File pointers&names correspond#*/

float mine[2] [MAXMINE]; /#mine[i]l[j]l=E_j for 0<=j<=MAXM-1 and */

/*mine[i] [MAXM]=E (Test err on f) */

/* mine[0] contains errors when min. training err is reached*/

/*mine[1] contains errors when a weighted min. err is reached*/

int disperr = DISPERR,/*# passes after which error is displayed*/

seed , /*seed to the random number generator*/

turn = 0,/#which hint(0..MAXM-1)’11 be taught at this pass*/
minpass[2] ;

/* minpass[i]=pass number when errors in mine[i] are reached*/

/*default initialization*/
default_init(fpo, fnamein, fnameout, &seed) ;

/*read any command line arguments*/

58

read_params(argc,argv,fnamein,fnameout,

&seed, &maxpass) ;

/*open input and output files and initialize file pointers */

open_files(fnamein, fnameout, fpi, fpo) ;

/*Fill in the inp, tinp, out, and tout arrays from inp.files*/
read_inputs(fpi, fnamein) ;

/*Init. weight vectors, random num gen, err, mine, minpass */
init_w_err_mine(seed, mine, minpass) ;

while ((pass<(maxpass+1))){

}

/*Fill in err. for all hint [0..MAXM-1] & validation err */
test_all(mine, minpass) ;

if (pass¥%disperr == 0)
/*Print err array entries to stdout or output files*/
print_err(fpo) ;

/*Find who will be taught at this pass*/
turn = find_turn(schedule) ;

/*Teach the hint to be taught*/
teach_hint(turn) ; pass++ ;
/*whilex/

/*Close files opened in the program*/
close_files(fpi, fpo) ;

/*Print the final weights, discrete errors and minimum errors*/
/* and pass numbers they were reached on the stdout */

print_weights_err(mine, minpass) ;

} /*main*/

include.h contains #include’s for all the files included in train.c.

All schedulexx() and hintxx() functions should be in directories
../hints and ../schedules respectively.

/***/

*/

59

/* include.h */
/% */
/K ok sk ok ok ok ok sk ok sk ok ok sk ok ok ok sk sk ok s skok sk ok sk skok s s ok ok o sk skok s s sk ok ok sk sk ok ok ok ko sk ok ok sk ok /
#include <stdio.h>

#include <math.h>

#include '"declare.h"

float fsqr(x)
float x;

float
myrand (downrange, uprange)
float downrange, uprange ;

float mean(ar, setsize)
float ar[];
int setsize ;

float variance(ar, setsize, m)
float ar[];

int setsize ;

float m ;

float
threshold(x)
float x ;

#include "init.h"

void
default_init(fpo, fnamein, fnameout, seed)
FILE *fpo[NUMOUTFILE] ;
char fnamein[NUMINFILE] [MAXLEN],
fnameout [NUMOUTFILE] [MAXLEN] ;
int *seed ;

void
initweights()

void

init_w_err_mine(seed, mine, minpass)
int seed;

float mine[2] [MAXMINE];

int minpass[2] ;

void
read_params(argc,argv,fnamein, fnameout,
seed, maxpass)
int argc;
char *argv[], fnamein[][MAXLEN], fnameout[] [MAXLEN];
int *seed, *maxpass ;

#include "io.h"

void

read_inputs(fpi, fnamein)

FILE #fpi[NUMINFILE];

char fnamein[NUMINFILE] [MAXLEN] ;

void

print_weights_err(mine, minpass)
float mine[2] [MAXMINE];

int minpass[2] ;

void print_err(£fp)
FILE *£p[NUMOUTFILE] ;

void

open_files(fnamein, fnameout, fpi, fpo)

FILE #fpi[NUMINFILE], *fpo[NUMOUTFILE] ;

char fnamein[NUMINFILE] [MAXLEN],
fnameout [NUMOUTFILE] [MAXLEN] ;

void

close_files(fpi, fpo)

FILE *fpi[NUMINFILE], *fpo[NUMOUTFILE] ;
void

61

close_files(fpi, fpo)
FILE *fpi[NUMINFILE], *fpo[NUMOUTFILE] ;

—— */
#include "backprop.h'

[k m e ——————— e ————————
void

forw(inpvect)

float inpvect[] ;

void

back(de_dy)

float de_dy[MAXROWSIZE];

void

back2(de_dy, de_dy2)

float de_dy[MAXROWSIZE], de_dy2[MAXROWSIZE];

void

calc_de_dy(vl, v2, result)

float v1[MAXROWSIZE], v2[MAXROWSIZE], result[MAXROWSIZE] ;

int

choosepat ()

float

calc_err(target, output, setsize)

float target[][MAXROWSIZE], output[][MAXROWSIZE] ;

int setsize ;

float

calc_one_err(target, output)

float target[MAXROWSIZE], output[MAXROWSIZE] ;

measure_t(inpa, outa, setsize)

float inpal[] [MAXROWSIZE], outal] [MAXROWSIZE] ;

int setsize ;
—— */

#include "../hints/hint0.h"
#include "../hints/hint1.h"
#include "../hints/hint2.h"

/* Schedules indices have changed now
0: Rotation (OLD: O, 1, 3)

62

1: Random Rotation (OLD: 2,4)

Adaptive:
2: Maximum Error (OLD: 5,6) (also includes max. weighted err)
3: Random maximum error (New) (OLD? none)

*/

#include "../schedules/schedule0.h" /* Rotation */
#include "../schedules/schedulel.h" /* Random Rotation */
#include "../schedules/schedule2.h" /* Maximum error */
#include "../schedules/schedule3.h"” /* Random maximum error */

#include "main.h"

void
teach_hint(hintno)
int hintno ;

int
find_turn(schedule)
int schedule ;

void

test_all(mine, minpass)
float mine[2] [MAXMINE] ;
int minpass[2] ;

Files included in include.h : Now we give all the files included in
include.h except the ones on schedules and hints.

/***/

/* */
/* declare.h */
/* */
/o ko ok ok ok ok oKk Kok ok ok o Kk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok Kok ok /
[k m e —————— */
/* DEFINE CONSTANTS USED IN THE PROGRAM */
R */
#define MAXROWSIZE 128 /*max dimension for I or 0 vectors*/
#define MAXLAYER 3 /*maximum # layers allowed#*/
#define MAXSCHEDULE 4 /*Max # schedules allowed*/
#define MAXPASS 1000 /*maximum # passes over training set*/

63

#define MAXSETSIZE 1000 /*Maximum #pairs in the training set*/
#define DISPERR 20 /## passes after which error is displayed#*/

#define MAXM 3 /*# hints that can be considered including f*/
#define MAXWHINT 100 /*Maximum value any whints[i] can take*/
#define NUMINFILE 2 /*number of input files*/
#define NUMOUTFILE 1+2*MAXM /*number of output files*/

/*See main(), and fpo[] for a description*/
#define MAXLEN 80 /*Max length used for file name lengths*/

#define MAXMINE 1+MAXM /*# error measures in each row of mine */
#define PRINT_SCHED 1 /*if schedule number is greater than*/
/*this number,err [MAXM+1..2*MAXM] ’re printed on files or stdout*/
/*by setting PRINT_SCHED to <0, err[MAXM+1+i] (where ith hintis*/
/*used) can be printed, and by setting PRINT_SCHED to a value */
/* >= MAXSCHEDULE none of err[MAXM+1..2*MAXM] canbe not printed*/
/* regardless of the schedule that is being used */

typedef int (*PFI)();/#Defines pointer to a fn returning an int*/
typedef float (*PFF)();/#Define pointer to a fn returning float*/

/*Names of functions to be used for ith schedule/hint should*/
/*be at ith location of the arrays below,functions should be*/
/*declared as done here, and files contanining these functions */
/*should be included in file "include.h" */
int schedule0(), schedulel(), schedule2(), schedule3();

float hint0(), hint1(), hint2() ;

PFI fschedules[]={scheduleO, schedulel, schedule2, schedule3};
PFF fhints[1={hintO, hint1, hint2} ;

R */
/* STANDARD FUNCTION DECLARATIONS */
[k m e —————— */
float drand48(); /*returns random numbers in [0.0, 1.0]*/
double pow() ; /*To take x to the power y pow(x,y)*/
FILE *fopen(); /*To open files*/
[k m e —————— */
/* DECLARATIONS FOR SOME OF THE FUNCTIONS USED IN PROGRAM */
/* used for reference wrto order of files only */
[k m e —————— */

void init_w_err_mine() ;
float measure_t() ;

/* GLOBAL VARIABLES */

[k m e —————— */

float eta=0.5, /*learning rate*/
noweta= 0.5, /*learning rate actually used*/
alpha = 0.7, /*momentum*/
downrange = -1.0, /*upper and lower bounds for initial */
uprange = 1.0 , /*values of weights*/
inpdownrange = -1.0,

inpuprange = 1.0,/*upper and lower bounds for inp. vectors*/

inp [MAXSETSIZE] [MAXROWSIZE],

out [MAXSETSIZE] [MAXROWSIZE] , /*inp/out vectors*/
tinp [MAXSETSIZE] [MAXROWSIZE],
tout [MAXSETSIZE] [MAXROWSIZE] , /*test inp/out vectors*/

/*NETWORK ELEMENTS*/
/*weights, current and old*/
wMAXLAYER-1] [MAXROWSIZE] [MAXROWSIZE] , /*weights*/
wo [MAXLAYER-1] [MAXROWSIZE] [MAXROWSIZE] , /*0ld weights*/
/*Bias values, current and old#*/
theta[MAXLAYER-1] [MAXROWSIZE],/*threshold values for units*/
thetao [MAXLAYER-1] [MAXROWSIZE],/*0ld thres valuesfor units*/

/*calculate delta for every unit except the input units*/
delta[MAXLAYER] [MAXROWSIZE],
x[MAXLAYER] [MAXROWSIZE] , /*outputs of units*/

/*When backpropagationis used w/ an error function of two */
/*variables (see back2() routine) weneed to store the netwx/
/*outputs at x2[][] when the 1st input vector producing */
/*first output is presented to netw (for each netw unit)*/
/*delta2[]is used to keep track of delta valuesfor backp */
x2[MAXLAYER] [MAXROWSIZE] ,

delta2[MAXLAYER] [MAXROWSIZE], /*used like x2[][]1*/

/*BOOKKEEPING VARIABLES*/

/*There is a 1-1 correspondence between err[] and fpo[] in =/
/* main(), whatever is in err[i] is printed on the file */
/*pointed to by fpol[]l. err is used for printing purposes */
/* only currently, and is modified at each pass to reflect */
/* E_O..E_MAXM-1, E, Q_0..Q_MAXM-1. Q_is are variables set */
/* in schedules and are used to monitor some variables */

65

/* attached with each hint (SEE ALSO: PRINT_SCHED constant */
err [NUMOUTFILE] ;

int nlayer=3, /* # layers in the network#*/
/*nlayer can’t be <2, input and output layers are counted */

nunits [MAXLAYER], /*number of units at each layer*/
trainsetsize = MAXSETSIZE, /*#items in the training set*/
testsetsize = MAXSETSIZE, /*#items in the test set*/
trainbatchsize=20, /*# examps of a hint taught at a pass*/
testbatchsize= 50, /*# examps of a hint to calcul.err*/
estbatchsize=20, /*a variable related with schedules*/

schedule = 0,/*schedule to be used for training the network*/

maxpass = MAXPASS, /*MAx no of passes*/
pass = 0, /*current # pass*/
/*info in whints[] is used more efficiently by means of */
/* numhints, totwhint, phints[], bhints[] */

whints[MAXM], /*each hintis assigned a weight(read_params()*/
/*if whints[i]>0 teach and show error on phints[i]’th hint*/

/* whints[i]=0 don’t teach, don’t show */
/* whints[i]<0 don’t teach, show */
numhints= 1, /*total # hints for which whints[i]>0 */
totwhint =1 , /* \sum whhints[i] s.t. whints[i]>0 */
thints[MAXM] , /#thint[0]=0, thints[il=ith hint used */

/*Example: if hints 2 5 6 are used */

/*thints={0,2,5,6,0,...} */

ohints [MAXM] ;/*if ohints[i]=1 error on ith hint outputted*/

/***/

/* */
/* utility.h */
/* */
/o ok ok o ko ko ook sk Kok ok K ok ko ok ok Kok K ook ok ok Kok Kook ok ok ok ok Kok ok koK
/*contains the following functions: */
/* fsqr(x) */
/* myrand (downrange, uprange) */
/* mean(ar, setsize) */
/* variance(ar, setsize, m) */
/* threshold(x) */
[k m e —————— */

/* */

/* GENERAL FUNCTIONS */
/* */
R */
[Hm— float fsqr(x)-—-———————————————————— */
/*Pre: x is a float number */
/*Post: "fsqr" is the square of x and is a float number */
float fsqr(x)

float x;

{ return(x*x) ; } /*fsqr*/

[float myrand(downrange, uprange)-—-——--—-—-—--—- */
/*Pre : downrange<= uprange and are float numbers */
/*Post : "myrand" is a float rand number in [downrange,uprange]*/
float

myrand (downrange, uprange)

float downrange, uprange ;

{

return ((drand48())*(uprange-downrange) + downrange) ;
} /*myrand*/

[float mean(ar, setsize)-—--—-————————"—"—"—"""""--———————— */
/*Pre : ar[0..setsize-1] exists, setsize>=1 */
/*Post : "mean" is the average of ar[0..setsize-1] */

float mean(ar, setsize)

float ar[];

int setsize ;

{

float sum = 0.0;

int i ;
for (i=0; i<setsize; i++) sum += ar[i] ;
sum = sum /setsize ;
return(sum) ;

} /#mean*/

[k float variance(ar, setsize, m)-————————————————————— */
/*Pre : ar[0..setsize-1] exists,m is the mean ar[0..setsize-1%/
/* and setsize >= 1 */
/*Post : "variance' is the variance for ar[0..setsize-1] given */
/* that "m" is the mean */

float variance(ar, setsize, m)

67

float ar[];

int setsize ;

float m ;

{

float sum = 0.0;

int i ;
for (i=0; i<setsize; i++) sum += fsqr(ar[i]l-m);
sum = sum / setsize ;
return(sum) ;

} /#variancex/

/*¥Pre : x is a float number */
/*Post : "threshold"=1/(1+exp(-x)) (SIGMOID) */
float

threshold(x)

float x ;

{

#define nume 2.718281828

return(1.0/ (1.0+(float) (pow(nume, (double) (-1.0%x))))) ;

} /*threshold*/

/***/

/* */
/* init.h */
/* */
/oo ko ok ok ok ok ok ok ok ok ok ok ok okok sk ok sk ko sk sk ok sk o ok ok ok sk sk skok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk sk kok ok /
/*contains the following functions: */
/* default_init(fpo, fnamein, fnameout, seed) */
/* initweights() */
/* init_w_err_mine(seed, mine, minpass) */
/* read_params(argc,argv,fnamein, fnameout,seed, maxpass) */
[k m e —————— */
/* */
/* INITIALIZATION ROUTINES */
/* */
[k m e —————— */
[void default_init(....)-————————————"--- */
/*Pre: fpol[O..NUMOUTFILE-1], fnamein[0..NUMINFILE-1], */
/* fnameout [0..NUMOUTFILE-1], nunits[0..nlayer-1] exists */
/*Post: fpol[l, nlayer, nunits[], fnamein[], fnameout[], *seed */
/* noweta initialized to default values */

68

/*GLOBAL REFERENCES: nlayer, nunits[],eta, noweta */

void
default_init(fpo, fnamein, fnameout, seed)
FILE *fpo[NUMOUTFILE] ; /*0utput file pointers*/
char fnamein[NUMINFILE] [MAXLEN], /*input file names*/

fnameout [NUMOUTFILE] [MAXLEN]; /*outputfilenames*/
int *seed ;
{
long now ; /*used to initialize random number generator*/
int i ;

nlayer = 3 ;

nunits[0]1=8; nunits[11=3; nunits[2]=1;
for (i=0; i<NUMOUTFILE; i++){

fpol[i] =NULL ;

strcpy (fnameout [i], "") ;
}
strcpy(fnamein[0],"train00.inp") ;
strcpy(fnamein[1],"test00.inp") ;
*seed = time(&now)%((time(&now)*37)%107+2);
/*37 because suggested so in UNIX man.*/
noweta = eta ;

/*Set the default value of whints[i] */
whints[0]=1 ; /#*Weight 1%/
thints[0]=0 ; /*Teach*/
ohints[0]=1 ; /*Output*/
numhints 1
totwhint 1
for (i=1; i<MAXM; i++){
whints[il= 0 ;
thints[il= -1 ;
ohints[il= 0 ;

¥
} /#default_init*/

[void initweights()-----———-------——--——— */
/*Pre:downrange<=uprange wl[][],wo[][],thetal][],thetao[][] exis*/
/*Post : wll=wo[]l, thetal[l=thetao[] initialized to random float*/

/* numbers in the range [downrange, uprangel */
/*GLOBAL REFERENCES: w[], wo[], thetal[],thetao[],down/uprange */
/* nunits[], nlayer */
void

69

initweights()
{
int 1i,j,k;
for (i=0; i<nlayer-1; i++)
for (k=0; k< nunits[i+1]; k++){
for (j=0; j< nunits[il; j++){
wlil[j1[k] = myrand(downrange, uprange) ;
wolil[j1[k] = wlil[j1[k] ;
¥
thetal[i][k] = 0.1 * myrand(downrange, uprange) ;
thetaol[i]l [k] = thetalil[k] ;

¥
} /*initweights*/
[k void init_w_err_mine(....)-—————————————— */
/*Pre: nunits[0..MAXLAYER-1], mine[][], minpass[] exist */
/*Post: weight vectors, random num generator, err[], mine[][], */
/* minpass[] are initialized */

/*GLOBAL REFERENCES: err,ohints[],testbatchsize,tinp[],toutl[] =/
void

init_w_err_mine(seed, mine, minpass)

/*INP*/

int seed;

/*0UT*/

float mine[2] [MAXMINE];

int minpass[2] ;

{
int i,j ;
/*initialize the random number generator*/
srand48(seed);
/*Initialize the arrays w[l, wol[], and thetal[]l, thetao[]*/
initweights();

/*Initialize errors for hints 0..MAXM-1%/
for (i=0; i<MAXM; i++){
err[i] = 0.0 ;
if (ohints[i]){
for (j=0; j<testbatchsize; j++)
err[i]l+= (*(fhints[i]))(0) ;
err[i] = err[i] / testbatchsize ;
¥
¥
/*Initialize test error for f using the test datax/
err [MAXM] = measure_t(tinp, tout, testbatchsize) ;

70

/*

/*
/*
/*
/*
/*
/*

Vo

/*FILLING IN THE mine and minpass arrays here
/*see main() for a description of mine[] and minpass[]
for (i=0; i<2; i++){
for (j=0; j<MAXMINE; j++)
mine[i][j] = err[j] ;
minpass[i] = 1 ;
}

/*init_w_err_mine*/

The following are adjustable parameters of the program:

NOTE:if nlayer is different than the default one, —-d option
must be entered before the —-w option from the command line
---d number of layers in the network 3

---w number of units in each layer 8 3 1

---r learning rate eta 0.5

-——m momentum alpha 0.6

---n max # passes over training set 10000

---1i input file name train00.inp

---o output file name '"stdout"

---x random number seed "now'"

---1 lower bound of the range of weight vectors -1.0

---u upper bound of the range of weight vectors 1.0

--—s schedule O

---v integer weights for hints 0..MAXM-1

-——e estbatchsize (used for estimation purposes)

---t%t testbatchsize

—————— void read_params(.....)—————————————————
Pre: argv[0..argc-1], fnamein[], fnameout[] exists
Post:any parameters entered on the command line are read on
appropriate variables
GLOBAL REFERENCES: nunits, nlayer, eta, alpha, downrange,
uprange, schedule, thints, ohints,
whints, totwhint, numhints,noweta,eta

id

71

*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

read_params(argc,argv,fnamein, fnameout,
seed, maxpass)

int argc;
char *argv[],

fnamein [NUMINFILE] [MAXLEN], fnameout [NUMOUTFILE] [MAXLEN];
int *seed, *maxpass;
{
int i, j;
char tempst[80] ;

/*read in any arguments*/
if (arge>1){
sscanf (argv[1], "%s'", tempst) ;
if (tempst[0]=="q’){
/*give info on options and exit*/
printf ("\nUSAGE: ") ;
printf("\n>>train");
printf("\n[-d number of layers in the network{%d}]",nlayer) ;
printf ("\n[-w number of units in each layer{") ;
for (i=0; i<nlayer; i++) printf("%d ", nunits[i]) ;
printf("}]1") ;
printf("\n[-r learning rate eta {%2.3f}]",eta) ;
printf("\n[-m momentum (alpha) {%2.3f}]", alpha) ;
printf("\n[-n max # passes over training set{%d}]'",*maxpass) ;
printf("\n[-i input file name{%s}]",fnameinf[0]) ;
printf("\n[-o output file name{stdout}]") ;
printf("\n[-x random number seed{now}]");
printf("\n[-1 lower bound of the range of weight vectors{%2.3f}]",
downrange) ;
printf("\n[-u upper bound of the range of weight vectors{%2.3f}]",uprange) ;
printf("\n[-s schedule an int in [0..%d], current:{%d}", MAXSCHEDULE-1, schedule) ;

printf("\n NEW SCHEDULES") ;

printf("\n Fixed:") ;

printf("\n 0: Rotation (OLD: O, 1, 3)") ;

printf("\n 1: Random Rotation (OLD: 2,4)") ;

printf("\n ") o

printf("\n Adaptive:") ;

printf("\n 2: Maximum Error (OLD: 5,6) (also includes max. weighted err)") ;
printf("\n 3: Random maximum error (a new schedule) (OLD? none)")
printf("\n ")

printf("\n Estimate/Schedule") ;

printf("\n 4: Mean Variance Check (7-8-9)") ;

printf("\n 5: Sample Balanced Error (10, 11, 12)") ;

printf("\n ")

72

printf("\n[-v int weight for each hint H_O...H_%d: ", MAXM-1) ;
for (i=0; i<MAXM; i++)
printf("%d ", whints[il);

printf("\n[-e estbatchsize(# ex’s of H_i used to estimate E_i){%d}",
estbatchsize);
printf("\n[-t testbatchsize=#ex from test set used to find E{%d}\n",
testbatchsize) ;
exit(0) ;
¥
i=1 ;
while (i<argc){
sscanf (argv[i++],"%s",tempst) ;
if (tempst[0] '= ’-){
printf ("\nERROR IN INPUT FORMAT.\n") ;
printf("Program exited with 1\n");
exit(1) ;
¥
switch (tempst[1]){
case ’d’:sscanf(argv[i++], "%d", &nlayer) ;
if (nlayer>MAXLAYER) nlayer=MAXLAYER;
else
if (nlayer<2) nlayer = 2;
break ;
case ’'w’:j=0;
for (j=0; j<nlayer; j++){
sscanf (argv[i++], "%d", &(nunits[jl1)) ;
if (nunits[j]>MAXROWSIZE)
nunits[j1=MAXROWSIZE ;
else
if (nunits[jl<1) nunits[j] = 1 ;
¥
break ;
case ’r’:sscanf(argv[i++], "%f", &eta) ; break ;
case ’'m’:sscanf(argv[i++], "%f'", &alpha) ; break ;
case ’'n’:sscanf(argv[i++], "%d", maxpass) ; break;
case ’i’:sscanf(argv[i], "%s", &(fnamein[0][0])) ;
sscanf (argv[i++], "%s", &(fnamein[1][1])) ;
fnamein[11[0] =’t";
break ;
case ’o’:sscanf(argv[i++], "%s", &(fnameout[MAXM][1]1)) ;
fnameout [MAXM] [0] = ¢’
break ;
case ’x’:sscanf(argv[i++], "%d", seed) ; break ;

73

case ’1’:sscanf(argv[i++], "%f", &downrange) ; break ;
case ’u’:sscanf(argv[i++], "/f", &uprange) ; break ;
case ’s’:sscanf(argv[i++], "%d",&schedule) ; break ;
case ’v’:for (j=0; j<MAXM; j++){
sscanf (argv[i++], "%d",&(whints[j]1)) ;
fprintf(stderr, "%d \n", whints[j]) ;
¥
break ;
case ’e’:sscanf(argv[i++], "%d",&j);
if (j<=0) fprintf(stderr,
"estbatchsize=%d<=0, changed to %d", j, estbatchsize) ;
else estbatchsize = j;
break;
case ’t’:sscanf(argv[i++], "%d",&j);
if (j<=0) fprintf(stderr,
"testbatchsize=%d<=0, changed to %d", j, testbatchsize) ;
else testbatchsize = j;
break;
} /*switchx/
} /*whilex/
> /*ifx/

/*whints[] are used by schedules and also in calculation of */
/* mine[1], to find the pass where a min. of a weighted err */
/* is reached */

numhints = 0; totwhint = 0 ; j = O;

for (i=0; i<MAXM; i++)

/*Teach and show*/

if (whints[i]>0){
numhints++ ;
totwhint += whints[i] ;
thints[j++] = i ;
ohints[i] = 1 ;

¥

else

if (whints[i] < 0){
ohints[i] = 1 ;

¥
else{

ohints[i] = 0 ;
¥

noweta = eta ;

74

} /#read_params*/

/***/

/* */
/* io.h */
/* */
/o ok ok o ko ko ook sk Kok ok K ok ko ok ok Kok K ook ok ok Kok Kook ok ok ok ok Kok ok koK
/* input/output functions */
/* */
/* read_inputs(fpi, fnamein) */
/* print_weights_err(mine, minpass) */
/* print_err(£fp) */
/* open_files(fnamein, fnameout, fpi, fpo) */
/* close_files(fpi, fpo) */
/* */
/* INPUT FILE FORMAT */
[k m—mmm */
/* seed={random number seed used} */
/* {input vector dimension} {output vector dimension} {# pairsl}*/
/* inp vector */
/* output vector */
/* inp vector */
/* output vector */
VA S */
[k m—mmm */

/* seed is to see what was used to generate the input and to */
/* repeat things if necessary. 2nd and following lines are used*/

/* by the backpropagation algorithm. */
[Hm— void read_inputs(.....) */
/*Pre:fpi[0.NUMINFILE-1],inp,out,tinp,tout[0.MAXSETSIZE-1]exist*/
/*Post:inp[], out[] (training) are filled from fpi[0] and */
/* tinp[],tout[] (testing) " " "o fpili] */
/* trainsetsize, testsetsize, nunits[0], nunits[nlayer-1] */
/* testbatchsize,inpdownrange, inpuprange are modified */
/* according to data read from input files, */
/*GLOBAL REFERENCES: nlayer,nunits[],inp,out,tinp,tout */
/* trainsetsize, testsetsize, testbatchsize,inpdown/uprange*/
void

read_inputs(fpi, fnamein)

FILE *fpi[NUMINFILE]; /*Input file pointers*/

75

char fnamein[NUMINFILE] [MAXLEN] ;

{

int I
i

char

if

if

}

, 0, tI, tO, /*#I1/0 units read from input files*/
» J s
ch ;

(fpil0] '= NULL){

/*Reading the comment about random number seed herex/
fscanf(£fpil[0],"%c",&ch); fscanf(fpi[0],"%c",&ch);

while (ch!=’/’) fscanf(£fpil[0],"%c",&ch);

fscanf (£pi[0],"%d %d %d %f %f\n",

&I, &0, &trainsetsize, &inpdownrange, &inpuprange) ;

/*if there is a mismatch between input file and arguments
inputted, take the info in the input file as being correct*/
if (I '= nunits[0]) nunits[0] = I ;

if (0 !'= nunits[nlayer-1]) nunits[nlayer-1] = 0 ;

if (trainsetsize > MAXSETSIZE) trainsetsize = MAXSETSIZE ;

(£pil1] '= NULL){
/*Reading the comment about random number seed herex/
fscanf(fpil1],"%c",&ch); fscanf(fpil1],"%c",&ch);
while (ch!=’/’) fscanf(fpil1],"%c",&ch);
fscanf (fpil[1],"%d %d %d %f %f\n",
&tI, &t0, &testsetsize, &inpdownrange, &inpuprange);
if ((£pil0]'=NULL) & ((I !'= +I) || (0 '= t0))){
fprintf(stderr, "ERROR!!!\n") ;
fprintf(stderr, "training set in %s and\n'", fnamein[0]);
fprintf(stderr, "test set in %s and\n", fnamein[1]) ;
fprintf(stderr, "contain incompatible data") ;
fprintf(stderr, "program exited with 1") ;
exit(1) ;

if (testsetsize > MAXSETSIZE) testsetsize = MAXSETSIZE ;
if (testbatchsize > testsetsize)
testbatchsize = testsetsize ;

if (fpil[0] !'= NULL){
/*Read the I/0 pairs from training input file into the arrays*/

for (i=0; i<trainsetsize; i++){
for (j=0; j<nunits[0]; j++)
fscanf (fpil0], "%f",&(inp[il[j]1)) ;
for (j=0; j<nunits[nlayer-1]; j++)

76

fscanf(fpil0], "%f", &(out[i][jl1)) ;
¥

if (fpil[1] !'= NULL){
/*Read the I/0 pairs from the test input file into the arrays*/
for (i=0; i<testsetsize; i++){
for (j=0; j<nunits[0]; j++)
fscanf(fpil1], "%f",&(tinpl[il1[31)) ;
for (j=0; j<nunits[nlayer-1]; j++)
fscanf (fpil1], "%f", &(toutl[il[j1)) ;
}

} /*read_inputs*/

[*——————— void print_weights_err(mine,minpass)-—-—-——-——-———--—- */
/*Pre : mine[0..1][0..MAXMINE-1]minpass[0,1],w[],thetal] exist */
/*Post: Contents of mine[][], minpass[] (min error and pass nos*/

/* they were reached (mine[0]:min training err, */
/* mine[1] :min (training err+0.5%hint errors)) */
/* and the final values of weights&thresholds printed on stdout*/
/*GLOBAL REFERENCES: w, theta,nunits[], nlayer */
void

print_weights_err(mine, minpass)
float mine[2] [MAXMINE];
int minpass[2] ;

{
int i, j, k ;

printf("Min acc. to :passno") ;

printf("%9s%9s", "E_O", "E") ;

for (j =1; j<MAXM; j++)
printf("%8s%d","E",j) ;

printf("\n") ;

for (i=0; i<2; i++){
if (i==0) printf("Train ERR : ") ;
else printf("Weighted ERR: ") ;
printf("%5d ", minpass[i]) ;
/*0utput training and test errors (E_O and E) firstly*/
printf("%f %f ", mine[i] [0], mine[i] [MAXM]) ;
for (j=1; j<MAXM; j++)

77

printf("%f ", mine[il[j]) ;
printf("\n") ;
}
/*Print the final values of weights and biases(thresholds)x*/
printf("Weights:\n") ;
for (i=0; i<nlayer-1; i++){
for (j=0; j<nunits[i]; j++){
for (k=0; k<nunits[i+1]; k++)
printf(" %f",wlil[j1[k]1) ;
printf("\n") ;
}
printf("\n") ;
}
printf("Thresholds:\n") ;
for (i=0; i<nlayer-1; i++){
for (j=0; j<nunits[i+1]; j++)
printf (" %f",thetalil[jl) ;
printf("\n") ;

}
} /*print_weights_err*/
[Hm— void print_err(fp)-————-————————————————————————— */
/*Pre : fp[0..NUMOUTFILE-1] exists */
/*Post : contents of err[] printed on stdout or files pointed */
/* by fpl] according to fp[] & ohints[] */
/*GLOBAL REFERENCES: schedule,ohints[],pass, err */

void print_err(£fp)
FILE *fp[NUMOUTFILE] ;
{
int i ;
/*Print everything to be printed to stdout*/
if (fp[MAXM] == NULL){
printf("%d ", pass) ;
/*Print training error and test error*/
if (ohints[0]) printf("%f ", err[0]) ;
printf("%f ", err[MAXM]) ;
/*Errors on hints 1..MAXM-1%/
for (i=1; i<MAXM; i++)
if (ohints[i]) printf("%f ", err[il) ;
if (schedule>PRINT_SCHED)
for (i=1+MAXM; i<=2*MAXM; i++)
if (ohints[i-1-MAXM])
printf("%f ", err[i]) ;

78

printf("\n") ;

}
else{
for (i=0; i<NUMOUTFILE; i++)
if (fpli] '= NULL)
fprintf (fplil,"%d %f\n",pass,err[i]) ;

}
} /*print_err*/
R */
/* */
/* OPENING AND CLOSING FILES */
/* */
[k m e —————— */
[H—— void open_files(fnamein, fnameout, fpi, fpo)--—----—- */
/*Pre: fpil0..NUMINFILE-1],fpo[0..NUMOUTFILE-1], */
/* fnamein[0. .NUMINFILE-1], fnameout[0..NUMUTFILE-1], */
/* nunits[0..nlayer-1] exists */
/*Post:fpi[0. .NUMINFILE-1],fpo[0..NUMOUTFILE-1] are initialized*/
/* to NULL or to point to files depending on fname’s and */
/* ohints[](if ohints[i] i’th hint error is outputted */
/*GLOBAL REFERENCES: schedule, ohints[] */
void

open_files(fnamein, fnameout, fpi, fpo)
FILE *fpi[NUMINFILE], *fpo[NUMOUTFILE] ;

char fnamein[NUMINFILE] [MAXLEN], /*input file names*/
fnameout [NUMOUTFILE] [MAXLEN]; /*outputfilenames*/

{

int i;

/*open the test input filex*/
if ((fpil[1] = fopen(fnamein[1], "r")) == NULL){
fprintf(stderr, "CAN’T OPEN TEST INPUT FILE Y%s. ",
fnamein[1]) ;
fprintf(stderr, "Program exited with 1") ;
exit(1) ;
¥
/* Schedules 4 and 5 need E_O and hence training set*/
if (ohints[0]||schedule>=4) {
/*open the input filex*/
if ((fpil[0] = fopen(fnamein[0],"r")) == NULL){
if (ohints[0]==0)
fprintf(stderr,"Schedule %d needs E_O and training set\n") ;
fprintf(stderr,"CAN’T OPEN INPUT FILE %s. ",fnamein[0]) ;

79

fprintf(stderr,"Program exited with 1") ;
exit(1) ;
} /xifx/

}

else fpil[0] = NULL ;

/*Treating H_O as yet another hint*/
/*open the output filex*/
if (fnameout [MAXM] [0]!=0) {
/*Test file, for Ex/
fpo[MAXM] = fopen(fnameout [MAXM], "w")
/*file pointer allocations for hint files if necessary*/
for (i=0; i<MAXM; i++)

if

}

if (ohints[il){

strcpy (fnameout[i], "hi") ;

fnameout[i][1]="0’+1 ;

sscanf (fnameout [MAXM]+1, "%s", &(fnameout[i]l[2]1));
fpol[i] = fopen(fnameout[i], "w") ;

(schedule>PRINT_SCHED){
for (i=0; i<MAXM; i++)
if (ohints[il){
strcpy (fnameout [1+MAXM+i], "Q1") ;
fnameout [1+MAXM+i] [1]="0"+1 ;
sscanf (fnameout [0], "%s", &(fnameout[1+MAXM+i]l[2]));
fpo[1+MAXM+i] = fopen(fnameout [1+MAXM+i], "w") ;

/*open_files*/

/*Pre :

void
close_files(fpi, fpo)
FILE *fpi[NUMINFILE], *fpo[NUMOUTFILE] ;

int i ;

—————————— void close_files(fpi, fpo)————————————————————————%/
£pi[0. . NUMINFILE-1],fpo[0. .NUMOUFILE-1] exists */

/*Post: input files and any opened output file i.e. */
(file pointer!=NULL) are closed. */

for (i=0; i<NUMINFILE; i++)
if (fpil[i] != NULL)
fclose(fpilil) ;

80

for (i=0; i<NUMOUTFILE; i++)
if (fpo[i] '= NULL)
fclose(fpol[il) ;
} /*close_files*/

/***/

/* */
/* backprop.h */
/* */
[Kok Kok o ok ok ook ok ook o Kok ok ok oK ook o K ok ok oK o o K ok ook ook ok ok ok ook oK ok ok oK ok Kok Kok ok ok ok o/
/* backprop main routines, and related functions: */
/* forw(inpvect) */
/* back(de_dy) */
/* back2(de_dy, de_dy2) */
/* calc_de_dy(vl,v2,result) */
/* choosepat() */
/* calc_err(target, output, setsize) */
/* calc_one_err(target, output) */
/* measure_t(inpa, outa, setsize) */
[*/
/* */
/* FORWARD AND BACKWARD PROPAGATION MAIN ROUTINES */
/* */
[*/
[Hm e void forw(inpvect)-—————————————————————————— */
/*Pre: inpvect[0..nunits[0]-1]1,x[1[], wlI[1[] exist */
/*Post: Outputs of network when feeded with inpvec calculated*/
/* and are at x[nlayer-1][0...nunits[nlayer-1]-1] */
/*GLOBAL REFERENCES: x, w, theta, nunits, nlayer */
void

forw(inpvect)

float inpvect[] ; /*input vector*/

{

int i, j, k;
float sum ;
for (i=0; i<nunits[0]; i++)
x[0][i] = inpvect[i] ;

for (i=1; i<nlayer; i++)
for (k=0; k<nunits[il; k++){
sum = 0.0 ;
for (j=0; j<nunits[i-1]; j++)
sum += x[i-1][j1*wli-1]1[j1[k] ;

81

/*N.B.: Unlike the convention, I assume that bias */
/* weights are connected to +1 (convention is -1) */
sum += thetali-1]1[k] ;
x[i1[k] = threshold(sum) ;
¥
} /#forux/

[void back(de_dy)-—————————————————————— */
/* BAckpropagation using an error function of one variable only*/
/*Pre : Netwk outputs are at x[nlayer-1][0..nunits[nlayer-1]-1%/

/* and (delta E)/ (delta x) i.e. the derivative of the */
/* error function E(x) with respect to x (where x is the */
/* network output is in de_dy[] */
/* x[10, w101, deltall[],thetall1[] exist */
/*Post : Accordingto delta_e_y values w, theta, wo, thetao are */
/* modified,using backpropagation. */
/*GLOBAL REFERENCES: nunits[], nlayer, delta, noweta, alpha */
/* X, W, wo, theta, thetao */
void

back(de_dy)

float de_dy[MAXROWSIZE]; /*Derivative of E w.r.t. output var*/
{

int i, j, k ;

float temp ;

for (i=0; i<nunits[nlayer-1]; i++){
deltalnlayer-1] [i]=x[nlayer-1] [i]*(x[nlayer-1][i]-1)*
de_dy[i] ;
}
for (i=nlayer-1; i>0; i--){
for (k=0; k<nunits[il; k++){
for (j=0; j<nunits[i-1]; j++){
temp = wli-1]1[j1[k] ;
wli-11[j] [k]+=noweta*deltali] [k]*x[i-1][j]+
alpha*(wli-1]1[j]1[k]-wol[i-11[j1[k]) ;
wol[i-11[j1[k] = temp ;
} /*for kx/
temp = thetali-11[k] ;
thetal[i-1] [k]+=noweta*deltali] [k]+
alpha*(thetali-1] [k]-thetaol[i-1][k]) ;
thetaol[i-1][k] = temp ;

} /#for j*/
for (j=0; j<nunits[i-1]; j++){
temp = 0.0 ;

82

for (k=0; k<nunits[i]; k++)
temp += deltalil[k]l*woli-1]1[j1[k] ;
deltali-1]1[jl=temp*x[i-1] [jI1*(1-x[i-11[j]1) ;

} /#for j*/
} /#for ix/

} /*back*/

[Hm void back2(de_dy, de_dy2)-———————————————————— */
/*Backpropagation using an error function of two variables */
/*Pre : Netwk outputs are at x[nlayer-1][0..nunits[nlayer-1]-1%/
/* and the outputs of the netw. corresponding to 2nd */
/* variable x2 are at x2[0...nunits[nlayer-1]1-1] with */
/* x[] and x2[] arrays containing outputs of each unit inx/
/* the network, and */
/* de_dy[l, de_dy2I[] */
/* contain the derivatives of the error func */
/* with respect to x and w.r.t. x2 resp.(x,x2:outputs) */
/* EXAMPLE: if E=(x-x2)"2 then de_dy, and de_dy2 */
/* 2% (x-x2)=2*(x[nlayer-1]-x2[nlayer-1]) */
/* 2% (x2-x)=2*(x2[nlayer-1]-x[nlayer-1]) resp. */
/* N.B.:de_dy/y2 arrays have one entry per output unit */

/* x2[10,x000,wd000,deltald1[],delta2[1[],thetal][] exist*/
/*Post : According to de_dy[] and de_dy2[] values w,theta, wo, */

/* thetao are modified. */
/*GLOBAL REFERENCES: nunits[], nlayer, delta,noweta, alpha */
/* X, x2, W, wo, theta, thetao, delta2 */
void

back2(de_dy, de_dy2)
float de_dy[MAXROWSIZE], de_dy2[MAXROWSIZE];

{
int i, j, k ;
float temp ;

for (i=0; i<nunits[nlayer-1]; i++){
deltalnlayer-1] [i]=x[nlayer-1] [i]*(x[nlayer-1][i]-1)*
de_dy[i] ;
delta2[nlayer-1][i]l=x2[nlayer-1][i]l*(x2[nlayer-1] [i]-1)*
de_dy2[i] ;
}
for (i=nlayer-1; i>0; i--){
for (k=0; k<nunits[il; k++){
for (j=0; j<nunits[i-1]; j++){
temp = wli-1]1[j1[k] ;

83

wli-11[j] [k]+=noweta*deltali] [k]*x[i-1]1[j];
wli-11[j] [k]+=noweta*delta2[i] [k]*x2[i-1]1[j]+
alpha*(temp-wo[i-1]1[j1[k]) ;
woli-11[j1[k] = temp ;
} /*for kx/
temp = thetali-11[k] ;
thetal[i-1] [k]+=noweta*deltali] [k];
thetal[i-1] [k]+=noweta*delta2[i] [k]+
alpha*(temp-thetaol[i-1]1[k]) ;
thetaol[i-1][k] = temp ;

} /#for j*/
for (j=0; j<nunits[i-1]; j++){
temp = 0.0 ;

for (k=0; k<nunits[il; k++)
temp += deltali] [k]l*wol[i-1][j]1[k] ;
deltali-1]1[jl=temp*x[i-1] [jI1*(1-x[i-11[j]1) ;
temp = 0.0 ;
for (k=0; k<nunits[il; k++)
temp += delta2[i] [k]*wol[i-1][j]1[k] ;
delta2[i-1][jl=temp*x2[i-1] [j1*(1-x2[i-1]1[j]1) ;
} /#for j*/
} /*xfor ix/
} /*back2*/

[k m e —————— */
/* */
/* BACKPROP DE / DY CALCULATING ROUTINE */
/* */
[k m e —————— */
[void calc_de_dy(vil, v2, result)--—-————————————————— */

/*Pre: vi1[il, v2[i], result[i] where i in O..MAXROWSIZE-1 exist*/
/*Post: result[i] = (vi[i] - v2[i])*2 which is derivative of */
/* error function w.r.t. vl when E = (v1-v2)~2 */
void
calc_de_dy(vl, v2, result)
float vi[MAXROWSIZE], v2[MAXROWSIZE], result[MAXROWSIZE] ;
{
int i ;

for (i=0; i<nunits[nlayer-1]; i++)

result[i] = 2*(v1[i] - v2[il) ;

¥ /*calc_de_dy*/

84

/* */
/* BACKPROP DETAIL ROUTINES */
/* */
[k m e —————— */
[int choosepat()—————————————————————— */
/*Pre : trainsetsize>=1 */
/*Post : 0<= "choosepat" < trainsetsize and */
/* "choosepat" is the index of a vector in inp array*/
/*GLOBAL REFERENCES: trainsetsize */
int

choosepat ()

{

return (lrand48() % trainsetsize) ;
} /*choosepat*/

[*/
/* */
/* MEASUREMENT OF ERROR ROUTINES */
/* */
[k m e —————— */
[k float calc_err(target, output, setsize)-—---———--——- */
/*Pre : target[0..setsize-1], output[0..setsize-1] exists */
/* setsize>=1, nunits[nlayer-1]>=1 */
/*Post: "calc_err"=sum_i(sqr(target[i]-output[i])/setsize */
/*GLOBAL REFERENCES: nunits, nlayer */
float

calc_err(target, output, setsize)
float target[][MAXROWSIZE], output[][MAXROWSIZE] ;
int setsize ;
{
int i, j;
float sum = 0.0 ;
for (i=0; i<setsize; i++)
for (j=0; j<nunits[nlayer-1]; j++)
sum += fsqr(target[i] [jl-output[i][j1) ;
sum = sum/(nunits[nlayer-1]*setsize) ;
return sum ;

}
[Hm—m float calc_one_err(target, output)--——-——--——-———————— */
/*Like calc_err but for one item only */

85

/*Pre : nunits[nlayer-1]>=1 */

/*Post : "calc_err"=sum_i(sqr(target-output) (squared err) */
/*GLOBAL REFERENCES: nunits[], nlayer */
float

calc_one_err(target, output)
float target[MAXROWSIZE], output[MAXROWSIZE] ;
{
int i ;
float sum = 0.0 ;

for (i=0; i<nunits[nlayer-1]; i++)

sum += fsqr(target[i]-output[i]) ;
sum = sum / nunits[nlayer-1] ;
return sum ;

b

[k measure_t(inpa, outa, setsize)-———————————————————— */
/*Pre : inpal0..setsize-1], outal[0..setsize-1] exists */
/*Post:sum squared error when elemets of inpa feeded to the net*/
/* compared with desired outputs at outa array="measure_t"*/
/* GLOBAL REFERENCES: x, nunits, nlayer */

float measure_t(inpa, outa, setsize)
float inpal[] [MAXROWSIZE], outal] [MAXROWSIZE] ;
int setsize ;

{
float output[MAXSETSIZE] [MAXROWSIZE]; /*to keep netw outputs*/
int i,j ;
for (i=0; i<setsize; i++){
/*Present the pattern and see the outputs*/
forw(inpalil) ;
for (j=0; j<nunits[nlayer-1]; j++)
output [1]1[j] = x[nlayer-1]1[j] ;
}
return(calc_err(outa, output, setsize)) ;
}
[Kok Kok o ok ok ook ok ook o Kok ok ok oK ook o K ok ok oK o o K ok ook ook ok ok ok ook oK ok ok oK ok Kok Kok ok ok ok o/
/* */
/* main.h */
/* */
[Kok Kok o ok ok ook ok ook o Kok ok ok oK ook o K ok ok oK o o K ok ook ook ok ok ok ook oK ok ok oK ok Kok Kok ok ok ok o/
/*High level functions called from main directly */
/* teach_hint(hintno) */
/* find_turn(schedule) */

86

/* test_all(mine, minpass) */

[k void teach_hint(hintno)----——-—-------"-""""""""--— */
/*¥Pre : 0<=hintno<MAXM */
/*Post: trainbatchsize many examples of hintnoth hint is taught*/
/* to the network */
/*GLOBAL REFERENCES: trainbatchsize */
void

teach_hint(hintno)

int hintno ;

{

int 1i;

float eh ;

/*COMMENTARY fprintf(stderr, " %d\n", hintno) ;*/

eh = 0.0 ;
for (i=0; i<trainbatchsize; i++)
eh += (*(fhints[hintno 1)) (1) ;
eh = eh / trainbatchsize ;
¥ /*teach_hint*/

[int find_turn(schedule)-———--—-———————————"-————————— */
/*¥Pre: true */
/*Post:"find_turn"=which hint [0..MAXM-1] 11 be taught accordinx/
/* to schedule, thints[] and state of the network */

/* MAXSCHEDULE (a constant) determines the # schedules used. */
int
find_turn(schedule)
int schedule ;
{
if ((schedule<0) || (schedule>=MAXSCHEDULE)){
fprintf(stderr, "ERROR!!!\n") ;
fprintf(stderr,
"Unknown schedule no: %d!!! Exiting...\n", schedule) ;
exit(1) ;
¥
return((*(fschedules[schedulel))()) ;
} /*find_turn*/

[void test_all(mine, minpass) ————————————————————— */
/*Pre: mine[][], minpass exist */
/*Post: Errors on each hint are in err[0..MAXM-1], test error */
/* on f (calculated using test set data) is in err[MAXM] =/

87

/* mine[][], minpass[] are modified if min E_O (mine[0]) =*/
/* or min weighted error (mine[1]) have been reached */
/*GLOBAL REFERCES: numhints,thints[],whints[],testbatchsize,err*/
void
test_all(mine, minpass)
/*0UT*/
float mine[2] [MAXMINE] ;
int minpass[2] ;
{
int i, j ;
float prev_minwe, minwe; /#min weighted(acc.to whints[]) errors*/
for (i=0; i<MAXM; i++)
if (ohints[i]){
err[i] = 0.0 ;
for (j=0; j<testbatchsize; j++)
err[i]l+= (*(fhints[i]))(0) ;
err[i] = err[i]/testbatchsize ;
¥
err [MAXM] = measure_t(tinp, tout, testbatchsize) ;

/*FILLING IN THE mine and minpass arrays herex*/
minwe = 0.0 ;
for (i=0; i<numhints; i++)
mninwe +=
((float)whints[thints[i]1]/whints[0])*err[thints[i]];
prev_minwe = 0.0 ;
for (i=0; i<numhints; i++)
prev_minwe +=
((float)whints[thints[i]1]/whints[0])#*mine[1] [thints[i]];

if (mine[0][0] > err[0]){
for (j=0; j<MAXMINE; j++)
mine[0][j] = err[j] ;
minpass[0] = pass ;
}
if (prev_minwe>minwe){
for (j=0; j<MAXMINE; j++)
mine[1]1[j] = err[j] ;
minpass[1] = pass ;
}
} /*test_allx*/

88

A.2.2 schedulexx() Functions

/***/

/* */
/* schedule0.h */
/* */
[F ok ks ok sk ok sk skok ok sk sk sk koK sk sk sk ko sk sk sk sk ook sk ks sk koK sk sk sk ko ok ok ok ok /
/* Fixed Schedule (0) */
/* Rotation (i’th active hint has whints[thints[i]](an integer)*/
/* weight, and is taught proportional # times to whints*/
/* Default: whints[]1={1,1,1%} */
[F ok ks ok sk ok sk skok ok sk sk sk koK sk sk sk ko sk sk sk sk ook sk ks sk koK sk sk sk ko ok ok ok ok /
int

schedule0()

[F ok ks ok sk ok sk skok ok sk sk sk koK sk sk sk ko sk sk sk sk ook sk ks sk koK sk sk sk ko ok ok ok ok /
/* Pre: thints[i] is e index(0..MAXM-1) of the ith active hint */
/* &uwhints[thints[i]] is integer weight of thints[i]’th hint */

/* &pass is the current pass(epoch) number incremented */
/* by one after each training batch */
/* &totwhint=\sum_j {whints[j1} for all active H_j */
/* */
/*Post: scheduleO = max_j (\sum_k"j whints[thints[k]])<i */
/* */
/* where */
/* i = (pass¥ktotwhint) +1 ; */

/***/

{
int i, j, k=0 ;
static first=1, whints_hints[MAXWHINT*MAXM] ;

if (first){
for (i=0; i<numhints; i++){
for (j=0; j<whints[thints[il]; j++)
whints_hints[k++]=thints[i] ;
¥
first = 0;
¥

return(whints_hints[pass¥totwhint]) ;

}

/***/

/* */

89

/* schedulel.h */

/* */
[F ok ks ok sk ok sk skok ok sk sk sk koK sk sk sk ko sk sk sk sk ook sk ks sk koK sk sk sk ko ok ok ok ok /
/* Fixed Schedule (1) */
/* Random rotation (ith active hint has whints[thints[i]] (an */
/* integer) weight, and has a probability of */
/* being taught proportional # times to whints */
/* Default: whints[]1={1,0,0%} */

/st sk ok s ok sk sk sk o o s ok ok stk s ok ok stk s s ok sk o s ke ks o s s ksl ok o sk sk sk o sk sk sk ok sk ok sk sk sk ok ok sk sk skok ok ok /
int schedule1()

/st sk ok s ok sk sk sk o o s ok ok stk s ok ok stk s s ok sk o s ke ks o s s ksl ok o sk sk sk o sk sk sk ok sk ok sk sk sk ok ok sk sk skok ok ok /
/*Pre:thints[i] is the index(0..MAXM-1) of the ith active hint */
/* &uwhints[thints[i]] is integer weight of thints[i]’th hint */

/* &totwhint=\sum_j {whints[j1} for all active H_j */
/* */
/*Post: schedulel=max_j (\sum_k~j whints[thints[k]])<i */
/* */
/* where */
/% i = (1lrand48()%totwhint) +1 ; */

/***/

{

int i, j, k=0 ;

static first=1, whints_hints[MAXWHINT*MAXM] ;
static int taught [MAXM] ;

if (first){
for (i=0; i<numhints; i++){
for (j=0; j<whints[thints[il]; j++)
whints_hints[k++]=thints[i] ;
for (j=0; j<numhints; j++)
taught [thints[j1] = 0;

¥
first = 0 ;
¥
return(whints_hints[lrand48()%totwhint]) ;
¥
/st sk ok s ok sk sk sk o o s ok ok stk s ok ok stk s s ok sk o s ke ks o s s ksl ok o sk sk sk o sk sk sk ok sk ok sk sk sk ok ok sk sk skok ok ok /
/* */
/* schedule2.h */
/* */
/st sk ok s ok sk sk sk o o s ok ok stk s ok ok stk s s ok sk o s ke ks o s s ksl ok o sk sk sk o sk sk sk ok sk ok sk sk sk ok ok sk sk skok ok ok /
/*Adaptive Schedule (0) */

90

/*
/*
/*
/*
/*

Maximum Error

The hint H_i which has maximum whints[i]*E_i is taught
whints[i] is an integer weight that enables comparison of
E_i’s with different ranges, importance etc.

*/
*/
*/
*/
*/

/st sk ok s ok sk sk sk o o s ok ok stk s ok ok stk s s ok sk o s ke ks o s s ksl ok o sk sk sk o sk sk sk ok sk ok sk sk sk ok ok sk sk skok ok ok /
int schedule2()
/*Pre:thints[i] is the index(0..MAXM-1) of the ith active hint */
/st sk ok s ok sk sk sk o o s ok ok stk s ok ok stk s s ok sk o s ke ks o s s ksl ok o sk sk sk o sk sk sk ok sk ok sk sk sk ok ok sk sk skok ok ok /
whints[thints[i]] is integer weight of thints[i]’th hint */

/*
/*
/*

(#fhints[thints[i]]))(0) returns the value of error on

hint thints[i] for one example.

/*Post:schedule2=max_j (E[thints[j]1])

/*
/*
/*
/*

where E[thints[j]] (sample error on hint thints[i]) is

determined by:
(1/estbatchsize)*\sum_i=1"estbatchsize

{(*(fhints[thints[i11))(0) ;

*/
*/
*/
*/
*/
*/
*/

/***/

{

int i, j, val ;
float max, ear, E[MAXM], QLMAXM] ;

}

for (i=0; i<numhints; i++)
{
ear=0.0;
for (j=0; j<estbatchsize; j++)
ear += (*(fhints[thints[il1))(0) ;
E[thints[i]] = ear/(estbatchsize*1.0)

Q[thints[i]] = whints[thints[i]] * E[thints[i]]

}

/*Find the max Q[i] between the calculated Q[i]*/

max = Q[thints[0]] ; val = thints[0] ;
for (i=1; i<numhints; i++)
if (max<Q[thints[il]){
max = Q[thints[ill; val = thints[i]
¥

return val ;

>

>

/***/

/*
/*

schedule3.h

91

*/
*/

/* */

/***/

/*Adaptive Schedule (1) */
/* Random Maximum Error */
/* Each hint H_i has a respective chance of whints[i]*E_i */
/* of being taught. whints[i] is an integer weight that */
/* enables comparison of E_i’s with different ranges, */
/* importance etc. */

/st sk ok s ok sk sk sk o o s ok ok stk s ok ok stk s s ok sk o s ke ks o s s ksl ok o sk sk sk o sk sk sk ok sk ok sk sk sk ok ok sk sk skok ok ok /
int schedule3()

/st sk ok s ok sk sk sk o o s ok ok stk s ok ok stk s s ok sk o s ke ks o s s ksl ok o sk sk sk o sk sk sk ok sk ok sk sk sk ok ok sk sk skok ok ok /
/*Pre:thints[i] is the index(0..MAXM-1) of the ith active hint */
/* whints[thints[i]] is integer weight of thints[i]’th hint */

/* (*thints[thints[i]]))(0) returns the value of error on */
/* hint thints[i] for one example. */
/*Post:schedule2=max_j (E[thints[j]1]) */
/* where E[thints[j]] (sample error on hint thints[i]) is */
/* determined by: */
/* (1/estbatchsize)*\sum_i=1"estbatchsize */
/% {(*(fhints[thints[11]1))(0) ; */

/***/

{
int i,j ;
float ear, E[MAXM], Q[MAXM], sum_Q_i=0.0, rand_err ;

for (i=0; i<numhints; i++){
ear=0.0;
for (j=0; j<estbatchsize; j++)
ear += (*(fhints[thints[i1]1))(0) ;
E[thints[i]] = ear/(estbatchsize*1.0) ;
Qlthints[i]] = whints[thints[i]] * E[thints[il] ;
sum_Q_1i += Q[thints[il] ;

¥

/* Normalize wrto sum_Q_i*/

for (i=0; i<numhints; i++)
Q[thints[i]] = Q[thints[il]/sum_Q_1i ;

/* Generate a random number in [0,1] uniformly*/
rand_err = drand48() ;

sum_Q_i = 0.0 ;
for (i=0; i<numhints; i++){

92

sum_Q_1i += Q[thints[i]] ;

if (sum_Q_i >= rand_err) {
return(thints[i]) ;

¥

A.2.3 hintxx() Functions

/***/

/* */
/* hint0.h */
/* */
[Kok Kok o ok ok ook ok ook o Kok ok ok oK ook o K ok ok oK o o K ok ook ook ok ok ok ook oK ok ok oK ok Kok Kok ok ok ok o/
/*Function itself as a hint */
float

hint0(mode)

/* if mode == O then just test using hint on random examples */
/* mode == 2 then test using hard threshold */
/* mode == 1 teach random hint examples */
/* mode == 3 teach transformed (acc to hint)examples of £ */
int mode ;

{

int i, patno ;

float one_err, hardx[MAXROWSIZE], de_dy[MAXROWSIZE] ;
patno = choosepat() ;
forw(inp[patnol) ;

if (mode != 2)
one_err = calc_one_err(out[patno], x[nlayer-1]) ;

if ((mode==1) || (mode==3)){

/*Backpropagate errors and modify network*/
calc_de_dy(x[nlayer-1],out[patnol, de_dy) ;
back(de_dy) ;

}

else

/*Hard threshold*/

if (mode == 2){
for(i=0;i<nunits[nlayer-1];i++){

if(x[nlayer-1]1[i]>0.5) hardx[i]=1.0 ;
else hardx[i]=0.0 ;

93

one_err = calc_one_err(out[patno], hardx) ;

}

return(one_err) ;
}
[Kok Kok o ok ok ook ok ook o Kok ok ok oK ook o K ok ok oK o o K ok ook ook ok ok ok ook oK ok ok oK ok Kok Kok ok ok ok o/
/* */
/* hinti.h */
/* */
[Kok Kok o ok ok ook ok ook o Kok ok ok oK ook o K ok ok oK o o K ok ook ook ok ok ok ook oK ok ok oK ok Kok Kok ok ok ok o/
/* cyclic shift hint */
float hinti(mode)
/* if mode == O then just test using hint on random examples */
/* mode == 2 then test using hard threshold */
/* mode == 1 teach random hint examples */
/* mode == 3 teach transformed (acc to hint)examples of £ */
int mode ;
{

float one_err, xvec[MAXROWSIZE], hxvec[MAXROWSIZE],
hardx [MAXROWSIZE], hardx2[MAXROWSIZE],
de_dy [MAXROWSIZE], de_dy2[MAXROWSIZE] ;
int i, j, k, patno ;
if (mode !'= 3){
/*Produce an input vector randomly*/
for (i=0; i<nunits[0]; i++)
xvec[i] = myrand(inpdownrange, inpuprange) ;

}
else{
patno = choosepat() ;
for (i=0; i<nunits[0]; i++)
xvec[i] = inp[patno] [i] ;
}

/*#Definition of the hint is herex/
for (i=0; i<nunits[0]; i++)

hxvec[i] = xvec[(i+1)%nunits[0]] ;
forw(xvec) ;
/*copy outputs of units to temporary x2 vector*/
for (j=0; j<nlayer; j++)

for (k=0; k<nunits[j]; k++)

x2[31[k] = x[j1[%] ;

/*forward the H(x) vector*/
forw(hxvec) ;
if (mode !'= 2)

94

one_err = calc_one_err(x[nlayer-1], x2[nlayer-1]) ;
if ((mode==1) || (mode == 3)){
calc_de_dy(x[nlayer-1], x2[nlayer-1], de_dy) ;

/*Using the advantage of having E=(x-x2)"2 and hence */
/* having derivative of E w.r.t. one var. being negative x*/
/* of the other derivative here. If Error function changes*/
/* there may be need to write a new calc_de_dy() routine */
calc_de_dy(x2[nlayer-1], x[nlayer-1], de_dy2) ;

/*Backpropagate errors and calculate modify network*/
back2(de_dy, de_dy2) ;

}

else

/*Hard threshold*/

if (mode==2) {
for(i=0;i<nunits[nlayer-1];i++) {

if(x[nlayer-1]1[i]>0.5) hardx[i]=1.0 ;

else hardx[i]=0.0 ;
if(x2[nlayer-1][i]>0.5) hardx2[i]=1.0 ;
else hardx2[i]=0.0 ;

¥
one_err = calc_one_err(hardx, hardx2) ;
¥
return(one_err) ;
} /#hints(mode)*/
/st sk ok s ok sk sk sk o o s ok ok stk s ok ok stk s s ok sk o s ke ks o s s ksl ok o sk sk sk o sk sk sk ok sk ok sk sk sk ok ok sk sk skok ok ok /

/* */
/* hint2.h */
/* */
[Kok Kok o ok ok ook ok ook o Kok ok ok oK ook o K ok ok oK o o K ok ook ook ok ok ok ook oK ok ok oK ok Kok Kok ok ok ok o/
/* evenness hint */
/* evenness hint */
float hint2(mode)

/* if mode == O then just test using hint on random examples */
/* mode == 2 then test using hard threshold */
/* mode == 1 teach random hint examples */
/* mode == 3 teach transformed (acc to hint)examples of £ */
int mode ;

{

float one_err, xvec[MAXROWSIZE], hxvec[MAXROWSIZE],
hardx [MAXROWSIZE], hardx2[MAXROWSIZE],
de_dy [MAXROWSIZE], de_dy2[MAXROWSIZE] ;

95

int i, j, k, patno ;
if (mode !'= 3){
/*Produce an input vector randomly*/
for (i=0; i<nunits[0]; i++)
xvec[i] = myrand(inpdownrange, inpuprange) ;
}
else{
patno = choosepat() ;
for (i=0; i<nunits[0]; i++)
xvec[i] = inp[patno] [i] ;
/*printf("pass = %d, hint2 trainsformed", pass) ;*/

}
/*Definition of the hint is herex*/
for (i=0; i<nunits[0]; i++)
hxvec[i] = -1.0 * xvec[i] ;
forw(xvec) ;
/*copy outputs of units to temporary x2 vector*/
for (j=0; j<nlayer; j++)
for (k=0; k<nunits[j]; k++)
x2[j1[k] = x[jI1[k] ;
/*forward the H(x) vector*/
forw(hxvec) ;
if (mode != 2)
one_err = calc_one_err(x[nlayer-1], x2[nlayer-1]) ;
if ((mode==1) || (mode==3)){
calc_de_dy(x[nlayer-1], x2[nlayer-1], de_dy) ;

/*Using the advantage of having E=(x-x2)"2 and hence */
/* having derivative of E w.r.t. one var. being negative x*/
/* of the other derivative here. If Error function changes*/
/* there may be need to write a new calc_de_dy() routine */
calc_de_dy(x2[nlayer-1], x[nlayer-1], de_dy2) ;

/*Backpropagate errors and calculate modify network*/
back2(de_dy, de_dy2) ;
}
else
/*Hard thresholdx*/
if(mode==2) {
for(i=0;i<nunits[nlayer-1];i++) {
if(x[nlayer-1]1[i]>0.5) hardx[i]=1.0 ;
else hardx[i]=0.0 ;
if(x2[nlayer-1]1[i]>0.5) hardx2[i]=1.0 ;

96

else hardx2[i]=0.0 ;
¥
one_err = calc_one_err(hardx, hardx2) ;

}

return(one_err) ;
} /*hint2(mode)*/

97

References

[1]

[2]

Y.S. Abu-Mostafa (1990), “Learning from Hints in Neural Networks,”
in Journal of Complexity, vol. 6, pp. 192-198.

Y.S. Abu-Mostafa (1993), “A Method for Learning from Hints,” in
Advances in Neural and Information Processing Systems, vol. 5, pp.
73-80.

Y.S. Abu-Mostafa (1994), “Learning from Hints,” Journal of Complex-
ity, vol. 10, pp. 165-178.

A. Atiya (1991), “Learning Algorithms for Neural Networks,” Ph.D
Thesis, California Institute of Technology, CA.

E.B. Baum, D. Haussler (1989), “What Size Net Gives Valid Generali-
zation,” in Neural Computation, vol. 1, pp. 151-160.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth (1989),
“Learnability and the Vapnik-Chervonenkis Dimension,” in Journal
of the ACM, 36, pp. 929-965.

7. Cataltepe, Y.S. Abu-Mostafa (1993), “Estimating Learning Perfor-
mance Using Hints,” Proceedings of the 1993 Connectionist Models
Summer School, M. Mozer et. al. (Eds.), Lawrence Erlbaum Associates,
Publishers, Hillsdale, NJ. pp. 380-386. also to be presented at TAINN-
III (1994), The Third Turkish Symposium on Artificial Intelligence and
Neural Networks, METU, Ankara, Turkey.

Z. Cataltepe (1994), “Neural Network Simulator Program (NNS): Spec-
ifications of Functions, (Global) Variables, and Input/Outputs,” Re-
search Report (January 10 1994).

Z. Cataltepe (1994), “Neural Network Simulator Program (NNS): Ob-
jective Functions and Their Derivatives,” Research Report (January 10
1994).

B.C. Cetin (1993), TRUST A New Global Optimization Methodology,
Application to Artificial Neural Networks and Analog VLST Implemen-
tation, Ph.D Thesis, California Institute of Technology, CA.

B.W. Char, et. al. (1991), Maple V Library Reference Manual, Springer
Verlag, NY.

98

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[21]

[22]

M.M. Denn (1969), Optimization by Variational Methods, McGraw-Hill
Inc. NY.

R.O. Duda, P.E. Hart (1973), Pattern Classification and Scene Analy-
sis, John Wiley & Sons, Inc., NY.

S.E. Fahlman (1988), An Empirical Study of Learning Speed in Back-
Propagation Networks, Technical Report, CMU-CS-88-162.

R. Fletcher (1969), Optimization Symposium of the Institute of Math-
ematics and Its Applications, University of Reele, England, 1968, Aca-
demic Press, London.

R. Hecht-Nielsen (1990), Neurocomputing, Addison-Wesley Publishing
Co.

K.P. Hertz, A. Krough, R. G. Palmer (1991), Introduction to the The-
ory of Neural Computation, Lecture Notes, vol. 1, Santa Fe Institute
Studies in The Sciences of Complexity.

S.L.S. Jacoby, J.S. Kowalik, J.T. Pizzo (1972), Iterative Methods
for Nonlinear Optimization Problems, Prentice-Hall Inc., Englewood

Cliffs, NJ.

M.L. Minsky, S.A. Papert (1969), Perceptrons, MIT Press, Cambridge,
MA.

D.E. Rumelhart, J.L. McClelland, R.J. Williams, (1986) “Learning In-
ternal Representations by Error Propagation,” in Parallel Distributed
Processing, (D.E. Rumellhart et al., Eds.) MIT Press, Cambridge, MA.,
vol. 1, pp. 318-362.

G.A.F. Seber, C.J. Wild (1989), Nonlinear Regression, John Wiley and
Sons, Inc. NY.

S, M. Ross (1987), Introduction to Probability and Statistics for Engi-
neers and Scientists, John Wiley & Sons Inc., NY.

99

