
Compiler Techniques
for

Loosely-Coupled Multi-Cluster Architectures

Bryan Chow
Scalable Concurrent Programming Laboratory

California Institute of Technology
Pasadena, California 91125

In Partial Fulfillment of the Requirements
for the Degree of Master of Science

June 17, 1996

2

3

Acknowledgments

Stephen Taylor, my advisor, whose guidance, comments and criticisms were pivotal in the
completion of this work. Daniel Maskit and Rich Lethin for lengthy discussions on the subject,
and answering my questions about the Multiflow compiler. Yevgeny Gurevich for providing
the runtime system and tools essential for this project, and also for answering my questions and
requests in a timely manner, day or night. Stephen Keckler, for help with the M-Machine simu-
lator.

4

Contents

1 Introduction 7
1.1 Motivation � 7
1.2 Compilation Issues for Loosely-Coupled Clusters � � � � � � � � � � � � � � � � 8
1.3 Goals � 8
1.4 Approach � 9
1.5 Contributions � 9

2 Compiler Philosophy 11
2.1 M-Machine Architecture � 11
2.2 Loosely-Coupled Clusters vs VLIW � 11
2.3 Multiflow Trace Scheduling Compiler � 13
2.4 Trace Scheduling � 14
2.5 Differences between the M-Machine and TRACE VLIW Computer � � � � � � � 14

3 Implementation 17
3.1 Implementation using Multiflow Compiler � 17
3.2 Initiating a Multi-Cluster Program � 18
3.3 Communication and Synchronization � 18
3.4 Managing Synchronization � 19
3.5 Deadlock Avoidance � 20
3.6 Handling Branches and Function Calls � 21
3.7 Integrating with the Linker and Assembler � 22

4 Case Studies 25
4.1 Study 1: Matrix Multiplication � 25
4.2 Study 2: Dirichlet � 27
4.3 Study 3: Sieve of Erastothenes � 30
4.4 Study 4: LU Factorization � 31
4.5 Conclusions � 31
4.6 Proposed Solution: DAG Partitioning � 33

5 Proposed Multi-cluster Scheduling Algorithm 35
5.1 Approach to Multi-Cluster Scheduling � 35

5

6 CONTENTS

5.2 DAG Partitioning � 35

6 Conclusion 41
6.1 Summary � 41
6.2 Limitations of the Current Implementation � � � � � � � � � � � � � � � � � � � 41
6.3 Related Work � 42
6.4 Status � 42

Chapter 1

Introduction

1.1 Motivation

Recent advances in semiconductor technology have made it possible to have multiple execution
units reside on a single chip[17]. These multiple execution units can be used to execute individ-
ual machine operations in parallel (instruction-level parallelism). However, it is an open ques-
tion as to how to best organize the units in order to exploit instruction-level parallelism. The
traditional method for exploiting instruction-level parallelism has been the use of Very Large
Instruction Word (VLIW) architectures. A VLIW processor has multiple functional units and a
single long instruction encodes many operations, typically one for each functional unit, as illus-
trated in Figure 1.1 (a). These operations execute in parallel and in lock-step. It is the responsi-
bility of the compiler to ensure that there are no dependencies between operations. There have
been a number of commercial VLIW implementations[15] [4].

Unfortunately, the classic VLIW approach has its disadvantages. The increasing disparity
between clock cycle and memory latency limits the performance of VLIW, since each time a
single functional unit stalls, the whole machine stalls. Also, the amount of instruction-level par-
allelism in a program is inherently limited due to dependencies in the code, the limited number
of registers, and other factors.

An alternative method is the use of loosely-coupled clusters. Each cluster, consisting of a
subset of the functional units, has its own instruction pointer as shown in Figure 1.1 (b). In-
stead of having all the functional units in the machine synchronized at every cycle, clusters are
allowed to “slide” in relation to each other. When one unit stalls, others are unaffected. This
thesis concerns the investigation of this alternative architectural model and compiler techniques
for this model.

An example of this organization is the experimental massively parallel computer, the M-
Machine, being designed by the Concurrent VLSI Architecture Group at the Massachusetts In-
stitute of Technology.

7

8 CHAPTER 1. INTRODUCTION

(A)

(B)

IP

IP 0 IP 1 IP 2 IP 3

Figure 1.1: Cluster comparison. A) A classic VLIW with a single instruction pointer, and
all functional units execute in lockstep. B) A loosely-coupled architecture with an instruction
pointer for each cluster.

1.2 Compilation Issues for Loosely-Coupled Clusters

Keckler[17] has shown that loosely-coupled clusters provide better latency hiding and functional
unit utilization than a classic VLIW architecture, especially when memory latencies can be vari-
able. On an architecture such as the M-Machine in which the memory latency can vary from 3 to
32 cycles or worse if a memory operation misses in the translation lookaside buffer and requires
software handling, loose coupling appears to be a good alternative.

Unfortunately, loose-coupling complicates the job of the compiler since it can no longer de-
termine the state of the machine at each cycle. In particular, code scheduling becomes more
difficult because the full state of the machine (including resource utilization) is not known at
compile-time.

Clusters may exchange information by register transfers. Communication between clusters
is complicated by the fact that one cluster is not able to predict the point of execution of another
cluster. Hence synchronization is required. Additionally, any instruction on a cluster can take a
variable number of cycles. In other words, if cluster 0 executes 2 instructions, it is not known
how many instructions cluster 1 has executed in that same period of time. Again, this compli-
cates communication, performance optimization, and also impacts correctness.

Finally, since clusters communicate via shared registers and block when they are empty,
deadlock may occur. This will happen if clusters get out of synchronization with each other.
Therefore the compiler has to ensure that deadlock does not occur by implementing communi-
cations in such a way as to make any possible execution of the schedule free of deadlock.

1.3 Goals

The goals of this research are:

1.4. APPROACH 9

1) To investigate compilation techniques for loosely-coupled architectures. The M-Machine
is the first computer to use this concept.

2) To implement a compiler that generates multi-cluster code, and to integrate multi-cluster
compilation with the assembler, linker, and other tools for the M-Machine system.

3) To evaluate the performance of code generated by the multi-cluster compiler by running
compiled benchmarks using the M-Machine simulator.

4) To propose refinements, optimizations, and future directions in multi-cluster compilation.

1.4 Approach

In order to bootstrap on existing technology, the Multiflow Compiler was chosen as the substrate
for the M-Machine compiler. The Multiflow Trace Scheduling Compiler is a compiler for VLIW
architectures that provides an ideal basis for experimentation. This compiler has been retargetted
to compile code for the M-Machine. This thesis concerns additions to the compiler to support
loosely-coupled clusters.

1.5 Contributions

The contribution of this thesis is a preliminaryevaluation and experiment in compiling for loosely-
coupled multi-cluster architectures. This experiment serves to asses opportunities for multi-
cluster scheduling and present a preliminary design for a multi-cluster scheduling algorithm.
This exercise has isolated some of the central issues and allowed an analysis to a preliminary
implementation of multi-cluster scheduling. It has also resulted in changes to the architectural
design.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Compiler Philosophy

2.1 M-Machine Architecture

The M-Machine[6] is a massively parallel computer being designed at the Massachusetts Insti-
tute of Technology. It consists of a collection of nodes connected by a 3-D mesh network. Each
node on the M-Machine consists of memory and a multi-ALU processor (MAP) chip, each of
which contains 4 clusters, a network router, network interface, internal cache and communica-
tion switches. This is shown in Figure 2.1.

A cluster is an execution unit that has its own program counter. It includes two integer ALUs
(one of which also acts as the memory unit) and a floating-point ALU, register files, and instruc-
tion cache. Clusters communicate with other clusters through shared registers. Each cluster has
two kinds of registers - public and private. Private registers may only be written by operations
executed within the cluster. Public registers can be written to by all clusters but read only by
one, and are the basis for inter-cluster communication and synchronization on the M-Machine.

Each register has an associated presence bit. There is an instruction that marks a register
EMPTY. Reading a register that is marked EMPTY blocks the cluster until it is filled (marked
FULL) by another cluster or an earlier instruction on the same cluster.

The M-Machine also supports conditional execution through the use of conditional registers.
Each node has 8 global conditional registers which may be read by any of the 4 clusters, but each
cluster can only write to 2 of the global conditional registers. Conditional execution is useful for
generating code for simple if...then statements. Since conditional registers can also be FULL or
EMPTY, they are convenient for implementing synchronization primitives such as barriers.

2.2 Loosely-Coupled Clusters vs VLIW

In a VLIW architecture, all the functional units work in lock-step, with a single instruction counter.
The functional units never get out of synchronization with each other, which simplifies compile-
time scheduling. This allows the compiler to know exactly what state the system is in at each
cycle.

On the M-Machine the clusters are loosely-coupled. Each cluster has its own instruction

11

12 CHAPTER 2. COMPILER PHILOSOPHY

Permissions1 Segment Length

0 64 bits of data, either integer or IEEE Floating Point

AddressInteger

Unit Unit

Floating
Point Unit

V-Threads

= System V-Threads

Clusters

Instruction

Pointer

Context

Scheduling Queue

Message

Interface

Incoming

Message

Memory

Interface

Global Virtual Address Space

Tagged Pointers:

Data Words:

Hardware Computational Resources

Virtual Address Within Segment

Pointers

Integer

Address

Floating

Instruction

Instruction

Instruction
Point

H-Threads

Figure 2.1: Abstract view of the MIT M-Machine.

2.3. MULTIFLOW TRACE SCHEDULING COMPILER 13

pointer and can execute independently of other clusters. This is intended to provide better hiding
of latency, hence better functional unit utilization. Instead of stalling the whole node on a cache-
miss, for example, only a single cluster needs to stall while the others can continue execution.
Also, the M-Machine has a non-blocking memory system with variable latencies which makes
it impossible to predict exactly the number of cycles a memory operation can take.

As the speed of processors increase and their size decrease, loose coupling becomes more
attractive. We can pack many loosely coupled functional units on a chip and hide latency better
than other methods such as VLIW.

2.3 Multiflow Trace Scheduling Compiler

The compiler used for the M-Machine is the Multiflow Trace Scheduling Compiler[15], which
was designed to exploit instruction-level parallelism for traditional VLIW architectures.

C Source

Machine Model

Front End

IL-1 (Intermediate Language)

IL2 (Intermediate Language)

Trace Scheduler

List Scheduler

Disambiguator

Code

Optimizations

Flow Graph

Analysis

Figure 2.2: Structure of the Multiflow compiler

Figure 2.2 shows the structure of the Multiflow compiler. The front end accepts C and For-
tran source code and converts it into a high-level intermediate representation called IL-1.

Traditional code optimizations such as loop unrolling, constant folding and common subex-
pression elimination are applied to this intermediate representation. It is then converted to a flow
graph or DAG (directed acyclic graph) of lower level operations called IL-2 operations.

14 CHAPTER 2. COMPILER PHILOSOPHY

This flow graph is then fed into the trace sheduling module (described in the next section).
The traces are then scheduled onto functional units by the list scheduler, which receives informa-
tion on the target architecture from the machine model and generates code. The disambiguator
performs memory-reference analysis.

2.4 Trace Scheduling

Trace scheduling[8] is an algorithm that allows instruction scheduling beyond basic blocks, so
that more operations can be considered for scheduling and hence provide a greater amount of
parallelism. It allows loops, conditional expressions, and straight stretches of code to be han-
dled in a consistent and uniform manner. A trace is a linear sequence of basic blocks that can
potentially be a path of execution.

The trace scheduler first annotates the flow graph with expected execution frequencies. These
are generated using branch probabilities and loop trip counts, taken from heuristics or runtime
measurements. With the execution frequencies in place, the trace scheduler then:

1) Selects the trace through the graph with the highest execution count that hasn’t yet been
scheduled.

2) Removes this trace from the flow graph, and schedules it. By optimizing the most likely
execution path first, it ensures that the most frequently executed path is the most optimized.

3) Replace the original trace in the flow graph with the scheduled trace. If instructions have
been moved such that the flow graph is no longer correct (for example, if an instruction is
moved above a branch), add compensation code to correct it.

4) Repeat the above until all traces through the flow graph have been scheduled.

By looking at an entire trace instead of a basic block, a great deal of parallelism is exposed.
The instruction scheduler can freely move instructions around to utilize as many functional units
of the VLIW as possible. However, to preserve correctness, it is necessary to insert compensa-
tion code. This is called bookkeeping. For example, the instruction scheduler may decide that
moving an instruction earlier in the schedule can reduce the execution time. In Figure 2.3, an
instruction is moved above a branch target. To ensure that the moved instruction is always exe-
cuted, the bookkeeper makes a copy of the moved instruction onto the incoming path.

In Figure 2.4, an instruction is moved below a branch target. In this case, we need to ensure
that those instructions are not executed if we arrived from the side entrance. This is done by
making a copy of the instructions that will be executed if the side entrance is taken, and moving
the side entrance to join at a later point in the schedule as shown in the figure.

2.5 Differences between the M-Machine and TRACE VLIW
Computer

The Multiflow TRACE computers[15], for which the compiler was originally designed, all share
a common set of features. The differences between the M-Machine and TRACE that are signif-

2.5. DIFFERENCES BETWEEN THE M-MACHINE AND TRACE VLIW COMPUTER 15

1. load A

2. A = A + 1

3. load B

5. load C

4. store B

1. load A

5. load C

2. A = A + 1

3. load B

4. store B

5. load C

Figure 2.3: Moving an instruction above a side entrance.

1. load A

2. load B

3. load C

4. C = C + 1

5. store A

2. load B

3. load C

4. C = C + 1

1. load A

5. store A

3. load C

4. C = C + 1

Figure 2.4: Moving an instruction below a side entrance.

16 CHAPTER 2. COMPILER PHILOSOPHY

icant in our retargetting effort are�:

1) TRACE computers were 32-bit machines, the M-Machine is a 64-bit machine. This ne-
cessitated many changes in the code generator, front-end, and optimizer.

2) Although TRACE computers were also multi-clustered (because the clock cycle was too
short to propagate the instruction pointer to all the clusters), all the clusters are strongly
coupled and always execute in lockstep.�

3) The TRACE computers did not have data caches, but instead relied on a two-level inter-
leaved memory hierarchy. The absence of a cache made it easier to schedule memory op-
erations at compile-time. The M-Machine has an integrated cache at each node.

4) The TRACE computers were completely deterministic in their execution. The number
of cycles a memory fetch will take can be predicted precisely. On the M-Machine, how-
ever, due to the unpredictability of network latency, cache hits and misses, and the differ-
ent threads executing, the execution cannot be fully predicted at compile-time. Running
the same program at different times may result in slightly different execution times. This
makes the next point extremely important.

5) The TRACE computers do not do any resource arbitration in hardware, so resources can
be oversubscribed which will lead to incorrect executions. Therefore it is crucial that the
compiler model the cycle-by-cycle state of the machine precisely. The M-Machine has
hardware resource arbitration, thus the compiler only needs to model what is necessary
for good performance.

�We are only concerned with one node of the M-Machine here.
�It is possible to decouple the clusters, in which case you end up partitioning the machine into independent

computers.

Chapter 3

Implementation

3.1 Implementation using Multiflow Compiler

The first step in implementing multi-cluster support in the compiler was to expand the machine
model. With a single cluster, there are integer (IALU), floating point (FALU) and memory (MEMU)
functional units, all of which can write to each other’s register banks (the IALU and MEMU
share a single register bank), as shown in Figure 3.1

MEMU

FALU

IALU

Figure 3.1: Connections within a single cluster.

Beginning with the single cluster machine model, 4 clusters were instantiated. Next, the cor-
rect relationships between the different sets of register files and functional units were modeled.
Each cluster has private and public registers. Private registers are only visible to the cluster it-
self. All clusters can write to all public registers, but only the owning cluster can read from its
public registers.

An additional resource that models the communication switch (c-switch) was created that
restricts the number of communications that could proceed at once. Figure 3.2 gives a simplified
diagram of the expanded machine model. Communication delays between each pair of register
files and functional units were modeled to enable the instruction scheduler to allocate registers
and schedule communications efficiently.

17

18 CHAPTER 3. IMPLEMENTATION

MEMU

FALU

IALU

MEMU

FALU

IALU

MEMU

FALU

IALU

MEMU

FALU

IALU

CSWITCH

Figure 3.2: Connections within a 4-cluster node.

In the code generator, code sequences were written to enable register moves and copies among
different clusters. For example, most ALU operations can write their destination to a different
cluster. When this happens, additional synchronization operations are added.

3.2 Initiating a Multi-Cluster Program

The M-Machine runtime by default executes on a single cluster �. In order to execute a multi-
cluster program, a stub is linked with the multi-cluster code. The source for the stub is given in
Figure 3.3.

This stub replaces the entry point of the multi-cluster program (the function main). It calls
the system to spawn a thread on each clusters which starts executing the code for that cluster.

3.3 Communication and Synchronization

One of the main challenges of compiling for loosely-coupled clusters as opposed to VLIW is
to manage communication and synchronization to ensure correctness and absence of deadlock.
During a cross-cluster register copy the target cluster must be at the right point in its execution
to receive the register. If not, the source cluster has to wait for the target cluster to be ready. This
is achieved by setting up a barrier synchronization between the two clusters.

Synchronization is also required when one operation is constrained to execute only after an-
other operation has executed. These are constraints on the order of the operations, but are not

�In the case of a single node.

3.4. MANAGING SYNCHRONIZATION 19

#include <stdio.h>

int hspawn(int numargs, void *threadip, int dest_node, ...);

extern main_c0();
extern main_c1();
extern main_c2();
extern main_c3();

void main() {

i = hspawn(0, main_c1, 1);
if (!i) printf(‘‘hspawn 1 failed\n’’);
i = hspawn(0, main_c2, 2);
if (!i) printf(‘‘hspawn 2 failed\n’’);
i = hspawn(0, main_c3, 3);
if (!i) printf(‘‘hspawn 3 failed\n’’);
main_c0();

}

Figure 3.3: Implementation of stub.c.

actual data dependencies. For example, operations are often constrained such that they are exe-
cuted before a branch operation. The Multiflow compiler handles such constraints by ensuring
that one operation happens in a later cycle than the other. For a VLIW machine, that is sufficient.
However, on the M-Machine, if the constrained operations are placed on different clusters, a bar-
rier has to be set up between the two clusters.

The main challenge is to communicate and synchronize as cheaply in terms of execution
cycles as possible. Because register communications on the M-Machine are designed to be very
fine-grained, the communication latency should not be larger than a few machine cycles.

Communication is organized by using two-phased synchronization operation. There is a
setup phase and a communicate phase, separated by a barrier.

3.4 Managing Synchronization

Clusters communicate via shared registers. A cluster can write to any shared register of the other
3 clusters on the same node. Consider an instruction running on cluster 0 that copies register 8
to register 10 of cluster 2:

instr cl0 ialu mov i8, c2.i10;

The keyword “instr” informs the assembler that this is a new instruction. The segment “cl0
ialu” signifies the instruction is to be executed on the integer ALU on cluster 0. The instruction
moves integer register 8 (i8) to integer register 10 on cluster 2 (cl2.i10).

20 CHAPTER 3. IMPLEMENTATION

The communication via shared registers appears to be computationally inexpensive. Unfor-
tunately, because each instruction on a cluster can take a variable number of cycles in relation
to another cluster, barrier synchronizations are required in order to properly communicate via
shared registers. The following code segment illustrates how two clusters cooperate when one
copies a register to another. It assumes that all global conditional registers are empty on entry:

0. instr cl1 ialu empty i10
1. instr cl1 ialu ieq i0,#0, c0.cc1
2. instr
3. instr
4. instr cl0 ialu ct c1.cc1 ccempty c1.cc1
5. instr cl0 ialu mov i8, c1.i10

At cycle 0 the destination register on the target cluster is emptied. On cycle 1 the target cluster
sets the conditional register to signal that it is ready to accept the register. There is a two cycle
latency before this write reaches other clusters, therefore the earliest cycle for scheduling the
instruction at the source cluster that waits on the conditional register is cycle four. In the fifth
cycle the actual move takes place. It takes an additional two cycles before the register is filled
in the destination register. If an attempt is made to use the register before it arrives at the target
cluster, it will stall.

Note that “cl0 ialu ct c1.cc1 ccempty c1.cc1” waits for c1.cc0 to be filled, and then empties
it again. This ensures that the next synchronization will again start with the global conditional
register (GCC) empty. In other words, it acts as a test-and-set operation.

If the destination register is not used before a control flow change (a branch) in the schedule,
then an extra instruction “mov i10, i0” is required. This is because it is possible that the con-
trol flow takes a path which does not use the received i10 register. If that happens, the register
can arrive later and overwrite i10 which may already contain another value. However, in most
schedules the use of the received register follows the cross-cluster register copy closely, so the
additional instruction is not required.

Each communication takes 2 instructions at the source cluster and 3 at the destination cluster.
There are also stall cycles due to the inter-cluster copying of the global conditional register and
the data register. Additionally, one cluster will stall at the barrier waiting for the other cluster
to reach the same point. This represents a tremendous amount of overhead for a single register
copy which would have taken 1 cycle on a VLIW machine.

3.5 Deadlock Avoidance

Each pair of clusters has its own dedicated “channel” (a GCC register) for synchronizing com-
munications. To prevent deadlock, a cluster cannot be communicating with two clusters at the
same time. In other words, a cluster must finish communicating with one cluster before it can
initiate another cross-cluster communication, and each pair of clusters communicate using a ded-
icated channel. This prevents any cyclic dependencies in the communication structure which
might result in a deadlock situation.

3.6. HANDLING BRANCHES AND FUNCTION CALLS 21

Conditional branches which require all four clusters to synchronize use a separate set of chan-
nels (also GCC registers). A pair of communicating clusters have to complete their communica-
tions before initiating a conditional branch. This is implemented by ensuring that cross-cluster
communications instructions do not overlap branch instructions.

3.6 Handling Branches and Function Calls

Each cluster has its own instruction pointer and can in fact execute completely independently.
However, when executing as loosely-coupled clusters it is intended that the clusters follow the
same branch sequences and simply “slide” in relation to one another.

This requires that both conditional and unconditional branches be taken (or not taken) by
all clusters together. They may not actually take the branch on the same cycle since it is desir-
able to allow a faster cluster to branch earlier if possible, but eventually they will all execute the
same sequence of branches. For unconditional branches, each cluster can branch as soon as it
is ready. For conditional branches, all the clusters have to share the branch conditional register
to decide whether to take the branch. Therefore all clusters have to barrier synchronize at the
branch instruction.

The following code sequence illustrates conditional branching using the conditional register
on cluster 0:

instr cl0 ialu cf c0.cc0 br LABEL_c0 // All 4 clusters
cl1 ialu cf c0.cc0 br LABEL_c1 // inspect c0.cc0
cl2 ialu cf c0.cc0 br LABEL_c2
cl3 ialu cf c0.cc0 br LABEL_c3

instr cl0 falu fmula f13, f14, f15, f0 // Cluster 0 waits
// for other clusters
// to finish

cl1 ialu ccempty c0.cc0 // Empty c0.cc0 for
cl2 ialu ccempty c0.cc0 // next branch
cl3 ialu ccempty c0.cc0

instr cl1 mov f0, c0.f13 // Clusters 1,2,3
cl2 mov f0, c0.f14 // tell cluster 0
cl3 mov f0, c0.f15 // they are ready

cl0 falu empty c0.f13, c0.f14, c0.f15 // Empty these on
// cluster 0 for
// next branch

Floating point registers f13, f14 and f15 are reserved solely for synchronizing conditional
branches to avoid deadlock. The second and third instructions above fit in the delay slots of the
branch instruction, and thus are executed regardless of which way the branch takes. They empty
the conditional register on each cluster to prepare for the next conditional branch. The cluster
where the branch originates waits until the other clusters have emptied their conditional registers

22 CHAPTER 3. IMPLEMENTATION

--mark_begin;
--mark_entry caller_saves, regs;
_main::

-- Begin schedule(1) aregion(1)
--mark_trace 1;
instr cl2 ialu ash i0,i0, i6 -- line 22

cl0 ialu mov #0, i10; -- 0(I64)

instr cl0 ialu imm ##(?2.1?2ras_p), i3
cl1 ialu mov #0, i9 -- 0(I64)
cl2 ialu mov #0, i9 -- 0(I64)
cl3 ialu mov #0, i9; -- 0(I64)

instr cl0 ialu lea i2,i0, i11 -- line 11
cl1 ialu mov #10, i4; -- 10(SI64)
cl2 memu lea i2,i3, i3
cl3 memu lea i2,i3, i3;

instr cl0 memu st i4, i3 -- sp/re t18
cl0 ialu mov #10, i4; -- 10(SI64)

instr cl0 ialu jmp i4;

--mark_return;
-- End schedule(1) aregion(1)

--mark_end;

Figure 3.4: Sample multi-cluster compiler output. The compiler generates code annotated with
the cluster number for each instruction.

before proceeding. Therefore, the minimum cost of a multi-cluster conditional branch is the two
delay slots, plus the cycles required for a cross-cluster register write (for the “mov f0, c0.freg”
to reach the originating cluster).

Most system calls are implemented as single-cluster code, so when a multi-cluster program
makes such a call, only one cluster actually branches. The other clusters will continue to execute
their own code without taking the branch, until they attempt to communicate with the cluster that
took the branch, in which case they will stall.

Currently, all function calls are assumed to be single-cluster.

3.7 Integrating with the Linker and Assembler

The M-Machine Assembler and Linker were written for single cluster code.
A compiler post-pass converts the multi-cluster code generated by the compiler into four sets

of single cluster code, each of which executes on a cluster.
As an example, Figure 3.4 gives a sample multi-cluster compiler output (the code is only

meant to illustrate the post-processor). Figure 3.5 is the output after the compiler post-processor.

3.7. INTEGRATING WITH THE LINKER AND ASSEMBLER 23

--Start of cluster 0 code
--mark_begin;
--mark_entry caller_saves, regs;
_main_c0::

-- Begin schedule(1) aregion(1)
--mark_trace 1;
instr ialu mov #0, i10; -- 0(I64)
instr ialu imm ##(?2.1?2ras_p), i3; -- 0(I64)
instr ialu lea i2,i0, i11 -- line 11; -- 10(SI64)
instr memu st i4, i3 -- sp/re t18
ialu mov #10, i4; -- 10(SI64)
instr ialu jmp i4;
--mark_return;

-- End schedule(1) aregion(1)
--mark_end;

--Start of cluster 1 code
--mark_begin;
--mark_entry caller_saves, regs;
_main_c1::
--mark_trace 1;
instr ialu mov #0, i9; -- 0(I64)
instr ialu mov #10, i4; -- 10(SI64)
--mark_return;
--mark_end;

--Start of cluster 2 code
--mark_begin;
--mark_entry caller_saves, regs;
_main_c2::
--mark_trace 1;
instr ialu ash i0,i0, i6; -- line 22
instr ialu mov #0, i9 -- 0(I64)
memu lea i2,i3, i3;
--mark_return;
--mark_end;

--Start of cluster 3 code
--mark_begin;
--mark_entry caller_saves, regs;
_main_c3::
--mark_trace 1;
instr ialu mov #0, i9; -- 0(I64)
memu lea i2,i3, i3;
--mark_return;
--mark_end;

Figure 3.5: The same program after being post-processed. Each routine is separated into 4 parts,
each of which executes on a single cluster.

24 CHAPTER 3. IMPLEMENTATION

This output is then assembled just like a single-cluster program, linked with the stub de-
scribed earlier, and can then be loaded by the runtime system like any other single-cluster pro-
gram. When executed, it spawns multiple hthreads and starts executing in parallel across mul-
tiple clusters.

Chapter 4

Case Studies

This chapter investigates the performance of the prototype Multiflow compiler in compiling a
few representative programs on a single M-Machine cluster and on four clusters. The intent here
is to establish a baseline of performance using the standard Multiflow scheduler with minimal
changes. These examples demonstrate the performance of multi-cluster programs in the current
implementation of the compiler and the factors affecting their performance. They also signify
problems with the current instruction scheduler in compiling for loosely-coupled clusters and
give insights for developing alternative algorithms.

Four programs are considered:

1) Matrix Multiplication (matmul)
2) Dirichlet Algorithm (dirichlet)
3) Sieve of Erastothenes (sieve)
4) LU Factorization (lu)

The programs are sequential and run on only 1 node. The timings in each program do not
include the output portion of the execution.

4.1 Study 1: Matrix Multiplication

The matrix multiplication program (matmul) takes two 8 by 8 floating point matrices and mul-
tiplies them, then outputs the result. The main body of the code is given below:

for (column = 0; column < MATSIZE; column++) {
for (j = 0; j < MATSIZE; j++) {
total = 0;
for (i = 0; i < MATSIZE; i++)

total += matrix1[column][i]*matrix2[i][j];
final[column][j] = total;

}
}

25

26 CHAPTER 4. CASE STUDIES

Trace 1

 DEF t2
8

EF 1(S
69

DEF 0(I
67

DEF 0(I
63

r(_matri
15

 DEF t2
9

r(_matri
37

DEF 3(I
54

EF 0(S
49

EF 4(S
47

EF 4(S
6

DEF 0(I
13

DEF 0(I
41

DEF 0(I
4

t(_i?1.2
2

column
39

t(_i?1.2
17

et(_j?1.
21

_total?1
61

 DEF t2
1

t(_i?1.2
65

_total?1
11

t(_i?1.2
43

t(_i?1.2
71

DEF 0(I
23

DEF 0(I
19

DEF 0(I
45

DEF 0(I
51

DEF 0(I
29

EF 4(S
25

EF 0(S
27

DEF 3(I
32

DEF 0(I
35

DEF 0(I
57

DEF 0(I
73

 DEF1 t
107

EF1 1(S
79

EF1 0(
80

EF1 0(
82

r(_matr
103

 DEF1 t
106

r(_matr
93

EF1 3(
85

EF1 0(S
87

EF1 4(S
88

EF1 4(S
108

EF1 0(
104

EF1 0(
91

EF1 0(
109

et(_i?1.
110

_column
92

et(_i?1.
102

et(_j?1
100

(_total?
83

 DEF1 t
111

et(_i?1.
81

(_total?
105

et(_i?1.
90

et(_i?1.
78

EF1 0(
99

EF1 0(
101

EF1 0(
89

EF1 0(
86

EF1 0(
96

EF1 4(S
98

EF1 0(S
97

EF1 3(
95

EF1 0(
94

EF1 0(
84

EF1 0(
77

 USE1
114

OPY 0
116

r(_matr
118

 USE1
112

r(_matr
117

t25 offse
0

 offset(_
38

t25 offse
16

 t25 offs
20

5 offset(
60

5 offset(
10

t25 offse
64

 USE1
113

t25 offse
70

t25 offse
42

OPY 0
115

 USE t
74

t26 add
14

 USE t
76

t26 add
36

64 109 t
3

10 t15 t
40

4 110 t1
18

4 110 t1
22

 110 t9
12

 USE t
75

4 110 t1
44

SI64 10
5

I64 110
46

I64 110
24

I64 110
28

I64 110
50

L.NV 1
7

 COPY
120

 COPY
119

64 110
48

64 110
26

SI64 11
52

SI64 11
30

SHL 1
53

SHL 1
31

V 110 t
55

V 110 t
33

10 t17 t
56

10 t13 t
34

.SI64 11
58

 COPY
121

.SI64 11
59

0 t19 t6
62

64 109 t
66

I64 109
68

 109 t8
72

Figure 4.1: DAG for matmul.c. The solid edges represent data dependencies, and the dotted
edges represent constraints in the order of operations. Each node is an IL2 operation.

4.2. STUDY 2: DIRICHLET 27

The DAG for the trace with the highest frequency count is given in Figure 4.1. The DAG is
labelled with IL2 operations, which is the compiler’s intermediate language. Each IL2 operation
expands to one or more M-Machine operations.

There are two cross-cluster register copies in the innerloop of the algorithm. A barrier is
required for each iteration of the second nested loop. Except for those synchronization points,
only the conditional branches require synchronization.

The number of cycles required is given in the following table:

Number of Clusters Cycles

1 35230

4 24812

Running on a single cluster, matmul took 35230 cycles to calculate the product of two 8 by 8
matrices. With 4 clusters, the cycle count dropped to 24812. This is an improvement of 30% over
the single cluster code. The innerloop of matmul is simple and does not require many registers,
which reduces the number of cross-cluster register copying.

Potentially conflicting memory writes executing on different clusters require barriers and
hence reduce the performance. There is only a single memory write in the body of the inner-
loop (not including the loop index variable), hence no additional barriers are required. In other
words, there are few operations that are constrained across multiple clusters in each iteration of
matmul. These factors lead to the speedup seen in the execution of matmul.

Notice that there is only a single line in the innerloop of matmul, relatively few operations are
executed for each iteration. This reduces the potential speedup because the overhead for loops
and branches for multiple clusters is significantly higher than for a single cluster. In the single
cluster execution, branches took 2444 cycles to execute, or 7% of the total execution time. For
4 clusters, branches consumed approximately 4133 cycles or 17% of the total execution time.

4.2 Study 2: Dirichlet

The Dirichlet program implements a gauss-seidel algorithm to compute r�U � � and returns
norm � abs�Ut �Ut�� ���N . It calculates 10 iterations of the Dirichlet algorithm.

The algorithm for a single iteration or timestep� is shown in Figure 4.2.
The DAG for the trace with the highest frequency count is given in Figure 4.3.
The number of cycles required is given in the following table:

Number of Clusters Cycles

1 58134

4 59453

�The routine below is actually inlined in the test program.

28 CHAPTER 4. CASE STUDIES

/*
* timestep()
* Computes one timestep of gauss-seidel algorithms to compute
* Delˆ2 U = 0 and returns norm = abs(Ut-Ut-1))/N
*/
static void timestep(bp)
BlockP bp;
{ double u1,u2,anorm,temp;
int i,j,iend,jend;

iend=imax(bp)-1; /* Find upper bndries */
jend=jmax(bp)-1;
anorm=0.0; /* Initialize norm@time */
for(j=1; j<jend; j++) /* Sweep vertically */
for(i=1; i<iend; i++) { /* Sweep horizontally */
u1=block(bp,i,j); /* Save old u(i,j) */
u2= /* Compute new u(i,j) */
(block(bp,i+1,j)+block(bp,i-1,j)+ /* Add i neighbors to */
block(bp,i,j+1)+block(bp,i,j-1))/4.0;/* j neighbors & average */

block(bp,i,j)=u2; /* Store new u(i,j) */
temp = u2-u1;
anorm += (temp>0?temp:-temp); /* Accumulate norm */

}
norm(bp)=anorm/(float)(imax(bp)*jmax(bp)); /* Compute new norm */
tb(bp) = tb(bp)+1;

}

Figure 4.2: Dirichlet Algorithm

4.2. STUDY 2: DIRICHLET 29

Trace 1

Figure 4.3: DAG for dirichlet.c

30 CHAPTER 4. CASE STUDIES

In this case executing on all 4 clusters is 2% slower than executing on a single cluster.
Compared with matmul, the innerloop of dirichlet requires many more variables and hence

there is a large number of cross-cluster register copying. The scheduler tries to move the vari-
ables to each cluster as needed, resulting in excessive communications and synchronizations.
There are 23 cross-cluster register copies in the innerloop of dirichlet compared to 2 for mat-
mul. Even taking into account the fact that the innerloop for diricihlet contains about five times
more operations than matmul, this is a large number of communication operations.

Additionally, there are many dependencies in the code. For example, the writes to u1 and u2
must complete before block[i,j] is updated. The same goes for the write to temp, and anorm must
in turn wait for temp to be written. These writes cannot all be scheduled on the same cluster (or
the schedule will be too poorly balanced across clusters) so barriers are required. Since cross-
cluster register copying includes a pairwise barrier, only one additional barrier was required in
each iteration of the innerloop.

However, even with the above factors limiting performance, a good scheduler should still be
able to extract some parallelism and generate a code schedule that is faster than in single-cluster
mode.

4.3 Study 3: Sieve of Erastothenes

The sieve program implements the sieve of Erastothenes to find all the prime numbers less than
1000 (using an array size of 500).

The number of cycles required is given in the following table:

Number of Clusters Cycles

1 43591

4 39411

In this case running on four clusters is ten percent faster than a single cluster.

if(!array[i])
{

count++;
prime = i + i + 3;
for(k = i + prime ; k<SIZE ; k+=prime)
{
ci++;
array[k] = 1;

}
}

Examining the innerloop of sieve, we see that it consists of just a single increment opera-
tion and an array set operation. Including the loop operations, the innerloop consists of just 20
instructions. Because of the small number of operations in the innerloop, it is difficult for the
compiler to schedule operations evenly across the clusters.

4.4. STUDY 4: LU FACTORIZATION 31

4.4 Study 4: LU Factorization

lu uses Crout’s algorithm without pivoting to factorize a 16 by 16 matrix.
The number of cycles required is given in the following table:

Number of Clusters Cycles

1 91128

4 87574

In this case running on four clusters is only four percent faster than a single cluster.
This is because lu requires a large number of loop iterations, while each iteration is only a

single line of code. The high cost of conditional branches in multi-cluster execution negates
most of the performance gained from the additional functional units.

4.5 Conclusions

The four examples show that the performance gain in multiple clusters varies a great deal, from
significant speedup to no speedup.

Figure 4.4: Speedup of the example programs.

32 CHAPTER 4. CASE STUDIES

One of the reasons for the poor performance is that conditional branches are inefficient in
multi-cluster mode. By profiling matmul we see that the amount of time spent executing branches
as a percentage of the total execution time increased two and a half times in multi-cluster mode
compared to single cluster mode. There are some possible optimizations that can potentially
reduce the cost of multi-cluster conditional branches, such as:

1) Duplicating the computation of the conditional on each cluster. This reduces the condi-
tional branch on each cluster to a single cluster conditional branch that does not require
synchronization.

2) Allowing a single cluster to execute a branch if the number of operations that is executed
in that branch path is short.

3) Using conditional execution instead of branches if the number of operations is small.

Another reason is that the list scheduler, which is responsible for scheduling operations onto
clusters, was not designed for large discrepancies in the latencies between different functional
units. List scheduling works well when the communication cost is zero, as in most VLIW ma-
chines. Graham [9] showed that in such cases any list scheduler will be within 50% of optimum,
and Adam, Chandy and Dickson[1] showed experimentally that the critical path list scheduling
heuristic is within 5% of the optimum 90% of the time. However, when the communication cost
is nonzero, the performance of list scheduling degrades significantly. List scheduling is a one-
stage method. A one-stage method cannot accurately estimate the critical path because when
communication cost is nonzero, the edge weights in the DAG are no longer deterministic before
the cluster assignments have been determined. If an edge falls within the same cluster it has zero
cost, but across clusters it has nonzero cost.

The list scheduler uses a bottom-up greedy (BUG) algorithm to assign operations to func-
tional units, and in the cases where the operands of the operation have not yet been assigned, it
disregards the latencies in moving the data from their sources to the functional unit (a reason-
able thing to do, since it does not know where they will come from). This works reasonably well
if assigning operations to different functional units do not significantly affect performance. In
other words, all functional units of the same type should be roughly equivalent for the algorithm
to work well. This is certainly not true in the case of loosely-coupled clusters, where assign-
ing an operation to a functional unit different from the source registers would incur a significant
penalty.

Also, the list scheduler is being excessively conservative in assigning operations to clusters.
Because assigning operations on other clusters impose a heavy latency penalty, a purely greedy
algorithm ends up favoring the current cluster most of the time. This results in the uneven uti-
lization we see in the table. Since the argument registers are initialized on cluster 0, it has the
highest number of scheduled instructions.

To perfectly partition a DAG so as to minimize the execution time is an NP-complete prob-
lem, but given the strong similarities between DAGs generated by programs, we can take ad-
vantage of this similarity and come up with a reasonably good partitioning scheme that runs in
polynomial time.

4.6. PROPOSED SOLUTION: DAG PARTITIONING 33

4.6 Proposed Solution: DAG Partitioning

We have seen that greedy list scheduling does not work well in the case of loosely-coupled clus-
ters with large communication overhead. Cross-cluster communications are not minimized, and
the balancing of computation across clusters is poor.

A solution to this problem is to partition the DAG to minimize cross-cluster communications
and increase utilization. In the next chapter I will propose an algorithm for scheduling loosely-
coupled clusters using DAG Partitioning.

34 CHAPTER 4. CASE STUDIES

Chapter 5

Proposed Multi-cluster Scheduling
Algorithm

5.1 Approach to Multi-Cluster Scheduling

The first part of the trace scheduling algorithm, trace picking, selects the most likely paths to be
executed within the program and optimize them most heavily. This works at a high level and
benefits both VLIW and loosely-coupled clusters. The trace picker, which is guided solely by
estimated execution frequencies and not the architecture, is left unchanged.

The second part of trace scheduling, the list scheduling algorithm, schedules the operations
of the program and is being redesigned to work with loosely-coupled clusters with longer com-
munication latencies. A new compiler phase is being added that partitions the DAG into clusters.
After the partitioning is performed, it is followed by a modified list scheduler that also imple-
ments a task ordering algorithm. The new structure of the compiler is illustrated in Figure 5.1.

5.2 DAG Partitioning

Consider a directed acyclic graph (DAG) composed of a collection of nodes connected by di-
rected edges. The nodes represent operations and the edges represent dependencies between the
operations. Nodes of the DAG are marked with the cost (in cycles) of the operation, and a list
of functional units it can be assigned to. Each edge in the DAG is potentially a communication
or synchronization.

In the sample DAG given in Figure 5.2, the LEA (load effective address) operation receives
its operand from the DEF B (define) operation, and the MLD (memory load) operation receives
its two operands from the result of the LEA operation and DEF A. If all the operations are sched-
uled on the same cluster, no communcation delays occur. If, however, the DEF A and MLD op-
erations are on cluster 0 while the DEF B and LEA operations are on cluster 1, synchronization
is needed and the result of the LEA operation must be sent across clusters.

The goal of DAG partitioning is to minimize the parallel execution time. Assume that the
DAGS have the following properties:

35

36 CHAPTER 5. PROPOSED MULTI-CLUSTER SCHEDULING ALGORITHM

C Source

Front End

IL-1 (Intermediate Language)

IL2 (Intermediate Language)

Optimizations

Analysis

Trace Scheduler

Task Orderer

DAG Partitioner

Machine Model Disambiguator

List Scheduler

Figure 5.1: Structure of the Multiflow compiler with DAG Partitioning

LEA

MLD

DEF A DEF B

Figure 5.2: A directed acyclic graph (DAG) of IL2 operations.

5.2. DAG PARTITIONING 37

1) Edges within a cluster have zero cost. This is true except when moving from the integer
unit to the floating point unit and vice versa, in which case an explicit move operation
MAY be required. Since this does not happen very often and the cost is low when it does,
it appears to be a valid simplifying assumption.

2) Edges that cross clusters have fixed cost, which is the latency of the synchronization op-
erations (described later).

3) The cost (latency) of each node is a 3-tuple, one for the integer unit, one for the floating
point unit, and one for the memory unit. � These are estimated number of cycles the op-
eration requires on each of the functional units.

Since a 3-tuple is used for the cost of each node, the latency will depend on the largest of
the three costs. Therefore max(i cost, f cost, m cost) is used when balancing a DAG. In almost
all cases this will be i cost because of the much larger number of integer operations compared
to floating point or memory operations. For example, a memory load instruction requires a few
integer operation to set the address, followed by a memory operation.

A good partition is one which results in a low execution time. There are many DAG parti-
tioning algorithms in the literature, such as Sarkar’s [18] algorithm and Kim and Browne’s linear
clustering algorithm [13]. The algorithm is based on Yang and Gerasoulis’ Dominant Sequence
Clustering (DSC) algorithm[24] for unbounded number of processors. The DSC algorithm com-
bines the best features of several algorithms, and typically gets better partitions than Sarkar’s or
Kim and Browne’s algorithms, and also run in less time. It has a time complexity of (e + v) log
v where e is the number of edges and v is the number of vertices or nodes.

The longest path of the scheduled DAG is called the dominant sequence (DS) of the DAG.
In the DSC algorithm, the DS is identified at each step and the nodes along the DS are placed in
the same cluster. An outline of the DSC algorithm is given below. A more detailed description
of the algorithm can be found in [24].

A DAG is defined by G = (V, E, C, T) where V is the set of nodes, E is the set of edges, C
is the set of communication costs (in cycles), and T is the set of node costs. Initially, each node
is assumed to be in its own cluster and hence C contains the cross-cluster communication delay
for each edge. During the execution of the algorithm, the graph consists of the examined part
EG and the unexamined part UEG. Initially, all nodes are marked unexamined.

The value tlevel(n) is defined as the length of the longest path from an entry node to n. blevel(n)
is the length of the longest path from n to an exit node. Thus the parallel time of a scheduled
graph is the maximum tlevel(n) + blevel(n) where n is any node from the set of nodes. This path
is the critical path, or dominant sequence. We also define the priority of a node as tlevel(n) +
blevel(n).

The algorithm is given in Figure5.3.
Figure 5.4 shows how DSC works.
The above algorithm assumes an unbounded number of processors. Yang also described a

simple but effective cluster merging algorithm which was implemented in the PYRROS[23] par-

�The Multiflow compiler is more general and keeps track of operations using resource request lists. However,
since the M-Machine has just an IALU, FALU and MEMU on each cluster, it is more general than necessary and
we can do a good job with just cycle counts on each functional unit.

38 CHAPTER 5. PROPOSED MULTI-CLUSTER SCHEDULING ALGORITHM

1. EG = 0, UEG = V.
2. Compute blevel for each node and set tlevel = 0 for each node.
3. Every task is marked unexamined and assumed to constitute one unit cluster.
4. While there is an unexamined node Do
5. Find a free node n with highest priority from UEG.
6. Merge n with the cluster of one of its predecessors such that tlevel(n) decreases in a
maximum degree. If all zeroings increase tlevel(n), n remains in a unit cluster.
7. Update the priority values of n’s successors.
8. UEG = UEG - fng; EG = EG + fng.
9. EndWhile

Figure 5.3: The Dominant Sequence Clustering algorithm.

n1
1

n2

2

n3

2

n4

2

n5 1

1

6 4
1

2

(a) Parallel time = 11

n1
1

n2

2

n3

2

n4

2

n5 1

1

4
1

2

n1
1

n2

2

n3

2

n4

2

n5 1

1

2

n1
1

n2

2

n3

2

n4

2

n5 1

1

1

2

0

0 0 0

0

0

2

2

2

(b) Parallel time = 10

(c) Parallel time = 8 (d) Parallel time = 7

0

Figure 5.4: DAG Partitioning using DSC. Initially each node is in its own cluster, which results
in a parallel time of 11 units. Clusters are merged if it reduces the parallel time, and this leads
to the partitioning of the DAG in (d).

5.2. DAG PARTITIONING 39

allel compiler system. It computes the load for each cluster, sorts them in increasing order, then
uses a simple load balancing algorithm to map the u clusters to p processors.

Using this algorithm it should be possible to assign operations to clusters more effectively.
Scheduling the tasks for each cluster using the list scheduler can then be achieved as before. This
algorithm is currently not implemented in the compiler and details are currently under investi-
gation.

40 CHAPTER 5. PROPOSED MULTI-CLUSTER SCHEDULING ALGORITHM

Chapter 6

Conclusion

6.1 Summary

Loosely-coupled clusters have been shown to have the potential to exploit instruction-level par-
allelism while maintining high function unit utilization[17].

A compiler that generates code for loosely-coupled clusters has been implemented on top of
the Multiflow Trace Scheduling Compiler. The performance of this compiler has been evaluated
by compiling and executing benchmarking programs on the M-Machine simulator.

Using the execution profiles, bottlenecks have been found and optimizations proposed to im-
prove the performance.

Greedy list scheduling as implemented in the Multiflow Compiler does a poor job of schedul-
ing for loosely-coupled clusters. This thesis investigated the performance of using the greedy
instruction scheduler in the Multiflow compiler in compiling for loosely-coupled clusters with
large communication latencies, proposed a DAG partitioning algorithm to address some of its
problems and described its implementation within the Multiflow compiler. The intent of this
work is to establish a baseline for an in-depth investigation.

6.2 Limitations of the Current Implementation

There are a number of limitations in the current implementation of the multi-cluster compiler.

1) There are no multi-cluster function calls. All function calls are assumed to be single-
cluster, as necessary for calling runtime routines. The functions in the case studies have
all been completely inlined. To correctly implement multi-cluster function calls would
require modifying the compiler and linker, and the object-file format to denote whether a
function is single- or multi-cluster. The code for multi-cluster function calls will be sim-
ilar to the code of multi-cluster branches except that the branch target will be a register
instead of a constant offset.

2) Constraints in the compiled code are added by hand. If an operation is constrained to oc-
cur after another operation, the Multiflow compiler simply schedules them such that one

41

42 CHAPTER 6. CONCLUSION

occurs before the other in their assigned cycles. However, this does not work with mul-
tiple clusters since they do not execute in lockstep, hence explicit synchronizations are
required.
The only operations that might be constrained across clusters are: control flow changes,
cross-cluster communications, and memory reads and writes. The first two are imple-
mented such that they are self-synchronizing, but for memory operations barriers might
be required. For example, a write to an address followed by a read of the same address
on a different cluster would require a pairwise barrier between the two operations. This is
straightforward, but has not yet been added to the compiler.

6.3 Related Work

Loose coupling is a new architecture, and there have not been any available implementations of
it: the M-Machine will be the first. However, many research topics are relevant to compiling for
loosely-coupled clusters.

Yang[22, 23, 24], SarkarSARKAR89, and Kim and Brown[13] have conducted extensive
research on the partitioning of computational graphs.

The work on automatic parallelization, optimizations, interprocedural analysis, and parti-
tioning techniques for parallelizing compilers by Lam[14], Hall[11], Gupta[10] and others are
relevant when compiling for loosely-coupled clusters. Loosely-coupled clusters behave similar
to processors running in parallel, and many of the techniques in compiling for parallel architec-
tures can be applied to loosely-coupled clusters also.

6.4 Status

The algorithm described for compiling for loosely-coupled clusters is currently being imple-
mented in the Multiflow compiler, together with the rest of the M-Machine software develop-
ment system and runtime.

The compiler currently can compile simple programs for multiple clusters. The compiled
assembly code is then fed through a post-processor that creates separate instruction streams for
each cluster, adds the required synchronization to handle branches, and the output is then linked
with the multi-cluster stub and executed on the simulator.

The M-Machine is currently being designed and built at MIT. The first prototype is expected
to be built during winter 1997.

Bibliography

[1] T. Adam, K. M. Chandy and J. R. Dickson, “A comparison of list schedules for parallel
processing systems”, CACM, 17:12 (1974), 685-690.

[2] Aho, Alfred V., Jeffery D. Ullman, “Principles of Compiler Design” Addison-Wesley Pub-
lishing Company, Reading, Mass., 1977.

[3] S.T. Barnard and H.D. Simon, “A Fast Multilevel Implementation of Recursive Spectral
Bisection for Partitioning Unstructured Problems”, Proc. Sixth SIAM Conf. on Parallel
Processing for Scientific Computing, SIAM, 1993.

[4] Gary R. Beck, David W. L. Yen and Thomas L. Anderson, “The Cydra 5 Minisupercom-
puter: Architecture and Implementation” The Journal of Supercomputing, 1993.

[5] Robert P. Colwell, Robert P. Nix, John J. O’Donnell, David B. Papworth and Paul K. Rod-
man. “A VLIW Architecture for a Trace Scheduling Compiler” IEEE Transactions on
Computers, 37-8, August 1988.

[6] William Dally J., Stephen W. Keckler, Nick Carter, Andrew Chang, Marco Fillo, and Whay
S. Lee, “M-Machine Architecture v1.0” Massachusetts Institute of Technology, Artificial
Intelligence Laboratory Concurrent VLSI Architecture Memo, Number 58, January 1994.

[7] John R. Ellis, “Bulldog: A Compiler for VLIW Architectures” MIT Press, 1986.

[8] Joseph A. Fisher, “Trace scheduling: A technique for global microcode compaction” IEEE
Transactions on Computers, C-30(8):478-490, July 1981.

[9] R. L. Graham, “Bounds for certain multiprocessing anomalies”, Bell System Technical
Journal, 45 (1966), 1563-1581.

[10] M. Gumpta and P. Banerjee, “Demonstration of automatic data partitioning techniques
for parallelizing compilers on multicomputers.” IEEE Transactions on Parallel and Dis-
tributed Systems, 3(2):179-193, March 1992.

[11] M. W. Hall, B. R. Murphy, and S. P. Amarasinghe, “Interprocedural parallelization anal-
ysis: A case study.” Proceedings of the Seventh SIAM Conference on Parallel Processing
for Scientific Computing, San Francisco, Feb 1995.

43

44 BIBLIOGRAPHY

[12] Hudak, David E. “Compiling parallel loops for high performance computers: partitioning,
data assignment, and remapping” The Kluwer international series in engineering and com-
puter science, 1993.

[13] Kim, S. J. and Browne, J. C. “A general approaach to mapping of parallel computation
upon multiprocessor architectures”, International Conference on Parallel Processing, vol
3, 1988, pp. 1-8.

[14] J.Anderson and M. Lam. “Global optimizations for parallelism and locality on scalable par-
allel machines.”, Proceedings of the SIGPLAN ’93 Conference on Programming Language
Design and Implementation, Albuquerque, NM, June 1993.

[15] P. G. Lowney, S. G. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S.
O’Donnell and J. C. Ruttenberg. “The Multiflow Trace Scheduling Compiler” The Journal
of Supercomputing, 1993.

[16] D. Maskit and S. Taylor. “A Message-Driven Programming System for Fine-Grain Multi-
computers.” Software: Practice and Experience, 24(10):953-980, 1994.

[17] S. Keckler, “A Coupled Multi-ALU Processing Node for a Highly Parallel Computer”
Massachusetts Institute of Technology, Artificial Intelligence Technical Report 1355,
September 1992.

[18] Sarkar, Vivek. “Partitioning and Scheduling Parallel Programs for Multiprocessors”, MIT
Press, 1989.

[19] R. Van Driessche and D. Roose. “An Improved Spectral Bisection Algorithm and Its Ap-
plication to Dynamic Load Balancing.” Parallel Computing, 21:29–48, 1995.

[20] R. Williams. “Performance of Dynamic Load balancing Algorithms for Unstructured Mesh
Calculations.” Concurrency: Practice and Experience, 3:457–481, 1991.

[21] Wolfe, Michael Joseph. “High Performance Compilers for Parallel Computing”, Addison-
Wesley, 1995.

[22] T. Yang and A. Gerasoulis, “List scheduling with and without communication delays”, Rut-
gers University, Department of Computer Science, 1992.

[23] T. Yang and A. Gerasoulis, “PYRROS: Static scheduling and code generation for message
passing multiprocessors”, Proc. of 6th ACM International Conference on Supercomputing,
Washington D.C., July 1992, pp. 428-437

[24] Tao Yang and Apostolos Gerasoulis, “DSC: Scheduling parallel tasks on an unbounded
number of processors”, IEEE Transactions on Parallel and Distributed Systems, Vol. 5,
No. 9, 951-967, 1994.

