
Dynamic Splines with Constraints

for Animation

Ravi Ramamoorthi� Cindy Ball� Alan H� Barr

California Institute of Technology

ravir�cindy�barr�gg�caltech�edu

Abstract

In this paper� we present a method for fast interpo�
lation between animation keyframes that allows for
automatic computer�generated �improvement� of the
motion� Our technique is closely related to conven�
tional animation techniques� and can be used eas�
ily in conjunction with them for fast improvements
of �rough� animations or for interpolation to allow
sparser keyframing�

We apply our technique to construction of splines
in quaternion space where we show ����fold speed�ups
over previous methods� We also discuss our experi�
ences with animation of an articulated human�like 	g�
ure�

Features of the method include


� Development of new subdivision techniques
based on the Euler�Lagrange di�erential equa�
tions for splines in quaternion space�

� An intuitive and simple set of coe�cients to op�
timize over which is di�erent from the conven�
tional B�spline coe�cients�

� Widespread use of unconstrained minimization
as opposed to constrained optimization needed
by many previous methods� This speeds up the
algorithm signi	cantly� while still maintaining
keyframe constraints accurately�

� Introduction

Many investigators have examined the problem of
creating animations from user�supplied keyframes�
Spline�based techniques as in 
bartels et al ���
have been used with much success�

One of the problems with spline�based animation�
however� is that many motion quantities do not ideally
fall along the natural spline paths� �In fact� when the
undesirable aspects of splines are overly apparent� the
motion is sometimes described as being too �spliney���

There have been a number of approaches for im�
proving motion and shape aesthetics while retain�

ing user control� Examples of these include space�
time constraint methods� as in 
witkin � kass ����

cohen ���� 
liu et al ���� inverse dynamics as
in 
barzel � barr�� dynamic nurbs� such as

terzopoulos � qin ���� and interpolation in non�
Euclidean spaces� as in 
gabriel � kajiya ����

barr et al ����

These approaches are usually posed as constrained
optimization problems� and utilize di�erential equa�
tions� lagrange multipliers and intensive numerical so�
lution techniques�
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Figure �� In our technique� the splines are constructed

so that the animation paths pass through the keyframes

�shown as the open circles along the solid curve� with�

out using constrained optimization methods� �Variable	

keyframes� shown as smaller circles� are created by the sys�

tem to minimize an objective function a
ecting the behav�

ior between the keyframes� Partially optimized solutions

�shown as dashed lines� still pass through the keyframes�

In contrast� we use optimization but do not require
constrained optimization� Our method 	rst places a
spline path through the user�de	ned keyframes� and
measures the degree of constraint satisfaction within
the spline segments� Unsatisfactory segments are au�
tomatically subdivided� �variable� points are inserted�
An optimizer then improves the degree of constraint�
satisfaction by moving the variable points to better
positions�
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Figure �� Methods that utilize constrained optimization

must converge to pass through the keyframes� Keyframes

are shown as open circles along the solid curve� note that

the partially converged solutions �shown as dashed lines�

do not pass through the keyframes� the optimizer must

reach the full solution� shown in solid form� to pass through

the keyframes� requiring much more computation�

Advantages of our method

� Splines are used to quickly create the motion
path so as to ensure that the animation always
goes through the keyframes �	gure ��� Thus�
constrained optimization �as would be required
under the scheme shown in 	gure �� is not re�
quired to satisfy the hard constraints �that the
keyframes be met exactly�� There are many ad�
vantages of soft constraints � enforced through
penalty terms that are added to the objective
function used in the optimization �soft con�
straints need not be exactly satis	ed�� The pri�
mary advantages are speed and simplicity as il�
lustrated in 	gures � and ��

� The motion is �better� than raw splines� at least
as seen by the penalty function f��� and improves
on successive iterations� We do not need to wait
until full convergence�

� The method calculates function representa�
tions of non�Euclidean interpolation paths as in

barr et al ���� but almost ��� times faster�

� Soft auxiliary constraints �which in contrast to
hard constraints need not be exactly satis	ed
but are more in the nature of strong hints to
the optimizer� are used to substantially reduce
unphysical motion like a foot going through the
�oor� knees and elbows bending backward etc�

� There is an automatic subdivision scheme which
subdivides in regions of high �unphysicality� or
high penalty terms� In addition� for splines
in quaternion space� Euler�Lagrange di�eren�
tial equations are used to accurately determine
where the path of the object is locally non�
optimal� This constitutes a new approach to
subdivision�
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Figure 
� Solution methods for constrained optimization

usually require intensive numerical methods� A prototyp�

ical constrained optimization problem is minimize F �x�

subject to G�x� � � � and requires many function evalu�

ations and gradient calculations to maintain the hard con�

straints� Animation techniques that combine physics and

constraints usually use constrained optimization to pass

through the keyframes�
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Figure �� Methods that do not require hard constraints

can use simpler numerical optimization methods� such as

simple minimization�

While our approach is similar to the spacetime con�
straints paradigm �
witkin � kass ���� 
cohen ����

liu et al ����� in that we seek to minimize an ob�
jective function� our approach is more closely allied to
traditional keyframing and our primary application is
to interpolation of keyframes�

Unlike 
Liu � Cohen ���� we 	x the keyframes
both spatially and temporally as is more common in
conventional animation techniques �except that we al�
low partial keyframes that 	x only some degrees of
freedom�� In addition� we improve on the method pre�
sented in 
Liu � Cohen ��� in that we optimize the
intermediate path between keyframes instead of using
a simple spline or hermite approximation� In our ap�
proach� speci	cation of generalized co�ordinate veloci�
ties is not necessary since our optimization procedure
requires only the position of keyframes�

There has been much work in related areas
of research� For example� physics�based or op�
timization techniques have been used for model�
ing of curves and surfaces �
welch � witkin ����

terzopoulos � qin ����� We present several new
techniques such as error metrics and subdivision meth�
ods based on the Euler�Lagrange di�erential equa�
tions� use of optimization over variable intermediate
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frames instead of B�spline coe�cients� and use of un�
constrained minimization�

The rest of our paper is organized as follows

In section �� we describe the algorithm� In section ��
we apply the method to covariant interpolation� In
section �� we compare our algorithm to previous work�
In section �� we illustrate the use of the algorithm
applied to animation of a human�like 	gure� In section
�� we discuss future work�

� Algorithm Description

The algorithm takes as input K keyframe �or �par�
tial keyframe�� vectors Xi� which specify the state
of the animation at particular instants of time ti�
i � �� �� � � � �K � �� and an objective function �or
penalty function� f�x� that a�ects the behavior of the
animation between the keyframes� The task is to cre�
ate an optimal set of �variable� frames between the
keyframes� the variable frames are selected so that the
spline curve that passes through all of the keyframes
and variable frames minimizes the net integrated value
of the penalty constraint f��� along the path� Either
full keyframe vectors Xi� or �partial keyframes� may
be speci	ed� In partial keyframes� only some of the pa�
rameters of the animation are speci	ed� The remain�
ing parameters are selected to minimize the penalty
or objective function f���

The objective function f�� can be thought of as
a weighted collection of non�negative penalty terms�
f �

P
i aifi�x�� that measures deviations from desired

states and behaviors� such as nonunit quaternions� ob�
ject interpenetration and over�exing of joint angles�

We are looking for the the optimal animation path�
that is� we wish to 	nd the C� continuous vector func�
tion Y �t� such that the integral


E�Y � �

Z tK��

t�

�� f��Y �t�� ��� f��Y �t�� �� � � dt ���

is minimized subject to the constraints that
Y �ti� � Xi for i � �� �� ���K��� In the above integral�
fj is an objective function� i�e�� a nonnegative function
that measures by how much a soft constraint� a con�
dition that the user desires but one that need not be
exactly met� is violated� The �j are positive weight�
ing constants that balance the relative strengths of the
soft constraints�

Overview of Algorithm

�� User provides keyframes �or partial

key frames�� as well as any soft

constraints to be satisfied in the

animation�

�� The system inserts variable frames

between the keyframes� These variable

frames �or variable points� are like

keyframes except that they are not

fixed but are varied during the course

of the optimization procedure�

�� From the variable frames and key

frames �or fixed frames� compute an

interpolating C
� �cubic B�spline�

function�

�� With the function computed above�

calculate E�Y� as in integral ��

Then� move the variable points to

minimize E�

�� Check to see where the true

solution is badly approximated by

the current set of splines and

subdivide by adding in more

variable points in those regions

only�

Figure �� Overview of the algorithm� A partial key frame

is similar to a traditional key frame except that some or

all of the state of the animation at a given time may be

supplied� A suitable metric is used in step �� In the case

of splines in quaternion space� we use the Euler�Lagrange

di
erential equations based on covariant quaternion accel�

eration�

In general� the N components of Y�t� can be given
as

Yi�t� �
X
k

Cik�k�t� ���

with i ranging from � to N � � � with N � �
if Y is a vector and N � � if Y is a quaternion �
where the ��t� are spline basis functions� such as the
B�spline or nonuniform rational B�spline bases �see

farin 	������ The Cik are the basis function coef�
	cients�

Variable points In general� we can use equation �
to write �where Y is a vector representing the state of
the animation�

Yi�tj� �
X
k

Cik�k�tj� ���

since equation � holds for all t� Equation � holds for
all keyframe times tj� If we want to interpolate a set
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of M points with times t�� t�� � � � tM � we must have
equation � satis	ed at all tj at which the interpolated
points occur� But� if we know the values of the vectors
Y at the interpolated points� we can write


Yim �
X
k

Cik�k�tm� ���

for all m from � to M � This is a series of M simul�
taneous equations� We can write it in matrix form
as



Yi� � 
��
Ci� ���

In the above equation� 
Yi� is a column matrix with

Yi�m � Yim� 
�� is an M �M matrix with 
��mn �
�n�tm�� 
Ci� is a column matrix with 
Ci�n � Cin� If
the matrix 
�� is invertible� we can write


Ci� � 
����
Yi� ���

With the help of this equation we can calculate the
coe�cients in matrix 
Ci� knowing the points to be in�
terpolated� that is the matrix 
Yi�� The matrix 
�� is
inverted only once at the start of the optimization pro�
cedure� and the time taken by the calculation in equa�
tion � is negligible in comparison to the time taken for
computation of the integral to be minimized�

As stated in 	gure �� the user supplies keyframes
�or even incomplete� partial keyframes�� The system
puts in variable frames and sends these to the opti�
mizer� Then� based on the system state at the variable
frames and the already known state �hard constraint�
at the 	xed frames� the matrix 
Yi� is created from
which the matrix 
Ci� can be calculated�

Figure �� Illustrating the algorithm with reference to ani�

mation of a running human�like �gure� The human �gures

are drawn thin so their path can be more apparent� The

initial keyframes are drawn darkest� The variable frames

are less dark� the �in�between	 frames are drawn in the

lightest color�

Addition of variable points We add variable
points in the region between two frames �	xed or vari�
able� where the motion is unphysical as described by
our subdivision criteria� We add the variable points at
the midpoint of the region� and also add a knot there
in the knotvector for our B�spline basis�

Advantages

� The variables being optimized are now actual
animation states� so feedback from the system
can immediately tell a user about the state of
the animation�

� The functions Yi�t� always interpolate the 	xed
frames� Thus� the hard constraints of the anima�
tion having a particular state at the key frames
as per the animator�s wishes is always satis	ed�

The algorithm is illustrated in Figure �� where the
key frames� variable frames �or variable points� and
intermediate frames �given by the spline that inter�
polates all the variable and key frames� are clearly
shown�

Minimization of the objective As described in
equation �� our functional consists of the weighted sum
of several objective functions and soft�constraint de�
viations� We use sequential quadratic programming
�SQP� to position the variable frames so as to min�
imize the value of the integral in equation � �as de�
scribed in 
nag��� One can either use equation � di�
rectly� or renormalize the various parts of the inte�
grand based on the initial values of the soft constraints
as follows


I �

Z tK��

t�

��
f��Y �t��

f��Y �t��initial
���

f��Y �t��

f��Y �t��in
�� � � dt

���
The subscript stands for the initial state before

any optimization has taken place �the original spline
path�� We integrated numerically by summing the val�
ues of the integrand at a discrete number of uniformly
distributed points and multiplying by the time inter�
val represented by each point �the total time range
divided by the number of points�� In keeping with
the approximate nature of soft constraints� we did not
feel that more sophisticated integration methods were
necessary�

This renormalized representation depends less on
the scale of the various objectives and soft constraints
and is thus better suited for some applications�

For instance� we may measure deviation of quater�
nions from unit magnitude by the absolute magnitude
of the deviation or by the square of the deviation�
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While the scales of these two deviations will in general
di�er largely� our representation makes it easier to at�
tach the same relative weight �in comparison to other
parts of the objective� to ensure that the quaternions
remain nearly unitary�

Note that in our formulation the integral I de�
creases at each major iteration of the SQP solver�
Also� we ensure that the hard constraints where pro�
vided at the partial key frames are exactly met� Thus�
at each iteration we have a better result than we did
before� As soon as the optimization process is started�
we get improved results� and we do not need to wait
for convergence�

Subdivision

Even though convergence may have been reached� the
superposition of basis functions might not come suf�
	ciently close to the actual optimal path� In regions
where this is the case� we add a knot to the knot vec�
tor �and a corresponding variable point� for B�splines
to allow that region to be evaluated in further detail�
Previous techniques for determining if the superposi�
tion of basis functions adequately represents the true
solution include work by 
Welch � Witkin 	����
who compare versions of a solution computed at two
di�erent resolutions� Another test commonly used is
the magnitude of the objective in a particular region�
However� these approaches are not always theoreti�
cally sound� For instance� in a particular region� the
objective might be large but that may be the best
that can be done� For the case of splines in quater�
nion space �discussed in more detail in the section on
numerical results�� we present a di�erent approach
based on the Euler�Lagrange di�erential equations�
that gives a more direct indication of the di�erence
between the current path and the optimal one�

Euler�Lagrange equations� For an optimization
problem stated in terms of extremizing an integral as
in equation �� it is possible to derive an alternative
formulation in terms of di�erential equations� These
di�erential equations are known as the Euler�Lagrange
equations� See 
Zwillinger ���� for instance� for de�
tails� Appendix B gives the terms of the canonical
Euler�Lagrange equation�

After minimization is completed� the velocity at
each 	xed or variable point is known� Thus� we now
have enough data to apply the Euler�Lagrange formu�
lation to each segment� If the path were locally op�
timal� we would have EL � � everywhere where EL
is the left�hand side of the Euler�Lagrange di�erential
equation� By measuring the deviation of the left hand

side from �� we obtain a reliable estimate of the devi�
ation of the computed path from the optimal path at
each point �or region by integrating the deviation over
the region��

We subdivided in regions where

EL � �

where � is a constant� The magnitude of the left
hand side of the Euler�Lagrange equation is a plau�
sible estimate for the �unphysicality� if the change in
the displacement from the optimal path with time is
small compared with the change in the deviation of the
Euler�Lagrange equations as discussed in Appendix C�

Since satisfactory convergence has been achieved
�a near�minimal path has been computed given the
limited number of basis functions�� this gives us an
accurate indication of whether the current set of basis
functions su�ces� In regions where there is a large
violation of the Euler�Lagrange norm� we add variable
points� assigning the values of variables there initially
as what they would have been as per our original low�
resolution solution�

A physical interpretation for the Euler�Lagrange
equations is given as follows �refer to Appendix C for
notation�


�E��t� � t��

�opt
� ELmax ���

This states that the net time averaged violation
�beyond what is required� in the penalty or objec�
tive function per unit displacement �from the optimal
path� is less than or equal to the maximal magnitude
of the left�hand side of the Euler�Lagrange equation�
We can also apply this equation locally to claim that
the time averaged violation per unit displacement at a
point is less than or equal to the magnitude of the left
hand side of the Euler�Lagrange equation evaluated at
that point� A derivation of this result can be found in
Appendix C�

Advantages and Disadvantages of Euler�
Lagrange equations A disadvantage of the Euler�
Lagrange equations is that one usually needs to spec�
ify the velocities at the key frames� These velocities
are required as boundary conditions for the di�eren�
tial equations� Also� a piecewise solution to the Euler�
Lagrange equations with velocity speci	ed would give
us onlyC� continuity� not the C� continuity that cubic
splines guarantee us� However� an important advan�
tage of the Euler Lagrange equations is that they are
stated as an explicit equality of the left hand side to
� rather than a minimization�
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� Numerical Results� Algo�

rithm applied to Covariant

interpolation of quaternions

One application of the method is minimizing the
covariant acceleration of the quaternion of a sin�
gle body� This is the same problem solved in

Barr et al 	���� except that we optimize over
quaternion values at variable points and do not need
to create discretized samples� In this case� we speci�
	ed that the condition that the quaternions be of unit
magnitude be a soft constraint�

We present the results in Figures ����� There were
seven keyframes in this run� Initially� we had one vari�
able point between any two key frames� The algorithm
converged to a minimum in a few seconds on a single
HP ���� This compares favorably to the time of � min�
utes reported by 
Barr et al 	���� on an identical
architecture� The deviations of the quaternions from
unit magnitude was less than ���� at all times�

Analogous to 
barr et al ���� there are two soft
constraints
 the quaternion is kept close to unit mag�
nitude� and the covariant acceleration magnitude is
minimized�

f�� � 	f��� � f��� � �

where f��� � ��� q � q�� and f��� � �q�� n q��

Here q represents the quaternion which � as a
function of time � describes the path of the rotating
object� f��� refers to the covariant component of the
quaternion acceleration� This is the quaternion accel�
eration with any radial component removed� 	 is a
scaling factor which a�ects the relative strengths of
the two soft constraints� Suitable results can also be
obtained by using f��� �j �� q � q j�

Figure �� Showing the path generated by covariant inter�

polation of quaternions using our technique� For clarity�

the object is translated from left to right� The yellow ba�

nanas represent key frames while the white ones represent

the variable frames in between�

Figure �� Covariant interpolation of quaternions using this

method is approximately ��� times faster than previous

methods� Here we covariantly interpolate through seven

keyframe quaternions� at most taking a few seconds on an

Hp��� workstation�
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Figure �� The unit magnitude of the quaternions is main�

tained by the method� Dashed lines are incompletely op�

timized results� the solid line is the optimized result� and

is seen to be quite close to ����

NOTES These results were obtained after complete
convergence� Further� the small constraint viola�
tion at the end is present even in the algorithm of

barr et al 	���� but in their case� it comes from
the post�minimization interpolation between discrete
points� The sources of our speed up are


� Use of splines instead of a discrete basis allows
for fewer variable points while allowing a large
number of quadrature points for numerical inte�
gration� This compares favorably with the dis�
crete method employed by 
barr et al 	�����

� The use of soft constraints has speed advan�
tages referred to earlier� It is clear from the
results that the soft constraint has been ad�
equate in maintaining the unitary magnitude
of the quaternions to a small tolerance� Note
that in this example the ratio �using the no�
tation of equation �� of ���unit magnitude� to
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���covariant acceleration� was � 
 �� While

barr et al 	���� used hard constraints at
a 	nite number of points �they required the
quaternions to be unitary at these points�� sub�
sequent interpolation between these points to
create a continuous representation would violate
the unitariness of quaternions�

Note that our use of variable frames is not a source of
speed�up in this case since 
barr et al 	���� essen�
tially used variable frames with a �box� basis�

SUBDIVISION As discussed in the section on
Euler�Lagrange based subdivison� we use criteria for
adaptive re	nement of the solution based on the Euler�
Lagrange di�erential equations� For the case of covari�
ant acceleration of quaternions as de	ned in equation
 � these are as given below �a sketch of the derivation
is presented in Appendix B�


De	ne


a �
�X

j��

qjq��j

b �
�X

j��

qjqj

T �
a

b

X�i� � qiT
� � q��i T

Y �i� � q��i � qiT

Z�i� � �	�b � ��qi

The Euler�Lagrange equation is then


X�i� �
d�

dt�
Y �i� � Z�i� � � ����

Here � we have


d�

dt�
Y �i� � q����i � �q��i T � �q�iT

� � qiT
��� ����

In the notation of the canonical equation ��� X�i�
corresponds to the term 
F�
y for covariant accelera�
tion� Z�i� is the corresponding term for maintenance
of unitary quaternions� Y �i� corresponds to the term

F�
y�� in equation ��� The term 
F�
y� � � since
the objective function does not depend directly on q��

Analytical expressions for T � and T �� can be de�
rived but these are complicated� It is simpler to di�er�
entiate T numerically� We have found that this yields
satisfactory results�

Note that by varying the subscript i from � to � in
equation ��� four independent equations are generated

that must separately be satis	ed� Figure �� shows the
results of our tests�
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Figure ��� Showing the average Euler�Lagrange deviation

as a function of time �we plot the integrated deviation over

equal tenths of the path�� The dotted line is the deviation

of the initial spline path� The dashed line represents the

result using one variable point between each �xed point

while the solid line represents the result upon using 
 vari�

able points between each �xed point� The dashdot line

is a result obtained by adaptively adding variable points

at the ends of the path �where the Euler�Lagrange devi�

ation is high�� This is a more e
ective and e�cient tech�

nique for solution �a total of only � variable points was

used�� It is seen that the result is nearly identical to the

result for global subdivision with one variable point be�

tween each �xed point �dashed line� at the ends and only

slightly worse in the intermediate region� This example

clearly shows that the optimizer reduces the covariant ac�

celeration in mainly those regions where there is a large

need for improvement� Further� the Euler�Lagrange equa�

tions provide a good metric for adaptive re�nement �or

adaptive subdivision� of the solution which can be much

more rapid and e
ective than addition of variable points

globally�

� COMPARISON TO PREVI�

OUS METHODS

USE OF SPLINES The use of splines for opti�
mization was introduced by 
Cohen ��� where op�
timization was done over spline coe�cients� This
corrects the problems with discrete methods like

Witkin ��� and 
Barr et al ���� In those ap�
proaches� interpolation to create a continuous rep�
resentation must be done after minimization of the
objective and the fact that interpolation itself al�
ters the objective is not taken into account� Thus�
a much larger number of variable points is needed
to get the same accuracy as a continuous approach�
This is one of the reasons for the speed up of our
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method when applied to creation of quaternion spline
paths� More sophisticated basis functions like wavelets

Liu et al ��� have also been proposed�

VARIABLE POINTS While our use of splines is
not completely new� we do not optimize over spline
coe�cients as in 
Cohen ���� but over the value of
variables describing the state of the animation at in�
termediate or variable points� Our method has the
following advantages


� For the end user� the value of coe�cients is not
always an intuitive way of thinking about the
optimization� Also� large coe�cient changes do
not necessarily correspond in a very direct way
with changes in the actual path� By contrast�
we use variables more intuitive under several
circumstances � actual animation states� Fur�
ther� changes in their values correspond to clear
changes in the animation path�

� Hard equality constraints in the minimizer are
not needed in our approach to enforce the de�
sired values at key frames� In 
cohen ���� the
key frame constraints are treated as similar to
other constraints with the same complicated nu�
merical methods used to enforce them�

USE OF UNCONSTRAINED MINIMIZA�
TION We have shown that constrained optimiza�
tion methods are not necessary� This has been done
by the following devices


�� We have used variable points instead of B�spline
coe�cients� Thus� no constraints are needed to
ensure that the objects pass correctly and at all
times through the key frames�

�� By including soft�constraints in our objective�
we have shown that constrained optimization is
not always needed�

We believe our methods to show certain im�
provements over previous methods� For instance�

Welch � Witkin ��� used Lagrange multipliers or
penalty functions to enforce linear constraints� Our
keyframe constraints are indeed linear in the coe��
cients of the spline basis� However� the method in

Welch � Witkin ��� either increases the number
of variables as more variables must be used for La�
grange multipliers or allows for �possibly large� con�
straint violations through the use of a penalty func�
tion� By contrast� our approach uses fewer variables
and ensures that the constraints are always satis	ed
exactly �within double precision error��

There is a further important disadvantage of
constrained methods like 
Welch � Witkin ��� or

Cohen ���� Constraints may be violated by large

amounts in the search for a minimum even if the 	�
nal constraint violation is small or zero on conver�
gence� Since we want the user to interact with the
solution process� an approach where the constraints
are always met even without convergence is attrac�
tive� Our method forces the keyframe constraints to
be met throughout the optimization process�

USE OF SOFT CONSTRAINTS We have used
soft rather than hard constraints �which must be met
on convergence� for the following reasons


�� In 
Welch � Witkin ���� there is a discus�
sion of how a 	nite basis cannot satisfy the con�
straints completely� The authors of that paper
used a least squares 	t� However� their func�
tionals were of a quadratic form� while we seek
to minimize highly nonlinear nonquadratic ob�
jectives� Thus� we cannot use a least�squares
approximation� Since the constraints cannot be
satis	ed completely� use of hard constraints is
inappropriate� To clarify this point� consider
the case of maintaining quaternion magnitude�
Because the number of basis functions is 	nite�
the basis is incomplete
 quaternion magnitude
cannot be maintained over the entire animation
path and we cannot have a hard constraint forc�
ing the unitariness of quaternions to be exactly
satis	ed everywhere� We could have the uni�
tary condition exactly satis	ed at a 	nite num�
ber of points� but this would not guarantee uni�
tary quaternions over the entire path as we de�
sire�

�� Use of soft constraints speeds up the solution
process considerably as compared to the length
of time it would take if hard constraints were
used� Calculation of constraint violation and
constraint gradients are not required� This can
increase the speed tremendously�

�� Simpler minimization packages may be used�

A few points deserve note� Even with a com�
plicated minimization algorithm such as sequential
quadratic programming that can handle constraints�
the absence of constraint evaluations �and constraint
gradients� makes the speed of using soft constraints
very attractive� Note that it is also possible to in�
troduce an inequality constraint thereby requiring the
magnitude of constraint violation to be less than some
small value� However� most minimization packages
cannot deal with this� Even a more complete package
such as the E��UCF routine of the NAG libraries is ex�
tremely slow when dealing with inequality constraints
as compared to even hard constraints�



 

SUBDIVISION SCHEMES We believe our sub�
division approach based on the Euler�Lagrange equa�
tions to be new and superior to previous subdivision
schemes discussed earlier�

� Foot placement for a Run�

ning Articulated System

In this section� we apply the method to the animation
of a person�like running 	gure� We treat the person as
an articulated body� and choose to represent the rota�
tion of each body by a quaternion that gives its rota�
tion in world co�ordinates� These rotations along with
the translation of the root body are su�cient to com�
pletely specify the state of the body� �See Appendix
A for representing articulated bodies with quaternions
and computing forces and torques�� This example is
intended to demonstrate the use of our technique for
animation of complicated objects� The running 	g�
ure has thirty nine degrees of freedom and is thus a
high�dimensional system� Unlike many previous op�
timization methods� our approach is fast enough to
handle this complicated system� Our tests took no
longer than a few minutes at most�

Improvement of Motion Several simple improve�
ments of the original spline motion can be made� We
describe one such example where our technique helps
	ne�tune the animation to prevent penetration of the
runner�s leg with the �oor and a step� Note that here
again� for the sake of speed� we use soft constraints
to enforce non interpenetration� The advantages of
soft constraints have been dealt with earlier� In this
example they provide a means of making fast auto�
matic corrections to a speci	c problem in the original
animation�

Penetration of the �oor by the foot We calcu�
late the position of the heel and toe on both feet� Refer
to Appendix A for details� Then� we de	ne for each of
the four points considered� the left heel and toe as well
as the right heel and toe� the constraint violation to
be equal to the distance from the point to the �oor if
the point is below the �oor and � otherwise� Compu�
tation of distance from a given point to the �oor is an
elementary co�ordinate geometry problem� If the �oor
lies along one of the co�ordinate planes� this compu�
tation is especially simple� For instance� for the �oor
at y � � and the direction of y � � being above the
�oor� we have


Constraint �
�X

y��

�footposy if footposy � � ����

where the subscript refers to the four points being con�
sidered� We implement other auxiliary constraints as
soft constraints such as


� Quaternions should remain unitary�
� Elbows and Knees should not bend backward�

In our tests it is clear that ordinary spline inter�
polation is unable to handle the �oor penetration and
overbending constraints� our technique copes well with
these�

Figure ��� We show keyframes and a sample frame from

a human �gure running and jumping onto a step� This is

the original spline and a foot passes through the step�

Figure ��� Optimizing the animation from the same

keyframes� the foot does not pass through the step� The

soft constraints have lifted the foot out of the way�



��

	 Conclusions and Future

Work

In this paper we have presented a technique to
smoothly interpolate key frames in animation� sub�
ject to covariant acceleration constraints and to force
and torque constraints� The algorithm can provide
improvements to ordinary spline�based interpolation
while leaving control in the animator�s hands� We
have presented a general method for producing more
physically realistic motion from the spline paths�

When the objective functions are well known such
as in covariant interpolation of quaternions or main�
tenance of non�penetration constraints� the method
works well� with few signi	cant problems�

For complex behaviors� such as human locomotion�
ideal objective functions are not easily derived� In
that case� there are di�culties in the algorithm� the
resolution of which is future work� Unruly spline be�
havior can cause skidding� �oating� and undesirable
backwards motion� the optimizer has di�culty elim�
inating the objectionable behavior completely� It is
also possible to try to make articulated body motion
more physical by requiring the net torque on each
body to be the sum of torques exerted on it at each
of its joints� Further� we require equal and opposite
torques exerted on the objects held together at a joint�
We have observed however� that simple ideas like this
are insu�cient to signi	cantly improve the realism of
the motion� Considerable further research is required
to 	nd appropriate objective functions for articulated
	gure animation�
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Appendix A� Modeling of artic�

ulated bodies�

In the articulated body framework considered by us�
we compute the positions and velocities of points on
the bodies thus


Here� Xi
cm refers to the position of the center of

mass of body i� Xi
a refers to the position of an arbi�

trary point a on body i where the vector a is measured



��

in body co�ordinates� The state of the body is repre�
sented by the translation T of the center of mass of
the root body and a set of quaternions Qi represent�
ing the orientations of the bodies� Further de	ne for
any object� b to be the vector from the center of mass
of its parent to the point of attachment� and cu to
be the vector from the center of mass of the body to
descendant u� Let d be the vector from the point of
attachment of an object to its parent to the center of
mass of the object�

We then have the following scheme of equations


Xroot
cm � T

Xi
cm � Xparenti

cm �QparentibQparenti
�� � QidQ

��
i

Xi
a � Xi

cm � QiaQ
��
i ����

Since the articulated body has no cycles� the above
equations are non�recursive and su�ce to supply the
position of any point on any body� They can also be
analytically di�erentiated to obtain velocities and ac�
celerations if required� The equations for the position
of the center of mass can be di�erentiated to yield
the acceleration of the center of mass� By multiplying
by object mass� we can compute the net force on an
object�

A note on computation of derivatives� Quater�
nion products are di�erentiated similarly to ordinary
function products� However� a little care must be
taken when di�erentiating q��� Note that the formu�
lae below are summed over repeated indices�

Let qy be the quaternion formed from negating the
vector components of q� Then� we have


q�� �
qy

qiqi
����

The correct formulae for 	rst and second derivatives
of the inverse are
 
Note that q�n�

y
� qy

�n�
�

q����� �
q�
y

qiqi
� �qy

qjqj
�

�qiqi�
� ����

q����
��
�

q��
y

qiqi
� �q�

y qjqj�

�qiqi�
� �Cqy ����

where C is given by


C � ���
qjqj

�� � qk
�qk

�

�qiqi�
� � � ��

�qjqj
��
�

�qiqi�
� � ����

Computation of rotational Inertia� force and
Torque Let I be the inertia tensor of a body� � be
the angular velocity� Q be the quaternion rotation� L

be the angular momentum� and R be the rotation ma�
trix� Both R and Q are in world co�ordinates� We
have


I � RIbodyR
�

I� � R�IbodyR
� � RIbodyR

�� ����

� ��RIbodyR
� � RIbodyR

����

� ��I � I���

Here� �� is the dual matrix of the vector �� We further
have

� � �Q�Q�� �� �

�� � ��Q��Q�� � Q��Q����� ����

Finally� we can write


Torque � L�

� �I���

� I�� � I�� ����

See 
goldstein �
� for further details�

Appendix B� Euler�Lagrange

equations

A general extremization problem �generally minimiza�
tion� can be written as �where y�t� describes the path�

min

Z t�

t�

F �y� y�� � � � � y�n�� dt ����

The natural boundary conditions are


y�t�� � X�� y
��t�� � X�� � � � � y

�n����t�� � Xn��

y�t�� � x�� y
��t�� � x�� � � � � y

�n����t�� � xn�� ����

The corresponding Euler�Lagrange equation is
given by



F


y
�

d

dt


F


y�
� � � � ����n

dn

dtn

F


y�n�
� � ����

For instance� minimization of
R t�
t�

�x���� dt subject

to known velocities and positions for x�t� at t� and t�
gives x���� � �� For acceleration in �at space� we want
to minimize

R t�
t�

�x���� � �y���� � �z����� dt� This gives

three independent equations for x�t�� y�t�� z�t�� Thus�
we have
 x���� � y���� � z���� � �� This is why cubic
splines are very suitable for interpolation in �at space
since these equations are always satis	ed� However�



��

the equations for quaternion space are more compli�
cated � no analytic solution has been found � and
cubic splines are no longer su�cient�

To derive the Euler Lagrange equation for splines
in quaternion space� we use �sum over repeated in�
dices�


min

Z t�

t�

j q��i � qi
q��j qj

qlql
j

�

� 	 j qnqn � � j� dt

� min

Z t�

t�

q��i q
��
i �

�q��j qj�
�

qlql
� 	�qnqn � ��� dt ����

To derive the corresponding four independent
Euler�Lagrange equations� we simply use equation ��
for each of the quaternion components� The Euler�
Lagrange equations are given as equation ��� A brief
sketch of the derivation is presented below


We have


F� � q��i q
��
i �

�q��j qj�
�

qlql

F� � 	�qnqn � ���

F � F� � F�

As per the canonical equation ��� we calculate



F�

qi

� ��qi

q��j qj

qlql
�� � q��i

q��j qj

qlql
�


F�

q�i

� �


F�

q��i

� ��q��i � qi

q��j qj

qlql
��


F�

qi

� �	qi�qnqn � ��

Now� plugging into equation ��� and simplifying�
we derive equation ��� The terms X�i� � Y �i�� Z�i� of
equation �� correspond in order to the nonzero terms
of the above derivation�

Appendix C� Physical Interpre�

tation of Euler�Lagrange equa�

tions

This section discusses the physical interpretation of
the Euler�Lagrange equations� A summary of the key
results is given in the section on subdivision in the
main text�

We are seeking a relation between the actual
minimal solution of the Euler�Lagrange equations
EL�Y � � �� and the approximate optimized solution

obtained by minimization with an �incomplete� set of
spline basis functions�

Let Ysoln refer to the actual optimal solution of the
Euler�Lagrange equations EL�Y � � �� Let another
arbitrary path be represented as


Y ��� ��t�� t� � Ysoln�t� � ���t� ����

where ��t� has norm �
R t�
t�

j phi�t� j� equal to unity and

�positive� � measures the magnitude of the deviation
from Ysoln� Ysoln�t� can be written in this notation as
Y ��� �� t� where � is arbitrary�

Let a path �subscripted with �opt� since in our
applications� this will be an optimized path� Yopt be
close to Ysoln� We assume that Yopt is close enough to
Ysoln so that the partial derivative of the integrated
objective function E�Y ��� ��t�� t�� with respect to � is
� for the optimal path Ysoln and increases as we move
away from Ysoln toward Yopt� Note that E is now a
function of � and ��t�� We assume that the variation
of E with � is quadratic near Ysoln� This is because
Ysoln is assumed to be a local minimum and Yopt is
assumed to be su�ciently close to Ysoln so that for � �
� � �opt� d

�E�d�� � �� Here� �opt refers to the value
of � corresponding to the speci	c path Yopt� Similarly�
�opt�t� refers to the value of � corresponding to the
speci	c path Yopt�t�

Thus� we have �where EL�Y � stands for the left
hand side of the Euler�Lagrange equation � equation
��� 


�

E


�
�
���opt����opt

�

Z t�

t�

EL�Yopt��opt�t� dt ����

�E �

Z �opt

�

�

E


�
�
���opt

d� ����

where�E represents the gain in the objective from
the minimal objective at Ysoln�E�Yopt�� E�Ysoln��

Since we know 
E�d� is maximal at �opt 
for � �
� � �opt�� we can write


�E � �opt

Z t�

t�

j EL�Yopt� j dt �� �

since j EL�Y ���t� j � j EL�Y � j j ��t� j� If ELmax

is the maximalmagnitude of EL�Yopt� between t� and
t�� we can write


�E � �t� � t���optELmax ����

�E��t� � t��

�opt
� ELmax ����



��

This states that the net time averaged violation
�beyond what is required� in the penalty or objec�
tive function per unit displacement �from the optimal
path� is less than or equal to the maximal magnitude
of the left�hand side of the Euler�Lagrange equation�
We can also apply this equation locally to claim that
the time averaged violation per unit displacement at a
point is less than or equal to the magnitude of the left
hand side of the Euler�Lagrange equation evaluated at
that point�

Equation �� can be written in pointwise form as


�E

�t
� �opt�t�EL�t� ����

Here the left hand side represents the unnecessary �un�
physicality� �as measured by the integrated objective
E� per unit time in the neighborhood of time t� �opt�t�
represents the magnitude of the deviation of Yopt from
Ysoln in the neighborhood of time t �in this formulation
�opt is a function of time because we consider an in�
	nitesimal neighborhood near t 	xing the position and
velocities at the end points to be those of the spline so�
lution�� If �opt is relatively independent of t compared
to EL� we can estimate the unnecessary unphysicality
merely by considering the magnitude of the left hand
side of the Euler�Lagrange equations �EL�� This is
the approach we use�

Equation �� can be used more accurately to esti�
mate the time averaged violation in the penalty func�
tion if a value for �Y can be calculated� This can be
done either by solving the Euler�Lagrange equation
EL�Y � � � and comparing this solution to the op�
timized spline solution calculated after minimization�
Here� the boundary conditions �described in Appendix
B� at t� and t� are 	xed by the corresponding values
for the optimized spline solution� An alternative is to
calculate a solution to the Euler�Lagrange equations
locally �for instance with a simple low�order power�
series solution�� We then have


�opt �

Z t�

t�

j Yopt�t� � YEL�t� j dt ����

where Yopt is the optimized solution� and YEL is the
solution calculated by the methods discussed above�
We can also use this equation pointwise 


�opt�t� �j Yopt�t� � YEL�t� j ����

where �opt is now a function of time�


