
Constructing Client�Server Multi�Player

Asynchronous Networked Games Using a

Single�Computer Model�

Daniel M� Zimmerman� Brian Rothstein�

Yevgeniy Kaganovich and Khai Pham

Computer Science �����	

California Institute of Technology

Pasadena� California 
����

fdmz� brianr� ymk� khaig�cs�caltech�edu

� August �

�

Abstract

We examine the process of creating asynchronous networked games

by applying systematic transformations to their single�computer ana�

logues� identify the need for such transformations� and propose a sim�

ple system of rules for them� In developing these rules� our primary

concerns are comparing the �ow of events in single�processor and net�

worked games and examining the restrictions and limitations resulting

from speed considerations� Although this paper only discusses games�

the transformation rules may apply to any networked application with

asynchronous data input and exchange�

Keywords� asynchronous message passing� networked multi�player games� distributed

systems� client�server model� Java

�This work was supported under the Caltech Infospheres Project� The Caltech Info�

spheres Project is sponsored by the Air Force O�ce of Scienti�c Research under grant

AFOSR F��	
��������
��� by the CISE directorate of the National Science Foundation

under Problem Solving Environments grant CCR��

����� by the NSF Center for Re�

search on Parallel Computation under Cooperative Agreement Number CCR���
�����

and by Novell� Inc� and Parasoft Corporation�

�



� Introduction

Asynchronous networked game programming is a new and exciting applica�
tion of the Internet� While networked games are more interesting in terms of
both gameplay and programming than their single�computer counterparts�
they present many design complications ���� These include fairness and syn�
chronization� which are unique to networked games� and game speed� which
ascends to a new level of complexity as a result of message passing and net�
work speeds�

In response to the increasing demand for simplifying the construction of
networked games� a few models have been proposed to deal with the problems
of distributed programming and asynchronous message passing ��� ��� Our
model centers around a transformation from a multi�player� single�computer
version of the game� in an attempt to provide an easier transition to the
realm of networked games�

Single�computer multi�player games have two advantages over networked
games	 
rst� all players see the same display in a single�computer game� so
everyone gets every piece of game information simultaneously� second� com�
peting inputs are always processed in the correct order in a single�computer
game because there is only one computer to arbitrate among the inputs�

The method we present in this paper makes it possible for networked
games to have these properties too� In our model� a central server receives
all event data from each player on the network� arranges the events in their
proper order� and then broadcasts them to the players using a messaging
protocol which preserves message ordering� The events received by the clients
are then in the correct order� and can be processed just as in the single
computer version�

The transformation rules presented are a set of clear and simple guidelines
which help the programmer to correctly identify and handle the issues listed
above� At the same time� they are �exible enough to be applied to most
games� To test the viability of the proposed transformation rules� we have
successfully applied them to three di
erent networked games� which will later
serve as examples of how our transformations apply to games with widely
varying communication and gameplay requirements�

We begin by introducing some concepts and de
nitions which are used
frequently throughout this paper� Next� we discuss the considerations which
must be dealt with in designing networked asynchronous games� present our
transformation rules in detail� and describe the successful application of these

�



rules to three di
erent games� Finally� we compare our method to others
which have been proposed� and present our conclusions�

� Concepts and De�nitions

In order to devise a set of transformation rules for multi�player games� we
make use of several conceptual and programmatic constructs� In this section�
we describe these constructs and their functions�

��� PlayerTable

In a single�computer game� all players� states are controlled by the single
computer� The programmer need not concern herself with consistency of
states� because there are no unanticipated state changes being made� In a
networked game� however� states may be changed simultaneously on many
di
erent computers� We use a construct called the PlayerTable to ensure
consistency of states in a networked game� In addition to state information
for each player� a PlayerTable contains contact information which allows this
state information to be communicated between players and the central server�
The server keeps the main PlayerTable for the game � when a single client
makes a change to its copy of the PlayerTable� this change is sent to the
server� which broadcasts it to the remaining players�

An entire PlayerTable can be sent over the network as a single message�
which allows players who join the game late to be easily �brought up to
speed� with respect to players already in the game�

��� Net Event

Asynchronous games� like many other applications� are event�driven � the
gameplay results from players� actions� In a single�computer game� an event
is synonymous with a change in the state of one of the players� A net event

is the extension of this concept to a networked game� where a change in one
player�s state must be communicated to the other players on the network� Net
events generated by a player are communicated using the contact information
in that player�s PlayerTable� A net event which modi
es the game state is
called a shared event�

�



��� Net Event Handler

A net event handler is a process that listens for net events and converts them
into local events to be processed by the player�s machine� If a language with
thread support� such as Java� is used for programming� multiple net event
handlers in separate threads can listen for incoming net event transmissions�
which can improve communications e�ciency�

��� Dispatcher

A dispatcher is a speci
c type of net event handler which listens for net
events containing requests to join or leave the game� It is useful when the
players are allowed to enter or leave in the middle of a game� The dispatcher
on the server may allow or disallow the join�leave� and then broadcast the
appropriate net event to the dispatchers on the other clients� It is possible for
the programmer to disable the dispatcher in situations where it is undesirable
to have players enter or leave the game �for instance� the middle of a hand
of poker might be an inopportune time for a new player to join the table��

��� Game Clock

The players in an asynchronous networked game are likely to have network
connections of varying speeds� In games with minimal synchronization� there�
fore� a game clock is necessary to ensure that no player is at a disadvantage as
a result of variations in network performance� For instance� in a networked
quiz game� if one player were to buzz in with the answer� it might be the case
that the player had seen the question for a longer time than other players
because the question message got to him 
rst� To overcome this problem�
each player keeps a local game clock� In the quiz game example� the clock
starts when the question message is received and its value is sent to the server
when the player buzzes in� When the server receives the buzz�in message�
it then sends a request to all other clients with the time indicated on the
buzz�in message� Each client responds by checking in with the server if they
have not sent a buzz�in message by the time the speci
ed time is reached�
Once the server has received either a buzz�in message or a check�in message
from every client� it knows that every player has had an equal opportunity
to buzz in� and can thus determine the true winner based on the buzz�in
message with the minimum clock time�

�



��� Shared Game Object

A shared game object is an object within the game whose state can be changed
or observed by more than one player� simultaneously or at separate times�
One example of a shared game object is the ball in the Pong game �described
in Section ����� whose state can be changed by all players at separate times
but is observed by all players simultaneously�

��� Danger Zone

Each game state in which multiple players need to access a shared object
simultaneously� or in which multiple players are interacting directly with
each other in a timing�critical way� is called a danger zone� The number and
frequency of danger zones varies from game to game � in the Pong game� for
example� danger zones occur only when a ball is close to a paddle� Within
its danger zones� a game absolutely must be synchronized to prevent the
creation of divergent game states�

��	 State Bu
ering

To decrease message bandwidth� it is sometimes possible to allow a small
divergence in the game state until a point where this divergence could cause
a violation of the game rules� We call this state bu�ering� For instance�
in the Tron game �described in Section ����� the player could send events
every 
ve moves� as long as it is not within 
ve moves of colliding with any
other player� Since what any particular player is really seeing with such state
bu
ering is the other players� positions from 
ve moves ago� it is possible for
the other players to be anywhere within a 
ve move radius of their positions
on the player�s screen�

� Game Design Considerations

Networked games di
er in the restrictions placed on them by the game rules
and the allowable player interactions� Before a networked game can be e
ec�
tively coded� possible performance bottlenecks resulting from particular as�
pects of the game must be identi
ed and dealt with� Each of these presents
a design problem for the programmer and must be considered before any

�



coding takes place� In this section� we examine the design problems which
arise in networked games� and discuss possible solutions to these problems�

��� Communication Volume

While modern computers are powerful enough to seamlessly handle most
game�related computations� the amount of data communicated between play�
ers and the server is the most important restriction on networked game per�
formance because of network latency� We call this amount of data� which
should be the main factor in determining what information needs to be sent
over the network and how it should be encoded� the communication volume�
For games requiring a very small communication volume� it may be su��
cient to communicate all known state information �thus greatly simplifying
the game programming�� but� more often than not� a game programmer will
need to choose a subset of the state to be communicated�

The programmer must keep the communication volume in mind when
choosing the communication protocol to be used by the game� While using
a high�level communications layer may greatly simplify the programming
process� some communication�intensive games require reverting to lower level
protocols such as TCP and UDP� For instance� we have successfully used the
communications layer provided by the Caltech Infospheres Group�s info�net

package ��� for two of our example games� but found it inadequate for the
third� for which we used UDP directly�

The communication volume also determines the amount of data stored
in the PlayerTable� For games with high communication volume� the main
PlayerTable may be subdivided into smaller ones if there are states in which
it is reasonable to broadcast only partial information�

��� Communication Density

Just as communication volume di
ers from game to game� so does com�

munication density� the amount of communication which must take place
within a certain amount of time� The communication density of a speci
c
game� moreover� may vary wildly at di
erent points during gameplay � even
games with low average communication density may have some states with
extremely high communication density� where more information than usual
must be exchanged between clients� In a Pong�style game� for example� the

�



states where the ball is close to a player�s paddle require much more com�
munication than the states where the ball is in the middle of the screen� If
not handled properly� points of high communication density may cause an
unacceptable decrease in game speed�

The programmer should try to make the communication density of a game
as uniform as possible� as a way to minimize �spikes� of high communica�
tion density� One way to accomplish this is by subdividing the PlayerTable�
another is to use state bu
ering as much as is permitted by fairness and
synchronization considerations �described below��

��� Synchronization

Synchronization is one of the limiting factors in the optimization of communi�
cation density� The rules of any asynchronous game require synchronization
to occur at some states� even if this synchronization is only to determine
who wins� If the players are not already synchronized at that point� as when
state bu
ering takes place� the bu
ering causes the communication density
to increase� Hence� the frequency of synchronized states is a restriction on
the usage of state bu
ering�

Synchronization is also important in terms of timing� Message delay is
a big problem in asynchronous games� because the outcome of a player�s
actions often depends on the timing of these actions with respect to those of
the other players� For example� in the Set card game only the person who

rst claims the set may get the point for 
nding it� However� we assume that
for the game to be fair� the �speed� of his response should not depend on the
speed of his connection or processor� In this case� synchronization is handled
using a game clock to ensure that each player gets an equal opportunity to

nd the set�

��� Quality of Service

Quality of service considerations come into play when dealing with players
who inhibit the gameplay signi
cantly more then the rest� This may occur if
a player is joining�leaving the game� or if he has problems with his connection
or computer� These decisions are largely game�dependent� but may involve
timeouts or special game states� For example� timeouts for slow�broken
connections and time adjustments for players who entered the game in the

�



middle of a hand �and are thus at a disadvantage compared to other players�
are implemented in the Set game�

��� Communication Scoping

In some situations� not all players need to be noti
ed of a certain net event�
The restriction of communications such that only a subset of players is noti�

ed about a particular net event is called communication scoping� If a game
requires unusually high communication volume for every net event� or if there
are a large number of net events which are only important to one or two out
of a group of players� communication scoping can save a lot of time and
improve game responsiveness� For instance� a game where players are not al�
ways in each others� 
elds of view might bene
t greatly from communication
scoping� since unobservable movements would not need to be communicated
as frequently to ensure state consistency�

� Transformation Rules

This section details a set of transformation rules which take a single�computer
multi�player game and produce a networked multi�player game�

�� Save game code twice� as GameServer and GameClient

The 
rst step in writing a client�server application is to have both a
client and a server� Both the client and the server need to know some
of the game rules� and transforming them both from the original source
code of the single�computer game is the easiest way to give them this
knowledge�

�� De�ne shared state information to be stored in the Play�

erTable

In any multi�player game� players need to know certain information
about each other when they join the game �this may include other
players� names� identifying numbers� positions in the game� and scores��
All of this information should be stored in the PlayerTable� so that a
player joining the game can learn the entire current state of the game
just by receiving the PlayerTable�

�



�� Implement net event handlers to communicate net events

This is the key to transforming the single�computer game into a net�
worked game� In the single�computer model� when a user interacts with
the game� an event is posted to that computer�s event handler� In a
networked game� events are posted to net event handlers when players
interact with their respective clients�

It may be desirable to have multiple net event handlers for multiple
net event types� For instance� one could implement a membership
handler� which handles all events generated when clients join or leave
the game� and a game event handler� which handles all events related
to actual gameplay� The use of multiple net event handlers allows for
automatic sorting of net events� which reduces the overhead required to
sort messages� however� each net event handler requires its own thread�
which increases thread�related overhead on each client system�

�� Determine which events need to be communicated to other

clients and the server

Some local events in a game may not need to be shared with the server
or the other clients� and can instead be handled solely by the local game
client� These events include invalid game actions and any events which
do not modify the state of the game� For instance� if a player wanted to
look at her game statistics� the other clients would not be thrown into
a divergent game state if they were not informed of this local event�
To reduce communication volume� only events which change the game
state should be communicated to the server�

�� Determine which information needs to be centralized

Centralized information is data which the server needs to maintain and
broadcast to the game clients� For instance� in a card game� it might be
desirable to have the server keep track of the deck so that it can shu�e it
and then deal cards to the clients� However� to save on communication
volume� each client could have a copy of the deck� The server could
then give each client a random number seed at the beginning of the
game� and each client would shu�e the deck using this seed and deal
the appropriate cards based on previous game events and the game
rules� The use of previous game events and game rules to change or
de
ne the game state without receiving a message explicitly detailing

�



the new state is called a derived update� As much as possible� the client
should be written to use derived updates� because this minimizes the
amount of communication between clients and the server�

�� Have clients send all shared events to the server

Clients must send all shared events to the server� which will then send
the events to all other clients and thereby keep the game state consistent
among all clients� The server keeps track of the game state in the same
way as the clients� by watching for shared events and using the game
rules � it can therefore bring new clients up�to�date with the game
state quickly� by sending them the current PlayerTable and any other
centralized state information resulting from shared events�

�� Determine the danger zones

Whenever a client enters one of the game�s danger zones� it may become
necessary for it to cease operations until it receives an update of the
game state� This is necessary when a shared game object is being
modi
ed by a remote player� The client only knows what the remote
player has done up until the last net event it has received from that
player� but the remote player may have sent more event messages that
have not been received� Before the client lets the remote player modify
the shared object� it needs to determine exactly what the remote player
is doing� This may present a bottleneck� and must be considered in the
transformation process� Once the danger zones of the game� if any have
been identi
ed� there are various methods for handling the necessary
synchronizations�

One method� which may result in unacceptable overhead if danger zones
are frequent� is to simply synchronize on every game iteration which
takes place within a danger zone� Another is to stop play on all clients
except the one which can potentially modify the shared object� which
then records everything it does with the shared object and broadcasts
an update to the other clients� Also� in some games� if a client sees that
a shared object is headed for a danger zone it can slow the movement
of the shared object on the local display until it receives the update
message� so that there is a seamless transition rather than an abrupt
halt while waiting for synchronization�

If two or more players� danger zones overlap� then the only way to

��



maintain a consistent state is to have these players synchronize on
every game iteration� No single player can be responsible for recording
the state� since multiple players could have had an e
ect on it�

Only a certain subset of games can really be classi
ed as having clearly
de
ned danger zones� Some games have the entire playing 
eld �or
nearly the entire playing 
eld� as a synchronization region� and must
therefore synchronize on every game iteration� Such games are the
hardest to implement e
ectively in a network environment� because
they require a very large communication volume�

� Example Games� Set� Tron� Pong

��� Set

Set is a card game in which twelve cards are laid out on a table and players
examine the cards trying to 
nd a set of three which meets certain require�
ments� When a player spots a set� she calls it and has 
ve seconds to pick
up the cards comprising the set� If the cards are actually a set� she keeps the
cards� If she is incorrect and they are not a set� or if her time expires� then
she must put the cards back and also put three cards from her pile �if she
has one� back into the deck� The winner of the game is the player who has
the most cards in her pile when there are no cards left in the deck�

Set can be implemented as a single�computer game by giving each player
a key to press when she wants to call a set� The PlayerTable contains each
player�s name and a list of the cards each player has won� When a player
presses her key� the game announces who called the set and allows her to
click on the cards comprising the set� If the player runs out of time or picks
an invalid set of three cards then the game announces that the cards were
invalid and leaves them on the table� It also puts three of the player�s cards
from his pile back in the deck and shu�es the deck� If the player gets a valid
set of three cards� the game takes those cards o
 the table and puts them
in the player�s pile� and then deals a new set of three cards onto the table�
When there are no cards left in the deck and no valid sets of three cards on
the table� the game is over�

To convert this into a networked game� we 
rst save the single�computer
version as both the client and the server� As stated previously� the Play�
erTable consists of the players� names and piles of cards� Since the Play�

��



erTable construct was used in the single�computer version of the game� it is
easier to transform the single�computer version to a networked version�

We use two net event handlers to handle all network messaging� One
of the event handlers deals with players joining and leaving the game at
any time� The other event handler deals with all other game actions� We
determine the net events necessary for the game to be �Player Joins�� �Player
Leaves�� �Player Claims Set�� �Player Checks In�� �Player Clicks Card��
�Player Runs Out of Time�� and �Server Deals Cards�� The join�leave event
handler handles �Player Joins� and �Player Leaves� messages� and the action
event handler handles all other game actions�

The client needs to share three events with other clients	 �Player Claims
Set�� �Player Clicks Card�� and �Player Runs Out of Time�� However� these
events don�t need to be shared all the time� If a player has not claimed a
set� she isn�t allowed to click on a card and therefore �Player Clicks Card�
events don�t need to be shared with all other clients� Also� if a player is in
the process of picking up cards� then no other player is allowed to claim a
set and therefore �Player Claims Set� events don�t need to be shared�

Other changes in game state can be derived from these shared events�
For instance� the server does not need to inform all the clients when one
player has picked an invalid set of cards� because all the clients have received
the three Player Clicks on Card messages and can determine for themselves
whether the set was valid or not� If it was valid� they can remove the cards
from the table and put them in the player�s pile without receiving an explicit
message instructing them to do so� and then wait for the next three cards to
be dealt� If the set wasn�t valid� the clients know to leave the three cards on
the table and take three cards out of the player�s pile�

A player running out of time is something of which the local client needs
to inform everyone� because only the local client can be sure that 
ve seconds
have passed without the player clicking on three cards� If other clients tried
to determine that 
ve seconds had passed before the player had clicked on
three cards� they might do so incorrectly because a �Player Clicks on Card�
message might still be in transit�

When the server receives game action messages� it forwards the messages
on to the other clients and also keeps track of the game state itself� That is�
when it receives a �Player Clicks on Card� message� it actually modi
es its
own copy of the game state to mark this event� This way� the server maintains
the same state as the clients and is able to determine� using the rules of the
game� when it should deal cards� remove cards� or take other game actions�

��



If the server didn�t keep track of the game state itself� extra messages �such
as requests from clients for cards to be dealt� would be necessary�

The server disallows joining the game �by suspending the join�leave event
handler� when a player is in the process of picking up cards from the table�
This makes it unnecessary to keep currently selected cards in the PlayerTable
state information� If a client could join while another player was selecting
cards� this client would need to know which cards were selected when it joined
so that it can have a consistent game state�

The shared game object in Set is the card table� Players can a
ect it
when they claim a set� so the clients need to synchronize whenever anyone
tries to claim a set� This is implemented in a fair way using a game clock�
Each client has a timer which keeps track of how long the current set of
cards have been displayed �the time since the last three cards were dealt��
When one of the clients attempts to claim a set� it sends the time on its
game clock to the server as part of its �Player Claims Set� message� Each
of the other clients then sends a �Player Checks In� message when its clock
reaches this time �or if the clock has already exceeded this time� if the player
has not attempted to claim a set herself� When the server receives either
a �Player Claims Set� or �Player Checks In� message from every client� it
determines the actual winner to be the client with the minimum clock value
on its �Player Claims Set� message and gameplay continues�

��� Tron

Tron is a game in which players traverse the game board� leaving behind
an impenetrable trail which no player may cross� If a player hits any trail�
including her own� she loses� To implement this as a single�computer game�
each player is assigned a di
erent set of keys with which to control his move�
ments�

To convert this into a networked game� we 
rst save the single�computer
game as both the client and the server� The PlayerTable contains the players�
names and scores �how many times they�ve won by being the last left alive��

As in Set� we use two event�handlers� One handles players joining and
leaving the game� and the other handles all other actions� Joining and leav�
ing are disallowed in the middle of a game round� so players� positions and
directions do not need to be stored in the PlayerTable� The only net event
is �Player Turns�� which contains the direction in which a player turned�
All other gameplay information can be derived using this net event� since

��



each player moves at a constant rate in the direction she was last facing�
Therefore� each client can independently determine when collisions occur
and handle them appropriately�

The server�s main responsibility is to handle the joining and leaving of
clients� The server only allows clients to join and leave between rounds� it
keeps track of the game state in the same way as the clients� so it always
knows when a round is over�

The main problem with Tron is the amount of synchronization required
to maintain consistent game state across clients� If a client simply sends
�Player Turns� messages indiscriminately� they can arrive at any time and
the other clients will see that player turn at various di
erent times� producing
divergent game states� The shared game objects in Tron are the players�
trails� so every time a player turns �or doesn�t turn�� she is a
ecting the game
state by extending her trail� This would seem to indicate that players need
to synchronize on every game iteration� To reduce communication volume�
though� we note that a player�s next move is only critically important if any
other player is within one move of that player� because only then could it
possibly cause a collision�

The implementation can take advantage of this by synchronizing only
every n moves� where n is an arbitrary constant which will be chosen to give
acceptable performance� This means that after every n moves� the player
sends his last n moves to the server as a single message� The resulting
movement of the player on other clients can be made seamless by displaying
the n moves gradually �one per iteration�� This means� however� that each
client is actually seeing what the other players did n moves ago� If two clients
are within n moves� they need to synchronize more closely to make sure that
each player is not actually running through the other player�s trail simply
because the n move bu
er hasn�t caught up� The danger zone for Tron�
therefore� is when two players are within n moves�

��� Pong

Pong is a game where multiple players control paddles situated on the sides
of the screen� The goal for each player is to keep a moving ball from passing
her paddle� by maneuvering the paddle such that the ball bounces o
 it� For
this game� our transformations proceed along almost exactly the same lines
as Tron� First� we write the single�computer game� with each player having
a di
erent set of keys� Next� we save the game as both the client and server�

��



Again� the PlayerTable contains only the players� names and scores�
The only action message is �Player Moves Paddle�� and the shared game

objects are the paddles and the ball� The position of the ball can be calcu�
lated based on its previous position and trajectory� taking into account the
positions of all paddles� which can be calculated using the �Player Moves
Paddle� messages� However� a client doesn�t even need to know the exact
paddle position for the other players unless it is possible for the ball to ac�
tually hit one of the paddles� Therefore� synchronization of clients need only
occur when the ball enters the small strip of play area where a player�s paddle
may be� The danger zone for Pong� therefore� is that small strip of play area�
The client of the player controlling this paddle records all �Player Moves
Paddle� net events while the ball is in this region and synchronizes with the
other clients� This is quite di
erent from Tron� where every single movement
made by each player must be communicated to the other players�

	 Comparison to Other Methods

The need for systematization of networked distributed programming is dis�
cussed by other authors in ��� ��� The problems of network delays ��� and
increased programming complexity ��� are also addressed elsewhere�

The process of transforming a single computer application into a net�
worked one is examined in ���� mainly with regard to already existing ap�
plications� However� this examination largely neglects the bene
ts of this
approach� instead regarding it as a problem that needs to be overcome� We�
on the other hand� believe that this transformation technique is quite useful�
and that the reason it has presented di�culty in the past is that most pro�
grams to which it has been applied were not speci
cally designed with such
extension in mind�

Because of that� we have found the existent proposals of single�computer
to multi�computer transformations to be rigid and unpermissive� The pre�
dominant attempt in the 
eld has been to automatize the transformation
as much as possible by creating an �absolute data sharing� model� as in
���� where all state information is shared by broadcasting every state change
among all participating parties� We feel that this approach� while suitable
for some speci
c applications� is impractical for most multi�player games�
mainly because of speed constraints�

Many distributed computing models employ techniques similar to our

��



net event handling� For instance� CORBA ��� technology employs stubs and
skeletons to isolate the transformation of network communications into local
data�

James Begole� of Virginia Tech� favorably compares the event broadcast�
ing model to display broadcasting in ��� and suggests a view of a game as
a sequence of states for each player in ���� He has also identi
ed the event�
driven nature of the games and has developed a �retardation� technique ����
similar to the state bu
ering described in our paper� We have used these and
other concepts to form a logical system of transformations� presenting an or�
ganized and intuitive method for identifying and employing these concepts�

Many of the concepts we have de
ned have already been implicitly utilized
in other applications� but have not previously been clearly formulated or
organized� In fact� many existing applications and frameworks can be used
to actually implement the ideas presented here�


 Conclusions

In this paper� we have described a process to systematize and simplify the
construction of networked asynchronous games� Our approach relies on pro�
ducing a single version of the game� which is easier to create in terms of
programming and design� and subsequently transforming it into a networked
client�server game� To that end� we have developed a set of constructs and
transformation rules to address the issues which arise in multi�player net�
worked gaming� Our constructs allow vital game information to be viewed
as local events� so that the need for new code� and therefore the possibility
of introducing bugs and other problems into the game� is minimized�

These transformation rules help the programmer by allowing him to im�
plement synchronization points� shared states� and network events as exten�
sions to the single computer version� At the same time� they are formulated
so as to allow for game�speci
c optimizations and to not impose unnecessary
limitations on the program design�

The usefulness of the transformation rules was demonstrated in the con�
version of three di
erent games� each representing a di
erent degree of mes�
sage and synchronization complexity� Our method� therefore� provides a con�
venient framework for the conversion of single�computer multi�player games
into a networked client�server games� regardless of game complexity�

��



References

��� Begole� J�� and Sha
er� C�A� ������� Internet Based Real�Time Multiuser
Simulation	 Ppong�� Technical Report� Virginia Tech Department of Com�
puter Science�

��� Begole� J�� Struble� C�A�� and Sha
er� C�A� ������� Leveraging Java Ap�
plets	 Toward Collaboration Transparency in Java� IEEE Internet Com�

puting� volume �� number �� pp� ������

��� Begole� J�� Struble� C�A�� Sha
er� C�A�� and Smith� R�B� ������� Trans�
parent Sharing of Java Applets	 A Replicated Approach� In conference
proceedings � the ���� Conference on User Interface Software and Tech�
nology �UIST�����

��� Chandy� K�M�� Kiniry� J�� Rifkin� A�� and Zimmerman� D� ������� The
Infospheres Infrastructure User�s Guide� Technical Report� California In�
stitute of Technology�

��� Crowley� T�� Miazzo� P�� Baker� E�� Forsdick� H�� and Tomlinson� R�
������ MMConf	 An Infrastructure for Building Shared Multimedia Ap�
plications� In conference proceedings � the ���� Conference on Computer�
Supported Cooperative Work �CSCW�����

��� Grandmaster Technologies Corp� ������� CyberSite Internet Collabora�
tion Engine� URL http���www��tcc�net�CyberSite

��� Mowbray� T�J� and Zahavi� R� ������� The Essential CORBA	 System
Integration Using Distributed Objects� John Wiley � Sons� Inc� New York�

��� Wilson� A� ������� An Internet Game Server in Java� Web Techniques
Magazine� March �����

��


