
A Method for the Speci�cation� Composition� and Testing

of Distributed Object Systems

Thesis by

Paolo A�G� Sivilotti

In Partial Ful�llment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena� California

����

�Submitted December �� ����	

ii

c� ����

Paolo A
G
 Sivilotti

All Rights Reserved

iii

�O frati�� dissi� �che per cento milia

perigli siete giunti a l�occidente�

a questa tanto picciola vigilia

d�i nostri sensi ch��e del rimanente

non vogliate negar l�esper��enza�

di retro al sol� del mondo sanza gente�

Considerate la vostra semenza	

fatti non foste a viver come bruti�

ma per seguir virtute e canoscenza��

Dante� Inferno XXVI� ������

iv

v

Acknowledgements

Many people contributed to this research� and I am thankful to them all
 I have been

fortunate to work with Mani Chandy� my academic advisor
 His ability to extract the

elegant solution hidden behind the ugly hack� or the clever insight camou�aged as a mundane

question has been an inspiration
 Many thanks also to the other members of my thesis

committee� Yaser Abu�Mostafa� Jim Arvo� Rajive Bagrodia� and Alain Martin� for taking

the time to review this thesis and to make helpful suggestions

Thanks to the other graduate students of our research group� past and present� John

Thornley� Berna Massingill� Adam Rifkin� Eve Schooler� Rajit Manohar� Rustan Leino� Pete

Carlin� Joe Kiniry� and Dan Zimmerman
 Their individual in�uences shaped my research

environment here at Caltech
 Thanks also to Diane Goodfellow for her administrative

support

Thanks to the friends who helped make the good times fun� and the less good times

bearable
 Especially John Thornley� for many interesting and entertaining discussions �some

even related to research�	� and Mike Palmer� for being a beacon of sanity in a crazy world

To Linda I owe a debt of gratitude� for her kindness and understanding
 She has been

my closest con�dant� telling me what I needed to hear and listening to what I had to say

Finally� thanks to my family � in particular� my parents� for their unwavering love and

support� Mass and Ruth� for making sure I always had a home� Marco� for encouraging my

academic pursuits� and Katie� who has asked for so little and has given me so much

This research has been funded in part by an IBM Computer Science Fellowship� an

NSERC ��� Fellowship� DARPA grant N

������J��
��� the NSF under Cooperative Agree�

ment No
 CCR����

�� and AFOSR grant F����
������
���

vi

vii

Abstract

The formation of a distributed system from a collection of individual components requires

the ability for components to exchange syntactically well�formed messages
 Several tech�

nologies exist that provide this fundamental functionality� as well as the ability to locate

components dynamically based on syntactic requirements
 The formation of a correct dis�

tributed system requires� in addition� that these interactions between components be se�

mantically well�formed
 The method presented in this thesis is intended to assist in the

development of correct distributed systems

We present a speci�cation methodology based on three fundamental operators from tem�

poral logic� initially � next � and transient
 From these operators we derive a collection

of higher�level operators that are used for component speci�cation
 The novel aspect of our

speci�cation methodology is that we require that these operators be used in the following

restricted manner�

� A speci�cation statement can refer only to properties that are local to a single com�

ponent

� A single component must be able to guarantee unilaterally the validity of the speci��

cation statement for any distributed system of which it is a part

Speci�cation statements that conform to these two restrictions we call certi
cates

The �rst restriction is motivated by our desire for these component speci�cations to be

testable in a relatively e�cient manner
 In fact� we describe a set of simpli�ed certi�cates

that can be translated into a testing harness by a simple parser with very little programmer

intervention
 The second restriction is motivated by our desire for a simple theory of

composition� If a certi�cate is a property of a component� that certi�cate is also a property

of any system containing that component

Another novel aspect of our methodology is the introduction of a new temporal operator

that combines both safety and progress properties
 The concept underlying this operator

viii

has been used implicitly before� but by extracting this concept into a �rst�class operator� we

are able to prove several new theorems about such properties
 We demonstrate the utility

of this operator and of our theorems by using them to simplify several proofs

The restrictions imposed on certi�cates are severe
 Although they have pleasing conse�

quences as described above� they can also lead to lengthy proofs of system properties that

are not simple conjunctions
 To compensate for this di�culty� we introduce collections of

certi�cates that we call services
 Services facilitate proof reuse by encapsulating common

component interactions used to establish various system properties

We experiment with our methodology by applying it to several extended examples

These experiments illustrate the utility of our approach and convince us of the practicality

of component�based distributed system development
 This thesis addresses three parts of

the development cycle for distributed object systems� �i	 the speci�cation of systems and

components� �ii	 the compositional reasoning used to verify that a collection of components

satisfy a system speci�cation� and �iii	 the validation of component implementations

ix

Contents

Acknowledgements v

Abstract vii

List of Figures xv

List of Programs xvii

� Introduction �

�
� Background �

�
� Motivation �

�
� Our Semantic Constructs �

�
� Contributions �

�
� A Simple Example� The Shared Queue �

�
� Design Decisions �

�
� Thesis Structure �

� Model of Computation ��

�
� Operational Overview of Model ��

�
�
� Component Implementation ��

�
�
� Component Interaction� The Message�Passing Layer � � � � � � � � � ��

�
�
� Component Descriptions ��

�
� State�Based Model ��

�
� An Instance of the Model� The CORBA Standard � � � � � � � � � � � � � � ��

�
�
� History ��

�
�
� Architecture and the IDL ��

�
�
� Other Implementations ��

�
� Notation and Conventions �

x

�
�
� Functions and Operators �

�
�
� Quanti�cation �

�
�
� Proof Format ��

� Certi�cates and Speci�cation ��

�
� Component Speci�cation ��

�
� Safety ��

�
�
� Certi�cate initially ��

�
�
� Certi�cate next ��

�
� Progress ��

�
�
� Certi�cate transient ��

�
�
� Use of transient ��

�
� Derived Certi�cates� stable � invariant � Leads�to� and follows � � � � � � ��

�
�
� Certi�cate stable ��

�
�
� Certi�cate invariant ��

�
�
� Certi�cate Leads�to ��

�
�
� Certi�cate Follows ��

�
� Channel Properties ��

�
�
� De�nitions Common to All Channel Types � � � � � � � � � � � � � � ��

�
�
� Properties that Depend on Message�Delivery Discipline � � � � � � � ��

�
�
� Properties that Depend on Sender Discipline � � � � � � � � � � � � � ��

�
� Simple Certi�cates for Safety ��

�
�
� Monotonicity ��

�
�
� Boundedness ��

�
�
� Unquanti�ed Next ��

�
�
� Functional Next ��

�
� Simple Certi�cates for Progress �

�
�
� Unquanti�ed Transience �

�
�
� Functional Transience ��

� Follows Properties ��

�
� Basic Theorems ��

�
�
� Properties for Posets ��

�
�
� Properties for Lattices ��

�
�
� Properties for Complete Lattices ��

xi

�
� Proofs of Basic Theorems ��

�
�
� Monotonicity ��

�
�
� Least Fixed Point �

�
� The Earliest Meeting Time ��

�
�
� Problem De�nition ��

�
�
� A Solution ��

�
�
� Proof of Solution ��

�
� Proofs of Channel Properties ��

�
�
� De�nitions Common to All Channel Types � � � � � � � � � � � � � � ��

�
�
� Properties that Depend on Message�Delivery Discipline � � � � � � � ��

�
�
� Properties that Depend on Sender Discipline � � � � � � � � � � � � � ��

� Certi�cates and Testing ��

�
� Certi�cates as Assertions ��

�
�
� When Should Assertions be Checked� � � � � � � � � � � � � � � � � � ��

�
�
� A Practical Instance of Our Model� CORBA�compliant DSOM � � � ��

�
� Mapping of Speci�cation Variables ��

�
� Support for Safety Properties �

�
�
� Fundamental Safety Certi�cates �

�
�
� Monotonicity ��

�
�
� Boundedness ��

�
�
� Unquanti�ed next ��

�
�
� Functional next ��

�
� Support for Progress Properties ��

�
�
� Fundamental Progress Certi�cate ��

�
�
� Unquanti�ed Transience ��

�
�
� Functional Transience ��

� Services 	�

�
� Introduction ��

�
� Tokens ��

�
�
� Speci�cation ��

�
�
� Utility of Tokens ��

�
�
� Certi�cate Speci�cation ��

�
�
� Proof of Speci�cation ��

xii

�
� Logical Clocks ��

�
�
� Speci�cation ��

�
�
� Utility of Logical Clocks ��

�
�
� Certi�cate Speci�cation ��

�
�
� Proof of Speci�cation ��

�
� Example� Central Token Manager ��

�
�
� Mutual Exclusion with Tokens �

�
�
� Component Speci�cations ��

�
�
� Proof of Solution ��

 Example� A Distributed Auction ��

�
� The Problem ��

�
� A Solution ��

�
� Auctioneer and Bidder Components ��

�
�
� Auctioneer ��

�
�
� Bidder ��

�
�
� Certi�cates ��

�
� Proof of Correctness ��

�
�
� Problem Speci�cation ��

�
�
� Composition of Auctioneer and Bidder Speci�cations � � � � � � � � � �

�
�
� Proof of Solution �
�

�
� CORBA Instantiation of Solution �
�

�
� Discussion �
�

	 Example� A Branch and Bound Tree Search ���

�
� The Problem ���

�
� A Solution ���

�
� Master and Slave Components ���

�
�
� Master ���

�
�
� Slave ���

�
�
� Certi�cates ���

�
� Proof of Correctness ���

�
�
� Problem Speci�cation ���

�
�
� Composition of Master and Slave Speci�cations � � � � � � � � � � � � ���

�
�
� Proof of Solution ���

xiii

�
� CORBA Instantiation of Solution ���

�
� Discussion ���

� Related Work ��

�
� Speci�cation Theory ���

�
�
� Axiomatic ���

�
�
� Temporal Logic ���

�
�
� Calculational Re�nement ���

�
� Speci�cation Languages and Notations ��

�
� Software Validation ��

�
� CORBA IDL Extensions ���

�
� Component Technology ���

�
 Conclusion ���

�

� Summary ���

�

� Future Work ���

Bibliography ��

xiv

xv

List of Figures

�
� The state of the queue is determined by the sequence of add�� operations

and the number of remove�� operations
 �

�
� Each method is a target for signals from the run�time system
 � � � � � � � � ��

�
� Method Invocation in CORBA
 ��

�
� An example trace of execution for the Increment component
 � � � � � � � � ��

�
� Composition of Increment and Double components
 � � � � � � � � � � � � � ��

�
� Topology of communication link between users
 � � � � � � � � � � � � � � � � �

�
� A server�s protocol in a client�server system
 � � � � � � � � � � � � � � � � � � ��

�
� Protocol for the Link component
 ��

�
� Some example earliest available meeting time functions for a group of people
 ��

�
� Graphical time line for a collection of components exchanging messages
 � � ��

�
� Topology of the central token manager solution for mutual exclusion
 � � � � �

�
� An example subdivision of a search tree by the master
 � � � � � � � � � � � � ���

xvi

xvii

List of Programs

�
� A CORBA declaration of a queue object
 �

�
� Component description for a shared queue
 � � � � � � � � � � � � � � � � � � �

�
� Alternate component description for a shared queue
 � � � � � � � � � � � � � �

�
� Syntax of a component description
 ��

�
� Component description for a shared queue
 � � � � � � � � � � � � � � � � � � ��

�
� An IDL de�nition of the Queue interface
 ��

�
� SOM�DSOM code skeleton for Queue
 ��

�
� Description of the Increment component
 ��

�
� Description of the Double component
 ��

�
� Description of the Consumer component
 ��

�
� Description of the Link component
 �

�
� A mapping from the implementation state to a speci�cation variable
 � � � � ��

�
� A data structure for representing the history of an incoming channel
 � � � � ��

�
� An optimized data structure for representing the history of an incoming chan�

nel
 ��

�
� Code to maintain the channel history of an RPC target
 � � � � � � � � � � � �

�
� Testing a method for a next property
 ��

�
� Testing a method for the monotonicity of x
 � � � � � � � � � � � � � � � � � � ��

�
� Testing a method for the boundedness of x
 � � � � � � � � � � � � � � � � � � ��

�
� Testing a functional next property with two preprimed variables
 � � � � � ��

�
� A class for recording the history of a transient predicate
 � � � � � � � � � � � ��

�
�
 Code to test an unquanti�ed transient property
 � � � � � � � � � � � � � � ��

�
�� A class for recording the history of a functional transient predicate
 � � � � � ��

�
�� Code to test a functional transient property
 � � � � � � � � � � � � � � � � ��

�
�� De�nition of a class for multiple dummy fariables of a functional transient

property
 �

xviii

�
� Description of a TokenHolder component
 ��

�
� Description of a Clocked component
 ��

�
� Description of the TokenManager component
 � � � � � � � � � � � � � � � � � ��

�
� Description of the TokenClient component
 � � � � � � � � � � � � � � � � � � ��

�
� Description of the Auctioneer component
 � � � � � � � � � � � � � � � � � � ��

�
� Description of the Bidder component
 ��

�
� IDL de�nition of the Auctioneer interface
 � � � � � � � � � � � � � � � � � � �
�

�
� IDL de�nition of the Bidder interface
 �
�

�
� Description of the Master component
 ���

�
� Description of the Slave component
 ���

�
� IDL de�nition of the Master interface
 ���

�
� IDL de�nition of the Slave interface
 ���

�

Chapter �

Introduction

��� Background

Distributed programs are parallel programs with physically distributed components
 Each

component can be viewed as an independent thread of control that can operate on local

data� can communicate with other components� and can suspend and resume execution

Distributed components do not share state� the local data of one component is not visible

to other components
 Distributed solutions are appropriate when the system must interact

with physically distributed computational entities
 For example� components may be bound

to remote sensors and actuators in a dynamic control application� to human engineers in

a collaborative application� or to speci�c processor� memory� and display resources in a

scienti�c application

Distributed systems are becoming more prevalent
 With the proliferation of worksta�

tions and of networks of these machines� there is an established hardware base for these

applications
 By bridging large physical distances between users� networked computers are

a signi�cant communication resource
 The explosion of the World Wide Web ��� �� has

been dramatic evidence of the potential in exploiting networks
 In addition to information

exchange� there is also considerable interest in distributed collaborative� commercial� and

entertainment applications
 Distributed programming is poised to enter the mainstream of

commodity software

One methodology that is useful for managing the complexity of distributed systems is

object orientation ���� ���
 This is a technique of program design that focuses attention

on the data being manipulated ���� ���
 Object�oriented languages �such as C�� ���� and

Oberon�� ����	 contain sophisticated mechanisms for supporting user�de�ned data types�

�

known as classes
 One of these mechanisms� encapsulation� provides the ability to collect

data and functionality within logical units� and to separate the implementation of these

units from their interface
 A class interface is a speci�cation for how instances of the class

�i�e�� objects	 can be manipulated
 Thus� an interface is an abstract representation of the

contained data
 This support for user�de�ned data types is one of the key characteristics that

make object�oriented languages helpful for building complex systems� such as distributed

ones
 In a distributed object�oriented system� an object can be used to represent a single

component of the system

Commercial object�based frameworks for developing distributed systems typically use

class declarations to verify a syntactic consistency between components
 A class declaration

of one component is used to verify that the component responds to a particular message �or

method invocation	
 In recent years� an industry�wide standard� known as CORBA ����� has

emerged for object�based distributed system construction
 This standard overcomes many

of the di�culties of connecting components in a heterogeneous environment by permitting

them to communicate in a universal language

��� Motivation

Even with the help of standards and object�oriented techniques for managing complexity�

writing correct distributed programs remains a di�cult task
 Formal veri�cation of sequen�

tial programs bene�ts from a well�understood principle of compositionality
 This principle

allows subprograms to be veri�ed independently
 Even with this advantage� however� rigor�

ous application of formal methods in large sequential programs is prohibitively expensive

For distributed programs� the problem is even harder� since the rules for composition are

more complicated
 Reasoning about an individual component requires considering its inter�

actions with the other components in the system
 As a result� rigorous proofs of distributed

programs can be complex and time consuming
 At the same time� the complexity of these

interactions makes the informal development of distributed systems more error prone than

that of sequential systems
 Therefore� programmers of distributed systems can bene�t

greatly from the use of formal arguments in reasoning about the correctness of their appli�

cations
 The challenge is to make these techniques of formal veri�cation practical for the

mainstream development of distributed systems

In this thesis� we explore a practical method for supporting the development of correct

distributed programs
 We propose a methodology for component speci�cation based on a

collection of semantic constructs
 These semantic constructs are used to express properties

�

of individual components� which can then be composed to derive properties of the system

as a whole
 Our methodology can be viewed as an extension to the object�based approach

of many commercial frameworks for distributed system development
 The CORBA stan�

dard �and its compliant implementations	 provides a practical vehicle for our methodology�

although its applicability is not restricted to this context
 The theoretical contributions of

this thesis are motivated by the desire for practical utility� while the pragmatic contributions

are motivated by the desire for logical consistency

��� Our Semantic Constructs

We de�ne three fundamental constructs for the speci�cation of component behavior
 The

�rst is the initially operator
 This operator describes the set of possible initial states

for the system
 The second is the next operator
 This operator describes� given a set of

system states� the set of possible system states after the execution of a single action
 The

third is the transient operator
 This operator describes a predicate on system states that�

if true� is guaranteed to be false eventually
 Together� these three operators form the basis

of our speci�cation language
 From these basic building blocks� we derive a collection of

higher level �and perhaps more familiar	 operators such as stable and � �pronounced

�leads�to 	
 In addition� we derive a new operator� follows � well�suited to the description

of systems with monotonic behavior

We make use of these speci�cation constructs in a restricted manner�

� A speci�cation statement can refer only to state that is local to a single component

� A single component must be able to guarantee unilaterally the validity of the speci��

cation statement for any distributed system of which it is a part

Speci�cation statements that conform to these two restrictions we call certi
cates

The requirement that certi�cates refer only to state local to a single component has a

signi�cant consequence� A certi�cate can be tested within the context of a single component

Because components in a distributed system do not share state� testing general system

properties at run�time requires gathering information from multiple address spaces
 Also�

careful attention must be given to the protocol used to gather this information in order to

preserve its consistency
 The locality of certi�cates� however� means that these properties

can be tested and monitored simply by an examination of local state
 In fact� we will see

how certi�cates can be used to automatically generate the code required to test and monitor

a component implementation

�

The requirement that certi�cates be unilaterally guaranteed by a component also has

a signi�cant consequence� If a component is veri�ed to implement a certi�cate� this veri��

cation argument applies regardless of the system of which the component is a part
 That

is� the certi�cate is a property of any system that contains the corresponding component

Thus� one property of any system is the conjunction of the certi�cates of the constituent

components
 This promotes proof reuse� an essential element of making formal methods

practical in the marketplace

Many interesting system properties� however� are not simply conjunctions of local com�

ponent properties �i�e�� disjunction may be required	
 The maintenance of these system

properties requires the coordination of multiple components
 Components exchange mes�

sages to achieve a system goal or maintain a system invariant
 We introduce the notion of

a service as a reusable abstraction of a coordination paradigm
 Two services are presented

in detail� tokens �indivisible units	 and logical clocks �monotonic counters and time stamps

of messages	
 This is not an exhaustive list� it is meant to illustrate how paradigms of

component interaction can be captured in services and how the speci�cation and use of

these services is integrated in our methodology

��� Contributions

The contribution of this thesis is four�fold�

�
 A new speci�cation methodology� based on certi�cates� is introduced
 This method�

ology is based on a collection of well�known operators� but adds some restrictions on

their use
 These restrictions result in two advantages� testability and a simple rule

for composition
 Several extended examples are presented as an exploration of the

practical utility of this methodology

�
 A new temporal operator� follows � is de�ned
 This operator combines both safety

and progress properties
 It can be used to succinctly describe and reason about

systems with monotonic state
 Several theorems are given for manipulating this op�

erator� and examples are presented illustrating the conciseness of proofs based on this

operator

�
 The use of certi�cates for testing and debugging component implementations is exam�

ined
 We present a characterization of a restricted class of certi�cates that permits the

automatic generation of a testing harness for component implementations
 This har�

ness� consisting of assertions and trace recordings� can detect the violation of certain

�

component properties and can warn of the possible violation of others
 The capac�

ity to generate this testing harness automatically is therefore a great bene�t to the

programmer debugging an implementation

�
 The abstraction of component coordination paradigms as services is explored
 Two

services �tokens and logical clocks	 are speci�ed and the corresponding component

speci�cations given
 Services represent basic protocols whereby a collection of com�

ponents maintains or establishes a system property

��	 A Simple Example
 The Shared Queue

This section presents a small example illustrating our approach to component speci�cation

This example is intended to give the reader a �avor for the speci�cation language presented

in the thesis
 The simplicity of this example permits the application of many di!erent

speci�cation methodologies apart from our own

Consider a component designed to store a queue of integers
 This queue is shared among

other components in the system
 These components may add an integer to the queue or

request the deletion of the integer at the head of the queue
 For this simple example� we

do not address the use of the values in the queue

The declaration of this component in a CORBA�compliant system is given in Pro�

gram �
�
 This declaration is used by the underlying run�time system to provide a variety

of crucial functionalities� for example� the type�checking of procedure calls to remote ob�

jects� the marshaling of arguments for transmission over the network� and the instantiation

or retrieval of the target object when a remote request is received

interface Queue �

oneway void add �in long i�� ��add an element to the �tail of� queue

oneway void remove ��� ��delete the element at the head of queue

��

Program �
�� A CORBA declaration of a queue object

This declaration does not� however� provide any information about the behavior of the

component
 The manner in which this component can be used must be inferred from an

informal English description and the names chosen for the operations
 The inference of

semantics from informal descriptions is dangerous� as such descriptions can be vague or

ambiguous
 For example� it is not clear what e!ect a remove�� operation has on a Queue

�

component that contains no elements
 Is it simply ignored� or is it stored as a request to

delete an element as soon as one is available for deletion�

We extend the syntactic component declaration given above with our semantic con�

structs
 An example of a component description for Queue is given in Program �
�
 This

description relates the state of the component �as stored in its local variable	 to the op�

erations that are performed
 The �rst certi�cate de�nes the length of the queue ��Q�	�

given the number of add�� and remove�� operations that have been performed �deln�add�

and deln�remove�� respectively	
 The second certi�cate de�nes the value of each element

of the queue �Q�i�	 given the sequence of elements added �D�add���	 and the number of

remove�� operations that have been performed �deln�remove�	
 Notice that these certi��

cates refer only to local values and that their validity can be unilaterally guaranteed by a

correct implementation

Component Queue �

local vars �	 Q � sequence of int ��Queue of integers

rpc targets �	 add�int� �unordered�

remove�� �unordered�

certificates �	

Invariant
��Q� 	 MAX�deln�add� � deln�remove�
 ���

Invariant
�Ai � �	 i � �Q� � Q�i� 	 D�add��i�deln�remove���

�

Program �
�� Component description for a shared queue

The relationship of these values is graphically presented in Figure �
�
 This certi�cate�

based description eliminates any ambiguity concerning the behavior of the Queue compo�

nent
 A remove�� operation is never ignored
 If the queue is empty� the next element added

will be immediately discarded

x x x x

2 1 6 2

0 65

0 65D(add)

deln(remove)

Q

x x x x

2 1 6 2 0 6 235

x x x x x x x xdeln(remove)

D(add)

Q empty

Figure �
�� The state of the queue is determined by the sequence of add�� operations and
the number of remove�� operations

The component description for a queue that disregards �or �drops 	 requests to remove

�

an element when it is empty is given in Program �
�
 The external interface for this

QueueDrop component is the same as that for the Queue component
 The di!erence is in

the local state maintained by these components �the latter maintains a count of the number

of elements removed from the queue	� and in the component speci�cation as given by the

certi�cates
 The �rst three certi�cates for the QueueDrop component de�ne the value of the

variable removals
 The initially certi�cate speci�es that the initial value of removals is

 The next properties that follow require� respectively� that while the queue is empty�

the value of removals be constant� and that while the queue is nonempty� its value increase

as remove�� requests are received
 The last two certi�cates de�ne the length of the queue

and the values of the elements in the queue� given the sequence of add�� operations and

the value of the removals variable

Component QueueDrop �

local vars �	 Q � sequence of int ��Queue of integers

removals � int ��number of successful removals

rpc targets �	 add�int� �unordered�

remove�� �unordered�

certificates �	

Initially
�removals 	 ��

�removals 	 k � �Q� 	 �� Next �removals 	 k�

�removals 	 deln�remove� � k � �Q� � �� Next �removals 	 deln�remove� � k�

Invariant
��Q� 	 deln�add� � removals�

Invariant
�Ai � �	 i � �Q� � Q�i� 	 D�add��i�removals��

�

Program �
�� Alternate component description for a shared queue

This small example is meant to illustrate the nature of component speci�cation through

the use of our certi�cates
 These certi�cates can be mapped to a testing and debugging

infrastructure
 This mapping is presented in Chapter �
 These speci�cations can also

be used in compositional proofs to establish properties of systems built up from these

components
 Extended examples of such proofs are given in Chapters � and �

��� Design Decisions

There are many choices made in the design of the methodology we present
 Di!erent choices

could have been made� resulting in a di!erent methodology� perhaps applicable to di!erent

models of computation
 The principal design decisions are outlined below together with a

short discussion of the trade�o!s involved

�

Asynchronous Messages� All messages in our model of computation are asynchronous

That is� a component continues to execute after sending a message
 In systems with globally

distributed components� the round trip communication delays associated with synchronous

messages can be signi�cant
 For these systems� we expect asynchronous semantics to be

the norm
 The choice of asynchronous messaging also simpli�es our model of execution

by permitting us to treat methods as atomic
 A component responds to the delivery of a

message by possibly changing local state and by possibly sending one or more messages

On the other hand� there are cases for which synchronous semantics are more convenient

�e�g�� for a method that returns data to the invoker	
 In these cases� the synchrony can be

simulated with a call�back protocol

The Role of Time� We do not explicitly include the physical passage of time in our model

of computation
 Our methodology does not permit the expression of real�time constraints

One can assert that �action X will occur eventually � but not� for example� that �action X

will occur in the next two minutes
 This approach is commonly taken in temporal logics

and has the advantage of simplifying component re�nement
 Furthermore� most networks

used for noncritical systems do not provide real�time guarantees for message delivery
 On

the other hand� a speci�cation augmented with time guarantees would indicate to a client

how long to wait before determining that a broken component is unresponsive

Fault�Free Channels� We consider only channels that deliver messages without loss�

duplication� or corruption
 There is no bound on the length of time required to deliver a

message� but the message is eventually delivered
 Also� bu!ers for incoming messages are

assumed to be in�nite
 These assumptions simplify the presentation by obviating arguments

concerning faulty delivery

Message Reception� Our model does not contain an explicit bu!er of delivered� but

unreceived� messages
 That is� a component cannot probe to determine whether a particular

message has been delivered and cannot selectively choose which messages to receive
 This

model is inspired by one�way remote procedure calls
 If the ability to process messages in

a particular order is required� a component can implement and maintain a mailbox into

which all delivered messages are placed� and from which the component selects the next

message to process

�

��� Thesis Structure

In Chapter �� we de�ne our model of computation
 The notions of system state� component

actions� and computations are formalized
 The message�passing layer whereby components

interact is described informally
 The CORBA standard for distributed object�based system

development is discussed brie�y
 This commercial standard provides a practical context for

the speci�cation methodology we propose
 This chapter also introduces the notation that

will be used in the remainder of the thesis

In Chapter �� we describe the fundamental elements for component speci�cation� cer�

ti�cates
 The fundamental certi�cates � initially � next � and transient 	 are de�ned and

a collection of higher level operators derived
 These certi�cates are then used to formalize

the channel properties of the message passing layer� along with some corollaries of these

properties
 Finally� we present and characterize some special cases� which we call simple

certi
cates� of these fundamental certi�cates
 Finally� some special cases of these fundamen�

tal certi�cates are presented and characterized
 This subset of certi�cates we call simple

certi
cates

In Chapter �� we examine more closely the follows operator introduced in the previous

chapter
 This is a new operator that combines both safety and progress properties in a

single expression
 Some theorems for the manipulation of expressions involving follows

are presented and proven
 As an illustration of the use of this operator� a succinct proof

of a canonical distributed problem �the earliest meeting time problem	 is given
 To further

illustrate the utility of follows � we use the theorems of this chapter to prove the corollaries

of the channel properties given in the previous chapter

In Chapter �� we describe how certi�cate�based speci�cations can be used for the test�

ing and debugging of component implementations
 For each fundamental certi�cate� the

framework for its translation into a collection of auxiliary variables and run�time asser�

tions is given
 Simple certi�cates enjoy an automatic mapping into a complete testing and

run�time warning harness for a component
 For properties that can be tested �i�e�� safety

properties	� this harness is used to generate an exception when the property is violated
 For

properties that cannot be tested �i�e�� progress properties	� this harness is used to generate

run�time warnings and traces that are useful for debugging when a component is suspected

of being erroneous

In Chapter �� we introduce services
 Services are frequently�used paradigms for compo�

nent interaction and coordination
 Two services are presented in detail� tokens and logical

clocks
 Each represents a system invariant that cannot be unilaterally guaranteed by a

�

single component� and hence cannot be captured by a single component�s certi�cates
 An

extended example is given that illustrates the use of services �in particular� tokens	 in the

development of a larger system

In Chapters � and �� we put our speci�cation methodology to the test� using it to develop

two extended examples
 The �rst is a distributed auction� in which components submit bids

until a winner and price are established
 The second is a distributed branch and bound tree

search� in which components are given subtrees to search as well as periodic updates on

the best bound found
 These chapters illustrate both the certi�cate�based speci�cation of

individual components as well as the compositional proofs of these speci�cations to establish

properties of the entire system

In Chapter �� we outline some related work
 Our research is compared with some of the

other component�based e!orts towards correct distributed system construction

In Chapter �
� we conclude with a summary of our �ndings and a discussion of the

utility of our approach
 Future research directions are also outlined

��

Chapter �

Model of Computation

In this chapter� we de�ne our model of computation
 Components and the message�passing

layer through which they interact are presented operationally
 The notions of system state�

a component action� and a computation are presented
 A commercial instance of this model�

the CORBA standard for distributed object�based system development� is discussed
 This

commercial standard provides a practical context for the speci�cation methodology we

propose
 This chapter also introduces the notation and notational conventions that will be

used in the remainder of the thesis

��� Operational Overview of Model

In this section� we give an informal� operational overview of our model of computation
 The

model is quite general and is satis�ed by a variety of commercially available systems
 The

goal of this section is to introduce some of the terminology and give some context for the

kinds of systems addressed in this thesis

����� Component Implementation

A distributed system consists of a collection of components
 Components are implemented

by programs that each reside in a single address space� have local state� and have a thread

of control
 We de�ne an implementation object to be such a program
 That is� an imple�

mentation object is a component that resides in a single address space

An implementation object is an object in the traditional sense� It can be seen as a

collection of data and functions �called methods	 that manipulate this data
 One of these

methods is designated as the constructor
 The constructor is executed when the implemen�

��

run-time system

signals from

local data: Q

constructor: Queue(){...}

Component Queue

add(int){...}

remove(){...}

Figure �
�� Each method is a target for signals from the run�time system

tation object is �rst instantiated
 The other methods are executed as a result of signals

generated by the run�time system
 They are identi�ed by a function name and a list of

argument types

For example� consider the component discussed in Section �
� of the previous chapter

that implements a queue
 This component has local data �the variable Q	 and three methods�

a constructor� a method to enqueue an element �add�int�	� and a method to dequeue an

element �remove��	
 The last two methods are executed in response to signals from the

run�time system
 In Figure �
�� each is depicted as a target for these signals

An implementation object is always in one of two states� active or idle
 Initially� it is

active
 An active implementation object has an executing thread of control and can perform

the following operations�

�
 It can change any element of its local state �including becoming idle	

�
 It can send messages to components in the system
 A message is a request for the

target implementation object to execute one of its methods

The local state of an implementation object includes the values of all its variables� the

history of messages that it has sent and of messages that have been delivered to it� as well

as whether it is active or idle

An idle implementation object� on the other hand� does nothing except wait for a signal

A signal is generated either by the delivery of a message or by the run�time system in

response to some stimulus by the environment �e�g�� an instrument detects a certain critical

pressure� or a countdown timer expires	
 A signal causes an idle implementation object to

become active and begin executing the method speci�ed by the signal

In our simple model� only an idle implementation object can detect a signal
 An active

one cannot probe the run�time system to discover if a signal is pending

��

����� Component Interaction� The Message�Passing Layer

Each method of a component corresponds to a target for signals by the run�time system�

as described above
 We call these targets RPC targets� since they correspond to an inter�

face for remote procedure calls �RPC�s	
 These RPC targets are the mechanism whereby

one component can invoke methods of another
 A component invokes other components�

methods by sending a message that speci�es� �i	 which method is to be invoked� �ii	 the

arguments to this method� and �iii	 the identity of the component sending the message

The message�passing layer is responsible for transporting this message to its destination

and signaling the appropriate RPC target

For example� if Storage is a reference to an instance of the Queue component described

above� an RPC invocation in an implementation language such as C�� might take the

form�

Storage��add����

We consider the identity of the sender to be implicitly part of the invocation

Component methods do not have a return value
 The action of invoking an RPC is

nonblocking
 The message is sent and the sending component continues execution immedi�

ately
 A method with a return value can be implemented with a call�back protocol
 The

invocation of the method includes the identity of the invoker
 When the method completes�

a message is sent to the invoker containing the result
 By waiting for this result to be

returned� the invoker achieves the e!ect of synchronous semantics
 In order to present the

simplest model with general applicability� we do not include synchronous semantics in our

model directly

The messages exchanged by components can be viewed as either oneway RPC requests

or as messages on asynchronous channels with in�nite slack
 The two models are equivalent�

and we will use the associated terminology interchangeably

Channels are guaranteed to deliver messages without loss� duplication� or corruption

This delivery is guaranteed to occur in some �nite� but unbounded� time
 We do not specify

as part of the model whether or not messages are delivered in the order sent
 Some imple�

mentations of the message�passing layer may provide ordered delivery� others may not
 We

refer to this characterization of the message�passing layer as the delivery discipline
 Other

delivery disciplines are possible� such as faulty or noisy channels� but are not addressed

here

We associate a channel with a history of actions� a sequence D of deliveries and a

sequence S of sends
 We will also use the following functions on these histories�

��

� delp and sentp
 The former �latter	 predicate is true exactly when the history

contains a delivery �send	 action

� deln and sentn
 The former �latter	 integer function is the number of delivery �send	

actions in the history

� del and sent
 The former �latter	 function returns the value of the last message

delivered �sent	
 To refer to a particular delivery �send	 action in the history� the

sequence D � S 	 is subscripted
 For example� D �� � is the value of the �rst message

delivered� and S �sentn � � � is the value of the last message sent
 When there has

not been a delivery �send	 action� the value of del � sent 	 is still de�ned� it is an

arbitrary value chosen from the message type of the channel

� delm
 This function returns the value of the greatest message delivered
 It is used

in conjunction with monotonic channels �and hence the message type has an ordering

relation	

A channel is uniquely identi�ed by three things� �i	 the identity of the sender� �ii	 the

identity of the receiver� and �iii	 the name of the RPC target that is the destination
 The

application of the above functions� then� speci�es these pieces of information
 For example�

for a component S and a component R with method m � deln�S �R�m	 is the number of

messages that have been delivered on the channel from S to R at RPC target m
 Often�

these functions will be used in a context in which one or more of these parts of the channel

identity can be understood implicitly from context� in which case that part will be omitted

����� Component Descriptions

In an object�oriented programming language� an object is described by an interface decla�

ration
 Similarly� in our model of distributed systems� a component is described by what we

call a component description
 A component description contains the following information�

�i	 a declaration of constructed types used in declarations of local variables and constants

as well as in arguments of the component�s methods� �ii	 a list of local constants� �iii	 a list

of local variables� �iv	 a list of RPC targets� �v	 a list of components to which this compo�

nent can send messages� and �vi	 a list of certi�cates
 When a particular list is empty� the

corresponding entry in the component description is omitted
 Syntactically� a component

description has the form given in Program �
�

We do not present a strict formalization of the syntax of component descriptions
 The

notation used is a mixture of some common structures from popular programming languages

��

Component �component name� �

local types �	 �declarations of constructed types�

local const �	 �declarations of local constants�

local vars �	 �declarations of local variables�

rpc targets �	 �list of method signatures� ��delivery and sender disciplines��

neighbors �	 �list of components�

certificates �	 �list of certificates�

�

Program �
�� Syntax of a component description

such as C�� and Pascal
 For example� variables are declared in a Pascal style with a variable

name followed by a colon and the type of the variable
 Comments begin with ��� in the

style of C�� comments

The fundamental types are those of many programming languages� characters� integers�

and �oating point values
 The constructed types are also familiar� structures� arrays�

sequences� and sets of fundamental or constructed types
 Components are themselves types

The �rst section of a component description allows these constructed types to be named

These names can then be used in the declaration of methods and local variables

As an example� recall the component description given in Chapter � �and repeated here

in Program �
�	
 There are no local types in this description because no constructed type are

named �i�e�� the only argument to a method is a fundamental type and the only local variable

has type sequence of integers	
 This component has a single local variable� a sequence of

integers called Q
 Next� the RPC targets add�int� and remove�� are listed
 The unordered

quali�cation that appears after each RPC target refers to the message delivery discipline

that is assumed �i�e�� unordered but reliable delivery of messages	
 The certi�cates section

contains properties that will be discussed in Chapter � �where the meanings of Invariant�

deln�add�� deln�remove�� and D�add��i� are all de�ned	
 The remaining symbols� such

as MAX� the length of a sequence �Q�� and the universal quanti�cation �Ai � p	i�� are

assumed to be understood from common mathematical notation and usage

��� State
Based Model

A fair interleaving semantics is used to represent the behavior of a distributed system

That is� a computation is de�ned to be an in�nite sequence of actions
 Each action in the

sequence is an action performed by a component in the system
 The fairness requirement

is that if an action is enabled� eventually either the action appears in the trace �i�e�� is

��

Component Queue �

local vars �	 Q � sequence of int ��Queue of integers

rpc targets �	 add�int� �unordered�

remove�� �unordered�

certificates �	

Invariant
��Q� 	 MAX�deln�add� � deln�remove�
 ���

Invariant
�Ai � �	 i � �Q� � Q�i� 	 D�add��i�deln�remove���

�

Program �
�� Component description for a shared queue

allowed to execute	 or it ceases to be enabled
 Our model permits three kinds of actions�

�i	 a component can modify its local state� �ii	 a component can send messages to other

components� and �iii	 the message�passing layer can deliver a message
 We consider the

delivery of a message to be atomic with the execution of the associated method
 Similarly�

we consider the entire execution of a method to be an atomic action
 Hence� methods are

required to terminate

The state of the system� as de�ned above� is the state of the individual components

and the state of the message�passing layer
 For the message delivery disciplines described

above� the state of the message�passing layer is functionally determined by the state of the

individual components
 The computation begins in some initial state where the message�

passing layer has not delivered any messages and the component states are all determined by

their initialization
 Each action then maps the current state to a new state
 A computation�

therefore� can either be viewed as a sequence of actions or as the corresponding sequence of

states

As is common with such semantics� we permit stuttering ���� page ��
�
 That is� a

system is allowed to do nothing for an arbitrary but �nite number of steps

��� An Instance of the Model
 The CORBA Standard

This section presents a commercially available product that can be used as an implementa�

tion of our model as described above

����� History

The Object Management Group �OMG	 was formed in ���� as a consortium of industries�

universities� and research laboratories
 Its membership currently numbers more than ��

��

software vendors� developers� and researchers� including� Apple Computer� Digital Equip�

ment� Hewlett�Packard� International Business Machines� Microsoft� Netscape Communi�

cations� Novell� Silicon Graphics� and SunSoft
 The mandate of this organization has been

to promote the theory and practice of object technology for the development of distributed

computing systems
 One of the most signi�cant contributions by the OMG has been a

standard for distributed object�based systems� known as CORBA ����
 Introduced in �����

the CORBA speci�cation de�ned the middleware to support distributed object communi�

cation
 Several implementations of this standard became available soon after
 Adopted in

����� a revision of the speci�cation �CORBA �

	 de�ned the requirements for interoper�

ability between these implementations
 Currently� many commercial implementations of the

CORBA �

 standard are available� such as Orbix �by IONA	� VisiBroker �by Visigenic	�

SOM�DSOM �by International Business Machines	� ORB Plus �by Hewlett�Packard	� and

Object Broker �by Digital Equipment	

����� Architecture and the IDL

At the core of CORBA is an object request broker that intercepts the dispatch of a method

invocation and is responsible for �nding the target object that implements the method�

marshaling and demarshaling the arguments� activating the method� and returning the

result
 In the language of the CORBA speci�cation� the component issuing the method

request is the client� while the destination component of the request is the server

There are two mechanisms whereby this dispatch can occur
 The �rst is via a dynamic

invocation interface
 This interface permits a client to construct a method invocation at

run time� retrieving the method signature from an interface repository and appending the

required arguments to a dynamic structure before issuing the request
 The second mech�

anism is via stub and skeleton code that is statically generated from an object interface

description
 A graphical representation of this process is given in Figure �
�

Both approaches require the de�nition of implementation object interfaces �the former to

create repositories of interface information and the latter to generate the stub and skeleton

code	
 Part of the CORBA de�nition is a universal language for this purpose
 This language�

known as IDL �for Interface De�nition Language	� provides the syntax required to describe

the signatures of methods that can be invoked on an object
 As an example� recall the

shared queue example used in Chapter �
 The IDL de�nition of this object is repeated here

in Program �
�

All CORBA implementations include an IDL parser responsible for translating an IDL

��

dynamic

interface

dynamic

interface

stub

code

skeleton

code

Object Request Broker

ServerClient

Figure �
�� Method Invocation in CORBA

interface Queue �

oneway void add �in long i�� ��add an element to the �tail of� queue

oneway void remove ��� ��delete the element at the head of queue

��

Program �
�� An IDL de�nition of the Queue interface

de�nition into stub code and skeleton code
 The stub code is a collection of functions

called by the client to invoke a remote method
 The invocation in the client code is then

identical to an invocation of a local method� the only di!erence being that the target of the

invocation is a remote object
 The skeleton code is a framework that the implementor of

the server program completes
 In general� for each method in the IDL de�nition� a function

is created by the IDL parser that takes the required arguments
 It is the responsibility of

the programmer to code the body of the function so as to produce the desired result

For example� consider the IDL de�nition of Queue in Program �
�
 IBM�s SOM�DSOM

implementation of the CORBA standard produces the skeleton code given in Program �
�

from this IDL de�nition
 The parser adds some SOM�speci�c code and provides two function

templates for the programmer to complete �one for add�� and one for remove	

����� Other Implementations

Although CORBA provides a natural context for the methodology proposed in this the�

sis� our methodology is not con�ned to this context
 Indeed� any implementation of the

model for distributed systems presented in this chapter is suitable for the application of our

��

��

� This file was generated by the SOM Compiler and Emitter Framework

� Generated using�

� SOM Emitter emitxtm� �
��

��

�ifndef SOM�Module�queue�Source

�define SOM�Module�queue�Source

�endif

�define Queue�Class�Source

�include �queue
xih�

SOM�Scope void SOMLINK add�Queue �somSelf
 Environment �ev

long i�

�

�� QueueData �somThis 	 QueueGetData�somSelf�� ��

QueueMethodDebug��Queue�
�add���

�

SOM�Scope void SOMLINK remove�Queue �somSelf
 Environment �ev�

�

�� QueueData �somThis 	 QueueGetData�somSelf�� ��

QueueMethodDebug��Queue�
�remove���

�

Program �
�� SOM�DSOM code skeleton for Queue

�

approach to component speci�cation and composition
 Other available implementations

include Java ���� with RMI� CC�� ���� ���� Fortran M ����� PVM ��
�� and MPI ���� to

name a few
 To avoid confusion in the presentation� a single practical context is used in

this thesis� namely the CORBA standard

��� Notation and Conventions

����� Functions and Operators

The usual mathematical and logical operators are used
 Function application is denoted

with the in�x �
 operator
 For example� the function f applied to x is written f �x

Since predicates are functions �from the state space to the booleans	� a similar notation

is used for predicates
 For example� the predicate p applied to state s is written p�s

Function application associates to the left
 For example� stable�p�C should be read as

�stable�p	�C

The usual binding powers are given to operators�

�
 � �function application	

�
 �

�
 arithmetic operators �including " 	� with their usual binding power

�
 � � �

�
 � � �

�
 	

The temporal operators introduced in Chapter � all have the lowest binding power

�below 	 	

����� Quanti�cation

Quanti�cation of a binary� associative� commutative operator op over a set of values is

denoted � op dummies � range � term 	 � where dummies is a list of dummy variables�

range is the range of quanti�cation� and term is the term of quanti�cation
 For example�

the following formula is an expression that all even natural numbers satisfy the predicate

p �

� � n � n
 IN � even�n � p�n 	

��

The logical operators � and � � when used as quanti�cation operators� will usually be

written as � and � respectively
 Similarly� � will be written as
 � in accordance with

common usage
 For example� the universal quanti�cation of a predicate p over all even

natural numbers given above will be denoted�

��n � n
 IN � even�n � p�n 	

Often� the type of the dummy �e�g�� the natural numbers in the preceding examples	 will

be understood from context
 If the entire range is understood from context� an abbreviated

notation is used�

��n �� p�n 	

Universal quanti�cation over the state space will be denoted by the �everywhere brack�

ets as in ����
 For example� consider predicates x � �� and x � � on a state space S that

contains a variable x
 The truth of the latter predicate is implied by the truth of the former

We write �x � �� � x � � � as a shorthand for �� s � s
 S � �x � �� � x � � 	�s 	

We also adopt the convention that formulas with unbound dummies are implicitly uni�

versally quanti�ed over these dummies
 For example� the formula stable��x " k	 where k

is a dummy should be read as �� k �� stable��x " k	 	

����� Proof Format

Our proof format is based on ����
 It gives a justi�cation �or hint	 for each step
 For

example� the validity of �p � q � might be established by a proof of the form�

p

	 f hint why �p 	 r � g

r

� f hint why �r � q � g

q

Since our temporal operators next and � introduced in Chapter � can be part of

a weakening implication chain� we extend this notation to include these operators
 For

example� the property �p � q	�C might be established by a proof of the form�

p

� f hint why �p � r � g

r

��

� f hint why �r � q	�C g

q

��

Chapter �

Certi�cates and Speci�cation

In this chapter� we de�ne our principal speci�cation construct� the certi�cate
 Certi�cates

are used both to specify and to test individual components
 Fundamental certi�cates are

introduced and some examples are given illustrating how these certi�cates can specify var�

ious component properties
 These certi�cates are also used to formally specify the channel

properties in our model of communication
 We then introduce simpli�cations based on

restricted classes of certi�cates

��� Component Speci�cation

Recall that in our model� there are � types of actions� �i	 a component can modify its local

state� �ii	 a component can send messages to other components� and �iii	 the message�passing

layer can deliver a message
 As de�ned in Chapter �� a computation is an in�nite sequence

of such actions ���� pages �
����
 We identify a computation with the corresponding in�nite

sequence of system states

A speci�cation is a precise formal description of the behavior of a software system

We characterize the behavior of a system by the set of possible computations the system

can generate
 A speci�cation� therefore� de�nes a set of permissible computations� and a

system is said to implement a speci�cation if every computation of the system is one of

the computations permitted by the speci�cation ���� Chapter ��
 We will use predicates on

computations� known as properties� as speci�cation statements

Recall that components do not share state
 This means that any action in the system

can a!ect at most a single component�s state
 �Some actions � namely� communication

actions � may also modify the state of the message�passing layer
	 Consider the three

types of actions de�ned in our model�

��

Read�write actions� Variables are local to a component� so the modi�cation of a variable

modi�es only the state of that component

Message sending� Sending a message modi�es the state of the outgoing channel
 The

state of the component sending the message is also modi�ed �e�g�� the history of

messages sent is updated	

Message delivery� Similarly� the delivery of a message modi�es the state of the incoming

channel and the state of the component receiving the message

Hence� a component�s behavior can be de�ned in terms of its local state� the local variables�

the messages it has sent� and the messages it has received

We de�ne a component certi
cate to be a speci�cation statement that meets two re�

strictions�

�
 The expressions contained in the statement involve only the local variables of the

component and the messages sent by and delivered to that component

�
 The validity of the statement does not depend on the environment in which the

component is placed

Certi�cates enjoy a signi�cant property� If a certi�cate is a property of a component� it

is also a property of any system that contains that component
 In the language of ��
��

certi�cates are examples of �exists�component properties

Despite the fact that speci�cations are meant to be visible to a component�s environment�

the presence of so�called local variables in these speci�cation statements is not a cause for

concern
 These variables are elements of the component description �as de�ned in Chapter �	

and not part of the implementation
 These variables are therefore speci�cation �also known

as �ghost� �auxiliary� or �thought 	 variables� and including them in the speci�cation

does not violate any principles of information hiding

There are two parts to the speci�cation of concurrent systems� safety and progress
 An

example of a safety property is that the value of variable x is always positive
 A safety

property can be violated by a �nite sequence of actions
 An example of a progress property

is that eventually the value of variable x is greater than �
 Unlike a safety property� a

progress property cannot be violated by a �nite sequence of actions
 We introduce two

fundamental constructs for dealing with safety � initially and next 	 and one for progress

� transient 	
 From these basic concepts we will derive two more constructs for expressing

safety � stable and invariant 	 and one more for progress �leads�to� written � 	
 This

��

formal system is known to be sound and relatively complete ��
�
 We will also derive a new

construct � follows 	 that simultaneously expresses both safety and progress properties
 We

will then use these constructs to specify the channel properties of our model of computation

and derive some useful corollaries

��� Safety

����� Certi�cate initially

As de�ned in Chapter �� a computation is a sequence of states
 The �rst state is designated

the initial state
 The initially certi�cate is a predicate that holds in this initial state

That is� the components of the system have been instantiated and have initialized their

local variables
 For a predicate p and a system C � we de�ne�

initially�p�C
�
" �� computations � si � i
 � � of C �� p�s� 	

Function application associates to the left� so we write initially�p�C for �initially�p	�C

For example� consider a component Philosopher that cycles between three states�

thinking� hungry� and eating
 The current state is encoded in three boolean variables�

thinking� hungry� and eating
 When �rst instantiated� the component is in the thinking

state
 This component property is written�

initially�thinking

The component to which a certi�cate applies will typically be understood from context

Where there is opportunity for confusion� the component will be given explicitly
 For

example� the following expression is a boolean�

initially�thinking �Philosopher

����� Certi�cate next

Whereas the initially certi�cate describes the valid states at the beginning of a computa�

tion� the next certi�cate describes how a state in a computation constrains the state that

follows it

The speci�cation statement p next q is a property of a component exactly when any

state satisfying p is immediately followed in the computation by a state satisfying q

�p next q	�C
�
" �� computations � si � i
 � � of C ��

�� i � i
 � � p�si � q �si�� 	 	

��

We will refer to p and q as the prepredicate and postpredicate respectively

Recall from our description of the computational model in Chapter � that the actions

of the individual components are interleaved in a computation with actions of other com�

ponents and of the underlying message�passing layer
 Thus� a certi�cate involving next

must allow for actions that do not change local state
 So given p next q � it follows that

p implies q �

�p next q	�C � �p � q � ��
�	

The square brackets ��� � 	 are �everywhere brackets ���� representing universal quanti��

cation over all states

For example� consider the component Philosopher from the previous section that cycles

between � states� thinking� hungry� and eating
 To express that the component becomes

thinking after eating� the following certi�cate is used�

eating next eating � thinking

We de�ne next to have a lower binding power than equivalence �and hence a lower binding

power than disjunction	

Notice that this certi�cate does not ensure that the component will ever stop eating

It may be the case that the component continues to eat inde�nitely
 The above certi�cate

says only that a state in which the component is eating is immediately followed by a state

in which either the component is still eating� or the component is thinking
 The property

that the component will eventually stop eating is a progress property and is discussed in

Section �
�

The next operator has appeared in several forms� including the co operator in �����

the next operator in ��
�� and the � operator in temporal logic ���� ���

��� Progress

����� Certi�cate transient

A progress property states that something eventually happens
 We employ a single fun�

damental certi�cate for expressing progress� transient
 A transient predicate is a pred�

icate that once true is guaranteed to be falsi�ed eventually
 The speci�cation statement

transient�p is a property of a component exactly when any state satisfying p is eventually

��

followed in the computation by a state satisfying �p

transient�p�C
�
" �� computations � si � i
 � � of C ��

�� i � i
 � � p�si � �� j � j � i � �p�sj 	 	 	

For example� consider once again the component Philosopher used in previous sections

To express the fact that a Philosopher does not eat forever� we write the certi�cate�

transient�eating

����� Use of transient

On casual consideration� this property may appear to be of limited use as a certi�cate in our

model of computation �recall that certi�cates are restricted to refer only to local variables

and channels	
 We have postulated distributed components with methods whose invocation

and execution occur as a single atomic action
 That is� the action of the delivery of an

RPC request by the message�passing layer and the execution of the corresponding method

occur as a single atomic block
 It seems� then� that any progress property will require the

cooperation of more than one component� and hence cannot be unilaterally guaranteed by

a single component

It is important to remember� however� that there is not necessarily a one�to�one relation�

ship between components and implementation objects
 A single component may correspond

to multiple implementation objects
 It is the actions of the individual implementation ob�

jects that occur as atomic blocks
 There are two important cases that give rise to multiple�

object components� composition and clocks

Case �� Composition

Components are closed under parallel composition
 That is� the parallel composition of

components yields a new component
 Even if the original components each correspond

to a single implementation object� their composition does not
 For example� consider two

simple components� Increment and Double
 The �rst component receives an RPC request

containing an integer� increments the integer� then sends the result in an RPC request to a

Double component
 The second component receives an RPC request containing an integer�

doubles the integer� then sends the result in an RPC request to a Consumer component

The descriptions of these components are summarized in Programs �
�� �
�� and �
�

The behavior of Increment is de�ned strictly in terms of safety properties
 That is�

there is a single atomic method� inc��
 The delivery of a message to this RPC target is

��

Component Increment �

rpc targets �	 inc �int� �write�once�

neighbors �	 d � Component Double

�

Program �
�� Description of the Increment component

Component Double �

rpc targets �	 dbl �int� �write�once�

neighbors �	 c � Component Consumer

�

Program �
�� Description of the Double component

atomic with the calculation of the new value and the sending of this new value on to the

neighbor d
 A possible trace of execution of this component is represented graphically in

Figure �
�
 Notice that every state is characterized by the same number of delivery and send

actions� and by a particular mathematical relationship between these two sequences �the

latter is an increment of the former	
 The behavior of Double is similarly de�ned strictly

in terms of safety properties

Now consider the composition of Increment and Double to form a new component

This composition binds the neighbor value d of the Increment component to a Double

component
 Pictorially� this composition is depicted in Figure �
�
 One of the properties

of this new component is a progress property� namely� that the delivery of an RPC request

inc�� eventually results in a message being sent to the consumer
 More formally�

transient��delp�inc	 � �sentp�c� result		

Operationally� this temporal property is a result of the �nonatomic	 communication that

occurs between the Increment and Double components

Component Consumer �

rpc targets �	 result �int� �write�once�

�

Program �
�� Description of the Consumer component

��

φ

φ

φ

φ

3

4

3

4

6

7

3

4

6

7

3

4

6

7

-2

-1

messages
delivered

messages
sent

time

. . .

se
nd

 -
1

de
liv

er
 -

2

se
nd

 7

de
liv

er
 6

se
nd

 4

de
liv

er
 3

St
at

e
A

ct
io

ns

Figure �
�� An example trace of execution for the Increment component

Increment

Composition of Increment and Double

Double

d c

x

(x+1)*2
inc() dbl()x+1

Figure �
�� Composition of Increment and Double components

Case �� Clocks

The second case that gives rise to locally veri�able transient properties is the use of clocks

by components
 A clock is often used to generate a time�out signal when the component is

interacting with the outside world �e�g�� a disk drive or a user	
 Such an environment may

or may never provide the required input
 To deal with this uncertainty� a component can

use a time�out to terminate waiting for input that may never come

For example� consider a distributed system that provides a simple two�way communica�

tion link for users
 The link is established when a request by one user to initiate a session

is accepted by the other user
 The RPC targets involved in session initiation are shown in

Program �
�
 The simple topology of this application is illustrated in Figure �
�

A component that has received a request for a session noti�es the user and waits for a

�

Component Link �

rpc targets �	 request �unary� �ordered�

accept �unary� �ordered�

reject �unary� �ordered�

neighbors �	 n � Component Link

�

Program �
�� Description of the Link component

n
User User

Link

n

Link

accept()
request()

reject()

request()
accept()
reject()

Clock Clock

Figure �
�� Topology of communication link between users

decision whether to accept or reject the request
 The user� however� may not be present

and in this case the request should be rejected
 The component must therefore guarantee

that eventually a reply of some kind is sent
 This guarantee is expressed by the following

certi�cate�

transient��delp�request	 � ��sentp�n� accept	 � sentp�n� reject			

This guarantee can be implemented in any number of ways that provide a time�out signal

Another way to illustrate the role of clocks is to consider a representation of a compo�

nent�s protocol
 A common representation of a protocol for a communicating system is that

of a �nite state machine ���� ��� �
�� where the transitions correspond to communication

actions �i�e�� the sending and receiving of messages	 ����
 Consider a typical client�server

model� where a server object waits in a dormant state for an RPC request
 When such

��

a request is delivered� the appropriate method is executed �possibly resulting in several

messages being sent	 and the server returns to its dormant state
 A protocol for such a

system is represented in Figure �
�
 Sending a message is denoted with a minus sign� while

the delivery of a message is denoted with a plus sign

wait1 wait2

idle

+s;-c +t;-d+r;-b;-c+r;-a

+u;-a +v

Figure �
�� A server�s protocol in a client�server system

As a consequence of our model of computation� transitions from a state begin with the

delivery of a message
 These states �idle� wait�� and wait�	 correspond to dormant states

where the object is waiting for the delivery of an RPC request
 The delivery may be followed

by some number of send actions

For a time�out� the component uses the clock to generate a signal
 This signal is modeled

as the delivery of a message
 For example� the protocol for the Link component is given in

Figure �
�
 In the state wait
� the component waits to receive a signal from either the user

or the clock
 If the user does not reply� the link request is rejected
 Because the clock is

trusted to generate a signal� the component can unilaterally guarantee that the state wait

is transient�

transient�wait�

��� Derived Certi�cates
 stable � invariant � Leads
to� and

follows

����� Certi�cate stable

A stable predicate is a predicate that once true remains true

stable�p�C
�
" �p next p	�C

��

wait1

linked

user
-notify

+signal
from user

+signal
from user

idle

wait2

+signal
from clock

-request()

+request()

+reject()
+accept()

-accept()

-reject()

Figure �
�� Protocol for the Link component

An example of a stable property is that the system has terminated� or that a message has

been delivered

����� Certi�cate invariant

An invariant predicate is a stable predicate that is true initially

invariant�p�C
�
" initially�p�C � stable�p�C

There is a subtle distinction between the notion of invariant as described above and the

notion of �always true
 In particular� a predicate that is always true in a computation

may be too weak to be proven to be invariant using the above de�nition
 The distinction

centers around the consideration of reachable states and is eliminated by the adoption of a

substitution axiom similar to that of UNITY logic ���� ��� ���

An example of an invariant property is that a variable is always positive
 Another

example is that in the Philosopher component� exactly one of the booleans thinking�

hungry� and eating is true�

invariant���thinking 	 hungry 	 eating	 � ��thinking � �hungry � �eating		

��

����� Certi�cate Leads�to

A leads�to property� such as p � q � expresses the fact that once p becomes true q is or

will be true ���� Section �
�
��
 Leads�to can be de�ned in terms of transience and next

����

A rule that we will use frequently in deriving leads�to properties is as follows�

stable�p�C � transient��p � �q	�C � �p � q	�C

����� Certi�cate Follows

Consider two variables� x and y of the same type� and let this type have an ordering

relation � that de�nes a partial order �i�e�� the ordering relation is re�exive� transitive�

and antisymmetric	
 The property x follows y expresses many things�

�
 Both x and y are monotonically increasing

�
 The value of x does not exceed the value of y

�
 If the value of y exceeds some constant� then eventually the value of x will also

exceed that constant

�
 The di!erence between x and y is an upper bound on how much x can increase in

one step

The follows operator is de�ned in terms of stability� invariance� leads�to� and a next

property

�x follows y	�C
�
" �� k �� stable��x
 k	�C 	 � �� k �� stable��y
 k	�C 	

� invariant��x � y	�C � �� k �� �y
 k � x
 k	�C 	

� �� k �� y � k � x � k next x � k 	

The ordering relationship used on x and y will typically be understood from context

�e�g�� integers are ordered by less�than and predicates are ordered by implication	
 If there

is a possibility for confusion� however� or if the follows property expresses a monotonically

nonincreasing relationship� the ordering relation will be subscripted after follows � for

example� x follows� y for integers x and y and x follows� y for sets x and y �the

above de�nition is the de�nition of x follows� y 	

The follows operator is interesting as it combines both safety and progress properties

It can be used to succinctly de�ne the properties of some components and� in particular�

��

channels �as will be seen in the next section	
 Some useful theorems for manipulating

follows properties as well as some example proofs using follows are given in Chapter �

��	 Channel Properties

Using the safety and progress primitives introduced in Sections �
�� �
�� and �
�� we can now

formalize the message�passing layer described operationally in the previous chapter
 We

associated a channel with a history of actions� a sequence D of deliveries and a sequence

S of sends
 We also introduced the following functions on these histories�

� delp and sentp
 The former �latter	 predicate is true exactly when the history

contains a delivery �send	 action

� deln and sentn
 The former �latter	 integer function is the number of delivery �send	

actions in the history

� del and sent
 The former �latter	 function returns the value of the last message

delivered �sent	
 To refer to a particular delivery �send	 action in the history� the

sequence D � S 	 is subscripted
 For example� D �� � is the value of the �rst message

delivered� and S �sentn � � � is the value of the last message sent
 When there has

not been a delivery �send	 action� the value of del � sent 	 is still de�ned� it is an

arbitrary value chosen from the message type of the channel

� delm
 This function returns the value of the greatest message delivered
 It is used

in conjunction with monotonic channels �and hence the message type has an ordering

relation	

We now present the channel properties that will be used in our proofs
 In the equations

that follow� we will omit the argument �i�e�� the channel	 to this function
 First� the

de�nitions given above are formalized
 Next� the properties that depend on the message�

delivery discipline �i�e�� ordered and unordered delivery	 are given
 Finally� the properties

that depend on various sender disciplines �i�e�� write�once and monotonic sends	 are given

The properties that follow from the message�delivery discipline are independent of what� if

any� sender discipline is used
 Similarly� the properties that follow from the sender discipline

are based on the weakest message�delivery discipline �unordered delivery	
 These properties

also hold with ordered delivery

��

��	�� De�nitions Common to All Channel Types

Notation� The notation jX j is used to represent the number of elements in sequence X

De�nitions� We begin with the de�nitions of deln � sentn � delp � sentp � del � and sent

deln " jD j

sentn " jS j

delp 	 deln � �

sentp 	 sentn � �

delp � del " D �deln � � �

sentp � sent " S �sentn � � �

The last two equations de�ne the values of del and sent only when there has been

an action in the corresponding history
 We prefer to work with total functions� so we

adopt an untyped view of our speci�cation language� where unde�ned values are determined

by Hilbert�s �choice operator ���� �representing an arbitrary value taken from the set of

possible values	
 This approach is similar to the TLA speci�cation language ���� ���
 We

will take care not to reference these values in properties or proofs

��	�� Properties that Depend on Message�Delivery Discipline

Unordered Channels� An unordered channel does not guarantee the preservation of the

order of sent messages
 It does guarantee� however� that messages arrive without loss or

duplication

Let v denote the ordering relationship between sequences corresponding to a subset

relationship between multisets
 That is� a sequence X is below �v 	 a sequence Y if and

only if every element X appears in Y with the same or greater multiplicity

X v Y
�
" �� k �� �# i � � � i � jX j � X �i � " k 	

� �# i � � � i � jY j � Y �i � " k 	 	

This message�delivery discipline is characterized by the following channel property�

D followsv S ��
�	

From this property we can derive the following corollaries�

deln follows sentn ��
�	

delp follows sentp ��
�	

��

Ordered Channels� An ordered channel guarantees the preservation of the order of sent

messages
 Messages arrive without loss or duplication

Let � denote the pre�x ordering relationship between sequences
 That is� a sequence

X is below �� 	 a sequence Y if and only if X is a pre�x of Y

X � Y
�
" jX j � jY j � �� i � � � i � jX j � X �i � " Y �i � 	

This message�delivery discipline is characterized by the following channel property�

D follows� S ��
�	

This message�delivery discipline is stronger than unordered message delivery
 That is�

the following corollary can be derived from the channel property above�

D followsv S ��
�	

Hence� the corollaries given for unordered channels are also corollaries for ordered channels

In addition� the following corollary can be derived�

�� j � j
 � � deln � j � D �j � " k follows sentn � j � S �j � " k 	 ��
�	

��	�� Properties that Depend on Sender Discipline

Write�Once Channels� A write�once channel is a channel on which the sender sends at

most one message
 It is characterized by the following property�

invariant��sentn � � 	 ��
�	

From this one property and the property of unordered channels� we can derive the

following corollary�

delp � del " k follows sentp � sent " k

Monotonic Channels� A monotonic channel is a channel in which the sequence of sent

messages is monotonic
 We will give here only the properties of monotonically nondecreasing

channels
 The analogous properties exist for monotonically nonincreasing channels
 The

fundamental requirement that distinguishes this sender discipline is�

invariant� �� i � � � i � sentn � � � S �i � � S �i � � � 	 ��
�	

We make use of the function delm � the maximum message delivered

delp � delm " �Max i � � � i � deln � D �i � 	 ��
�
	

��

Notice that for monotonic channels with an ordered message�delivery discipline� this func�

tion is the same as del �

delp � delm " del

From the fundamental property of monotonic channels and the properties common to

all message�delivery disciplines� we can derive the following corollary�

delp � delm
 k follows sentp � sent
 k

��� Simple Certi�cates for Safety

Simple certi�cates are restricted forms of the general operators introduced above
 They have

the advantage of being suitable for automatic translation into run�time checks or warnings

Some of these simple certi�cates will be given a special syntax �that will be de�ned using

standard Backus�Naur notation ����	

��
�� Monotonicity

We say a variable is monotonic if� in the course of a computation� its value is monotonically

increasing or decreasing
 This property requires that a partial order be de�ned on the type

of the variable
 The ordering relation is typically understood from the type
 For example�

if the variable is an integer� the ordering relation is the usual � operator in the integers

If the variable is a character� the ordering relation might be the alphabetic ordering

Monotonicity is an important property frequently used in the proofs of distributed �and

sequential	 systems
 A common application of monotonicity is the de�nition of a metric

�also known as a variant function	 for a computation
 A metric measures the distance� in

some sense� to a �nal goal
 In conjunction with boundedness� a monotonic metric is used

to establish that a computation never moves further from the �nal goal

Monotonicity is a special case of a next property
 The fact that a variable x is mono�

tonically increasing can be expressed as follows�

��n �� �x
 n	 next �x
 n	 	 ��
��	

We will use the following notation to express the simple certi�cate of monotonicity�

�monotonic�up j monotonic�down� �hexpressioni�hcomponenti

The �nal argument �the component	 will usually be understood from context
 For example�

Equation �
�� can be written�

monotonic�up�x

��

This notation has the advantage of eliminating the quanti�cation that is required by the

next formulation

When the ordering relation on the type of the variable in question is not obvious� it is

speci�ed along with the monotonic certi�cate

��
�� Boundedness

As mentioned above� boundedness is often used in conjunction with monotonicity to help

establish termination
 The metric must be monotonically increasing �decreasing	� but it

must also be �nite and bounded above �below	
� As with monotonicity� an ordering relation

is required for the type of the bound variable

Boundedness is a safety property
 It is a special case of an invariant property
 For

example� the fact that a variable x is bounded above by some value B can be expressed as

follows�

invariant��x � B	

We do not introduce any special syntax to express boundedness

When the ordering relation on the type of the variable in question is not obvious� it is

speci�ed along with the boundedness certi�cate

��
�� Unquanti�ed Next

An unquanti
ed next property is one that does not contain any free variables
 For example�

the certi�cate given in Section �
�
� to specify that the Philosopher component must

become thinking after eating was�

eating next eating � thinking

This certi�cate does not require quanti�cation over any variables
 The variables eating

and thinking are local variables of Philosopher and there are no dummy variables

No special syntax is required to distinguish these certi�cates
 They are simply a re�

stricted form of general next properties

��
�� Functional Next

A functional next property is one in which the values of the dummy variables are function�

ally determined by the values of the component variables in the prepredicate of the next

� In addition� the metric must not change by less than some positive delta� This condition is frequently

obviated by choosing an integer metric�

��

For example� consider a component with two variables� x and y� and the following next

property�

�� k �� x � y � y " k next x � k 	

The value of the dummy� k � is functionally determined by the value of the component

variables �in particular� y	 in the prepredicate

Note that this property could be equivalently expressed as�

�� k �� x � y � y � k next x � k 	

This formulation� however� does not functionally determine the value of the dummy for any

given values of the component variables

Consider the generic next property p next q with dummy variables taken from the

set I and component variables taken from the set V
 We de�ne such a property to be a

functional next property exactly when�

�� i � i
 I � �� f �� �p � i " f �V � 	 	

The assymetry in choosing p rather than q to functionally determine the dummy variables

is justi�ed by Equation �
�
 From this equation� we know �p � q � and hence if the dummy

variables are functionally determined by the postpredicate� they are functionally determined

by the prepredicate as well �and hence the property is a functional next property in the

sense de�ned above	

We adopt a variation of Hehner�s notation ���� for expressing functional next properties

We decorate the variables in the prepredicate with an apostrophe placed before the variable

name
 The next can then be replaced by an implication� and the result is a predicate

on adjacent pairs of states in a computation
 We introduce the operator adjacent to

distinguish these predicates from predicates on a single state
 Let �p denote the predicate

that results from decorating the component variables in the predicate p
 The property

p next q can then be written�

adjacent���p � q	

Because of the functional determination of the dummy variables� they can be eliminated

in this expression by replacing them with a function on the component variables in the

prepredicate �i�e�� �p 	

For example� consider the functional next at the beginning of this section�

�� k �� x � y � y " k next x � k 	

�

Using our decoration of variables� this property can be written�

�� k �� adjacent���x � �y � �y " k � x � k	 	

Replacing the dummy with the function on variables in the prepredicate� we have�

adjacent���x � �y � �y " �y � x � �y	

In this case� the property can be simpli�ed�

adjacent���x � �y � x � �y	

Like monotonicity and boundedness� this simple certi�cate has the advantage of not re�

quiring universal quanti�cation
 The use of the keyword adjacent and decorated variables

is a notational convenience that will be exploited in Chapter �

��� Simple Certi�cates for Progress

Recall that a transient certi�cate contains a predicate that is guaranteed not to remain

true forever
 When used in conjunction with monotonicity and boundedness� transience can

establish that a computation eventually reaches a �xed point
 If the monotonic bounded

metric described above can be shown to eventually change value if it is below the bound�

the metric eventually reaches the speci�ed bound

Like next properties� transient certi�cates can contain free variables that are implic�

itly universally quanti�ed over their range
 For example� to express that a metric eventually

changes value� the following certi�cate could be used�

transient��metric " m	

where m is a free variable

For two special cases� however� a free variable and universal quanti�cation are not

needed
 These two kinds of transient properties we will call unquanti
ed transience and

functional transience
 Avoiding quanti�ed expressions simpli�es the automatic run�time

support of these certi�cates �as will be discussed in Chapter �	

����� Unquanti�ed Transience

An unquanti�ed transient property is one that does not contain any free variables
 For

example� the certi�cate given in Section �
�
� to specify that the Philosopher component

does not eat forever was�

transient�eating

��

This certi�cate does not require quanti�cation over any variables
 The variable eating is

a local variable of Philosopher and there are no dummy variables

No special syntax is required to distinguish these certi�cates
 They are simply a re�

stricted form of general transient expressions

����� Functional Transience

A frequent use of quanti�cation �especially with regards to metrics	 is to express that the

value of an expression eventually changes
 The free variable is simply used as a place�holder

An example of such a certi�cate is the example used at the beginning of this section�

transient��metric " m	

where m is a free variable

This certi�cate is an example of a more general form of transient properties in which

the free variables are functionally determined by the transient predicate
 For any component

state� there is at most one value for each free variable such that the transient predicate is

true
 We call this form of transient properties functional transient properties

In general� a functional transient property with dummy variables taken from the set

I and component variables taken from the set V has the form�

transient�� �� i � i
 I � i " fi �V 	 � p��I �V 		

We will use the following syntax as an equivalent formulation of the above property�

�� i � i
 I � i �" fi �V 	 in transient�p��I �V 	

For example� the certi�cate concerning the variable metric could be written�

m �" metric in transient��metric " m	

As another example� consider a metric that is used to establish that a Philosopher com�

ponent does not eat forever
 This metric is guaranteed to change� so long as the component

remains in the eating state
 Such a property is captured by the certi�cate�

m �" metric in transient��metric " m � eating	

Functional transient properties have a fundamental similarity to functional next

properties
 Because the free variables are functionally de�ned by the predicate� univer�

sal quanti�cation is not required to express the property

��

��

Chapter �

Follows Properties

In this chapter� we discuss the certi�cate follows introduced in the previous chapter
 This

certi�cate� which to our knowledge is a new property� combines both safety and progress

Some theorems are given that are useful for the manipulation of these properties
 As an

illustration of the use of follows � we succinctly prove a solution to the earliest meeting

time problem
 Also� as a more involved manipulation of follows � we derive the corollaries

given as channel properties in the previous chapter �Section �
�	

��� Basic Theorems

In this section� we list some basic theorems for the manipulation of follows properties

Most theorems are given without proof� as they can be easily derived from the de�nition

of follows
 Two theorems �monotonicity and least �xed point	 are more involved� so they

are proven in the next section

We begin with the de�nition �which has already been given in Chapter �	

De�nition�

�x follows� y	�C
�
" �� k �� stable��x
 k	�C 	 � �� k �� stable��y
 k	�C 	

� invariant��x � y	�C � �� k �� �y
 k � x
 k	�C 	

� �� k �� �y � k � x � k next x � k	�C 	

The subscript on the follows operator will be omitted when the ordering relation is

clear from context
 For the following properties� the ordering relation will be understood to

be �
 Also� we will use x � y � and z for program variables and j and k for free variables

��

����� Properties for Posets

A poset is a set of elements with an ordering relation that is re�exive� transitive� and

antisymmetric
 An example of a poset is the set of sequences ordered by the pre�x ordering

relation

When the ordering relation of follows �e�g�� � 	 de�nes a poset on the types of the

variables� it enjoys the following properties

Constants� For free variables j and k � x is a program variable	� we have�

k follows j 	 invariant��k " j 	 ��
�	

k follows x 	 invariant��x " k	 ��
�	

x follows k 	 invariant��x " k	 ��
�	

Transitivity�

�x follows y	 � �y follows z 	 � �x follows z 	 ��
�	

Re�exivity�

�x follows x 	 	 �� k �� invariant��x " k	 	 ��
�	

Antisymmetry�

�x follows y	 � �y follows x 	 � invariant��x " y	 ��
�	

Monotonicity�

�f is monotonic	 � �x follows y	 � �f �x follows f �y	 ��
�	

Stable Fixed Point� An element k is said to be a
xed point of a function f when

k " f �k
 As a shorthand� we de�ne the set FP of �xed points� FP " f k � k " f �k � k g

�x follows f �x 	 � �� k � k
 FP � stable��x " k	 	 ��
�	

Least Fixed Point� As a shorthand� we de�ne the set FP �x� of �xed points above an

element x� �

FP �x� " f k � k
 x� � k " f �k � k g

��

An element k is said to be in the
nite closure of an element x� and a function f when

k can be otained by a �nite number of applications of f �i�e�� f i � for some �nite i 	 to

x�
 As a shorthand� we de�ne the set FC �x� of elements that are in this �nite closure�

FC �x� " f k � �� i � i
 � � k " f i �x� 	 � k g

The following theorem gives a useful progress property as a consequence of a follows

property

�f is monotonic	 � ��FP � FC 	�x� �" �	 � �x follows f �x 	

� �x " x� � x " �Min k � k
 FP �x� � k 		 ��
�	

Informally� this theorem expresses a kind of induction on the poset
 It is interesting to

note that well foundedness of the poset is neither necessary nor su�cient for the application

of the theorem
 There is another characterization of posets� however� that is easy to verify

�independent of a function f 	 and that arises frequently in practice
 This characterization

is given next

A chain is a sequence of elements that can be arranged such that each element is below

the next element
 In a poset where every chain between any two comparable elements is

�nite� there exists a �xed point above x� only when there exists a �xed point above x�

that is the result of the application of some �nite closure to x�
 Thus� in any such poset�

the existence of a �xed point above x� is su�cient for the application of the theorem
 The

set of integers is an example of such a poset
 For such a poset� the least �xed point theorem

can be restated more simply as follows�

�f is monotonic	 � �FP �x� �" �	 � �x follows f �x 	

� �x " x� � x " �Min k � k
 FP �x� � k 		 ��
�
	

����� Properties for Lattices

A poset is called a lattice if every �nite nonempty set has a greatest lower bound �or �meet�

denoted � 	 and a least upper bound �or �join� denoted � 	 ��� ���
 Equivalently� a poset

is a lattice exactly when�

�� x � y �� �� z �� z " x � y 	 � �� z �� z " x � y 	 	

Sequences ordered by pre�x ordering do not form a lattice because a least upper bound

is not de�ned for all pairs of sequences
 �In particular� two sequences in which neither is

a pre�x of the other have no common upper bound
	 An example of a lattice is the set of

integers ordered by the �at most relation

��

For posets that are lattices� follows enjoys the following properties� in addition to those

given in Section �
�
�

Strengthening � Weakening�

�� k �� stable��z
 k	 	 � �x follows y	

� �x � z follows y � z 	 � �x � z follows y � z 	 ��
��	

Junctivity �Finite�� For �nite nonempty I �

�� i � i
 I � xi follows yi 	

� �� f i � i
 I � xi g follows � f i � i
 I � yi g	

� �� f i � i
 I � xi g follows � f i � i
 I � yi g	 ��
��	

Union �Finite�� For �nite nonempty I �

�� i � i
 I � xi follows y 	

� �� f i � i
 I � xi g follows � f i � i
 I � xi g	 ��
��	

Intersection �Finite�� For �nite nonempty I �

�� i � i
 I � x follows yi 	

� �� f i � i
 I � yi g follows � f i � i
 I � yi g	 ��
��	

����� Properties for Complete Lattices

A lattice is said to be complete if all sets �including in�nite and empty ones	 have a least

upper bound and a greatest lower bound
 Complete lattices always have a top �an element

above all others	 and a bottom �an element below all others	

The set of integers ordered by �at most does not form a complete lattice because there

is no top or bottom
 �The empty set does not have a least upper bound or a greatest lower

bound
	 An example of a complete lattice is the powerset of a �nite set S � ordered by

subset inclusion
 Any two elements have a least upper bound �the union	 and a greatest

lower bound �the intersection	
 The top is the set S and the bottom is the empty set

For complete lattices� the �nite properties given above are universal

��

Junctivity �Universal��

�� i �� xi follows yi 	 � �� f i �� xi g follows � f i �� yi g	

� �� f i �� xi g follows � f i �� yi g	 ��
��	

Union �Universal��

�� i �� xi follows y 	 � �� f i �� xi g follows � f i �� xi g	 ��
��	

Intersection �Universal��

�� i �� x follows yi 	 � �� f i �� yi g follows � f i �� yi g	 ��
��	

��� Proofs of Basic Theorems

The theorems listed above can all be derived from the de�nition of follows
 The complete

proofs for two of these theorems �monotonicity and least �xed point	 are given here as an

illustration of how such a proof can be carried out
 These two theorems arise frequently in

proofs involving follows

����� Monotonicity

�f is monotonic	 � �x follows y	 � �f �x follows f �y	

We prove the consequent� f �x follows f �y � by proving each of the conjuncts in the

de�nition of follows

f �x follows f �y 	 �� k �� stable��f �x
 k	 	 � �� k �� stable��f �y
 k	 	

� invariant��f �x � f �y	 � �� k �� f �y
 k � f �x
 k 	

� �� k �� f �y � k � f �x � k next f �x � k 	

Prove�

�� k �� stable��f �x
 k	 	

��

Proof�

f �x " k

	 f choice of j g

x " j � f �j " k

next f assumption � stable��x
 k	 g

x
 j � f �j " k

� f f is monotonic g

f �x
 f �j � f �j " k

� f calculus g

f �x
 k

�

Prove�

�� k �� stable��f �y
 k	 	

Proof� Same as above

�

Prove�

invariant��f �x � f �y	

Proof�

true

	 f assumption� invariant��x � y	 g

invariant��x � y	

� f f is monotonic g

invariant��f �x � f �y	

�

Prove�

f �y
 k � f �x
 k

��

Proof� There exists a j such that

f �y
 k

	 f choice of j g

y " j � f �y
 k

	 f calculus g

y " j � f �y
 k � f �j
 k

� f calculus g

y
 j � f �y
 k � f �j
 k

� f assumption � y
 k � x
 k � with k �" j g

x
 j � f �j
 k

� f f is monotonic g

f �x
 f �j � f �j
 k

� f calculus g

f �x
 k

�

Prove�

f �y � k � f �x � k next f �x � k

Proof� There exists a j such that

f �y � k � f �x � k

� f calculus g

f �y � k

	 f choice of j g

y " j � f �y � k

	 f calculus g

y " j � f �j � k

	 f assumption� invariant��x � y	 g

y " j � f �j � k � x � y

	 f calculus g

y " j � f �j � k � x � j

next f assumption� y � k � x � k next x � k g

f �j � k � x � j

�

� f f is monotonic g

f �j � k � f �x � f �j

� f calculus g

f �x � k

�

����� Least Fixed Point

�f is monotonic	 � ��FP � FC 	�x� �" �	 � �x follows f �x 	

� �x " x� � x " �Min k � k
 FP �x� � k 		

We de�ne a constant m as follows�

m " �Min k � k
 �FP � FC 	�x� � k 	

After justifying the use of min in the de�nition of m � we will prove the following

results�

m " �Min k � k
 FP �x� � k 	 ��
��	

x " x� � x
 m ��
��	

stable��x � m	 ��
�
	

It is clear that the least �xed point theorem follows from the conjunction of these results

Prove� FC �x� is a well�founded set �and hence any nonempty subset has a minimum

element� as in the de�nition of m 	

Proof� By induction� we show �� i � i
 � � f i �x� � f i�� �x� 	

Base case � i " � 	

true

	 f invariant��x � f �x 	 g

invariant��x � f �x 	

� f de�nition of invariant g

initially��x � f �x 	

	 f assumption� initially��x " x� 	 g

initially��x � f �x 	 � initially��x " x� 	

��

� f calculus g

initially��x� � f �x� 	

	 f x� is a constant g

x� � f �x�

	 f de�nition of f � g

f � �x� � f �x�

Inductive step

f i �x� � f i�� �x�

� f f is monotonic g

f i�� �x� � f i�� �x�

Now �FP � FC 	�x� is a nonempty �from the assumptions	 subset of a well�founded

set
 Hence� it has a minimum �i�e�� m is well de�ned	

�

Prove ����	��

m " �Min k � k
 FP �x� � k 	

Proof� First we show by induction�

�� j � j
 FC �x� � �� k � k
 FP �x� � k
 j 	 	

Base case � i " � 	
 �� k � k
 FP �x� � k
 f � �x� 	

�� k � k
 FP �x� � k
 f � �x� 	

	 f de�nition of f � g

�� k � k
 FP �x� � k
 x� 	

	 f de�nition of FP �x� g

true

Inductive step

�� k � k
 FP �x� � k
 f i �x� 	

� f f is monotonic g

�� k � k
 FP �x� � f �k
 f i�� �x� 	 	

� f de�nition of FP �x� g

�� k � k
 FP �x� � k
 f i�� �x� 	

��

In particular for m �since m
 FC �x� 	� we have�

�� k � k
 FP �x� � k
 m 	

But m
 FP �x� �by de�nition of m	� so�

m " �Min k � k
 FP �x� � k 	

�

Prove �������

x
 x� � x
 m

Proof� First we show�

�� i � i
 � � x
 f i �x� � x
 f i�� �x� 	

Consider any i
 � �

x
 f i �x�

� f f is monotonic g

f �x
 f i�� �x�

� f assumption � f �x
 k � x
 k g

x
 f i�� �x�

Inducting on integers� this gives the property�

�� k � k
 FC �x� � x
 x� � x
 k 	

And hence �since m is in FC �x� 	�

x
 x� � x
 m

�

Prove ����
��

stable��x � m	

��

Proof�

x � m

	 f f is monotonic g

x � m � f �x � f �m

	 f de�nition of m � m
 FP �x� g

x � m � f �x � m

next f assumption� f �x � k � x � k next x � k g

x � m

�

��� The Earliest Meeting Time

����� Problem De�nition

The earliest meeting time problem has been discussed in ����
 The problem is to schedule

a meeting for a group of people at the earliest time that is acceptable to every member of

the group
 Time is considered to be a nonnegative integer value
 Associated with every

member i is a function fi that maps any time t to the �rst available time for member i

at or after time t
 From the de�nition of fi � it follows that fi is monotonic and moreover

that �� t �� t � fi �t 	
 An example of these functions for a group of three people is plotted

in Figure �
�

Initially� the program variable t is

 The progress requirement is that eventually this

variable is set to the earliest meeting time� provided one exists
 The safety requirement

is that this be a �xed point of the system
 More formally� the problem speci�cation is�

assuming �� k �� �� i �� k " fi �k 	 	 � to establish�

t " � � t " �Min k � �� i �� k " fi �k 	 � k 	 ��
��	

stable��t " �Min k � �� i �� k " fi �k 	 � k 		 ��
��	

����� A Solution

We will consider here a speci�cation of a solution
 The solution can be implemented by a

distributed system in our model of computation by a central component that keeps track

of the current proposed time� and a collection of components� one for each member of the

group

��

f .t

3

2
f .t

1

f .t

t

f.t
f.t = t

(Max i :: f .t)
i

Figure �
�� Some example earliest available meeting time functions for a group of people

The speci�cation of our solution is�

initially��t " � 	 ��
��	

t follows �Max i �� ti 	 ��
��	

�� i �� ti follows fi �t 	 ��
��	

Operationally� each component that corresponds to a member of the group is responsible

for updating ti with the next available time for component i at or after time t
 The central

component takes the maximum of these values and updates t

����� Proof of Solution

Lemma ���

t follows �Max i �� fi �t 	

Proof�

true

	 f property � �� i �� ti follows fi �t 	 g

�� i �� ti follows fi �t 	

� f �nite junctivity of follows g

��

�Max i �� ti 	 follows �Max i �� fi �t 	

	 f property � t follows �Max i �� ti 	 � and transitivity of follows g

t follows �Max i �� fi �t 	

�

We now use the stable �xed point theorem and the least �xed point theorem �since all

the fi are monotonic and a �xed point exists by assumption	 to conclude�

t " � � t " �Min k � k " �Max i �� fi �k 	 � k 	

� stable��t " �Min k � k " �Max i �� fi �k 	 � k 		

Now this result is equivalent to the required speci�cation� as established from the fol�

lowing equivalence�

k " �Max i �� fi �k 	 	 �� i �� k " fi �k 	

	 f de�nition of max g

�� i �� k
 fi �k 	 � �� i �� k " fi �k 	 	 �� i �� k " fi �k 	

	 f property of fi � k � fi �k g

�� i �� k " fi �k 	 � �� i �� k " fi �k 	 	 �� i �� k " fi �k 	

	 f calculus g

�� i �� k " fi �k 	 � �� i �� k " fi �k 	

	 f calculus� for a nonemtpy group g

true

�

Notice that the entire speci�cation �both safety and progress	 is established from a single

follows property �as given in Lemma �
�	

��� Proofs of Channel Properties

In Chapter �� the properties that de�ne channel behavior were given� along with some

corollaries derivable from these properties
 In this section� we show the derivation as an

exercise in the use of follows properties
 We begin with a reminder of the basic de�nitions

common to all channel types before proving the corollaries for unordered channels� ordered

channels� write�once channels� and monotonic channels

��

����� De�nitions Common to All Channel Types

These de�nitions have already been given in Section �
�
�
 They are repeated here for

convenience

deln " jD j ��
��	

sentn " jS j ��
��	

delp 	 deln � � ��
��	

sentp 	 sentn � � ��
��	

delp � del " D �deln � � � ��
�
	

sentp � sent " S �sentn � � � ��
��	

����� Properties that Depend on Message�Delivery Discipline

Unordered Channels�

Property�

D followsv S ��
��	

Lemma ��� Length � jj � of sequences is monotonic with respect to the multiset subset �v �

ordering�

X v Y � �jX j � jY j	

Proof� The lemma follows directly from the de�nition of the multiset subset �v 	 ordering

on sequences

�

Corollary�

deln follows sentn ��
��	

Proof�

D followsv S

� f Lemma �
� � length is monotonic with respect to v g

jD j follows jS j

��

	 f �
�� � deln " jD j � and �
�� � sentn " jS j g

deln follows sentn

�

Corollary�

delp follows sentp ��
��	

Proof�

deln follows sentn

� f monotonicity of predicate x
 � with respect to � g

deln
 � follows sentn
 �

	 f �
�� � delp 	 deln � � � and �
�� � sentp 	 sentn � � g

delp follows sentp

�

Ordered Channels�

Property�

D follows� S ��
��	

Lemma ��� The multiset subset �v � ordering on sequences is monotonic with respect to

the pre
x �� � ordering�

X � Y � X v Y

Proof�

�# i � � � i � jX j � X �i � " k 	

" f de�nition of � � X � Y � �� i � � � i � jX j � X �i � " Y �i � 	 g

�# i � � � i � jX j � Y �i � " k 	

� f de�nition of � � X � Y � jX j � jY j g

�# i � � � i � jY j � Y �i � " k 	

�

��

Corollary�

D followsv S

Proof�

D follows� S

� f Lemma �
� � monotonicity of v with respect to � g

D followsv S

�

Lemma ��� For all k and all j
 � � the predicate jX j � j � X �j � " k on a sequence

X is monotonic with respect to the pre
x �� � ordering on sequences�

X � Y � �jX j � j � X �j � " k � jY j � j � Y �j � " k	

Proof� The lemma follows directly from the de�nition of the pre�x �� 	 ordering on

sequences

�

Corollary�

�� j � j
 � � deln � j � D �j � " k follows sentn � j � S �j � " k 	

Proof�

D follows� S

� f Lemma �
� � monotonicity of predicate with respect to � g

�� j � j
 � � deln � j � D �j � " k follows sentn � j � S �j � " k 	

�

����� Properties that Depend on Sender Discipline

Write�Once Channels�

Property�

invariant��sentn � � 	 ��
��	

Lemma ���

invariant��deln � � 	

��

Proof�

true

	 f �
�� � invariant��sentn � � 	 g

invariant��sentn � � 	

� f �
�� � deln follows sentn g

invariant��deln � � 	

�

Lemma ���

delp 	 deln " �

sentp 	 sentn " �

Proof� The proof follows immediately from Lemma �
�� the property �
�� of write�once

channels� and the common channel de�nitions

�

Lemma ��
 For all k � the predicate jX j " � � X �� � " k on a sequence X is monotonic

with respect to the multiset subset �v � ordering on sequences� for sequences of length less

than or equal to ��

jX j � � � jY j � � � X v Y � �jX j " � � X �� � " k � jY j " � � Y �� � " k	

Proof�

jX j " � � X �� � " k

� f assumption � X v Y g

jY j
 � � �� j � jY j � j
 � � Y �j � " k 	

	 f assumption � jY j � � g

jY j " � � �� j � � � j
 � � Y �j � " k 	

	 f calculus g

jY j " � � Y �� � " k

�

Corollary�

delp � del " k follows sentp � sent " k

�

Proof�

D followsv S

	 f �
�� � invariant��sentn � � 	 g

�D followsv S 	 � invariant��sentn � � 	

	 f Lemma �
� � invariant��deln � � 	 g

�D followsv S 	 � invariant��sentn � � � deln � � 	

	 f �
�� � deln " jD j � and �
�� � sentn " jS j g

�D followsv S 	 � invariant��jS j � � � jD j � � 	

� f Lemma �
� � predicate is monotonic on sequences of length less than

or equal to � g

jD j " � � D �� � " k follows jS j � S �� � " k

	 f �
�� � deln " jD j � and �
�� � sentn " jS j g

deln " � � D �� � " k follows sentn " � � S �� � " k

	 f calculus g

deln " � � D �deln � � � " k follows sentn " � � S �sentn � � � " k

	 f Lemma �
� � delp " �deln " � 	 � and sentp " �sentn " � 	 g

delp � D �deln � � � " k follows sentp � S �sentn � � � " k

	 f �
�
 � delp � del " D �deln � � � g

delp � del " k follows sentp � S �sentn � � � " k

	 f �
�� � sentp � sent " S �sentn � � � g

delp � del " k follows sentp � sent " k

�

Monotonic Channels�

Property�

invariant� �� i � � � i � sentn � � � S �i � � S �i � � � 	 ��
��	

De�nition�

delp � delm " �Max i � � � i � deln � D �i � 	 ��
��	

Lemma ��	

�� k � � � k � jX j � �� i � � � i � k � � � X �i � � X �i � � � 	

� X �k � � � " �Max i � � � i � k � X �i � 	 	

��

Proof�

�� i � � � i � k � � � X �i � � X �i � � � 	

� f calculus � transitivity of � � and k � � g

�� i � � � i � k � � � X �i � � X �k � � � 	

	 f calculus � re�exivity of � � and k � � g

�� i � � � i � k � X �i � � X �k � � � 	

	 f calculus � de�nition of max � and k � � g

X �k � � � " �Max i � � � i � k � X �i � 	

�

Lemma ���

sentp � sent " �Max i � � � i � sentn � S �i � 	

Proof�

sentp

	 f �
��� sentp 	 sentn � � g

sentn � �

	 f �
�� � �� i � � � i � sentn � � � S �i � � S �i � � � 	 g

sentn � � � �� i � � � i � sentn � � � S �i � � S �i � � � 	

� f Lemma �
� with k �" sentn g

sentn � � � S �sentn � � � " �Max i � � � i � sentn � S �i � 	

	 f �
��� sentp 	 sentn � � g

sentp � S �sentn � � � " �Max i � � � i � sentn � S �i � 	

	 f �
��� sentp � sent " S �sentn � � � g

sentp � sent " �Max i � � � i � sentn � S �i � 	

� f calculus g

sent " �Max i � � � i � sentn � S �i � 	

�

Corollary�

delp � delm
 k follows sentp � sent
 k

��

Proof�

D followsv S

� f max is monotonic with respect to v g

�Max i � � � i � jD j � D �i � 	 follows �Max i � � � i � jS j � S �i � 	

� f monotonicity of predicate with respect to � g

�Max i � � � i � jD j � D �i � 	
 k follows �Max i � � � i � jS j � S �i � 	
 k

	 f �
��� delp follows sentp g

�Max i � � � i � jD j � D �i � 	
 k follows �Max i � � � i � jS j � S �i � 	
 k

� delp follows sentp

� f conjunctivity of follows g

delp � �Max i � � � i � jD j � D �i � 	
 k follows

sentp � �Max i � � � i � jS j � S �i � 	
 k

	 f �
�� � deln " jD j � and �
�� � sentn " jS j g

delp � �Max i � � � i � deln � D �i � 	
 k follows

sentp � �Max i � � � i � sentn � S �i � 	
 k

	 f �
�� � delp � delm " �Max i � � � i � deln � D �i � 	 g

delp � delm
 k follows sentp � �Max i � � � i � sentn � S �i � 	
 k

	 f Lemma �
� � sentp � sent " �Max i � � � i � sentn � S �i � 	 g

delp � delm
 k follows sentp � sent
 k

�

Corollary� For ordered channels�

delp � del " delm

Proof�

delp

	 f �
��� delp 	 deln � � g

deln � �

	 f �
�� � �� i � � � i � sentn � � � S �i � � S �i � � � 	 g

deln � � � �� i � � � i � sentn � � � S �i � � S �i � � � 	

	 f �
�� � deln follows sentn g

deln � � � �� i � � � i � sentn � � � S �i � � S �i � � � 	 � deln � sentn

� f calculus g

��

deln � � � �� i � � � i � deln � � � S �i � � S �i � � � 	

	 f �
�� � D follows� S � so �� i � � � i � jD j � D �i � " S �i � 	 g

deln � � � �� i � � � i � deln � � � D �i � � D �i � � � 	

� f Lemma �
� with k �" deln g

deln � � � D �deln � � � " �Max i � � � i � deln � D �i � 	

	 f �
��� delp 	 deln � � g

delp � D �deln � � � " �Max i � � � i � deln � D �i � 	

	 f �
�
� delp � del " D �deln � � � g

delp � del " �Max i � � � i � deln � D �i � 	

	 f de�nition of delm g

delp � del " delm

� f calculus g

del " delm

�

��

��

Chapter �

Certi�cates and Testing

In this chapter� we examine how certi�cates can be useful for component testing and debug�

ging
 Mappings from the simple certi�cates introduced at the end of Chapter � to run�time

checks are given
 We discuss the feasibility of the automatic generation of the code for these

run�time checks
 The practical support for these speci�cation constructs is considered in

the context of a real programming language and framework� namely� C�� and the CORBA

distributed�object standard

	�� Certi�cates as Assertions

One of the de�ning characteristics of certi�cates is locality
 A certi�cate can refer only

to local variables� to messages sent by the component� and to messages delivered to the

component by the message�passing layer
 The intent is that certi�cates correspond to

component speci�cations� where no requirements are placed on the environment in which the

component is placed
 They represent both an obligation on the part of the implementor to

provide a certain functionality and a promise to the environment that a certain functionality

is provided
 Since the validity of such certi�cates depends only on the implementation of

the component in question� these certi�cates can be validated in isolation� before deploying

or releasing the component for general use

In addition to their role as formal speci�cations of component behavior� certi�cates can

also play an important role in the testing of an implementation
 For a component that

corresponds to a single implementation object� the predicates of a certi�cate contain only

expressions local to a single implementation object
 It is therefore relatively easy to check

at run time that the properties described are maintained by the component
 When used in

this manner� certi�cates are akin to assertions in sequential programming
 They can play

��

a similar role in the debugging phase of software development

The only requirement on a certi�cate for it to be run�time checkable is that its predicates

all be local
 This requirement does not guarantee� however� that the certi�cate can be lo�

cally veri�ed
 For example� the certi�cate transient�hungry �P is local to the Philosopher

component P
 This certi�cate can be tested �in the limited manner in which progress proper�

ties can be tested� as discussed in Section �
�	
 This certi�cate cannot necessarily� however�

be unilaterally guaranteed by the component regardless of the environment in which it

is placed �e�g�� the transition out of the hungry state may require permision from other

components in the system	

	���� When Should Assertions be Checked�

The computational model described in Chapter � involves sequences of interleaved atomic

actions
 Each action maps a system state to a new system state
 The certi�cates described

in this chapter involve predicates on these states
 The validity of a certi�cate therefore

depends on the state before and after the execution of an atomic action
 The intermediate

states during the execution of an atomic action are not observable and so are not required

to satisfy the certi�cates

We associate these atomic actions with the methods that are executed as the result of

the delivery of an RPC request
 Even though execution of the method may cause several

messages to be sent� the entire method is considered to be a single atomic action
 It is

therefore su�cient to examine the component state at the beginning and the end of these

methods
 Such an approach is valid under certain constraints on the message�passing layer

A set of constraints su�cient to ensure the validity of this approach has been given in ����

Our computational model meets these requirements� allowing us to treat methods as atomic

blocks

	���� A Practical Instance of Our Model� CORBA�compliant DSOM

In the remainder of this chapter� we describe how the use of certi�cates for component test�

ing can be supported in an instantiation of our distributed computing model� namely� the

CORBA standard
 The CORBA standard is an attractive vehicle for these ideas because

component descriptions �with certi�cates	 are entirely consistent with the object declara�

tions of the CORBA IDL
 Since CORBA�compliant systems provide IDL parser to generate

stub code from these declarations� it is appealing to consider using these parsers to also

automatically generate run�time checked assertions from the certi�cates
 These assertions

��

would be embedded in the stub code provided by the IDL parser
 In the cases where the

code cannot be entirely automatically generated �e�g�� see Section �
�	� the required stubs

and hooks can be generated and the programmer would then be required to �ll in the

functionality

There are many commercially available CORBA�compliant systems
 Most of these sys�

tems support a variety of implementation languages �usually at least C� C��� Smalltalk�

and Java	
 We will present our run�time translations in the context of IBM�s CORBA�

compliant SOM�DSOM system� where the component implementations are given in C��

The translation of certi�cates into run�time checks does not depend on the use of this partic�

ular commercial system
 No special features of SOM�DSOM are critical to the tractability

of the approach outlined in this chapter
 This choice was made for illustrative purposes

only� as our goal was to demonstrate the practicality of our approach

	�� Mapping of Speci�cation Variables

The local variables listed in a component description �and referred to by certi�cates	 do

not necessarily correspond directly to implementation variables
 Also� the channel histo�

ries �and associated functions such as delp and sent 	 are not directly available to the

implementation in a CORBA application
 Thus� a mapping between these speci�cation �or

�ghost 	 variables and the implementation variables must be provided

The relationship between local variables in the component description and implemen�

tation variables must be de�ned by the implementor
 For each variable in the component

description� a function is written that calculates the value of the variable from the imple�

mentation state
 For example� the component description of Philosopher contains three

boolean local variables� thinking� hungry� and eating
 The implementation of this compo�

nent� however� may contain a single integer variable� status� that de�nes the object�s state�

 when it is thinking� � when it is hungry� and � when it is eating
 For each speci�cation

variable� the implementor of the component must provide a function mapping the value of

the integer implementation variable to a value for the speci�cation variable
 As an example

of such a mapping for the local variable thinking in a CORBA application written in C��

and using IBM�s DSOM� see Program �
�
 The type PhilosopherData is a standard data

structure used in DSOM to encapsulate the member data of the implementation object
 The

header of this function can be automatically generated� but the code requires knowledge of

the intended relationship between implementation state and speci�cation state

On the other hand� the relationship between the functions on channel histories �e�g��

��

boolean evaluate�thinking �PhilosopherData �d�

�

if �d��status 		 ��

return true�

else

return false�

�

Program �
�� A mapping from the implementation state to a speci�cation variable

delp and sent 	 and the implementation channel state is common to all implementations

No user code is required to support these functions� as they can be provided automatically

as part of a library
 For example� the class given in Program �
� records the history of

messages delivered on a particular incoming channel
 The class is parameterized according

to the message type of the channel

template �class MessageType�

struct InChannelHistory �

Sequence�MessageType� A�

int deln �void� �

return A
get�length���

�

MessageType del �void� �

return A
last���

�

void update �MessageType m� �

A
append�m��

�

��

Program �
�� A data structure for representing the history of an incoming channel

As an optimization� the entire channel history need not be preserved
 For example� for

an outgoing monotonic channel where we care only about the value of sent � it is su�cient

to record only this �maximum	 value
 The class given in Program �
� implements such an

optimization

Each RPC target is associated with a unique incoming channel history
 Every method

is modi�ed by the addition of an update of the corresponding channel history
 The message

delivered to the component is appended to the channel history
 For example� consider the

��

template �class MessageType�

struct OutMonotonicChannelHistory �

boolean sentp�

MessageType sent�

OutMonotonicChannelHistory �void� �

sentp 	 false�

�

void update �MessageType m� �

assert �m �	 sent��

sentp 	 true�

sent 	 m�

�

��

Program �
�� An optimized data structure for representing the history of an incoming
channel

method m in Program �
�
 The stub for this method� including the signature and the �rst

line �where a variable somThis is declared and assigned	� is automatically generated by

the IDL parser
 This method takes three arguments� x� y� and a �somSelf and ev are

handles used by the underlying DSOM system	
 These arguments correspond to a message

type in the speci�cation of the component
 The value of the message is constructed from

the arguments by a programmer�de�ned function evaluate m msg��
 Everything but this

function and the de�nition of the message type can be automatically generated from the

component�s certi�cates

Whenever software is used to test software� there are two concerns� e�ciency and cor�

rectness
 The �rst concern is not critical� as we expect certi�cate�based testing to occur as

part of the debugging of components� and not during their actual use after deployment
 For

calculations that are prohibitively expensive �for example� see the component speci�cations

in Chapter �	� programmer intervention is certainly required to reduce their complexity

The greater the degree of programmer intervention� however� the greater the issue of cor�

rectness becomes a concern
 In general� however� the code a programmer is required to

provide as part of the testing of a component is relatively simple compared to the com�

plexity of the entire component implementation
 Also� this code can be written entirely as

traditional sequential code� to which all the veri�cation techniques that have been developed

in that area can be applied
 We postulate� therefore� that it is easier to write correct code

for certi�cate�based testing than to write correct code for a component implementation

�

typedef struct �

��definition of message type goes here

� m�MessageType�

InChannelHistory�m�MessageType� m�channel�

m�MessageType evaluate�m�msg �long x

short y

ArgStruct �a�

�

m�MessageType ret�val�

��implementation of message evaluation goes here

return ret�val�

�

SOM�Scope void SOMLINK m �Component �somSelf

Environment �ev

long x

short y

ArgStruct �a�

�

ComponentData �somThis 	 ComponentGetData�somSelf��

m�channel
update �evaluate�m�msg�x
y
a���

��implementation of method m goes here

��

Program �
�� Code to maintain the channel history of an RPC target

	�� Support for Safety Properties

	���� Fundamental Safety Certi�cates

The initially certi�cate describes a predicate that is true at the beginning of the compu�

tation
 Since no action has had a chance to execute� this predicate must be established at

the time of component instantiation
 For a component that corresponds to a single imple�

mentation object� this certi�cate must be established by that object�s constructor
 To test

that this certi�cate holds� then� it is su�cient to test it at the end of the constructor

The other fundamental safety operator is next
 To test for the violation of a next

property� the states before and after an action must be examined
 This requires a test both

at the beginning of a method and at its end
 Notice that the testing at the beginning of

the method is meant to capture the state before the action� that is� before the delivery

of the RPC request
 The channel state must therefore be updated only after this initial

��

examination of state
 For a certi�cate p next q and a method m� the framework to test

for the violation of this certi�cate is given in Program �
�
 Recall that the signature of this

method and the �rst line �that declares and assigns a variable somThis	 are both part of

the DSOM implementation
 They are provided automatically as procedure stubs by the

IDL parser
 Also� this method does not have any arguments �somSelf and ev are used by

the underlying DSOM system	� so a unary value is appended to the channel storing the

incoming message history

InChannelHistory m�channel�unary��

boolean p �ComponentData ���

boolean q �ComponentData ���

SOM�Scope void SOMLINK m �Component �somSelf

Environment �ev�

�

ComponentData �somThis 	 ComponentGetData�somSelf��

boolean pre�predicate 	 p�somThis��

m�channel
update �unary��set��

��implementation of method m goes here

assert ��pre�predicate �� q�somThis���

�

Program �
�� Testing a method for a next property

The situation is complicated somewhat by the generality of the de�nition of the next

operator
 This de�nition permits the inclusion of free variables over which the expression can

be universally quanti�ed
 For example� for a local variable x and a free variable n� we might

have the certi�cate x " n next x
 n
 The naive translation of such a quanti�cation�

however� yields an in�nite number of predicates to be tested before and after the execution

of the method

This complication is avoided in our simple safety certi�cates of monotonicity� bounded�

ness� unquanti�ed next � and functional next properties
 Because these restricted forms

of next and invariant do not contain free variables �and hence universal quanti�cation	�

they can be easily �even automatically	 mapped onto the skeleton illustrated in Program �
�

��

	���� Monotonicity

The monotonicity of a local variable x can be veri�ed by comparing the value of the variable

at the beginning and end of each method
 Recall that x is a speci�cation variable� so

its value must be computed from the actual local state using the �programmer�supplied	

function evaluate x��
 The skeleton for the modi�cation of a generic method m is given in

Program �
�

SOM�Scope void SOMLINK m �Component �somSelf

Environment �ev�

�

ComponentData �somThis 	 ComponentGetData�somSelf��

int pre�x�value 	 evaluate�x �somThis��

m�channel
update �unary��set��

��implementation of method m goes here

assert �pre�x�value �	 evaluate�x �somThis���

�

Program �
�� Testing a method for the monotonicity of x

In the case where the monotonic variable does not have a type with an established

ordering relation� the less than or equal to operator would have to be written for this class

using the usual C�� operator overloading techniques

	���� Boundedness

A boundedness property is an invariant property
 To check that this property is never

violated� it must be checked at the end of the constructor and at the end of every method

body
 For example� consider the certi�cate that states that local variable x is bounded

above by a function of local variables y and z

invariant��x � f ��y � z 		

To check this certi�cate� each method is modi�ed as shown in Program �
� �the last line has

been added	
 The additional line is also added to the constructor
 The function f ��y � z 	 is

provided by the programmer in the body of the function evaluate f��
 The evaluation of

the predicate in the certi�cate is provided by the programmer in the body of the function

evaluate bound ���
 �The number � is used to distinguish bounds when a component has

more than one boundedness certi�cate
	

��

int evaluate�x �ComponentData ���

int evaluate�y �ComponentData ���

char evaluate�z �ComponentData ���

int evaluate�f �int
 int��

boolean evaluate�bound�� �ComponentData �data�

�

return �evaluate�x�data� �	 evaluate�f�evaluate�y�data�

evaluate�z�data� ���

�

SOM�Scope void SOMLINK m �Component �somSelf

Environment �ev�

�

ComponentData �somThis 	 ComponentGetData�somSelf��

m�channel
update �unary��set��

��implementation of method m goes here

assert �evaluate�bound���somThis���

�

Program �
�� Testing a method for the boundedness of x

As with monotonicity� a less than or equal to operator can be de�ned for the type of

the bound variables and invoked through overloading

	���� Unquanti�ed next

An unquanti�ed next property is a next property that does not contain any free variables

The certi�cate eating next eating � thinking is an example of such a property
 The

predicates in these unquanti�ed certi�cates can be calculated directly from the component

state
 Therefore� the framework given in Program �
� can be used directly to validate an

unquanti�ed next property

	���	 Functional next

In a functional next � the values of the dummy variables are uniquely determined by the

values of the program variables in the prepredicate
 Recall that a functional next property

with dummy variables from the set I and local variables from the set V has the property�

�� i � i
 I � �� f �� �p � i " f �V � 	 	

��

We introduced the operator adjacent and used preprimed variables to indicate values

from the previous state
 We write adjacent�p where p is a predicate on variables in

V � �V

This notation has the bene�t of eliminating all dummy variables by replacing them by

their functional evaluation using prepredicate variables
 To check that the execution of a

method satis�es the constraint expressed by this certi�cate� the values of the preprimed

variables are stored at the beginning of the method and then used in the evaluation of the

predicate at the end of the method
 For a component with a functional next certi�cate

with� for example� two preprimed variables� every method m would be modi�ed as shown in

Program �
�

boolean p �ComponentData �
 int
 char��

SOM�Scope void SOMLINK m �Component �somSelf

Environment �ev�

�

ComponentData �somThis 	 ComponentGetData�somSelf��

int pre�x�value 	 evaluate�x �somThis��

char pre�y�value 	 evaluate�y �somThis��

m�channel
update �unary��set��

��implementation of method m goes here

assert �p�somThis
 pre�x�value
 pre�y�value���

�

Program �
�� Testing a functional next property with two preprimed variables

	�� Support for Progress Properties

	���� Fundamental Progress Certi�cate

Unlike safety properties� progress properties cannot be violated by any �nite trace
 It is

therefore not possible to report an error at run time due to the violation of a progress

property
 It is possible� however� to report a warning when a progress property has failed

to be satis�ed in a very long time
 Although such a warning is not proof of the existence

of an error in the implementation of a component� it can be a useful starting point for the

examination of an implementation that is believed to be erroneous

��

Recall that the fundamental progress property in our model is transience
 This certi�cate

states that if the predicate is true� it will eventually become false
 For example� recall the

example used in Section �
� where the Philosopher component is in the eating state for a

�nite length of time �i�e�� transient�eating 	
 The transience of a predicate is monitored

by testing it at the end of every method

The class given in Program �
� records the pertinent information for detecting the

possible nontransience of a predicate
 The time at which the predicate last became true

�or the time of the initiation of the computation	 is recorded as well as whether or not the

predicate is currently true

struct TransientPredicate �

boolean holds�

long time�stamp�

boolean ��predicate��ComponentData ���

void initialize �ComponentData �data�

�

holds 	 ��predicate��data��

if �holds�

time�stamp 	 get�current�time���

�

void update �ComponentData �data�

�

boolean b 	 ��predicate��data��

if ��holds �� b�

time�stamp 	 get�current�time���

holds 	 b�

�

��

Program �
�� A class for recording the history of a transient predicate

This information can be used to signal a possible error� if the current time exceeds

the time stamp of a transient predicate by some threshold debugging value
 Alternatively�

this information can be used after interruption of execution to determine which transient

predicates were true and how long that had been the case
 More detailed histories� including

which methods had executed since the predicate became true� can also be maintained to

further aid in debugging

The certi�cate of transience� like the next operator� may contain free variables and

universal quanti�cation
 As with the next operator� the presence of universal quanti�ca�

��

tion makes an automatic mapping of a certi�cate of transience to some program fragment

di�cult
 In practice� however� many transient properties of components can be expressed

as simple �i�e�� unquanti�ed transient or functional transient 	 certi�cates

	���� Unquanti�ed Transience

An unquanti�ed transient property does not contain any free variables
 The certi�cate

transient�eating is an example of such a property
 The predicates in these unquanti�ed

certi�cates can be calculated directly from the component state

In general� for a predicate p � a variable can be declared to store the history of p

using the class given above �Program �
�	
 This variable is initialized in the component

constructor� and then updated at the end of every method
 Program �
�
 shows how an

unquanti�ed transient property can be mapped to the stub code produced by the IDL

parser
 The method somDefaultInit�� is the constructor automatically generated by the

IDL parser
 The only modi�cation to this method required by our run�time certi�cate

checking is the addition of the last two lines �that initialize the transient predicate	
 No�

tice that the only code the programmer must enter is an implementation for the function

evaluate p��
 The rest can be generated automatically

	���� Functional Transience

Given a component state� there is a single assignment of values to free variables such that

the predicate of a functional transient property can be true
 There are two ways� then�

for the transience speci�ed by the certi�cate to be satis�ed�

�
 The predicate can cease to be true for any assignment of values to the free variables

�
 The assignment of values to free variables �required for the predicate to be true	 can

change

The special syntax of functional transient certi�cates permits a special mapping from

these expressions to program fragments
 The values of the dummy variables speci�ed in

the certi�cate can be calculated at the end of each method body
 Every time the predicate

is true and these values are di!erent from the previous values� they are stored along with a

time stamp
 The di!erence between the time stamp of the last update and the current time

can be used to trigger an alarm that warns the tester that the expression may be failing

to be transient
 The class used to store the history of a functional transient property is

shown in Program �
��

��

TransientPredicate p�

boolean evaluate�p �ComponentData �data�

�

��implementation of predicate evaluation goes here

�

SOM�Scope void SOMLINK somDefaultInit �Component �somSelf

som�InitCtrl� ctrl�

�

ComponentData �somThis�

Component�Init�SOMObject�somDefaultInit�somSelf
 ctrl��

��local Component initialization code goes here

p
predicate 	 evaluate�p�

p
initialize �somThis��

�

SOM�Scope void SOMLINK m �Component �somSelf

Environment �ev�

�

ComponentData �somThis 	 ComponentGetData�somSelf��

��implementation of method m goes here

p
update �somThis��

�

Program �
�
� Code to test an unquanti�ed transient property

In general� for a functional transient predicate �with an associated set of dummy vari�

ables	� a variable can be declared to store the history of this predicate using the class given

above
 This variable is initialized in the component constructor� and then updated at the

end of every method
 Program �
�� shows how a functional transient property with a

single free variable �of type integer	 can be mapped to the stub code produced by the IDL

parser
 The only coding required of the programmer is an implementation of two functions�

�
 The functional calculation of the free variables from the component state

�
 The evaluation of the predicate given the current component state and the values of

the free variables

Notice that a functional transient property directly speci�es both these functions
 In a

certi�cate

�� i � i
 I � i �" fi �V 	 in transient�p��I �V 	

��

template �class SetType�

struct FunctionalTransientPredicate �

boolean holds�

long time�stamp�

SetType free�vars�

SetType ��dummies��ComponentData ���

boolean ��predicate��ComponentData �
 SetType��

void initialize �ComponentData �data�

�

free�vars 	 dummies�data��

holds 	 ��predicate��data
free�vars��

if �holds�

time�stamp 	 get�current�time���

�

void update �ComponentData �data�

�

SetType v 	 dummies�data��

boolean b 	 ��predicate��data
v��

if ���holds �� b� �� ��v �	 free�vars� �� b��

time�stamp 	 get�current�time���

holds 	 b�

free�vars 	 v�

�

��

Program �
��� A class for recording the history of a functional transient predicate

the former is given by the fi and the latter is given by p

If there is more than one free variable� a structure is de�ned that contains all these

variables
 This structure must contain an implementation of the not equal operator
 This

data structure� however� is highly regular and can be automatically generated from the

certi�cate
 An example of the data structure corresponding to two free variables� one

integer and one character� is given in Program �
��

This data structure replaces the declaration of DummyVars in Program �
�� �as an integer�

in this case	
 No other code is impacted
 The history of the functional transient property

is initialized and updated as shown in Program �
��
 As before� the programmer must

supply functions to calculate the values of the free variables given the component state� and

evaluate the predicate given the component state and the values of the free variables

��

typedef int DummyVars�

FunctionalTransientPredicate�DummyVars� p�

DummyVars calculate�p�dummies �ComponentData �data�

�

DummyVars ret�val�

��implementation of calculation of free variable values goes here

return ret�val�

�

boolean evaluate�p �ComponentData �data
 DummyVars d�

�

��implementation of predicate evaluation goes here

�

SOM�Scope void SOMLINK somDefaultInit �Component �somSelf

som�InitCtrl� ctrl�

�

ComponentData �somThis�

Component�Init�SOMObject�somDefaultInit�somSelf
 ctrl��

��local Component initialization code goes here

p
dummies 	 calculate�p�dummies�

p
predicate 	 evaluate�p�

p
initialize �somThis��

�

SOM�Scope void SOMLINK m �Component �somSelf

Environment �ev�

�

ComponentData �somThis 	 ComponentGetData�somSelf��

��implementation of method m goes here

p
update �somThis��

�

Program �
��� Code to test a functional transient property

�

struct DummyVars �

int i�

char j�

int operator �	 �const DummySet� d�

�

if ��d
i 		 i� �� �d
j 		 j��

return ��

else

return ��

�

��

Program �
��� De�nition of a class for multiple dummy fariables of a functional transient
property

��

Chapter �

Services

In this chapter� we introduce services
 A service is a frequently used paradigm for component

interaction in distributed systems
 Two examples of such services are given and their

integration in our model is explored
 One of these services is then used in the development

of a larger example application� illustrating the utility of this approach to paradigm reuse

��� Introduction

The certi�cate�based approach described in previous chapters emphasizes the speci�cation

of the individual component
 This speci�cation is given as a unilateral guarantee of compo�

nent behavior� regardless of the environment in which it is placed
 Component properties�

then� are veri�ed in isolation of the rest of the system
 This promotes the speci�cation�

implementation� and proof reuse of the individual components
 System properties� on the

other hand� are proven as the conjunction of the local component properties
 Because of

their dependence on all the constituent component properties� the proofs of these system

properties are di�cult to reuse in di!erent contexts

All �but the most trivial	 system properties are established and maintained through the

coordination of component interactions
 If these component interactions can be structured

in a meaningful way� often the arguments of correctness for the distributed system can be

simpli�ed
 Many algorithms impose this structuring through a small collection of abstrac�

tions that are frequently reused
 These abstractions then �gure prominently in both the

informal exposition of the algorithm as well as its formal veri�cation

For example� consider a distributed system responsible for maintaining a certain tem�

perature in a building
 The system consists of a collection of thermostat components that

alternate between two states� o! and on
 A thermostat changes state depending on the

��

local temperature of its immediate environment� A thermostat is o! when the environment

temperature is above a certain threshold and it is on when the environment temperature

is below a certain threshold
 The steady�state of the building temperature then follows

directly from the certi�cates capturing individual component properties
 If� however� we

impose the further requirement that at most two�thirds of the thermostats can be on at the

same time �e�g�� perhaps this is required by the electrical system	� the thermostats must

now coordinate their transitions from o! to on and vice�versa
 The protocol used for this

coordination can be expressed using certi�cates� but a compositional proof is required to

establish that the system invariant is maintained
 This chapter addresses the question of

how to reduce the burden of this compositional proof

As mentioned above� one technique for simplifying the proof is to introduce an abstrac�

tion that structures the component interactions
 The maintenance of a system property is

then an immediate consequence of this structuring
 Since they are properties of component

communication� these abstractions cannot be captured in a single component but must be

derived from the speci�cations of a collection of components
 It is desirable� then� to reuse

this derivation whenever applicable
 A qualitative observation is that a relatively small

number of abstractions are used in a relatively large number of distributed algorithms
 It is

therefore reasonable to expect that extensive reuse is possible
 We will call these abstrac�

tions �services

In this chapter we examine two simple services� tokens and logical clocks
 The choice

of these services is signi�cant
 They represent two very powerful mechanisms for structur�

ing component interactions
 The former is often used to represent the indivisibility and

indestructibility of a limited resource
 The latter is often used to establish consistency and

causality relationships
 It has been our experience that these services reappear frequently

in the development of distributed algorithms
 For example� they can be used to simplify

the proof and exposition of algorithms as varied as mutual exclusion� dining philosophers

����� global snapshots ����� Byzantine generals ����� and termination detection ���� ��

On the other hand� these two services do not comprise an exhaustive list of useful

services
 They are given as an illustration of the use of services and their integration in our

model
 Another example might be partial orders� where components are connected in an

acyclic directed graph structure
 Edge directions can change but components coordinate

these modi�cations so as to maintain the acyclicity of the graph
 This service is useful

for the symmetry breaking that is commonly required for fair arbitration
 For example�

components that are higher in the partial order could be given priority until their request

is satis�ed� at which point they move to the bottom of the partial order

��

We con�ne our discussion in this chapter� however� to tokens and logical clocks
 Each is

characterized informally� and their utility in distributed algorithms outlined
 Each service

is then characterized formally using the certi�cates given in previous chapters
 Since a

service represents an abstraction of a communication discipline� we give the certi�cate�

based speci�cation for all the components participating in this discipline
 The key properties

embodied by these services are then derived from the conjunction of these speci�cations

We conclude with an extended example� illustrating how a service can be used to simplify

the construction of a larger application

��� Tokens

���� Speci�cation

A token is an indivisible unit that can be in the possession of at most a single component

Thus� the number of components with tokens is bounded above by the number of tokens

in the computation
 Tokens can neither be created nor destroyed
 Thus� the total number

of tokens in a computation is constant
 In this way� tokens capture a limited resource

allocation paradigm� A component with a token has access to the resource� a component

without a token does not

Let the total number of tokens in a system be tokens
 Let the number of tokens held

initially by a component c be c�initial hold
 The �rst property of tokens is that their total

number is constant� and this number is the sum of the number of tokens each component

holds initially

invariant��tokens " �
 c �� c�initial hold 		 ��
�	

Let the number of tokens held by a component c be c�holding and let the number of

tokens in a channel from component c to component c� be �c� c�	�holding
 The second

property of tokens is that the number of tokens held by any component or any channel is

nonnegative

�� c �� invariant��c�holding
 � 	 	 ��
�	

�� c� c� �� invariant���c� c�	�holding
 � 	 	 ��
�	

Notice that this speci�cation is given entirely in terms of safety properties
 There are

no guarantees concerning token circulation
 These guarantees are protocol dependent and

can be layered on top of this fundamental speci�cation
 An example of such a layering is

given in Section �
�� where a token manager for enforcing mutual exclusion is developed

��

���� Utility of Tokens

A system invariant that is a conjunction of local component invariants can be derived di�

rectly from those component properties
 For example� consider the system of thermostat

components from the introduction to this chapter
 Say each component has a local vari�

able that represents how much energy that component has expended
 If each component

maintains a local invariant that this energy consumption is bounded above by some value�

it follows that the total energy consumption of the entire system is also bounded above by

some value �i�e�� the sum of the local values	

Tokens� on the other hand� capture a system property that is a disjunction of local

component invariants
 For example� recall the constraint on the system of thermostats

that only two thirds of them can be on at the same time
 The system invariant that there

exist at most n thermostat components that are on can be captured through the use of

tokens� A thermostat component must possess a token in order to be on
 By controlling

the number of tokens in the system� the number of thermostats that are on is constrained

as a consequence

This constraint is an example of the general problem of mutual exclusion
 The problem

of mutual exclusion is to control access to a limited resource
 Since tokens are indivisible�

they are a natural expression of the safety property of mutual exclusion

���� Certi�cate Speci�cation

Tokens are de�ned to circulate among a collection of components� all of which satisfy the

TokenHolder speci�cation given in Program �
�

Component TokenHolder �

local const �	 initial�hold � int ��number of tokens initially held

local vars �	 holding � int ��number of tokens currently held

rpc targets �	 tok�unary� �unordered�

neighbors �	 N � set of Component TokenHolder

certificates �	

Invariant
�holding �	 ��

Invariant
�holding 	 initial�hold � �SUMc in N � deln�c
tok��

� �SUMc in N � sentn�c
tok���

�

Program �
�� Description of a TokenHolder component

Each TokenHolder component has a local constant� initial hold� that gives the num�

ber of tokens held initially by the component� as well as a local variable� holding� that

��

gives the number of tokens currently in the component�s possession
 A token is received

from another component when a message is delivered to the tok�� RPC target
 Conversely�

a token ceases to be in a component�s possession when that component sends a message to

another TokenHolder component

���� Proof of Speci�cation

Prove ������

invariant��tokens " �
 c �� c�initial hold 		

Proof�

tokens

" f de�nition of tokens g

�
 c �� c�holding 	 � �
 c� c� �� �c� c�	�holding 	

" f de�nition of �c� c�	�holding g

�
 c �� c�holding 	 � �
 c� c� �� sentn�c� c�� tok	� deln�c� c�� tok	 	

" f invariant��c�holding " c�initial hold � �
 c� �� deln�c�� c� tok	 	

� �
 c� �� sentn�c� c�� tok	 		 g

�
 c �� c�initial hold � �
 c� �� deln�c�� c� tok	 	� �
 c� �� sentn�c� c�� tok	 	 	

� �
 c� c� �� sentn�c�� c� tok	 � deln�c�� c� tok	 	

" f calculus g

�
 c �� c�initial hold 	

�

Prove ������

�� c �� invariant��c�holding
 � 	 	

Proof� This follows directly from the certi�cates of the TokenHolder component

�

Prove ������

�� c� c� �� invariant���c� c�	�holding
 � 	 	

��

Proof�

�c� c�	�holding

" f de�nition of �c� c�	�holding g

sentn�c� c�� tok	� deln�c� c�� tok	

 f channel property g

�

�

��� Logical Clocks

���� Speci�cation

A logical clock is a monotonically nondecreasing counter maintained by a component
 Each

component maintains its own logical clock
 The key property of the interaction of clocked

components is that all messages exchanged are time stamped
 An outgoing message is

time stamped with the value of the logical clock of the component sending the message

Conversely� the time stamp of an incoming message is used to update the logical clock of the

component receiving the message
 The logical clock of the component receiving the message

is set to a value greater than the time stamp of the incoming message �while maintaining

its monotonicity	

Logical clocks are a partial encoding of causality
 More speci�cally� logical clocks disallow

certain chains of causality between components
 Since components can interact only by

messages� this restriction re�ects a requirement on the messages that components exchange

The fundamental system property resulting from the use of the logical clock protocol is that

messages are not received at an earlier logical time than when they are sent
 That is� a

component with a logical clock value of n has not received any messages that were sent

after a logical �i�e�� local to the sending component	 time of n

The diagram in Figure �
� illustrates the use of logical clocks
 The history of actions

at a component is represented by a vertical time line� while a message exchanged between

components is represented by a dashed arrow
 The key system property is re�ected in the

observation that all dashed arrows are directed upwards �i�e�� messages are received later

than they are sent	

With each component� x � we associate a history� x �H � of actions
 This history is a

sequence of tuples
 Each tuple consists of the entire state of the component� including the

logical time and the number of messages sent and delivered
 For example� x �H �i ��time is

��

time

component

logical

Figure �
�� Graphical time line for a collection of components exchanging messages

the logical time at the i th tuple
 To simplify the notation� we consider components to have

a single channel between them �this allows channels to be identi�ed by the sending and

receiving component� without mentioning the RPC target	
 The system property that no

messages are delivered at an earlier logical time than when they were sent is expressed by

the following equation�

invariant��x �H �i ��time " t � x �H �i ��deln�y � x 	 " k �

�� j � y �H �j ��time
 t � y �H �j ��sentn�y � x 	
 k 		 ��
�	

���� Utility of Logical Clocks

Logical clocks re�ect a simple causality relationship
 As discussed above� the use of logical

clocks entails a discipline of time stamping outgoing messages and of updating the logical

clock according to incoming messages
 As a result of this discipline� a component with a

logical time of n has not received any messages sent at a logical time greater than n

One of the useful consequences of this system property is that a valid global snapshot

���� Chapter �
� can be recorded quite easily
 It is su�cient for all components to record

their state when their logical clocks have reached a particular value
 Global snapshots are

especially useful for the detection of stable properties �such as termination or deadlock	

Logical clocks can also be useful in algorithms that rely on a total ordering of actions

The value of a component�s logical clock is used as the basis of this total ordering �with

ties broken in any arbitrary manner	
 For example� a mutual exclusion algorithm might be

��

based on granting access to the critical section to components in the order in which their

requests were made �in logical time	 ���� ���
 The fact that logical time advances by some

positive amount guarantees that all components are eventually granted access to the critical

section

���� Certi�cate Speci�cation

In a system that uses logical clocks� each component must satisfy the Clocked speci�cation

given in Program �
�

Component Clocked �

local vars �	 time � int ��local time

H � sequence of tuples ��H�t�
time
 deln�x�
 sentn�x�

neighbors �	 N � Component Clocked

certificates �	

Stable
�sentp�c� � sent�c� �	 k�

Stable
�time �	 k�

Transient
�time 	 k�

Invariant
�Ac in N � delp�c� � time � del�c��

sentn�c� 	 k � time 	 t Next

sentn�c� 	 k v �sentn�c� 	 k�� � sent�c� 	 t�

Invariant
�sentn�c� �	 k 		�

�Ei � H�i�
time 	 S�k��� � H�i�
sentn�c� 	 k� �

�

Program �
�� Description of a Clocked component

Each Clocked component has a local variable for the logical time �time	 and a local

variable for its associated history �H	
 The values a component sends to its neighbors�

RPC targets are monotonically nondecreasing� as is its logical time
 On the other hand�

a component�s logical time is guaranteed to change �i�e�� increase	
 A component�s logical

time is greater than the time stamp of any message delivered to it
 Messages sent are time

stamped with a component�s current logical time
 Finally� the history sequence is updated

at least frequently enough to re�ect each individual send action
 That is� for every send

action performed by the component� there is a tuple in the history with the time of the

time stamp of that message

��

���� Proof of Speci�cation

Prove ������

invariant��x �H �i ��time " t � x �H �i ��deln�y � x 	 " k �

�� j � y �H �j ��time
 t � y �H �j ��sentn�y � x 	
 k 		

Proof� The speci�cation is trivially true for k " �
 So consider k � � �

x �H �i ��time " t � x �H �i ��deln�y � x 	 " k

	 f assumption � k � � g

x �H �i ��time " t � x �H �i ��deln�y � x 	 " k � x �H �i ��deln�y � x 	 � �

	 f channel property g

x �H �i ��time " t � x �H �i ��deln�y � x 	 " k � x �H �i ��delp�y � x 	

� f property � invariant��H �i ��time�delp�c	 � H �i ��time � H �i ��del�c		 g

t � x �H �i ��del�y � x 	 � x �H �i ��deln�y � x 	 " k

	 f channel property � H �i ��del�c	 " D�c	�H �i ��deln�c	 � � � g

t � D�y � x 	�k � � � � x �H �i ��deln�y � x 	 " k

� f deln is monotonic g

deln�y � x 	
 k � D�y � x 	�k � � � � t

� f channel properties g

sentn�y � x 	
 k � S �y � x 	�k � � � � t

� f property � invariant��sentn�c	
 k � �� i �� H �i ��time " S �c	�k � � �

� H �i ��sentnc " k 		 g

�� i �� y �H �i ��time " S �y � x 	�k � � � � y �H �i ��sentny � x " k 	

� S �y � x 	�k � � � � t

� f calculus g

�� i �� y �H �i ��time � t � y �H �i ��sentn�y � x 	 " k 	

� f both time and sentn are monotonic g

�� j � y �H �j ��time
 t � y �H �j ��sentn�y � x 	
 k 	

�

��� Example
 Central Token Manager

In this section we illustrate how the services introduced above can be used in the develop�

ment of a larger application
 In particular� we develop a solution to the mutual exclusion

problem based on a central token manager

�

���� Mutual Exclusion with Tokens

The task is to provide mutually exclusive access to a critical section for a collection of

components
 We solve this problem by requiring that a component possess a token before

entering the critical section
 By virtue of the token service described in Section �
�� the

number of components in the critical section is bound by a constant �the number of tokens

in the system	
 The system consists of an arbitrary number of TokenClient components

and a single TokenManager �responsible for controlling access to the critical section	
 Let

C be the set of TokenClient components and let M be the TokenManager
 The topology

of connections for this system is illustrated in Figure �
�

TokenManager

TokenClient TokenClient TokenClientTokenClientTokenClient

M

C

Figure �
�� Topology of the central token manager solution for mutual exclusion

When a TokenClient wishes to enter the critical section� it sends a request to the

TokenManager
 When it receives a token in reply� the TokenClient can enter the critical

section
 Upon exiting the critical section� the TokenClient must return the token to the

TokenManager
 It is the responsibility of every TokenClient to eventually exit the critical

section �and release the token	
 It is the responsibility of the TokenManager to satisfy token

requests in a fair manner �i�e�� every TokenClient that sends a request eventually gets a

token	

One of the required properties of this system is that the number of TokenClient compo�

nents in the critical section is bounded above by a constant� N
 A TokenClient component

c is in the critical section exactly when the boolean c�critical is true

invariant�� �# c � c
 C � c�critical 	 � N 	 ��
�	

��

The progress property for the system is that token requests are eventually satis�ed

�� c � c
 C � sentn�c�M � req	
 k � deln�M � c� tok	
 k 	 ��
�	

���� Component Speci�cations

Initially� the TokenManager holds all the tokens
 The TokenManager maintains a queue of

components with outstanding requests
 It has two RPC targets� req�� to receive token

requests and tok�� to receive tokens
 The component description of TokenManager is given

in Program �
�

Component TokenManager �

local const �	 initial�hold � int ��tokens held initially

local vars �	 R � queue of Component TokenClient

��clients with pending requests

holding � int ��number of tokens held by manager

rpc targets �	 req�unary� �unordered�

tok�unary� �unordered�

neighbors �	 C � set of Component TokenClient

certificates �	

Invariant
�initial�hold 	 N�

Invariant
�holding �	 ��

Invariant
�holding 	 initial�hold � �SUMc in C � deln�c
tok��

� �SUMc in C � sentn�c
tok���

Invariant
�sentn�c
tok� �	 deln�c
req��

Invariant
�sentn�c
tok� � deln�c
req� 		� �empty
R � �Ei � R�i� 	 c��

Invariant
��empty
R 		� �Ec in C � sentn�c
tok� � deln�c
tok���

�

Program �
�� Description of the TokenManager component

A TokenClient� on the other hand� initially holds no tokens
 It has a boolean variable�

critical� that is true exactly when the component is in the critical section
 A TokenClient

does not enter the critical section without holding a token
 Also� a TokenClient eventually

returns all tokens that are sent to it
 The component description of TokenClient is given

in Program �
�

Notice that both TokenManager and TokenClient satisfy the TokenHolder component

speci�cation given in Section �
�

���� Proof of Solution

Prove ������ Tokens are constant

��

Component TokenClient �

local const �	 initial�hold � int ��tokens held initially

local vars �	 holding � int ��number of tokens held by clients

critical � boolean ��is component in critical section�

rpc targets �	 tok�unary� �unordered�

neighbors �	 M � Component TokenManager

certificates �	

Invariant
�initial�hold 	 ��

Invariant
�holding 	 deln�M
tok� � sentn�M
tok��

sentn�M
tok� Follows deln�M
tok�

Invariant
�critical 		� holding � ��

�

Program �
�� Description of the TokenClient component

Proof� Follows from all components satisfying the TokenHolder speci�cation

�

Prove ������

�� c � c
 C � sentn�c�M � req	
 k � deln�M � c� tok	
 k 	

Proof�

sentn�c�M � req	
 k

� f channel property g

deln�c�M � req	
 k

� f see below g

sentn�M � c� tok	
 k

� f channel property g

deln�M � c� tok	
 k

So� we must prove�

�� c � c
 C � deln�c�M � req	
 k � sentn�M � c� tok	
 k 	

This property is established by induction from the following property�

deln�c�M � req	 � sentn�M � c� tok	 � sentn�c�M � req	
 k

� sentn�M � c� tok	
 k � �

��

deln�c�M � req	 � sentn�M � c� tok	 � sentn�c�M � req	
 k

� f component property� sentn�M � c� tok	 � deln�c�M � req	 �

�empty �R � �� i �� R�i � " c 	 g

�empty �R � �� i � � � i � jRj � R�i � " c 	 � sentn�c�M � req	
 k

� f Aside � g

sentn�M � c� tok	
 k � �

�

Aside ���

�empty �R � �� i � � � i � jRj � R�i � " c 	 � sentn�c�M � req	
 k

� sentn�M � c� tok	
 k � �

Proof� The result follows by induction from�

�empty �R � R�� � " c � sentn�M � c� tok	
 k � sentn�M � c� tok	
 k � � ��
�	

�� i � � � i � jRj � �empty �R � R�i � " c � �empty �R � R�i � � � " c 	 ��
�	

Both �
� and �
� follow from Lemma �
�

�

Lemma ���

�empty �R � R�� � " c � R " R� � sentn�M � c� tok	
 k

� R " tail �R� � sentn�M � c� tok	
 k � �

Proof� We make use of the following progress�safety�progress �PSP	 theorem in the proof

of this lemma�

�p � q	 � �r next s	 � �p � r � �q � r	 � ��r � s		

In particular� we use the following variation of PSP�

�r � q	 � �r next r � s	 � invariant����q � r		 � �r � s	

The lemma is proven by the application of this PSP variation with the following substi�

tutions�

r �" �empty �R � R�� � " c � R " R�

� �� i � i
 C � deln�i �M � tok	 " ni 	 � sentn�M � c� tok	
 k ��
�	

q �" �� i � i
 C � deln�i �M � tok	 � ni 	 ��
�
	

s �" R " tail �R� � sentn�M � c� tok	
 k � � ��
��	

��

Thus� we must establish the leads�to� next � and invariant properties required by

the PSP variation
 The next property follows immediately from the certi�cates of the

TokenManager component
 The invariant property follows immediately from predicate

calculus
 Only the leads�to property remains as a proof obligation

�empty �R � R�� � " c � R " R�

� �� i � i
 C � deln�i �M � tok	 " ni 	 � sentn�M � c� tok	
 k

� f calculus g

�empty �R � �� i � i
 C � deln�i �M � tok	 " ni 	

� f invariant�� �empty �R �

�� c � c
 C � sentn�M � c� tok	 � deln�c�M � tok	 		 g

�� c � c
 C � sentn�M � c� tok	 � deln�c�M � tok	 	

� �� i � i
 C � deln�i �M � tok	 " ni 	

� f channel property� �� c �� deln�c�M � tok	 follows sentn�M � c� tok	 	 g

�� i � i
 C � deln�i �M � tok	 � ni 	

�

��

Chapter �

Example� A Distributed Auction

In this chapter� we present an example that illustrates the utility of certi�cates in the

veri�cation phase of the development of a distributed application
 An operational overview

of the problem and solution is presented� followed by a formal speci�cation of the system and

of the individual components using certi�cates
 A formal proof is given that the composition

of these components meets the required system speci�cation

The application considered is an example of a reactive �rather than transformational	

system
 That is� we are interested not only in the �nal solution� but also in the computa�

tional path by which that solution is reached

��� The Problem

We wish to design a system to support a multiparty distributed auction
 The aim of the

auction is to sell a particular item to the bidder willing to pay the highest price

There are therefore two things to be determined� the identity of the winning bidder

and the price of the item
 The former is uniquely determined by each bidder�s interest

in the item and �nancial resources
 The latter� however� is nondeterministic
 The only

requirement on the sale price is that it be fair to both the bidders and the auctioneer
 That

is� the �nal sale price must be low enough that the winning bidder can a!ord it� yet be high

enough that no other bidder can beat it

Another constraint on the system concerns the manner in which the auctioneer is per�

mitted to determine this fair sale price
 We disallow a solution requiring all bidders to

communicate their maximum bid to the auctioneer �which could then select the winner and

set a price between this winner�s maximum bid and the next highest maximum bid	
 Such

a solution requires bidders to trust the auctioneer in a manner that is not realistic in a

��

commercial setting
 We also disallow collusion on the part of the bidders to preselect the

winner

The auctioneer is permitted to set a minimum price� below which the item will not be

sold

��� A Solution

We implement here a solution with a single centralized auctioneer and a distributed collec�

tion of some arbitrary number of bidding processes
 The participating bidders communicate

only with the auctioneer
 This topology re�ects the physical distribution of participants in

the auction
 A hierarchical approach is also possible and would have scalability bene�ts�

but it is not pursued here

The auctioneer begins by announcing the starting price to all participating bidders
 If

all bidders decline to place a bid� the auction terminates without a sale
 Otherwise� the

auctioneer updates the price as bids arrive
 When the current price is beaten by a bid� the

new price is announced to all bidders other than the bidder placing this high bid
 This

process is repeated until all the bidders receiving a new price announcement decline to bid

The bidder with the remaining high bid is the winner and the current price is the �nal sale

price

Each bidder has a maximum value it is willing to bid
 This value may be limited by

the bidder�s �nancial resources or interest in the item being sold
 This maximum value

is considered to be constant for the auction
 The bidder receives announcements of the

current price from the auctioneer
 If the current price is greater than or equal to the

bidder�s maximum bid� it replies by declining to bid

On the other hand� if the current price is less than the maximum bid� the bidder may

reply with a higher bid
 The value of the bid submitted is nondeterministically chosen from

the interval greater than the current price� but less than or equal to the bidder�s maximum

bid
 Also� this reply need not be immediate
 This permits human interaction� where a

human bidder must decide the value of bid to submit

Like a traditional auction� there is no guarantee that the winning bidder pays the min�

imum fair price �that is� the price equal to the second highest maximum bid among the

participants	
 No bidding strategy can guarantee that the winner will buy the item for this

minimum fair price� since this bid may be placed by the bidder with the second highest

maximum bid� requiring the winner to bid more

The bidder state of having received a price announcement that it can beat is a mixed

��

node ���� in the bidder protocol
 That is� from this state either a message can be received

by the bidder �i�e�� a new price announcement	 or a message can be sent by the bidder

�i�e�� a competitive bid	
 This behavior arises from the bidder�s use of a clock to generate

a time�out signal� as discussed in Section �
�
�

��� Auctioneer and Bidder Components

Having described operationally the functionality of the auctioneer and bidders� we now

present the component descriptions of these objects
 The certi�cates for each component

are given separately from the rest of the component description for readability

����� Auctioneer

The auctioneer accepts two types of messages� integer �used to encode a bid	 and unary

�used to decline further bidding	
 There is a single constant� Start� representing the initial

o!ering price of the item
 In addition� there are three variables� price �the current highest

bid	� winner �the bidder with the current highest bid	� and sold �whether or not the auction

has completed with a sale	
 The auctioneer has two RPC targets� bid and nobid
 The

former is used to submit a bid� and the latter is used to decline further participation in

the auction
 Finally� as neighbors� the auctioneer maintains B� a set of Bidder components

This component description is summarized in Program �
�

Component Auctioneer �

local const �	 Start � int

local vars �	 price � int

winner � Component Bidder

sold � boolean

rpc targets �	 bid �int� �monotonic�

nobid �unary� �write�once�

neighbors �	 B � set of Component Bidder

�

Program �
�� Description of the Auctioneer component

����� Bidder

A bidder accepts a single type of message� an integer representing the current highest bid

There is a single constant for each bidder� MaxBid� representing the maximum amount this

��

bidder is willing to pay for the item
 A bidder has a single RPC target� newprice� used to

announce the current highest bid
 Finally� each bidder has a single neighbor� the auctioneer

�A	
 This component description is summarized in Program �
�

Component Bidder �

local const �	 MaxBid

rpc targets �	 newprice �int� �monotonic�

neighbors �	 A � Component Auctioneer

�

Program �
�� Description of the Bidder component

����� Certi�cates

In this section we give the certi�cate�based speci�cation of the Auctioneer and Bidder

components introduced above
 We use the abbreviation � np to denote the RPC target

newprice�� of the Bidder component

Auctioneer

The following certi�cates characterize the behavior of the Auctioneer component �where

x is understood to range over all elements of B� the set of participating bidders	�

� The price is monotonically increasing

price " n next price
 n

� The price is bounded below by the initial o!er price

invariant��price
 Start	

� The price increases above the initial o!er price only if it has been bid by a component

�designated the winner	
 All other components are sent an announcement of this new

price

invariant��price � Start � delp�winner � bid	 � del�winner � bid	 " price

� sentp�winner �np	 � Start � sent�winner �np	 � price

� �� x � x �" winner � sentp�x �np	 � sent�x �np	 " price 		

��

� When the price is the initial o!er price� all participating bidders are sent an announce�

ment with this price

invariant��price " Start � �� x �� sentp�x �np	 � sent�x �np	 " price 		

� The price is bounded below by all the bids that have been received

invariant�� �� x � delp�x � bid	 � price
 del�x � bid	 		

� The item is sold exactly when all bidders apart from the winner have declined to bid

and the price is greater than the initial o!er price

invariant��sold 	 �� x � x �" winner � delp�x �nobid	 	

� �delp�winner �nobid	 � price � Start	

Bidder

The following certi�cates characterize the behavior of the Bidder component�

� A bidder declines further participation in the auction exactly when a price is an�

nounced that is greater than or equal to the bidder�s maximum bid

invariant��delp�A�np	 � del�A�np	
 MaxBid 	 sentp�A�nobid		

� A bidder eventually responds if the announced price is below the bidder�s maximum

bid

transient��n � MaxBid � delp�A�np	 � del�A�np	 " n

� ��sentp�A� bid	 � sent�A� bid	 � n		

� A bidder does not bid more than its maximum bid

invariant��sentp�x �A� bid	 � sent�x �A� bid	 � x �MaxBid	

��� Proof of Correctness

����� Problem Speci�cation

A rigorous proof of correctness must have a rigorous speci�cation
 We therefore restate the

informal speci�cation given in Section �
� in more precise terms

We use A to denote the single Auctioneer component in the system� and the variable

x to range over all Bidder components participating in the auction

�

� If possible� there is a winner
 This progress condition states that if there is a bidder

that can a!ord the initial o!er price� the auction eventually terminates with a sale

�� x �� A�Start � x �MaxBid 	 � A�sold ��
�	

� If no winner is possible� the item is declined
 This progress condition states that

if there is no bidder that can a!ord the initial o!er price� the auction eventually

terminates without a sale

�� x �� A�Start
 x �MaxBid 	 � �� x �� delp�x �A�nobid	 	 ��
�	

� The selling price is fair to the auctioneer
 If an item sells� the selling price could not

be beaten by any bidder other than the winner

invariant��A�sold � �� x � x �" A�winner � A�price
 x �MaxBid 		 ��
�	

� The winner can a!ord to purchase the item
 If an item sells� the winner of the auction

can a!ord the selling price

invariant��A�sold � A�winner �MaxBid
 A�price	 ��
�	

� Bidding an amount is a commitment to pay that amount if the bid is accepted
 This

requirement excludes solutions in which all bidders transmit their MaxBid value and

the auctioneer picks the winner and a price between the two greatest bids received

Such a solution is not acceptable in a scenario where the auctioneer is not implicitly

trusted by the bidders

sentp�x �A� bid	 � sent�x �A� bid	
 n � A�price
 n ��
�	

����� Composition of Auctioneer and Bidder Speci�cations

The composition of these components to form our distributed auction consists of the binding

of the neighbor values of the participating components
 The set B in the Auctioneer

component is assigned the set of participating Bidder components
 Conversely� the neighbor

value A of each bidder is assigned the single Auctioneer component in the system

Recall the simple compositional rule for certi�cates� A certi�cate of a component is

also a certi�cate of any system of which that component is a part
 Thus� the certi�cates

given in Section �
�
� are also certi�cates for the entire system
 We repeat these certi�cates

�
�

here because� unlike their presentation in Section �
�
�� the identi�cation of channels is no

longer clear from context� but must be made explicit
 Also� as an abbreviation� we will

omit the keyword invariant
 Our convention is that properties that are not next � stable�

transient � or leads�to� are understood to be invariant

Auctioneer

A�price " n next A�price
 n ��
�	

A�price
 A�Start ��
�	

A�price � A�Start � delp�A�winner �A� bid	 � del�A�winner �A� bid	 " A�price

� sentp�A�A�winner �np	 � A�Start � sent�A�A�winner �np	 � A�price

� �� x � x �" A�winner � sentp�A� x �np	 � sent�A� x �np	 " A�price 	 ��
�	

A�price " A�Start � �� x �� sentp�A� x �np	 � sent�A� x �np	 " A�price 	 ��
�	

�� x � delp�x �A� bid	 � A�price
 del�x �A� bid	 	 ��
�
	

A�sold 	 �� x � x �" A�winner � delp�x �A�nobid	 	

� �delp�A�winner �A�nobid	 � A�price � A�Start ��
��	

From these equations �in particular ��
�	� ��
�	� and ��
�		� we can immediately derive

the following corollaries�

sentp�A� x �np	 � sent�A� x �np	 � A�price ��
��	

sentp�A� x �np	 � sent�A� x �np	
 A�Start ��
��	

�� x � x �" A�winner � sentp�A� x �np	 � sent�A� x �np	 " A�price 	 ��
��	

Bidders

delp�A� x �np	 � del�A� x �np	
 x �MaxBid 	 sentp�x �A�nobid	 ��
��	

transient��n � x �MaxBid � delp�A� x �np	 � del�A� x �np	 " n

� ��sentp�x �A� bid	 � sent�x �A� bid	 � n		 ��
��	

sentp�x �A� bid	 � sent�x �A� bid	 � x �MaxBid ��
��	

From these properties �in particular ��
��		� we derive the following corollary�

n � x �MaxBid � delp�A� x �np	 � del�A� x �np	 " n �

�delp�A� x �np	 � del�A� x �np	 � n	 � �sentp�x �A� bid	 � sent�x �A� bid	 � n	 ��
��	

�
�

����� Proof of Solution

We begin with a few lemmas which are helpful in establishing the result

Lemma
��

�� x �� delp�A� x �np	 � del�A� x �np	 � n 	 � A�price � n

Proof�

�� x �� delp�A� x �np	 � del�A� x �np	 � n 	

� f channel properties g

�� x �� sentp�A� x �np	 � sent�A� x �np	 � n 	

� f ��
��	� sentp�A� x �np	 � sent�A� x �np	 � A�price g

A�price � n

�

Lemma
�� �Increasing Price Lemma�

�� x �� n � x �MaxBid � sentp�A� x �np	 � sent�A� x �np	 " n 	 � A�price � n

Proof�

�� x �� n � x �MaxBid � sentp�A� x �np	 � sent�A� x �np	 " n 	

� f channel property g

�� x �� n � x �MaxBid � delp�A� x �np	 � del�A� x �np	
 n 	

�

�� x �� �n � x �MaxBid � delp�A� x �np	 � del�A� x �np	 " n	

� �delp�A� x �np	 � del�A� x �np	 � n	 	

� f Lemma �
� g

A�price � n � �� x �� n � x �MaxBid � delp�A� x �np	 � del�A� x �np	 " n 	

� f ��
��	 g

A�price � n � �� x �� �delp�A� x �np	 � del�A� x �np	 � n	

� �sentp�x �A� bid	 � sent�x �A� bid	 � n	 	

� f Lemma �
� g

A�price � n � �� x �� sentp�x �A� bid	 � sent�x �A� bid	 � n 	

� f channel properties g

A�price � n � �� x �� delp�x �A� bid	 � del�x �A� bid	 � n 	

�
�

� f ��
�
	� �� x � delp�x �A� bid	 � A�price
 del�x �A� bid	 	 g

A�price � n

�

Prove �
����

�� x �� A�Start � x �MaxBid 	 � A�sold

Proof� Using the Increasing Price Lemma� we prove the following result�

A�price " n � A�price � n � �� x � x �" A�winner � A�price
 x �MaxBid 	

A�price " n

�

�A�price " n � �� x � x �" A�winner � A�price � x �MaxBid 		

� �A�price " n � �� x � x �" A�winner � A�price
 x �MaxBid 		

� f ��
��	� �� x � x �" A�winner � sentp�A� x �np	 � sent�A� x �np	 " A�price 	 g

�� x � x �" A�winner � n � x �MaxBid � sentp�A� x �np	 � sent�A� x �np	 " n 		

� �A�price " n � �� x � x �" A�winner � A�price
 x �MaxBid 		

� f Increasing Price Lemma �
� g

A�price � n

� �A�price " n � �� x � x �" A�winner � A�price
 x �MaxBid 		

�

A�price � n � �� x � x �" A�winner � A�price
 x �MaxBid 	

From the result above� we can conclude by induction �since A�price is an integer and

all MaxBid values are �nite	�

true � �� x � x �" A�winner � A�price
 x �MaxBid 	

Now we conclude the proof�

�� x � x �" A�winner � A�price
 x �MaxBid 	

�

�� x �� A�Start
 x �MaxBid 	

� � �� x � x �" A�winner � A�price
 x �MaxBid 	 � �� x �� A�Start � x �MaxBid 		

� f Aside �
� g

�� x �� A�Start
 x �MaxBid 	 � A�sold

�
�

Since Start and MaxBid values are constants� this means we have the desired property�

�� x �� A�Start � x �MaxBid 	 � A�sold

This concludes the proof� with the exception of establishing the aside mentioned above

�

Aside
��

�� x � x �" A�winner � A�price
 x �MaxBid 	

� �� x �� A�Start � x �MaxBid 	 � A�sold

Proof�

�� x � x �" A�winner � A�price
 x �MaxBid 	 � �� x �� A�Start � x �MaxBid 	

	 f ��
��	� �� x � x �" A�winner � sentp�A� x �np	 � sent�A� x �np	 " A�price 	 g

�� x � x �" A�winner � sentp�A� x �np	 � sent�A� x �np	
 x �MaxBid 	

� �� x �� A�Start � x �MaxBid 	

� f channel properties and stable��A�Start � x �MaxBid	 g

��w �� �� x � x �" w � delp�A� x �np	 � del�A� x �np	
 x �MaxBid 	 	

� �� x �� A�Start � x �MaxBid 	

	 f ��
��	� delp�A� x �np	 � del�A� x �np	
 x �MaxBid 	 sentp�x �A�nobid	 g

��w �� �� x � x �" w � sentp�x �A�nobid	 	 	 � �� x �� A�Start � x �MaxBid 	

� f channel properties and stable��A�Start � x �MaxBid	 g

��w �� �� x � x �" w � delp�x �A�nobid	 	 	 � �� x �� A�Start � x �MaxBid 	

� f Aside �
� and stable��delp�x �A�nobid		 g

��w �� �� x � x �" w � delp�x �A�nobid	 	 	 � A�price � A�Start

	 f Aside �
�� A�price � A�Start � �delp�A�winner �A�nobid	 g

��w �� �� x � x �" w � delp�x �A�nobid	 	 	 � �delp�A�winner �A�nobid	

� A�price � A�Start

	

�� x � x �" A�winner � delp�x �A�nobid	 	 � �delp�A�winner �A�nobid	

� A�price � A�Start

	 f ��
��	� A�sold 	 �� x � x �" A�winner � delp�x �A�nobid	 	

� �delp�A�winner �A�nobid	 � A�price � A�Start g

A�sold

�

�
�

Aside
��

�� x �� A�Start � x �MaxBid 	 � A�price � A�Start

Proof�

�� x �� A�Start � x �MaxBid 	

� f ��
�	� A�price
 A�Start g

A�price � A�Start � � �� x �� A�Start � x �MaxBid 	 � A�price " A�Start	

� f ��
�	� A�price " A�Start � �� x �� sentp�A� x �np	 � sent�A� x �np	 " A�price 	 g

A�price � A�Start

� �� x �� A�Start � x �MaxBid � sentp�A� x �np	 � sent�A� x �np	 " A�Start 	

� f Increasing Price Lemma �
� g

A�price � A�Start

�

Aside
��

A�price � A�Start � �delp�A�winner �A�nobid	

Proof�

A�price � A�Start

	 f ��
�	� A�price � A�Start � delp�A�winner �A� bid	

� del�A�winner �A� bid	 " A�price g

A�price � A�Start � delp�A�winner �A� bid	 � del�A�winner �A� bid	 " A�price

� f channel properties g

A�price � A�Start � sentp�A�winner �A� bid	 � sent�A�winner �A� bid	
 A�price

� f ��
��	� sentp�x �A� bid	 � sent�x �A� bid	 � x �MaxBid g

A�price � A�Start � A�price � A�winner �MaxBid

� f ��
�	� A�price � A�Start � sentp�A�A�winner �np	

� sent�A�A�winner �np	 � A�price g

sentp�A�A�winner �np	 � sent�A�A�winner �np	 � A�winner �MaxBid

� f channel properties g

�delp�A�A�winner �np	 � del�A�A�winner �np	 � A�winner �MaxBid

	 f ��
��	� delp�A� x �np	 � del�A� x �np	
 x �MaxBid 	 sentp�x �A�nobid	 g

�sentp�A�winner �A�nobid	

�
�

� f channel properties g

�delp�A�winner �A�nobid	

�

Prove �
����

�� x �� A�Start
 x �MaxBid 	 � �� x �� delp�x �A�nobid	 	

Proof� For any Bidder Component x �

A�Start
 x �MaxBid

� f ��
��	� sentp�A� x �np	 � sent�A� x �np	
 A�Start g

sentp�A� x �np	 � sent�A� x �np	
 x �MaxBid

� f channel properties g

delp�A� x �np	 � del�A� x �np	
 x �MaxBid

	 f ��
��	� delp�A� x �np	 � del�A� x �np	
 x �MaxBid 	 sentp�x �A�nobid	 g

sentp�x �A�nobid	

� f channel properties g

delp�x �A�nobid	

In conjunction with the stability of delp�x �A�nobid	 � this gives the desired result

�

Prove �
����

A�sold � �� x � x �" A�winner � A�price
 x �MaxBid 	

Proof�

A�sold

� f ��
��	� A�sold � �� x � x �" A�winner � delp�x �A�nobid	 	 g

�� x � x �" A�winner � delp�x �A�nobid	 	

� f channel properties g

�� x � x �" A�winner � sentp�x �A�nobid	 	

	 f ��
��	� delp�A� x �np	 � del�A� x �np	
 x �MaxBid 	 sentp�x �A�nobid	 g

�� x � x �" A�winner � delp�A� x �np	 � del�A� x �np	
 x �MaxBid 	

� f channel properties g

�
�

�� x � x �" A�winner � sentp�A� x �np	 � sent�A� x �np	
 x �MaxBid 	

	 f ��
��	� �� x � x �" A�winner � sentp�A� x �np	 � sent�A� x �np	 " A�price 	 g

�� x � x �" A�winner � A�price
 x �MaxBid 	

�

Prove �
����

A�sold � A�winner �MaxBid
 A�price

Proof�

A�sold

� f ��
��	� A�sold � A�price � A�Start g

A�price � A�Start

� f ��
�	� A�price � A�Start � delp�A�winner �A� bid	

� del�A�winner �A� bid	 " A�price g

delp�A�winner �A� bid	 � del�A�winner �A� bid	 " A�price

� f channel properties g

sentp�A�winner �A� bid	 � sent�A�winner �A� bid	
 A�price

� f ��
��	� sentp�x �A� bid	 � sent�x �A� bid	 � x �MaxBid g

A�winner �MaxBid
 A�price

�

Prove �
����

sentp�x �A� bid	 � sent�x �A� bid	
 n � A�price
 n

Proof�

sentp�x �A� bid	 � sent�x �A� bid	
 n

� f channel properties g

delp�x �A� bid	 � del�x �A� bid	
 n

� f ��
�
	� �� x � delp�x �A� bid	 � A�price
 del�x �A� bid	 	 g

A�price
 n

�

�
�

��	 CORBA Instantiation of Solution

This system has been implemented in a commercially available CORBA�compliant dis�

tributed object framework� namely IBM�s SOM�DSOM
 The IDL descriptions of these ob�

jects are given here� in Programs �
� and �
�
 For clarity� the SOM�DSOM�speci�c elements

of these interface declarations have been omitted here

interface Auctioneer � SOMObject �

oneway void checkin �in Bidder b
 in short id��

oneway void bid �in short source
 in long amount��

oneway void nobid �in long amount��

��

Program �
�� IDL de�nition of the Auctioneer interface

interface Bidder � SOMObject �

oneway void newprice �in long price
 in short id��

oneway void congrats �in long price��

oneway void winner �in long price
 in short id��

��

Program �
�� IDL de�nition of the Bidder interface

The auctioneer implementation contains a method that was not present in the compo�

nent de�nition� namely checkin��
 This is a bootstrapping method used by the auctioneer

to obtain references to bidders
 The bidder implementation contains two extra methods�

namely congrats�� and winner��
 These methods are used by the auctioneer to notify

each bidder of the outcome of the auction
 These methods are not material to the cor�

rectness of the application and so were excluded from our presentation and proof of the

solution

��� Discussion

We have proposed� speci�ed� and implemented a solution to the distributed multiparty auc�

tion problem
 The solution was rigorously proven to meet the required system speci�cation

This proof took advantage of the simple compositional rule for certi�cates� A certi�cate that

is a property of a component is also a property of any system containing that component

�
�

The �nal step in system veri�cation is the proof that the implementation of each com�

ponent meets the speci�cation of that component
 One strength of certi�cates is that they

are locally veri�able
 Thus� each component can be reasoned about in isolation
 Even the

bidder�s transience property is established strictly as a result of bidder actions and so can

be unilaterally guaranteed by the bidder implementation

An alternate approach to this veri�cation is the validation �by testing	 of component

implementations against their speci�cations
 As discussed in Chapter �� certain certi�cates

can be easily translated into run�time checks and warnings
 We hypothesized that the

subset of certi�cates to which this translation can be applied is a signi�cant set� accounting

for many of the certi�cates encountered in practice
 Indeed� in the speci�cations of the

Auctioneer and Bidder components we observe that all the certi�cates are either invariant�

functional next � or functional transient properties
 Notice that the transient property

of the Bidder component is an example of a functional predicate with a disjunction
 Both

disjuncts imply the same value for the dummy variable� so the predicate is indeed functional

It is interesting to note that the intuitive proof� in which an induction and boundedness

argument is made on the price� is not the approach taken for the formal proof in Section �
�

Such a strategy is possible for proving termination� but is complicated by the fact that the

stable upper bound for the price cannot be calculated a priori
 In particular� a price equal

to the second highest maximum bid value may or may not be the �nal sale price� depending

on the origin of the bid

This �nal observation is an excellent example of the power of certi�cates
 A simple

description of object behavior can be captured by a few fundamental certi�cates� su�cient

to make persuasive arguments of system properties
 If a greater degree of con�dence is

desired� these certi�cates can be extended in an entirely consistent manner to form a more

complete speci�cation
 The amount of rigor that is brought to bear can be tailored to the

desired con�dence in the correctness of the application

��

���

Chapter 	

Example� A Branch and Bound

Tree Search

In this chapter� we present another example that illustrates the utility of certi�cates in

the development of a distributed application
 An operational overview of the problem and

solution is presented� followed by a formal speci�cation of the system and of the individ�

ual components using certi�cates
 A formal proof is given that the composition of these

components meets the required system speci�cation

Unlike the previous example� some of the component certi�cates cannot be automatically

translated into e�cient run�time checks
 This is because the de�nition of some of the

bounds potentially involves prohibitively expensive calculation
 Checks provided by the

programmer� however� do allow the certi�cates to be tested at run�time
 Also� the validity

of the certi�cates can be formally established with an entirely local proof

��� The Problem

We consider a distributed tree search based on the branch and bound algorithm ���� Chap�

ter ��
 Each node of the tree being searched has an associated value
 The goal of the search

is to identify the leaf node with the maximum value

The branch and bound tree search is based on the existence of two functions
 The

�rst function yields� for any node in the tree� a list of that node�s children
 This function

describes how the tree branches� permitting the exploration of deeper levels
 The second

function returns� for any node in the tree� an upper bound on the values in the subtree of

which that node is the root
 A subtree can be removed from consideration if the upper

���

bound associated with its root is less than or equal to the value of a known solution or a

known lower bound of the solution
 If both these functions can be calculated e�ciently�

this approach is a useful heuristic when the number of leaves is large

The problem described in this chapter is a general one� as is the presentation of the

solution
 It is applicable to any branch and bound tree search
 For illustration purposes�

however� we choose a particular instance of this class of problems to implement in Sec�

tion �
�
 The particular problem we solve is a generalization of the
�� knapsack problem

����
 We are given a list of items� each with an integer weight and value
 We are also given

a list of knapsacks� each with an integer capacity
 The problem is to place items into knap�

sacks so as to maximize the total value carried in the knapsacks� subject to the constraint

that none of the knapsack capacities are exceeded

The tree to be explored is therefore the tree of partial solutions to this problem
 A

partial solution is an assignment of the �rst k items to knapsacks and a list of the unused

capacities remaining for each knapsack
 The root node of the tree contains no assignments

of items to knapsacks and all knapsacks have their full capacity unused
 A leaf of the tree

contains a complete assignment of every item either to a knapsack or to not be included

The value of a node is the sum of the values of items that have been placed in knapsacks

The children of a node are the partial solutions which can be created by extending the

parent node with the placement of the next item in the list
 A bound on the subtree is

determined by relaxing the constraint of the indivisibility of the items
 The details of this

calculation are not pertinent here
 Indeed� the system will be speci�ed and proven as a

generic tree search algorithm� with references to the speci�c problem instance �i�e�� the

generalized
�� knapsack problem	 only where they are helpful for clarity

��� A Solution

We implement here a solution based on the master�slave paradigm
 A single master is

responsible for dividing up the tree to be explored and assigning each section to a di!erent

slave �see Figure �
�	
 The slaves perform the search in their respective partition and return

the result to the master

There are two sources of signi�cant ine�ciency in this approach
 The �rst is the lack of

load balancing
 The partition assigned to one slave could be signi�cantly more expensive

to search than the others
 The computation� however� cannot terminate until all slaves

have reported back to the master
 This can result in poor utilization of the slaves and

suboptimal performance
 Load balancing can be improved by a simple re�nement
 Instead

���

root of subtee to be

explored by a slave

Figure �
�� An example subdivision of a search tree by the master

of returning the optimal value for an entire subtree� the slaves can return promising internal

nodes to the master
 The master then maintains a pool of work to be done �i�e�� the nodes

that have not yet been explored	 and idle slaves are given more work from this pool
 This

optimization complicates the presentation of the solution� but does not substantially modify

the fundamental master�slave interaction
 We therefore do not include this optimization

here

The second source of ine�ciency in the approach outlined above is that slaves do not

share bounds
 That is� one slave could be searching a subtree whose value is not better than

a lower bound already discovered by a di!erent slave
 To remedy this� slaves communicate

the lower bounds they discover back to the master
 The master is then responsible for

broadcasting this information to the other slaves
 This changes the master�slave interaction

by creating a mixed node in the slave protocol
 After a slave is given a subtree to explore�

it may or may not receive lower bound updates
 If none are received� the slave eventually

completes the search and returns the optimal node found

��� Master and Slave Components

Having described operationally the functionality of the master and slaves� we now present

the component descriptions of these objects
 The certi�cates for each component are given

separately from the rest of the component description for readability

���

���� Master

The master accepts two types of messages
 The �rst encodes the solution discovered by the

slaves and is given generically as Tree Node
 For the generalized knapsack problem this

type is an assignment of some subset of items either to knapsacks or to be excluded from

any knapsack
 The second message type encodes lower bounds and is given generically as

Tree Node Value
 For the generalized knapsack problem this type is an integer representing

the sum of values of items included in knapsacks
 There is a single constant� Prob� repre�

senting the original problem to be solved �the root of the tree to be explored	
 In addition�

there are two variables� soln �the optimal solution found by the slaves	 and done �whether

or not the computation has terminated	
 The master has three RPC targets� lb� soln� and

nosoln
 The �rst is used to report a lower bound
 The second is used to return the optimal

solution found by a slave
 The third is used to signal that the subtree searched by the slave

does not contain the optimal solution
 Finally� as neighbors� the master maintains pool� a

set of slave components
 This component description is summarized in Program �
�

Component Master �

local types �	 Tree�Node
 Tree�Node�Value

local const �	 Prob � Tree�Node

local vars �	 soln � Tree�Node

done � boolean

rpc targets �	 lb �Tree�Node�Value� �monotonic�

soln �Tree�Node� �write�once�

nosoln �unary� �write�once�

neighbors �	 pool � set of Component Slave

�

Program �
�� Description of the Master component

���� Slave

A slave accepts two types of messages� one �Tree Node	 encodes the subtree to be searched�

and the other �Tree Node Value	 encodes lower bounds discovered by other slaves
 Each

slave stores the subtree it is assigned in a local variable� p
 This subtree is encoded by a

single node� its root
 A slave has two RPC targets� prob and newlb
 The former is used to

receive the subtree from the master� and the latter is used to receive updated lower bounds

Finally� each slave has a single neighbor� the master �M	
 This component description is

summarized in Program �
�

���

Component Slave �

local types �	 Tree�Node
 Tree�Node�Value

local vars �	 p � Tree�Node

rpc targets �	 prob �Tree�Node� �write�once�

newlb �Tree�Node�Value� �monotonic�

neighbors �	 M � Component Master

�

Program �
�� Description of the Slave component

���� Certi�cates

In this section we give the certi�cate�based speci�cation of the Master and Slave compo�

nents introduced above

We �rst introduce a function that allows us to abstract away from the details of the

particular problem being solved
 It permits us to treat the application as a generic search

The function is called opt soln and for any given partial solution it returns the set of

optimal solutions which can be formed by extending the partial solution
 That is� for any

node in the search tree� opt soln gives the set of optimal �maximal	 leaves in the subtree

with that node as its root
 For example� for the generalized knapsack problem this function

gives all the assignments of items to knapsacks such that the total inside knapsacks is

maximal
 This function is a speci�cation function and is not intended to be implemented

directly

We also introduce a function� leaves � that for any node in the search tree returns the

set of leaves descended from that node
 Thus� for a node P � we have�

leaves�P " �� i �� leaves�Pi 	 � �� i �� opt soln�Pi � opt soln�P 	

Finally� we introduce a function� value � that for any leaf in the search tree returns the

value of that leaf
 Thus� for a problem P � we have�

l
 leaves�P � value�l
 opt val �P � l
 opt soln�P

The speci�cation functions opt val and opt soln can now be expressed in terms of

these two new functions
 We use the convention of ordering solutions by their value
 This

allows a maximum to be taken over solutions
 Thus� for a node P � we have�

opt val �P " �Max l � l
 leaves�P � value�l 	

opt soln�P " �Max l � l
 leaves�P � P 	

���

Notice the di!erence in the two maximum operators above
 In the �rst case the maximum

is being taken over values of solutions� and returns a value� while in the second case it is

being taken over solutions and returns the set of solutions with the highest value
 We will

continue to use these speci�cation functions as convenient shorthands

Master

The following certi�cates characterize the behavior of the Master component �where x is

understood to range over pool� the set of available slaves	�

� All slaves are sent a subproblem and the union of these subproblems covers all possible

solutions to the original problem

invariant�� �� x �� sentp�x � prob	 	

� �� x �� leaves�sent�x � prob	 	 " leaves�Prob	

� A new lower bound is sent to a slave only if a slave has reported that value as a lower

bound

invariant��sentp�x �newlb	 �

�� y �� delp�y � lb	 � sent�x �newlb	 � del�y � lb	 		

� The computation is complete exactly when all slaves have reported back to the master

invariant��done 	 �� x �� delp�x � soln	 � delp�x �nosoln	 		

� When the computation is done� the solution is set to the maximum�valued solution

received from the slaves

invariant��done � soln
 �Max x � delp�x � soln	 � del�x � soln	 		

Slave

The following certi�cates characterize the behavior of the Slave component�

� The slave reports back that no optimal solution exists in its subtree only if it has

received a lower bound value that is better than the best solution in its subproblem

invariant��sentp�M �nosoln	 � delp�M � prob	 � delp�M �newlb	

� opt val �del�M � prob	 � del�M �newlb		

���

� A lower bound is sent to the master only if a subproblem has been delivered and that

lower bound is below the best solution in the subproblem given to this slave

invariant��sentp�M � lb	 � delp�M � prob	

� sent�M � lb	 � opt val �del�M � prob		

� A solution is sent to the master only if it is one of the optimal solutions for the

subproblem assigned to this slave

invariant��sentp�M � soln	 � delp�M � prob	

� sent�M � soln	
 opt soln�del�M � prob		

� The slave eventually returns either a solution or a report that the optimal solution is

not in its subtree

transient��delp�M � prob	 � �sentp�M � soln	 � �sentp�M �nosoln		

��� Proof of Correctness

���� Problem Speci�cation

We can now state the speci�cation for the branch and bound tree search
 We use M to

denote the single Master component in the system

� The solution found is optimal
 This safety condition states that when the calculation

has terminated� the value stored in the master�s local variable soln contains �one of	

the optimal solution�s	 to the original problem

M �done � M �soln
 opt soln��M �Prob	 ��
�	

� A solution is eventually found
 This progress condition simply states that eventually

the calculation does terminate

true � M �done ��
�	

���� Composition of Master and Slave Speci�cations

The composition of these components to form our distributed system consists of the bind�

ing of the neighbor values of the participating components
 The set pool in the Master

���

component is assigned the set of participating Slave components
 Conversely� the neighbor

value M of each slave is assigned the single Master component in the system

Recall the simple compositional rule for certi�cates� A certi�cate of a component is

also a certi�cate of any system of which that component is a part
 Thus� the certi�cates

given in Section �
�
� are also certi�cates for the entire system
 We repeat these certi�cates

here because� unlike their presentation in Section �
�
�� the identi�cation of channels is no

longer clear from context� but must be made explicit
 Also� as an abbreviation� we will

omit the keyword invariant
 Our convention is that properties that are not next � stable�

transient � or leads�to� are understood to be invariant
 The variable x is understood to

range over the slaves in the system �i�e�� the elements of M �pool 	

Master

�� x �� sentp�M � x � prob	 	

� �� x �� leaves�sent�M � x � prob	 	 " leaves��M �Prob	 ��
�	

sentp�M � x �newlb	 �

�� y �� delp�y �M � lb	 � sent�M � x �newlb	 � del�y �M � lb	 	 ��
�	

M �done 	 �� x �� delp�x �M � soln	 � delp�x �M �nosoln	 	 ��
�	

M �done � M �soln
 �Max x � delp�x �M � soln	 � del�x �M � soln	 	 ��
�	

From property ��
�	 and the de�nition of the function leaves � we derive the following

corollaries�

opt val ��M �Prob	 " �Max x �� opt val �sent�M � x � prob	 	 ��
�	

leaves�sent�M � x � prob	 � leaves��M �Prob	 ��
�	

Slave

sentp�x �M �nosoln	 � delp�M � x � prob	 � delp�M � x �newlb	

� opt val �del�M � x � prob	 � del�M � x �newlb	 ��
�	

sentp�x �M � lb	 � delp�M � x � prob	 � sent�x �M � lb	 � opt val �del�M � x � prob	 ��
�
	

sentp�x �M � soln	 � delp�M � x � prob	

� sent�x �M � soln	
 opt soln�del�M � x � prob	 ��
��	

transient �delp�M � x � prob	 � �sentp�x �M � soln	 � �sentp�x �M �nosoln		 ��
��	

���

From these properties �in particular ��
��		� we derive the following corollary�

delp�M � x � prob	 � sentp�x �M � soln	 � sentp�x �M �nosoln	 ��
��	

���� Proof of Solution

We begin with a lemma which is helpful in establishing the result

Lemma 	��

delp�x �M � soln	 � del�x �M � soln	
 opt soln�sent�M � x � prob	

Proof�

delp�x �M � soln	

� f channel properties �write�once	 g

sentp�x �M � soln	 � del�x �M � soln	 " sent�x �M � soln	

� f ��
��	� sentp�x �M � soln	 �

delp�M � x � prob	 � sent�x �M � soln	
 opt soln�del�M � x � prob	 g

delp�M � x � prob	 � del�x �M � soln	 " sent�x �M � soln	

� sent�x �M � soln	
 opt soln�del�M � x � prob	

� f predicate calculus g

delp�M � x � prob	 � del�x �M � soln	
 opt soln�del�M � x � prob	

� f channel property �write�once	 g

sentp�M � x � prob	 � del�x �M � soln	
 opt soln�sent�M � x � prob	

� f predicate calculus g

del�x �M � soln	
 opt soln�sent�M � x � prob	

�

We are now ready to prove the result

Prove �	����

M �done � M �Soln
 opt soln��M �Prob	

Proof�

M �done

	 f ��
�	� M �done 	 �� x �� delp�x �M � soln	 � delp�x �M �nosoln	 	 g

��

�� x �� delp�x �M � soln	 � delp�x �M �nosoln	 	

� f channel properties g

�� x �� delp�x �M � soln	 � sentp�x �M �nosoln	 	

� f ��
�	� sentp�x �M �nosoln	 �

delp�M � x � prob	 � delp�M � x �newlb	

� opt val �del�M � x � prob	 � del�M � x �newlb	 g

�� x �� delp�x �M � soln	 � � delp�M � x � prob	 � delp�M � x �newlb	

� opt val �del�M � x � prob	 � del�M � x �newlb		 	

� f channel property �write�once	 g

�� x �� delp�x �M � soln	 � � sentp�M � x � prob	 � delp�M � x �newlb	

� opt val �sent�M � x � prob	 � del�M � x �newlb		 	

� f predicate calculus g

�� x �� delp�x �M � soln	 � � delp�M � x �newlb	

� opt val �sent�M � x � prob	 � del�M � x �newlb		 	

� f channel properties g

�� x �� delp�x �M � soln	 � � sentp�M � x �newlb	

� opt val �sent�M � x � prob	 � sent�M � x �newlb		 	

� f ��
�	� sentp�M � x �newlb	 �

�� y �� delp�y �M � lb	 � sent�M � x �newlb	 � del�y �M � lb	 	 g

�� x �� delp�x �M � soln	

� � �� y �� delp�y �M � lb	 � sent�M � x �newlb	 � del�y �M � lb	 	

� opt val �sent�M � x � prob	 � sent�M � x �newlb		 	

� f predicate calculus g

�� x �� delp�x �M � soln	

� �� y �� delp�y �M � lb	 � opt val �sent�M � x � prob	 � del�y �M � lb	 	 	

� f channel properties g

�� x �� delp�x �M � soln	

� �� y �� sentp�y �M � lb	 � opt val �sent�M � x � prob	 � sent�y �M � lb	 	 	

� f ��
�
	� sentp�x �M � lb	 �

delp�M � x � prob	 � sent�x �M � lb	 � opt val �del�M � x � prob	� g

�� x �� delp�x �M � soln	

� �� y �� delp�M � y � prob	 � sent�y �M � lb	 � opt val �del�M � y � prob	

� opt val �sent�M � x � prob	 � sent�y �M � lb	 	 	

� f predicate calculus g

���

�� x �� delp�x �M � soln	

� �� y �� delp�M � y � prob	

� opt val �sent�M � x � prob	 � opt val �del�M � y � prob	 	 	

� f channel property �write�once	 g

�� x �� delp�x �M � soln	

� �� y �� sentp�M � y � prob	

� opt val �sent�M � x � prob	 � opt val �sent�M � y � prob	 	 	

� f predicate calculus g

�� x �� delp�x �M � soln	

� �� y �� opt val �sent�M � x � prob	 � opt val �sent�M � y � prob	 	 	

� f calculus� �� x �� � �� y �� opt val �sent�M � x � prob	

� opt val �sent�M � y � prob	 	 	 g

�� x �� delp�x �M � soln	

� � �� y �� opt val �sent�M � x � prob	 � opt val �sent�M � y � prob	 	 	

	 f calculus� de�nition of max g

�� x �� delp�x �M � soln	

� opt val �sent�M � x � prob	 " �Max y �� opt val �sent�M � y � prob	� 	 	

	 f ��
�	� opt val ��M �Prob	 " �Max x �� opt val �sent�M � x � prob	 	 g

�� x �� delp�x �M � soln	 � opt val �sent�M � x � prob	 " opt val ��M �Prob	 	

	 f Lemma �
�� delp�x �M � soln	 �

del�x �M � soln	
 opt soln�sent�M � x � prob	 g

�� x �� delp�x �M � soln	 � del�x �M � soln	
 opt soln�sent�M � x � prob	

� opt val �sent�M � x � prob	 " opt val ��M �Prob	 	

� f calculus� opt val �pi " opt val �P � leaves�pi � leaves�P

� opt soln�pi � opt soln�P g

�� x �� delp�x �M � soln	 � del�x �M � soln	
 opt soln��M �Prob	 	

� f calculus� de�nition of opt soln g

�� x �� delp�x �M � soln	 � value�del�x �M � soln	 " opt val ��M �Prob	 	

� f calculus� de�nition of max g

�Max x � delp�x �M � soln	 � value�del�x �M � soln	 	
 opt val ��M �Prob	

	 f Lemma �
�� delp�x �M � soln	 �

del�x �M � soln	
 opt soln�sent�M � x � prob	 g

�Max x � delp�x �M � soln	 � value�del�x �M � soln	 	
 opt val ��M �Prob	

� �� x � delp�x �M � soln	 � del�x �M � soln	
 opt soln�sent�M � x � prob	 	

���

	 f calculus� opt soln�P � leaves�P g

�Max x � delp�x �M � soln	 � value�del�x �M � soln	 	
 opt val ��M �Prob	

� �� x � delp�x �M � soln	 � del�x �M � soln	
 leaves�sent�M � x � prob	 	

� f ��
�	� leaves�sent�M � x � prob	 � leaves��M �Prob	 g

�Max x � delp�x �M � soln	 � value�del�x �M � soln	 	
 opt val ��M �Prob	

� �� x � delp�x �M � soln	 � del�x �M � soln	
 leaves��M �Prob	 	

� f calculus� de�nition of max g

�Max x � delp�x �M � soln	 � value�del�x �M � soln	 	
 opt val ��M �Prob	

� �Max x � delp�x �M � soln	 � del�x �M � soln	 	 � leaves��M �Prob	

� f calculus� l
 leaves�P � value�l
 opt val �P � l
 opt soln�P g

�Max x � delp�x �M � soln	 � del�x �M � soln	 	 � opt soln��M �Prob	

So we conclude the proof�

M �done

� f ��
�	� M �done �

M �soln
 �Max x � delp�x �M � soln	 � del�x �M � soln	 	 g

M �done � M �soln
 �Max x � delp�x �M � soln	 � del�x �M � soln	 	

� f above� M �done � �Max x � delp�x �M � soln	 �

del�x �M � soln	 	 � opt soln��M �Prob	 g

M �soln
 �Max x � delp�x �M � soln	 � del�x �M � soln	 	

� �Max x � delp�x �M � soln	 � del�x �M � soln	 	 � opt soln��M �Prob	

� f calculus g

M �soln
 opt soln��M �Prob	

�

Prove �	����

true � M �done

Proof�

true

	 f ��
�	� �� x �� sentp�M � x � prob	 	

� �� x �� leaves�sent�M � x � prob	 	 " leaves��M �Prob	 g

�� x �� sentp�M � x � prob	 	 � �� x �� leaves�sent�M � x � prob	 	 " leaves��M �Prob	

�

���

�� x �� sentp�M � x � prob	 	

� f channel properties g

�� x �� delp�M � x � prob	 	

� f ��
��	� delp�M � x � prob	 � sentp�x �M � soln	 � sentp�x �M �nosoln	 g

�� x �� sentp�x �M � soln	 � sentp�x �M �nosoln	 	

� f channel properties� twice g

�� x �� delp�x �M � soln	 � delp�x �M �nosoln	 	

	 f ��
�	� M �done 	 �� x �� delp�x �M � soln	 � delp�x �M �nosoln	 	 g

M �done

�

��	 CORBA Instantiation of Solution

This system has been implemented in a commercially available CORBA�compliant dis�

tributed object framework� namely IBM�s SOM�DSOM
 The IDL descriptions of these ob�

jects are given here� in Programs �
� and �
�
 For clarity� the SOM�DSOM�speci�c elements

of these interface declarations have been omitted here

interface Master � SOMObject �

oneway void lb �in long amount��

oneway void soln �in long amount��

oneway void nosoln ���

��

Program �
�� IDL de�nition of the Master interface

interface Slave � SOMObject �

oneway void prob �in ProblemType problem��

oneway void newlb �in long amount��

��

Program �
�� IDL de�nition of the Slave interface

���

��� Discussion

We have proposed and speci�ed a system that performs a generic tree search in a branch�

and�bound manner
 The solution was rigorously proven to meet the required system spec�

i�cation
 This proof took advantage of the simple compositional rule for certi�cates� A

certi�cate that is a property of a component is also a property of any system containing

that component
 We have also implemented the solution to a speci�c instance of such a

search� the generalized
�� knapsack problem

We observe that the certi�cates used in the speci�cation of the Master and Slave com�

ponents are all simple certi�cates
 There is a single transient property �in the speci�cation

of Slave	 and it is an unquanti�ed transient property
 We can therefore hope that� as

with the distributed auction example in Chapter �� much of the testing harness for this

application can be generated automatically

Some of the certi�cates given in this example di!er in an important way from those of

the distributed auction example
 In particular� ��
�	� ��
�
	� and ��
��	 all make use of one

of the speci�cation functions opt val or opt soln
 Although the value of these functions

is uniquely determined by the state of the slave �in particular� the tree node the slave

received from the master	� it is extremely expensive to calculate
 Indeed� this calculation

is precisely the task assigned to the slave
 It is therefore unreasonable to expect that an

e�cient run�time check of these certi�cates could be automatically generated

Nevertheless� it is still possible for the programmer to implement functions that approx�

imate the boundedness expressed by these certi�cates
 For example� ��
�
	 states that any

lower bound sent by the slave is bounded above by the value of the optimal solution of the

subtree being searched
 To check that this is the case� a function can be written that returns

the value of some promising leaf node in the subtree
 In fact� this is the function written by

the implementor of the slave component to �nd a lower bound
 A run�time check that the

leaf node returned by this function is indeed a descendant of the original tree node received

by the slave is therefore su�cient to test the certi�cate
 Clearly such a test requires the

insight of a human programmer

On the surface� there appear to be several similarities between the tree search application

presented here and the distributed auction presented in Chapter �
 Both have a single

central server and a star topology of interconnections
 The bids submitted in the auction

are analogous to the lower bounds� and eventually solutions� submitted in the tree search

The process of selecting a sale price is analogous to �nding the leaf with the greatest value

It is curious� therefore� that the proof of the branch�and�bound tree search system is much

���

shorter than the proof of the distributed auction

This brevity is due to an important di!erence� the di!erence in the termination condi�

tion
 In the distributed auction� the auctioneer cannot know whether a bidder is willing to

bid more� or whether the bid is equal to that bidder�s maximum
 Terminating an auction�

then� requires there to be at most one active bidder and the rest to have declined further

participation
 In the branch�and�bound tree search� however� the �nal solution �or bid	 is

distinguished from the lower bounds
 It is su�cient that all slaves have replied in some

manner� either with a solution or with an indication that their subtree is not relevant to the

solution
 In either case� this �nal �bid is distinctive and the computation can terminate

when all slaves have replied
 Viewing the branch�and�bound tree search as an auction� a

lower bound reported by a slave is analogous to a promise to bid at least that amount
 A

solution reported by a slave is a bid
 Although such an auction has a simpler proof than the

one given in Chapter �� it requires the winning bidder to submit its maximum bid value

As discussed in Chapter �� such a solution is not satisfactory

���

���

Chapter

Related Work

In this chapter we outline some related areas of research
 The relevant results from these

areas are compared with our own approach

��� Speci�cation Theory

Writing correct software means writing software that meets a speci�cation
 The problem

of writing correct speci�cations� of course� remains
 However� speci�cations need not be

executable by a computer� which means they can be easier to write than programs for

several reasons� �i	 they can use high�level intuitive abstractions that may not be available

in the implementation language� and �ii	 they can contain less information than a program

since they focus on the problem to be solved rather than on the method of solution
 Several

approaches to the speci�cation of concurrent and distributed systems have emerged

����� Axiomatic

Axiomatic speci�cations de�ne fundamental language constructs by axioms that can then

be composed using rules of inference to form more complicated language constructs
 This

approach has been attributed to Floyd ���� and has been applied with success to sequential

systems
 The two primary forms of this style of speci�cation for sequential programs are

Hoare triples ��
� and Dijkstra�s weakest precondition ���� ���

Axiomatic speci�cation has also been demonstrated to be a powerful mechanism in the

context of concurrent systems
 Martin�s seminal paper ���� gave an axiomatic de�nition of

synchronization primitives �such as send�receive	 in terms of boundedness� progress� and

fairness
 Attempts have also been made to extend the approaches taken with sequential

���

systems to concurrent ones
 For example� Hoare triples were extended by Owicki and

Gries ���� ��� with a requirement to establish noninterference between threads of execution

An extension of Dijkstra�s weakest precondition was the notion of weakest and strongest

invariants �win and sin	 ����

An alternate approach to the speci�cation of components of concurrent systems has

been the de�nition of component behavior given that its environment has a certain behav�

ior
 That is� each component in a system must behave correctly only if the other components

do
 The circularity of this reasoning has been broken by various proposals� including rely�

guarantee ����� hypothesis�conclusion ����� assumption�commitment ����� o!ers�using �����

and assumption�guarantee ���
 For example� the assumption�guarantee approach of Abadi

and Lamport restricts the assumptions of environment behavior to safety properties
 The

modi�ed rely�guarantee approach of Manohar and Sivilotti ���� allows progress properties

to be part of the rely clause� but requires the explicit construction of an acyclic implication

ladder
 The weakest guarantee approach of Chandy and Sanders ��
� ��� breaks the circu�

larity by considering requirements on the entire system rather than just the environment

This approach characterizes two kinds of component properties� exists�component �if any

component of a system has such a property� the entire system has the property	� and all�

component �if all components of a system have such a property� the entire system has the

property	
 Our certi�cates are examples of �exists�component properties

����� Temporal Logic

Modal logic� which has been studied since its appearance as a syllogism in Aristotle�s De

interpretatione� adds the operators �necessarily and �possibly to the usual ones of propo�

sitional logic �e�g�� � � � � � � � 	 ����
 Temporal logic can be viewed as a branch of modal

logic in which these operators are given a temporal interpretation ���� ���
 The use of tem�

poral logic to formalize the behavior of computer systems was �rst proposed by Kr$oger for

sequential systems ��
�� and by Pnueli for concurrent ones ����
 A computation is viewed as

a sequence of global states� and properties of a system are then given as temporal properties

of these sequences
 Di!erent characterizations of the sets of sequences to which the tempo�

ral operators apply lead to di!erent versions of temporal logic
 For example� the structure

of the sequence may be linear or branching� �nite or in�nite
 A common formulation� based

on linear temporal logic� is sometimes called Manna�Pnueli theory ���� ���

Several speci�cation notations with strong ties to temporal logic have been developed

The UNITY model ���� de�nes a program to be a collection of assignment statements

���

from which� repeatedly� a statement is chosen for execution
 The model gives a fairness

requirement for this selection
 Program properties are then given in terms of unless� ensures�

and leads�to
 TLA ���� �standing for �temporal logic of actions 	 is a logic for system

speci�cation based on the fundamental operators � ��always 	 and � ��eventually 	 of

temporal logic
 TLA allows for the expression of di!erent fairness requirements �known as

strong and weak	� as well as the hiding of variables in speci�cations
 Both UNITY and

TLA allow for stuttering �i�e�� the repetition of global state in the trace of a computation	

Implementation�language�speci�c notations that incorporate temporal logic have also been

proposed� such as COL ����
 This speci�cation language and its associated deadlock analyzer

are part of an Ada ��� design environment
 In ����� a procedural monitor�based programming

language� VALET� is de�ned with a temporal logic semantics

Our fundamental operators � initially � next � and transient 	 are based on well�known

operators in temporal logic
 In particular� ���� ��� contains an excellent exposition of the

latter two
 Our derived operators � stable � invariant � and leads�to	 are also familiar from

many temporal frameworks� but were inspired by their presentation in UNITY
 The follows

operator is similar to the detects operator in UNITY in that it combines safety and progress�

and is similar to the method used in ���� to reason about continuous systems
 Unlike detects�

the follows operator deals with monotonic variables
 This permits the derivation of several

useful properties �e�g�� two �xed point theorems� a function application theorem� as well as

juncitivity� union� and intersection theorems	 that detects does not enjoy

����� Calculational Re�nement

An implementation can be viewed as a speci�cation that happens to be executable by a

computer
 That is� speci�cations and implementations are distinguished only by imple�

mentability
 This view has given rise to the study of the re�nement from speci�cation to

implementation in a calculational manner
 The re�nement calculus� as it is known� was

pioneered in ���� ����� and ����
 A calculation approach to speci�cation re�nement has

also met with considerable success in the area of asynchronous VLSI design
 A CSP�like

���� speci�cation is re�ned through a series of program transformations into a hardware

implementation ���� ���

Component speci�cations based on our certi�cates do form a lattice that is partially

ordered by re�nement
 The ordering relationship is given by implication and can be estab�

lished using propositional calculus as illustrated in Chapters � and �
 Providing a re�nement

path from speci�cation to implementation is not� however� the focus of our approach

��

��� Speci�cation Languages and Notations

Several speci�cation notations have found use in the development of real systems
 Larch

���� ��� is a family of languages that support a two�tiered style of speci�cation
 One tier is

written in a common notation �the Larch Shared Language	� while the other is written in an

interface language tailored for a particular programming notation
 Interface languages have

been designed for C ����� Modula�� ����� Ada ����� and C�� ���� among others
 Another

popular speci�cation language� SDL ��
�� is used for the description of telecommunication

systems� as is the Estelle language ����
 Both these notations are based on an extended

�nite state machine abstraction
 VDM �the Vienna Development Method	 ��� ��� has also

enjoyed success in its application to large systems such as the speci�cation of PL�I and Ada

���

These speci�cation languages can all be used to guide the selection of test data
 They

are also consistent with the automatic generation of testing harnesses for implementations

��� Software Validation

Validation is the process whereby software is tested to ensure that it complies with its

speci�cation ����
 Of course� such testing cannot guarantee the absence of errors in a real

system ����� but it can increase programmer con�dence in the correctness of the system

Much work has been done on the development of test selection strategies� beginning with

Goodenough and Gerhart�s seminal paper ����
 There are two fundamental approaches

to the selection of test data� �i	 selecting tests based on the system speci�cation� and �ii	

selecting tests based on the structure of the implementation
 Both approaches are discussed

and further classi�ed in ����

TSL �Task Sequencing Language	 is a language for formally specifying the behavior

of concurrent Ada programs� by specifying sequences of tasking events that can occur or

are explicitly not allowed ����
 Work has been done towards the translation of these spec�

i�cations into run�time checks ����
 This work has continued in the form of Rapide� an

executable architecture de�nition language ��
�

Another speci�cation language designed with automated testing in mind is ADL by

Sun Microsystems and the X�Open organization ����
 Originally built for the speci�cation

of C functions� it has been extended to C�� and Java ����
 In conjunction with a test�

data description �le� an ADL description is used to automatically generate a test program

Functional speci�cations are given as method postconditions� however� so they have a strong

���

client�server bias
 ADL is therefore less appropriate for the speci�cation of peer�to�peer style

distributed computations

��� CORBA IDL Extensions

Some of the notations discussed above have also been proposed as extensions to CORBA

IDL
 For example� a Larch interface language for use with CORBA IDL has been studied

����
 ADL has also been explored as an extension of CORBA IDL ����
 Both approaches

base their functional speci�cation on preconditions and postconditions of object methods

CDL �Constraint Design Language	 is a language supported as an IDL extension and used

for expressing constraints on object declarations ����
 This notation� however� is intended

to support the de�nition of architectural elements rather than the functional speci�cation

of components

��	 Component Technology

The modular development of programs has long been recognized as critical for the practical

development of large systems ��
�
 At the same time� the high cost of construction of

reliable software systems has made reuse �of implementation� architecture� and reasoning	

a priority in many organizations
 The con�uence of these two forces makes component�

based technology attractive in a competitive software market
 One of the proponents of

commercial o!�the�shelf �COTS	 component assembly for software systems is the Software

Engineering Institute at Carnegie Mellon University �and� in particular� the CBS initiative

underway there	 ����

One of the challenges to COTS component assembly is establishing con�dence in the

correctness of the component being used
 The Fox project supports the concept of �proof�

carrying code ����
 That is� a proof of correctness is embedded in the assembled imple�

mentation code� which the user can verify
 This approach protects both the user of the

component �from incorrect implementations	 and the developer of the component �main�

taining the privacy of the implementation code	
 It is limited� however� to safety properties

that are appropriate for veri�cation by a type�checking algorithm
 The con�dence prob�

lem has also been addressed by extending component implementations with result�checking

code ����
 The central idea is that it can be easier �e�g�� faster or more space e�cient	 to

check the result of a computation than to perform the computation itself ��
�
 These simple

checkers have been proposed and examined in a debugging role� but the extension of such

���

checkers to a security role is an intriguing consideration

���

Chapter ��

Conclusion

���� Summary

We have presented a speci�cation methodology that addresses three parts of the develop�

ment cycle for distributed object systems� �i	 the speci�cation of systems and components�

�ii	 the compositional reasoning used to verify that a collection of components satisfy a

system speci�cation� and �iii	 the validation of component implementations
 For the speci�

�cation of system and component behavior� we use a collection of temporal operators� based

on three fundamental operators� initially � next � and transient
 From these� we derived

some familiar operators� invariant � stable � and leads�to� as well as a less familiar �but

equally useful� as we have found	 operator� follows
 What characterizes our methodology

is the use of these operators in a restricted manner�

� A speci�cation statement can refer only to the state of a single component

� A single component must be able to guarantee the validity of a speci�cation statement

regardless of the environment in which it is placed

The follows operator discussed in Chapter � has several pleasing properties� as we have

demonstrated through its use in a succinct proof of the earliest meeting time problem
 The

operator is restricted to monotonic variables� but this monotonicity can be de�ned over an

arbitrary lattice
 Thus� this specialized operator can �nd general applicability in distributed

systems� at least to the extent that such monotonic variables occur
 For example� channels�

whether ordered or unordered� can be viewed as monotonic variables �i�e�� either sequences

or sets of messages	
 With this interpretation� follows was invaluable in the proof of

channel properties in Chapter �
 Similar proofs of these same properties without using

follows occupy �� pages and are� in our opinion� less readable

���

We have characterized a subset of our general certi�cates that can be mapped auto�

matically into a testing harness embedded in the implementation stub code
 This subset is

general enough to include the most common uses of certi�cates� such as specifying mono�

tonicity and boundedness
 This approach is consistent with CORBA IDL philosophy of

generating stub code from class declarations
 Of course� our methodology is not restricted

to the CORBA framework
 However� CORBA did provide a natural context for our work�

as our certi�cates can be seen as IDL extensions� and the generation of the testing harness

can be easily integrated with the CORBA development cycle
 For certi�cates in the char�

acterized subset� we have de�ned the mapping of these certi�cates into an implementation

language �viz�� C��	

Services help alleviate some of the di�culties of proving properties of systems
 For ex�

ample� consider a system in which each component is eventually assigned a stable� unique

integer
 This behavior could be proven from the protocol expressed by the individual com�

ponents� certi�cates
 However� this approach requires that the result be reproven for any

combination of components that have this simple behavior as part of their speci�cation

Instead� a service that implements this system behavior can be de�ned and proven
 This

service can then be reused without repetition of the proof
 In this thesis� we have provided

two services� tokens and logical clocks
 There is anecdotal evidence that these two services

span a considerable range of applications
 The degree to which services can alleviate the

di�culty of proof reuse can be quanti�ed only by a large scale deployment of our method�

ology� which is outside the scope of this thesis
 We are encouraged by our work with tokens

and clocks� however� and believe that� in practice� a relatively small number of services

account for a large number of applications with non�conjunctive properties

Our experiments � the application of our methodology to a distributed auction and to a

distributed tree search algorithm � convince us of the utility of our approach
 We envision

an active marketplace of o!�the�shelf components� dynamically assembled by consumers into

distributed systems
 The methodology presented in this thesis provides the groundwork for

the viability of such a marketplace

���� Future Work

There are several natural extensions to the work presented here
 These extensions build

on our methodology and are all consistent with our fundamental goal of supporting� in a

practical way� the creation of correct distributed systems

First� the tool described in Chapter � could be implemented
 This chapter describes a

���

subset of certi�cates that are appropriate for automatic translation into a testing harness

All implementations of the CORBA standard include an IDL parser that takes as input

the class declarations and produces as output the skeleton for the implementation code

Such a parser could be modi�ed to accept our component descriptions as extensions to the

usual IDL declaration and produce an implementation skeleton that is augmented with the

testing harness according to the mappings given in Chapter �

Another intriguing possibility is the use of certi�cates as a run�time check by compo�

nent consumers� rather than component developers
 A component implementation could

be published or sold as an executable program� a certi�cate�based speci�cation� and an

externally veri�able checker
 The proprietary code of the vendor would be protected since

the component implementation would not be directly available to the consumer
 On the

other hand� the checker code would be available to the consumer� who would then be able

to verify that this checker does indeed test the maintenance of the component properties

promised by the certi�cates
 The security of the consumer would be protected by allowing

the component to be run in a safe mode� where interactions between the component and

the rest of the system would be monitored by the veri�ed checker

Although our certi�cates enjoy a simple compositional rule� formal proofs of distributed

systems require some e!ort and sophistication
 It is therefore desirable to reuse these proofs

as much as possible
 For certain fundamental collections of certi�cates� this was achieved

by the introduction of services
 Here� however� we have not addressed the reuse of proofs

for general systems
 If component A is a re�nement of component B� A can always be

used in place of B and the system will behave correctly
 A component provider should

therefore be able to reuse the proofs involving any component being re�ned
 There is no

conceptual di�culty with this reuse� Re�nement is de�ned by speci�cation implication

and proof reuse follows as a mathematical consequence
 The challenge is to provide an

infrastructure to help component implementors locate publicly available proofs that are

appropriate for them to use
 The initial steps towards such an infrastructure are outlined

in ����� where we describe how a universal distributed type hierarchy could be established

and maintained
 Such a system could also address the issue of the dynamic location of

components based on semantic information� in addition to the syntactic information �e�g��

component name	 used in today�s technologies

���

���

Bibliography

��� Mart%&n Abadi and Leslie Lamport
 Composing speci�cations
 ACM Transactions on

Programming Languages and Systems� ����	�������� January ����

��� American National Standards Institute� Inc
 The Programming Language Ada Refer�

ence Manual
 Springer�Verlag� Berlin� Germany� ����
 ANSI�MIL�STD�����A

��� Krzysztof R
 Apt
 Correctness proofs of distributed termination algorithms
 ACM

Transactions on Programming Languages and Systems� ���	������
�� July ����

��� R
 J
 R
 Back
 On correct re�nements of programs
 Journal of Computer and System

Sciences� ��������� ����

��� T
 J
 Berners�Lee� R
 Cailliau� J�F Gro!� and B
 Pollermann
 World�wide web� The

information universe
 Electronic Networking	 Research� Applications� and Policy�

���	������� Spring ����

��� Tim Berners�Lee� Robert Cailliau� Ari Luotonen� Henrik Frystyk Nielsen� and Arthur

Secret
 The world�wide web
 Communications of the ACM� ����	������� August ����

��� Garrett Birkho!
 Lattice Theory
 American Mathematical Society� New York� New

York� ���

��� Dines Bj'rner and Cli! B
 Jones
 Formal Speci
cation and Software Development

Prentice�Hall� Englewood Cli!s� New Jersey� ����

��� Dines Bj'rner and O
 N
 Oest
 Towards a Formal Description of Ada
 Number �� in

Lecture Notes in Computer Science
 Springer�Verlag� New York� New York� ���

��
� Manuel Blum
 Designing programs to check their work
 Technical Report TR����

��

International Computer Science Institute� ����

���

���� Manuel Blum and Hal Wasserman
 Program result�checking� a theory of testing meets

a test of theory
 In Proceedings of the ��th Symposium on the Foundations of Computer

Science� pages �������� ����

���� Grady Booch
 Object�Oriented Design with Applications
 The Benjamin�Cummings

Publishing Company� Inc
� Redwood City� California ��
��� ����

���� Gilles Brassard and Paul Bratley
 Algorithmics	 Theory and Practice
 Prentice�Hall�

Inc
� Englewood Cli!s� New Jersey
����� ����

���� S
 Budkowski and P
 Dembinski
 An introduction to Estelle� A speci�cation language

for distributed systems
 Computer Networks and ISDN Systems� ����	������ ����

���� David Carney
 Assembling large systems from COTS components� Opportunities�

cautions� and complexities
 SEI monograph� Software Engineering Institute� Carnegie

Mellon University� Pittsburgh� Pennsylvania� June ����

���� K
 M
 Chandy and C
 Kesselman
 CC��� A declarative concurrent object oriented

programming language
 Technical Report CS�TR����
�� Computer Science Depart�

ment� California Institute of Technology� �����
 Caltech� Pasadena� California ������

����

���� K
 M
 Chandy and L
 Lamport
 Distributed snapshots� Determining global states of

distributed systems
 ACM Transactions on Computer Systems� ���	������� February

����

���� K
 Mani Chandy
 Reasoning about continuous systems
 Science of Computer Program�

ming� ������	��������� October ���

���� K
 Mani Chandy and Jayadev Misra
 Parallel Program Design	 A Foundation

Addison�Wesley Publishing Company� Reading� Massachusetts� ����

��
� K
 Mani Chandy and Beverly A
 Sanders
 Predicate transformers for reasoning about

concurrent computation
 Science of Computer Programming� ����	��������� April

����

���� K
 Mani Chandy and Beverly A
 Sanders
 Predicate transformers for reasoning about

concurrent computation �volume ��� page ���� ����	
 Science of Computer Program�

ming� ����	����� September ����
 Correction

���

���� Pierre Collette
 Composition of assumption�commitment speci�cation in a UNITY

style
 Science of Computer Programming� ����
������ ����

���� E
 W
 Dijkstra
 Cooperating sequential processes
 In F
 Genuys� editor� Programming

Languages� pages ������
 Academic Press� New York� New York� ����

���� E
 W
 Dijkstra
 A Discipline of Programming
 Prentice�Hass Series in Automatic

Computation
 Prentice�Hall� Englewood Cli!s� New Jersey� ����

���� Edsger W
 Dijkstra and Carel S
 Scholten
 Predicate Calculus and Program Semantics

Texts and Monographs in Computer Science
 Springer�Verlag� ��� Fifth Avenue� New

York� New York �

�
� ���

���� Robert W
 Floyd
 Assigning meanings to programs
 In Proceedings Symposium on

Applied Mathematics� volume ��� pages ������ ����

���� Ian T
 Foster and K
 Mani Chandy
 Fortran M� A language for modular parallel

programming
 Journal of Parallel and Distributed Computing� ����	� February ����

���� Nissim Francez
 Distributed termination
 ACM Transactions on Programming Lan�

guages and Systems� ���	������� January ���

���� M
 R
 Garey and D
 S
 Johnson
 Computers and Intractability	 a Guide to the Theory

of NP�Completeness
 Freeman� San Francisco� California� ����

��
� Al Geist� Adam Beguelin� Jack Dongarra� Weicheng Jiang� Robert Manchek� and Vaidy

Sunderam
 PVM	 Parallel Virtual Machine A Users� Guide and Tutorial for Networked

Parallel Computing
 MIT Press� �� Hayward Street� Cambridge� Massachusetts
�����

����� ����

���� J
 B
 Goodenough and S
 L
 Gerhart
 Toward a theory of test data selection
 IEEE

Transactions on Software Engineering� ���	��������� June ����

���� James Gosling� Bill Joy� and Guy Steele
 The Java Language Speci
cation
 Addison�

Wesley Publishing Company� Reading� Massachusetts� ����

���� M
 Gouda� E
 Manning� and Y
 T
 Yu
 On the progress of communication between two

�nite state machines
 Information and Control� ����

����� April ����

���� David Guaspari� Carla Marceau� and Wolfgang Polak
 Formal veri�cation of Ada

programs
 IEEE Transactions on Software Engineering� ����	��
����
��� September

���

��

���� John V
 Guttag� James J
 Horning� S
 J
 Garland� K
 D
 Jones� A
 Modet� and J
 M

Wing
 Larch	 Languages and Tools for Formal Speci
cation
 Springer�Verlag� New

York� New York� ����

���� B
 Hailpern
 Verifying Concurrent Processes Using Temporal Logic
 Number ��� in

Lecture Notes in Computer Science
 Springer�Verlag� Berlin� ����

���� Eric C
 R
 Hehner
 A practical theory of programming
 Science of Computer Program�

ming� ������	��������� October ���

���� D
 P
 Helmbold and D
 C
 Luckham
 TSL� Task sequencing language
 In Ada in Use	

Proceedings of the Ada International Conference� pages �������
 Cambridge University

Press� May ����

���� David P
 Helmbold and Douglas L
 Bryan
 Design of run time monitors for concurrent

programs
 Technical Report CSL�TR�������� Computer Systems Laboratory� Stanford

University� October ����

��
� C
 A
 R
 Hoare
 An axiomatic basis for computer programming
 Communications of

the ACM� ����
	��������� October ����

���� C
 A
 R
 Hoare
 Communicating sequential processes
 Communications of the ACM�

����	��������� August ����

���� W
 E
 Howden
 Functional Program Testing and Analysis
 McGraw�Hill� New York�

New York� ����

���� D
 A
 Hu!man
 The synthesis of sequential switching circuits
 Journal of the Franklin

Institute� �������� ������
� and �����
�� ����

���� G
 E
 Hughes and M
 J
 Cresswell
 An Introduction to Modal Logic
 Methuen� New

York� New York� ����

���� IEEE
 Standard Glossary of Software Engineering Terminology
 IEEE� February ����

ANSI�IEEE Std ��

������

���� C
 B
 Jones
 Tentative steps toward a development method for interfering programs

ACM Transactions on Programming Languages and Systems� ���	��������� ����

���� Cli! B
 Jones
 Systematic Software Development Using VDM
 Series in Computer

Science
 Prentice�Hall International� Englewood Cli!s� New Jersey
����� ����

���

���� G
 M
 Karam and R
 J
 A
 Buhr
 Temporal logic�based deadlock analysis for Ada

IEEE Transactions on Software Engineering� ����
	���
������� ����

���� Nils Klarlund� Jari Koistinen� and Michael I
 Schwartzbach
 Formal design constraints

ACM SIGPLAN Notices� ����
	���
����� October ����

��
� Fred Kr$oger
 LAR� A logic of alogrithmic reasoning
 Acta Informatica� ����������

����

���� Fred Kr$oger
 Temporal Logic of Programs� volume � of EATCS Monographs on Theo�

retical Computer Science
 Springer�Verlag� Berlin� ����

���� S
 S
 Lam and A
 U
 Shankar
 A theory of interfaces and modules �� Composition

theorem
 IEEE Transactions on Software Engineering� �
��	������� January ����

���� Leslie Lamport
 Time� clocks� and the ordering of events in a distributed system

Communications of the ACM� ����	��������� July ����

���� Leslie Lamport
 win and sin� Predicate transformers for concurrency
 Technical Re�

port ��� Digital Systems Research Center� Palo Alto� California� May ����
 Revised

December ����

���� Leslie Lamport
 A theorem on atomicity in distributed algorithms
 Distributed Com�

puting� ���	������� ���

���� Leslie Lamport
 The temporal logic of actions
 ACM Transactions on Programming

Languages and Systems� ����	��������� May ����

���� Leslie Lamport and Lawrence C
 Paulson
 Should your speci�cation language be typed�

Technical Report ���� Digital Systems Research Center� ��
 Lytton Avenue� Palo Alto�

California ���
�� May ����

���� Gary T
 Leavens
 An overview of Larch�C��� Behavioural speci�cations for C��

modules
 Technical Report TR #���
�c� Department of Computer Science� Iowa State

University� ��� Atanaso! Hall� Ames� Iowa �

����
�
� February ����
 Revised Jan�

uary ����

���� A
 C
 Leisenring
 Mathematical Logic and Hilbert�s � �Symbol
 Gordon and Breach�

Science Publishers� Inc
� ��
 Fifth Avenue� New York� New York �

��� ����

���

��
� David C
 Luckham� John J
 Kenney� Larry M
 Augustin� James Vera� Doug Bryan� and

Walter Mann
 Speci�cation and analysis of system architecture using Rapide
 IEEE

Transactions on Software Engineering� ����	��������� April ����
 Special Issue on

Software Architecture

���� Zohar Manna and Amir Pnueli
 The Temporal Logic of Reactive and Concurrent Sys�

tems� volume �
 Speci�cation
 Springer�Verlag� ��� Fifth Avenue� New York� New York

�

�
� ����

���� Rajit Manohar and Paolo A
 G
 Sivilotti
 Composing processes using modi�ed rely�

guarantee speci�cations
 Technical Report CS�TR������� Computer Science Depart�

ment� California Institute of Technology� �����
 Caltech� Pasadena� California ������

June ����

���� Alain J
 Martin
 An axiomatic de�nition of synchronization primitives
 Acta Infor�

matica� ����������� ����

���� Alain J
 Martin
 Formal methods for VLSI design� chapter Synthesis of Asynchronous

VLSI Circuits
 Elsevier Science Publishing Company� New York� New York� ���

���� Alain J
 Martin
 Synthesis of asynchronous VLSI circuits
 Technical Report Caltech�

CS�TR������� Computer Science Department� California Institute of Technology� ����

�
 Caltech� Pasadena� California ������ ����

���� G
 H
 Mealy
 A method for synthesizing sequential circuits
 Bell System Technical

Journal� ����	��
����
��� ����

���� Bertrand Meyer
 Object�Oriented Software Construction
 International Series in Com�

puter Science
 Prentice Hall� ����

���� Jayadev Misra
 A logic for concurrent programming� Progress
 Journal of Computer

� Software Engineering� ���	������

� ����

���� Jayadev Misra
 A logic for concurrent programming� Safety
 Journal of Computer �

Software Engineering� ���	��������� ����

��
� E
 F
 Moore
 Automata Studies� chapter Gedanken experiments on sequential machines�

pages �������
 Princeton University Press� Princeton� New Jersey� ����

���

���� L
 J
 Morell
 Unit testing and analysis
 Curriculum Module SEI�CM����
�� Software

Engineering Institute� Carnegie Mellon University� Pittsburgh� Pennsylvania� Decem�

ber ����

���� Carroll Morgan
 The speci�cation statement
 ACM Transactions on Programming

Languages and Systems� �
��	����
� July ����

���� Joseph M
 Morris
 A theoretical basis for stepwise re�nement and the progamming

calculus
 Science of Computer Programming� ���	������
�� ����

���� Hanspeter M$ossenb$ock
 Object�Oriented Programming in Oberon��
 Springer�Verlag�

����

���� P
 Naur
 Revised report on algorithmic language Algol��

 Computer Journal� �����	�

���

���� George C
 Necula and Peter Lee
 Proof�carrying code
 Technical Report CMU�CS����

���� Canegie Mellon University� Pittsburgh� Pennsylvania ������ September ����

���� Object Management Group
 The Common Object Request Broker	 Architecture and

Speci
cation� July ����
 Revision �

���� S
 Owicki and D
 Gries
 An axiomatic proof technique for parallel programs I
 Acta

Informatica� ��������
� ����

���� S
 Owicki and D
 Gries
 Verifying properties of parallel programs� An axiomatic ap�

proach
 Communications of the ACM� ����	��������� May ����

��
� D
 L
 Parnas
 A technique for software module speci�cation with examples
 Commu�

nications of the ACM� ����	���
����� May ����

���� M
 Pease� R
 Shostak� and L
 Lamport
 Reaching agreement in the presence of faults

Journal of the ACM� ����	��������� April ���

���� Amir Pnueli
 The temporal logic of programs
 In Proceedings of the ��th IEEE Sym�

posium on the Foundations of Computer Science� pages ������ New York� New York�

����
 IEEE

���� Arthur N
 Prior
 Time and Modality
 John Locke lectures� ������
 Oxford� Clarendon

Press� Oxford� ����

���

���� Nicholas Rescher and Alasdair Urquhart
 Temporal Logic� volume � of Library of Exact

Philosophy
 Springer�Verlag� New York� New York� ����

���� G
 Ricart and A
 Agrawala
 An optimal algorithm for mutual exclusion in computer

networks
 Communications of the ACM� ����	������ January ����

���� James Rumbaugh� Michael Blaha� William Premerlani� Frederick Eddy� and William

Lorensen
 Object�Oriented Modeling and Design
 Prentice Hall� Englewood Cli!s� New

Jersey
����� ����

���� Beverly A
 Sanders
 Eliminating the substitution axiom from UNITY logic
 Formal

Aspects of Computing� �������
�� ����

���� Sriram Sankar and Roger Hayes
 ADL � an interface de�nition language for specifying

and testing software
 ACM SIGPLAN Notices� ����	������� August ����

���� Sriram Sankar and Roger Hayes
 Specifying and testing software components using

ADL
 Technical Report SMLI TR������� Sun Microsystems Laboratories� Inc
� M�S

���
�� ���
 Garcia Avenue� Mountain View� California ��
��� April ����

��
� Roberto Saracco� J
 R
 W
 Smith� and Rick Reed
 Telecommunications Systems Engi�

neering Using SDL
 North�Holland� New York� New York� ����

���� Sally Shlaer and Stephen J
 Mellor
 Object�Oriented Systems Analysis	 Modeling the

World in Data
 Yourdon Press Computing Series
 Yourdon Press� Englewood Cli!s�

New Jersey
����� ����

���� Gowri Sandar Sivaprasad
 Larch�CORBA� Specifying the behavior of CORBA�IDL

interfaces
 Master�s thesis� Iowa State University� ��� Atanaso! Hall� Ames� Iowa

�

����
�
� November ����
 TR #�����

���� Paolo A
 G
 Sivilotti and Peter A
 Carlin
 A tutorial for CC��
 Technical Report CS�

TR����
�� Computer Science Department� California Institute of Technology� �����

Caltech� Pasadena� California ������ ����

���� Paolo A
 G
 Sivilotti and K
 Mani Chandy
 A distributed infrastructure for software

component technology
 Technical Report CS�TR������� Computer Science Depart�

ment� California Institute of Technology� �����
 Caltech� Pasadena� California ������

September ����

���

���� Marc Snir� Steve W
 Otto� Steven Huss�Lederman� David W
 Walker� and Jack Don�

garra
 MPI	 The Complete Reference
 MIT Press� �� Hayward Street� Cambridge�

Massachusetts
���������� November ����

���� Bjarne Stroustrup
 The C�� Programming Language
 Addison�Wesley Publishing

Company� Reading� Massachusetts� second edition� ����

���� Jan L
 A
 van de Snepscheut
 On lattice theory and program semantics
 Technical Re�

port CS�TR������� Computer Science Department� California Institute of Technology�

�����
 Caltech� Pasadena� California ������ Spring ����

���� Sreenivasa Rao Viswanadha and Sriram Sankar
 Preliminary design of ADL�C�� � a

speci�cation language for C��
 In Second Conference on Object�Oriented Technologies

and Systems �COOTS�� June ����

���� G
 H
 von Wright
 And next
 Acta Philosophica Fennica� ��������
�� ����

