
Examples of Program Composition

Illustrating the Use of Universal Properties�

Michel Charpentier and K� Mani Chandy
California Institute of Technology
Computer Science Department

m�s �����	
 Pasadena
 CA �����
e
mail� fcharpov
 manig�cs�caltech�edu

Technical Report� CS
TR
��
	�

Abstract

This paper uses a theory of composition based on existential and uni�

versal properties� Universal properties are useful to describe components

interactions through shared variables� However� some universal proper�

ties do not appear directly in components speci�cations and they must

be constructed to prove the composed system� Coming up with such uni�

versal properties often requires creativity� The paper shows through two

examples how this construction can be achieved� The principle used is

�rst presented with a toy example and then applied to a more substantial

problem�

� Introduction

A goal of compositional systems development is to support the publication of
software modules in a repository such as the Web� where each module is pub�
lished with its speci�cation� and where new modules can be created by compos�
ing existing modules� Hardware vendors publish parts lists with speci�cations�
and other vendors compose these parts to create new parts� Personal comput�
ers are manufactured in this fashion� We establish properties of a composed
system from the speci�cations of the components� we do not consider how the
components are implemented provided they satisfy their speci�cations�

Systems can be developed in a compositional way whether the development
is bottom�up or top�down or some combination of the two� In all cases� a goal is
to specify each component so that the component can be used in a wide variety
of environments�

�This work is supported by a grant from the Air Force O�ce of Scienti�c Research�

�



We would like a speci�cation of a software module to name only variables
used in that module� We prefer not to specify one module using variables named
in other modules with which this module may be composed� The reason for this
preference is to allow the widest latitude for the environments of a module�
Specifying variables in the environment can over�specify the environment�

A property is a predicate on systems� A speci�cation is a desired property of
a system� �Usually� a speci�cation is a desired property which is a conjunction
of desired properties�	 A local property of a system is a property that names
only variables of that system� We would like the speci�cation of a system to be
a local property of that system�

When we compose components to get larger systems we may �nd that� luck�
ily for us� all the properties we desire for the composed system can be obtained
in a straightforward way from the speci�cations of the components� In other
cases� we may have to be creative in proving system speci�cations from their
component speci�cations� This paper is an exploration of how we can prove
system properties from local component properties�

This paper uses a theory of composition proposed in 
�� �
� This theory
is based on existential and universal property types� A property type is an
existential type when it holds in any system in which at least one component
has the property� A property is a universal type when it holds in any system in
which all components have the property� Consider a simple example� Imagine
that we are putting pieces together in a jigsaw puzzle� An example of a universal
property is �the component is entirely dark colored�� If we put entirely dark�
colored components together we get entirely dark�colored �larger	 components�
An example of an existential property is� �the component has a light�colored
region�� A component has a light�colored region if it has a subcomponent with
a light�colored region�

Some properties are neither universal nor existential� The earlier work� how�
ever� proposes a theory of composition based on universal and existential prop�
erties� Conjunctions of these properties are adequate for specifying most con�
current systems� In particular� existential properties seem to play an important
role in the speci�cation of distributed systems 
�
�

Here� we consider the case of a shared memory system� In such systems� a
compositional approach must provide means to describe the way components
modify shared variables�

Components speci�cations do not describe their use of shared variables with
existential properties� Speci�cations about one component must make assump�
tions on the way other components modify shared variables� One way is to use
universal properties that specify how all components use shared variables�

However� a universal property of one component referring only to local vari�
ables and shared variables of that component and not to other components�
local variables will generally not be satis�ed by all other components� which
modify shared variables according to their local variables� This is because each
component has a property de�ned in terms of its local and shared variables� and
so these properties are di�erent for di�erent components�

To cope with this di�culty� one approach is to build� from components

�



speci�cations� a universal property satis�ed by all components� which is then a
system property� The paper presents an example of that step�

After presenting the programming model used� we �rst consider a toy exam�
ple to highlight the di�culties related to universal properties and the way they
can be solved� We then apply the same principles to a more important example�
a priority mechanism for con�icting processes�

� Programming Model

The programming model that we use to illustrate the theory is the model used
in 
�� �
 which is derived from Unity 
�
� A program consists of a set of typed
variables� an initially predicate which is a predicate on program states� a �nite
set C of commands� and a subset D of C of commands subjected to a weak
fairness constraint� every command in D must be executed in�nitely often� The
set C contains at least the command skip which leaves the state unchanged�

The program composition is de�ned to be the union of the sets of variables
and the sets C and D of the components� and the conjunction of the initially
predicates� Such a composition is not always possible� Especially� composition
must respect variable locality �a variable declared local in a component should
not be written by another component	 and must provide at least one initial
state �the conjunction of initial predicates must be logically consistent	� We use
F � G to denote that programs F and G can be composed� Then� the system
resulting from that composition is denoted by F 

G�

To specify programs and to reason about their correctness� we use the fol�
lowing properties�

init p � initially � p
transient p � h�c � c � D � p� wp�c��pi
p next q � h�c � c � C � p� wp�c�qi
stable p � p next p
invariant p � �init p	 � �stable p	

We also use the liveness property leads�to� denoted by 	
 and de�ned by the
following rules�

Transient � 
 transient q � true 	
 �q 

Implication � 
p� q
 � 
p 	
 q

Disjunction � For any set of predicates S�


 h�p � p � S � p 	
 qi � h�p � p � S � pi 	
 q 

Transitivity � 
 p 	
 q � q 	
 r � p 	
 r 

PSP � 
 p 	
 q � s next t � �p � s	 	
 �q � s	 � ��s � t	 


Note that we use properties with their inductive de�nition and not the de�nition
based on strongest invariant 
��
� In order to avoid some mix�up� we do not use
the substitution axiom 
�
� although we could when dealing with global system
properties�

�



Another element of the theory is the guarantees operator� from pairs of
properties to properties� Given program properties X and Y � the property
X guarantees Y is de�ned by�

X guarantees Y � F
�

� h�G � F �G � �X � F 

G	 � �Y � F 

G	i

In this paper� we deal more speci�cally with universal properties and the
guarantees operator is not used�

For existentiality and universality� we use the de�nition in 
�
� which is
slightly di�erent from the original de�nition in 
�
� For any program property
X �

X is existential
�

� h�F�G � F �G � X � F �X �G� X � F 

Gi

X is universal
�

� h�F�G � F �G � X � F �X �G� X � F 

Gi

Properties of type init� transient and guarantees are existential and prop�
erties of type next� stable and invariant are universal� The properties leads�to
are� in general� neither existential nor universal� However� leads�to can appear
on the right�hand side of a guarantees to obtain existential liveness properties
other than transient 
�� �
�

� The Toy Example

��� Informal Description

We consider a set of components sharing a global counter� Each component
also uses a local counter� We are interested in the relationship between the
local counters and the global counter�

Components increase a global counter C by one each time they perform a
certain action a� Therefore� the value of counter C always equals the total
number of actions a that have been performed�

In the remainder of the section� we show what di�culties arise when applying
a compositional approach to such a problem� and how to solve them� We specify
the behavior previously described at the component level� and the correctness
of the global system is derived in a compositional way�

��� Component Speci�cation

Each component i has a counter ci of actions a performed� Therefore� it must
increase the global counter C each time it increases its counter ci� The naive
speci�cation� corresponding to the case where the system is composed of one
component i� is�


 init C � ci � Component i


 stable C � ci � Component i

If all components share this speci�cation� we have two problems�

�




 The initial condition of the global system is h�i �� C � cii� from which we
cannot deduce the desired property that C equals the sum of the counters
ci�


 If ci is local to component i and component j has to modify the shared
variable C� the property stable C � ci is not satis�ed by component j�

To obtain a compositional proof� we have to do a little more work� Initially�
C must equal the sum of all the ci� but expressing this sum is not local to the
component� The only way to know the sum� at the component level� is that all
ci are zero �so that the sum does not depend on the number of components�	�
So� the component can have the following local init predicate�

init ci � � � C � � � Component i

If all other components have the same condition� the initial state will satisfy the
condition that C equals the sum of the ci�

Now� we need the property that component i will always increase C and ci
by the same value� Formally�

�k�N �� ci � k�C � N next h�d � d � � � ci � k�d�C � N �di �Component i

This is equivalent to�

�k�N �� C � ci � N � k next C � ci � N � k � Component i

and since k and N are universally quanti�ed� this is equivalent to�

�k �� stable C � ci � k � Component i

The last thing we must specify to obtain a compositional speci�cation is
what variables are local and what variables are shared� This is achieved through
a local declaration that allows to �syntactically	 check what compositions are
valid�

local ci � Component i

Only variables not declared local can be written by other components �here� the
only non local variable is C	� From this local declarations� we deduce logical
properties in a generic way�

For all variables v � other than ci and C � �k �� stable v � k � Component i

Finally� at a logical level� the speci�cation of Component i becomes�

init �ci � � � C � �	 ��	

�k �� stable C � ci � k ��	

For all variables v � other than ci and C � �k �� stable v � k ��	

The set of universal properties are still not shared by other components� but
we show� in the next section� how a shared universal property can be deduced
from them�

�We could have init C � ci� for the component i� and init ci � � for the others� but

this would introduce a dissymmetry�

�



��� Correctness Proof

First� from init and local properties� we observe that�

h�i� j � i �� j � Component i � Componentji

Therefore� We can consider a system composed of N components� each com�
ponent satisfying the previous speci�cation�

System � h

i � � � i � N � Component ii

The goal here is to prove global system correctness from the component speci�
�cations� This desired property is�

invariant C �

N��X

i��

ci � System

Proof�

fComponent speci�cations� rewriting ��	 and ��	g
For all i� init �ci � � � C � �	 � Component i

� For all i��k�� k�� � � � � kn �� stable C � ci �
P

j ��i kj � Component i
� For all i��k�� k�� � � � � kn �� stable h�j � j �� i � cj � kji � Component i

� fConjunction of stable properties� removing unused dummiesg
For all i� init �ci � � � C � �	 � Component i

� For all i� stable C �
P

j cj � Component i
� finit properties are existential� stable properties are universalg

init h�i �� �ci � � � C � �	i � System
� stable C �

P
j cj � System

� fPredicate calculusg
init C �

P
j cj � System

� stable C �
P

j cj � System
� fDe�nition of invariantg

invariant C �
P

j cj � System

�

��� Lessons from the Toy Example

The proposal of local properties ��	 and ��	 of Component i was obtained from an
analysis of the kinds of systems in which we expected to embed the component�
In this sense� we took a top�down approach to get a local component speci�cation
from an anticipated system speci�cation� However� we can now use our local
component speci�cation in a variety of systems including those that we have
not anticipated�

�



� The Priority Mechanism

��� Description

We suppose a set of perpetually con�icting components� Each component always
wants to perform an action that requires it to have higher priority than all
its neighbors� These con�icts are solved by a priority mechanism� Such a
mechanism should�


 never give priority at the same time to two con�icting components ��	�


 give priority to each component in turn ��	�

We uses a principle presented in 
�
� We give an orientation to the graph of
con�icts so that it always remains acyclic� and we use this graph as a priority
graph�

Then� a component should�


 wait until it has priority over its neighbors ��	�


 yield priority to its neighbors in �nite time after receiving priority ��	�


 not introduce cycles in the graph ��	�

A way not to introduce cycles is that an active node �with a higher priority
than its neighbors in the graph	� when changing priorities� always gets a lower
priority than all its neighbors�

��� Component Speci�cation

We call P the �nonoriented	 �nite graph of neighborhood� Unless explicitly
speci�ed� a graph property prop is to be understood as P �prop� The graph P is
described by variables N 
i
�

N 
i

�

� set of the neighbors of Component i

We require that h�i �� i �� N 
i
i �no node is con�icting with itself	� We as�
sume h�i� j �� i � N 
j
 � j � N 
i
i is invariant in the system �implementation of
variables N 
i
	�

The graph orientation is de�ned by the arrow 
� The notation �i 
 j	
means that component i has priority over component j� This is a boolean value�
It can be modi�ed both by i and j and by no other node� Any change must
respect the �implementation	 invariant� h�i� j � j � N 
i
 � �i
 j	 � ��j 
 i	i�

The function Priority �i is used to represent the priority of a node i over all
its neighbors�

Priority �i
�

� h�j � j � N 
i
 � �i
 j	i

�



The three properties of component i become�

�b� j �� j � N 
i
 � �i
 j	 � b � �Priority �i next �i
 j	 � b � Component i��	

transient Priority �i � Component i ��	

Priority �i next Priority �i � h�j � j � N 
i
 � �j 
 i	i � Component i ��	

As previously� we add a locality constraint� A component cannot change
edges other than its incoming and outcoming edges�

�b� j� j� �� j �� i � j� �� i � �j 
 j�	 � b next �j 
 j�	 � b � Component i ��	

��� System Speci�cation

Here� we express formally the system speci�cation previously informally stated�


 safety�

invariant h�i �� Priority �i� h�j � j � N 
i
 � �Priority �jii � System ��	


 liveness�
�i �� true 	
 Priority �i � System ��	

The proof of safety is trivial� To prove the liveness part� we use the fact
that the graph always remains acyclic� and therefore that there is always a node
which has the priority� To achieve that� we have to build a global universal
property� satis�ed by all components� from which we can deduce the graph
acyclicity� It corresponds to the step presented in the toy example to obtain
the property invariant C �

P
i ci� However� here� the property is more tricky

�see property ���		�

��� Notations

In order to express this acyclicity� we de�ne the functions� R�i and A�i�

R�i � fj � j � N 
i
 � �i
 j	g
A�i � fj � j � N 
i
 � �j 
 i	g

and a kind of �nonre�exive	 transitive closure R��i and A��i�

R��i � R�i �n� Rn���i � Rn�i �
�

j�Rn�i

R�j R��i �
�

n��

Rn�i

R��i is the set of nodes reachable from node i following the graph�s edges� A��i
is de�ned in the same way and is the set of nodes from which the node i is
reachable�

�De�ning R�i and A�i as functions instead of relations allows the use of set operators to

simplify the writing of some formulas�

�



We use the following property for all i and j�


i � R��j � j � A��i
 ���	

Then the graph acyclicity is de�ned by�

Acyclicity
�

� h�i �� i �� R��ii
� h�i �� i �� A��ii

We also use the equivalent de�nition of Priority �i�

Priority �i � A��i � � ���	

��� Construction of a Universal Property

De�nition � Let G and G� be two graphs di�ering only by edge orientation�
We say that G� is derived from G through node i� if and only if all the edges of
i� are outcoming in G and incoming in G�� all other edges being equal in G and
G��

G
i�
� G� �

h�k� k� � k� k� �� i� � G��k 
 k�	 � G���k 
 k�	i �G�A��i� � � �G��R��i� � �

Lemma � If a graph G� is derived from a graph G through node i�� then the
reachability of nodes in G� cannot be greater than the union of what they are in
G and the singleton fi�g�


G
i�
� G� � h�i �� G��R��i � G�R��i � fi�gi


Proof� From graph theory� �

Property �� The only changes a component i can make in the priority graph

are governed by the relation
i
��

�G �� P � G next P � G �G
i
� P � Component i ���	

Proof� Trivial from the speci�cations ��	� ��	 and ��	 of component i� �

Property �� �Universal system property�

�G �� P � G next P � G � h�i� �� G
i�
� Pi � System ���	

Proof� From ���	� the property is satis�ed by every component� Since next is
universal� this is a system property� �

�



��� Proof of the Liveness Property 	
�

Property �� A component cannot enter any reachability set before it has pri�
ority�

�i� j �� A��i �� � � i �� R��j next i �� R��j � System ���	

Proof� From lemma � and ���	�

�G� r� i� j ��
P � G � R��j � r �A��i �� � � i �� r

next

P � G � h�i� �� G
i�
� P � R��j � r � fi�g � i �� ri � System

If P � G� then R��j � r and then i �� R��j� If not� from G
i�
� P � we know that

G�A��i� � �� Therefore� i� �� i� and since i �� r� we deduce that i �� R��i� Using
disjunction over G and r� we obtain ���	� �

Property �	 A component with priority will keep its reachability set or its
above set empty�

�i �� A��i � � next A��i � � �R��i � � � System ���	

Proof� If a component has priority� its neighbors cannot have priority and�
thanks to ��	 and ��	� cannot change any edge� Therefore� its neighbors cannot
set its own priority to false� That means that ��	 is satis�ed by all components�
Since it is universal� it is a system property�

�i �� Priority �i next Priority �i � h�j � j � N 
i
 �� �j 
 i	i � System

Then� just rewriting using R��i and A��i� we obtain exactly ���	� �

Property �
 If it is acyclic initially� the priority graph remains acyclic�

Acyclicity next Acyclicity � System ���	

Proof� From ���	� choosing i � j� we have�

�i �� A��i �� � � i �� R��i next i �� R��i � System

From ���	� using i � R��i � i � A��i�

�i �� A��i � � next i �� R��i � System

From the disjunction of the two above� strengthening the left�hand side of the
next�

�i �� i �� R��i next i �� R��i � System

which� from the de�nition of Acyclicity � is exactly ���	� �

��



Lemma � There is at least one maximal node in any nonempty above set of a
�nite acyclic graph�


Acyclicity � h�i � A��i �� � � h�j � j � A��i � A��j � �ii


Proof� From graph theory� �

Property �� Any nonpriority component has always a priority component
above it�

�i �� invariant Acyclicity � �A��i �� � � h�j � j � A��i � A��j � �i	 � System
���	

Proof� From lemma � and ���	� �

Property �� Any component with priority eventually escapes every above set�

�i� j �� A��i � � 	
 i �� A��j � System ���	

Proof� From the existential characteristics of ��	� we have�

�i �� transient Priority �i � System

that rewrites�
�i �� A��i � � 	
 A��i �� � � System

From ���	 and the above� using PSP�

�i �� A��i � � 	
 R��i � � � System

Since i � A��j � j � R��i�

�i �� A��i � � 	
 h�j �� i �� A��ji � System

which is stronger than the required property ���	� �
Finally� we prove the liveness correctness ��	� which is equivalent to the

following property�

Property �

�i �� true 	
 A��i � � � System ���	

Property ���	 is equivalent to�

�i� j �� A��i �� � � j �� A��i next j �� A��i � System

which in turn is equivalent to�

�a� i �� A��i � a �� � next A��i � a � System

In the same way� from ���	 we have�

�a� i� j �� A��i � a � j � A��i �A��j � � 	
 j �� a � System

��



Applying PSP to the two above� we obtain�

�a� i� j �� A��i � a � j � A��i � A��j � � 	
 A��i � a � System

Using leads�to disjunction over j� it becomes�

�a� i �� A��i � a � h�j � j � A��i � A��j � �i 	
 A��i � a � System

From the invariant ���	� A��i �� � � h�j � j � A��i � A��j � �i� and therefore�
the previous formula implies�

�a� i �� A��i � a �� � 	
 A��i � a � System

Through induction on the cardinality of A��i� this gives the liveness correct�
ness ��	�

� Conclusions

This paper explores a methodology for compositional development of systems�
The methodology attempts to work with two types of system properties� uni�
versal and existential� A goal of the methodology is to specify components
using only local properties� In some cases� system properties can be obtained
in a straightforward fashion from local component properties� In other cases�
creativity is required to derive system properties from local properties�

This case study exposes the use of three kinds of compositional properties�


 an existential property ��	�


 a universal property� shared by all components ��	�


 a universal property� not shared by other components ��	�

The �rst two types of property are easy to use� they simply hold in the global
system when components are gathered� The third one� however� requires cre�
ativity and additional work to become useful in the composition step� The
case studies help us in exploring compositional steps that appear to be almost
mechanical in contrast to steps that require some ingenuity�

The speci�cation of the con�ict resolution solution included the property
that the graph of the priority relation is an acyclic graph� We could have
speci�ed the components in terms of such acyclic graphs� but this would have
resulted in component speci�cations being nonlocal� The speci�cation of one
component would include properties about the priority relationship between
completely di�erent components� If we specify components using only local
properties� then we have to bridge the gap between local properties and the
global system property about acyclic graphs� We found no mechanical way of
bridging this gap�

The principle used to build a universal shared property is to weaken the
component properties so that all components can share the weakened property�

��



This transformation requires some knowledge on how shared variables are mod�
i�ed by other components� This knowledge is provided by other components
�universal	 speci�cation�

Note that this step leads to weaken a property� and is not exactly a re�ne�
ment step in the strict sense of the word 
�� ��
� Such transformations� in�
troducing some nondeterminism� seem to appear frequently when dealing with
distributed programs 
�� �
�

Universal properties seem to be closely related to global safety� In the prior�
ity example� the safety correctness is trivial� but we need a strong safety property
to prove the liveness part� In 
�
� a resource allocator example is derived� In
that example� all the safety points are local to components and� actually� the
example only makes use of existential properties�

Another point worth being noticed is that� in both the toy example and
the priority mechanism example� we only make use of statement properties
�transient or inductive safety properties	� Properties like �always true� are
avoided� The theory provides a guarantees operator to deal with non transient
existential properties� However� for universal properties� nothing more than
inductiveness is used�

We are currently investigating such questions� both from the theoretical
point of view and by applying the theory of composition to a collection of
examples� In particular� we are working on developing a theory based on the
traditional rely�guarantee approach 
�� ��
 and relating it to other theories of
composition 
��� �
�

The vision that drives us is that of modularity at the level used by manu�
facturers of personal computers� cars and airplanes� Such systems are complex
with large numbers of parts� We should be able to compose certain kinds of
software modules in the same way�

Just as there have been many generations of airplanes we now are moving
towards many generations of user interfaces� and the compositional technologies
that the community has learned in building airplanes over many generations are
now being used to build user interfaces and other software systems� The trend
towards plug�and�play� object systems� and component systems such as Java
Beans and Microsoft�s DCOM are examples of steps in this direction�

Formal theories that support compositional development of concurrent sys�
tems have been proposed� This work is an exploration of a theory based on
speci�cations using only local properties and two types of properties� universal
and existential� We believe that this theory is worthy of further investigation be�
cause of the extreme simplicity of its foundation and the successful case studies
of its use�

��



References


�
 Mart� n Abadi and Leslie Lamport� Conjoining speci�cations� ACM Trans�
actions on Programming Languages and Systems� ����	��������� May �����


�
 R�J�R� Back� Re�nement of parallel and reactive programs� Technical
report� Marktoberdorf Summer School on Programming Logics� �����


�
 K� Mani Chandy and Michel Charpentier� An experiment in program
composition and proof� Submitted to Formal Methods in System Design�
September �����


�
 K� Mani Chandy and Jayadev Misra� Parallel Program Design� A Foun�
dation� Addison�Wesley� �����


�
 K� Mani Chandy and Beverly A� Sanders� Predicate transformers for rea�
soning about concurrent computation� Science of Computer Programming�
����������� �����


�
 K� Mani Chandy and Beverly A� Sanders� Reasoning about program com�
position� Technical Report ������� University of Florida� Department of
Computer and Information Science and Engineering� �����


�
 Michel Charpentier� A Unity mapping operator for distributed programs�
In J� Fitzgerald� C�B� Jones� and P� Lucas� editors� Fourth International
Symposium of Formal Methods Europe �FME	
��� volume ���� of Lecture
Notes in Computer Science� pages �������� Springer�Verlag� September
�����


�
 Pierre Collette� Design of Compositional Proof Systems Based on
Assumption�Commitment Speci�cations� Application to Unity� Doctoral
thesis� Facult�e des Sciences Appliqu�ees� Universit�e Catholique de Louvain�
June �����


�
 Mamoun Filali� Philippe Mauran� and G�erard Padiou� Ra�ner pour
r�epartir� In Actes des quatri
emes Rencontres francophones du Parall�elisme
�RenPar	��� Villeneuve D�Ascq� France� �����


��
 S� S� Lam and A� U� Shankar� A theory of interfaces and modules �� Compo�
sition theorem� IEEE Transactions on Software Engineering� ����	�������
January �����


��
 C� Morgan� P� Gardiner� K� Robinson� and T� Vickers� On the Re�nement
Calculus� FACIT� Springer�Verlag� �����


��
 Beverly A� Sanders� Eliminating the substitution axiom from Unity logic�
Formal Aspects of Computing� ���	��������� April�June �����


��
 Rob T� Udink� Program Re�nement in Unity�like Environments� PhD
thesis� Utrecht University� September �����

��


