Deadlock Free Message Routing
in Multiprocessor Interconnection Networks

William J Dally
and
Charles L Seitz

Computer Science Department
California Institute of Technology

5206:TR:86

Deadlock Free Message Routing
in Multiprocessor Interconnection Networks

William J. Dally
Charles L. Seitz

5206:TR:86

May 10, 1985

Abstract

A deadlock-free routing algorithm can be generated for arbitrary interconnection networks
using the concept of virtual channels. A necessary and sufficient condition for deadlock-
free routing is the absence of cycles in the channel dependency graph. Given an arbitrary
network and a routing function, the cycles of the channel dependency graph can be removed
by splitting physical channels into groups of virtual channels. This method is used to
develop deadlock-free routing algorithms for k-ary n-cubes, for cube connected cycles, and
for shuffle-exchange networks.

Indez Terms - Interconnection networks, communication networks, concurrent computation,
parallel processing, message passing multiprocessors, graph model.

olo|o
5 S
/ 3
N3 / Y
/ 3
c <
® ™S—21212
"o

Figure 1: Deadlock in a 4-Cycle

1 Introduction

Message passing concurrent computers such as the Caltech Cosmic Cube [1] consist of many
processing nodes that interact by sending messages over communication channels between
the nodes. Deadlock in the interconnection network of a concurrent computer occurs when
no message can advance toward its destination because the queues of the message system
are full [2]. Consider the example shown in Figure 1. The queues of each node in the 4-cycle
are filled with messages destined for the opposite node. No message can advance toward its
destination; thus the cycle is deadlocked. In this locked state, no communication can occur
over the deadlocked channels until exceptional action is taken to break the deadlock.

Reliable concurrent computation requires a routing algorithm that is provably free of dead-
lock. In this paper we present a general method for constructing deadlock-free routing
algorithms for arbitrary networks. In Section 2 we state our assumptions and develop
the necessary and sufficient conditions on a channel dependency graph for a routing to be
deadlock-free. These conditions are used in Section 3 to develop a method of constructing
deadlock-free algorithms for arbitrary networks. This method is based on the concept of
virtual channels: groups of channels that share a physical channel but each have their own
queue. Using virtual channels, we develop deadlock-free routing algorithms for arbitrary
k-ary n-cubes in Section 4, for cube-connected cycles in Section 5, and for shuffle-exchange
networks in Section 8. In each of these examples, physical channels belonging to cycles are
split into a group of virtual channels. The virtual channels are ordered; routing is restricted
to visit channels in decreasing order to eliminate cycles in the channel dependency graph.

2 Deadlock Free Routing

We assume the following:

e A message arriving at its destination node is eventually consumed.
o A node can generate messages destined for any other node.

o Between any two processing nodes ¢ and j the order of messages transmitted directly
from s to j must be preserved.

o There is room to queue at least two message fragments (possibly a single bit each) for
each channel.

o Nodes can produce messages at any rate subject to the constraint of available queue
space (source queued).

The following definitions develop a notation for describing networks, routing functions and
configurations. A summary of notation is given below.

Definition 1 An interconnection network, I is a strongly connected directed graph, I =
G(N,C). The vertices of the graph, N, represent the set of processing nodes. The edges
of the graph, C, represent the set of communication channels. The source node of channel
¢; is denoted s; and the destination node d;. Associated with each channel, ¢;, is a queue
with capacity cap(c;) containing size(c;) messages. If the queue for channel c¢; contains a
message destined for node n; then member(ng, ¢;) is true. There may be redundant channels
between two nodes. For purposes of analysis, we add an internal channel c,; to C for each
node n;. Messages originating at node n; are considered to have arrived on c,,.

Definition 2 A routing function R : C x N — C maps the current channel, ¢., and des-
tination node, ng, to the next channel ¢, on the route from ¢, to ng, R(cc,nq) = ¢p. A
channel is not allowed to route to itself, ¢, # c,. Note that this definition restricts the
routing to be memoryless in the sense that a message arriving in channel ¢, destined for nq4
has no memory of the route that brought it to c¢.. However, this formulation of routing as
a function from C x N to C has more memory than the conventional definition of routing
as a function from N x N to C. Making routing dependent on the current channel rather
than the current node allows us to develop the idea of channel dependence.

Definition 3 A channel dependency graph, D, for a given interconnection network, I, and
routing function, R, is a directed graph, D = G(C, E). The vertices of D are the channels
of I. The edges of D, are the pairs of channels connected by R:

E = {(ei,¢;j)|R(ci, n) = c; for some n € N}. (1)

Note that, since channels are not allowed to route to themselves, there are no 1-cycles in
D.

Definition 4 A configuration is an assignment of a subset of N to each queue. A configu-
ration is legal if

Ve; € C, size(c;) < cap(c;). (2)

Definition 5 A deadlocked configuration for a routing function, R, is a non-empty legal
configuration of channel queues 3

Ve; € C, (Yn D member(n,¢;), n # d; and ¢; = R(c;,n) = size(c;) = cap(c;)) (3)

In this configuration no message is one step from its destination and no message can advance
because the queue for the next channel is full. A routing function, R, is deadlock-free on
an interconnection network, I, if no deadlock configuration exists for that function on that
network.

Summary of Notation

I interconnection network, a directed graph I = G(N,C),
N the set of nodes,

n; a node,

C the set of channels,

ci a channel,

Cn; the internal channel of node n;,

8; the source node of channel ¢;,

d; the destination node of channel ¢;,

cap(¢) the capacity of the queue of channel c¢;,

size(c;) the number of messages enqueued for channel ¢;,
member(n,c;) true if a message destined for node n is enqueued for channel ¢;,
R a routing function R: C X N — C,

D the channel dependency graph.

Theorem 1 A routing function, R, for an interconnection network, I, is deadlock-free iff
there are no cycles in the channel dependency graph, D.

Proof:

= Suppose a deadlock-free network has a cycle in D. Since there are no 1-cycles in D, this
cycle must be of length two or more. Thus one can construct a deadlocked configuration by
filling the queues of each node in the cycle with messages destined for a node two channels
away where the first channel of the route is along the cycle. Contradiction.

<= Suppose a network with no cycles in D is deadlocked. Since D is acyclic one can assign
a total order to the channels of C so that if (¢;,¢;) € E then ¢; > ¢;. Consider the least
channel in this order with a full queue, ¢;. Every channel, c,, that ¢; feeds is less than ¢,
and thus does not have a full queue. Thus, no message in the queue for ¢; is blocked and
one do not have deadlock. W

3 Constructing Deadlock-Free Routing Algorithms

Given a routing function, R, and a network, I, that is not deadlock-free, we can construct
a deadlock-free routing (R',I) by removing the cycles from (R,I). In some cases, such as a
cycle with channels in only one direction, it is not possible to remove edges without reducing
the set of nodes that can be reached from a given node. In these cases we can break cycles by
splitting each physical channel along the cycle into a group of virtual channels. Each group
of virtual channels shares a physical communication channel; however, each virtual channel
requires its own queue. The purpose of virtual channels is to associate different priorities
to messages traversing the same physical channel depending on the channel from which
a message arrives and the node to which the message is destined. By assigning priorities
so that a message’s priority always increases as it moves closer to its destination, we can
construct deadlock-free routing algorithms.

Consider for example the case of a unidirectional four-cycle as shown in Figure 2A, N =
{no,...,ns}, C = {co,...,c3}. The interconnection graph, I is shown on the left and the
dependency graph, D is shown on the right. We pick channel ¢y to be the dividing channel
of the cycle and split each channel into high virtual channels, ¢j9,...,¢13, and low virtual
channels, ¢gg, . .., cos, as shown in Figure 2B. We can consider the internal channel of node
n; to be numbered cz;. Priority in use of the physical channel is given to the low virtual
channel.

Messages at a node numbered less than their destination node are routed on the high
channels and messages at a node numbered greater than their destination node are routed
on the low channels. Channel cgg is not used. We now have a total ordering of the virtual
channels according to their subscripts: c13 > c12 > c11 > c10 > cos > co2 > co1. Thus,
there is no cycle in D and the routing function is deadlock-free. In the next three sections
we apply this technique to three practical communications networks. In each case we add
virtual channels and restrict the routing to route messages in order of decreasing channel
subscripts.

Some possible implementations of virtual channels are shown in Figure 3. A parallel imple-
mentation of virtual channels is shown in Figure 3A. Virtual channels between nodes n; and
n; are multiplexed over a physical channel ¢,. Queues Qq,,...,Q%, in n; contain messages
enqueued for transmission over virtual channels cop,...,ckp all of which are multiplexed
onto physical channel cp,. A priority encoder (PE), selects the highest priority non-empty
queue, @Q;p, and enables the next packet of its data onto the physical channel. The data
includes routing information which selects the next queue along the route for the message
in n;. When there is room in this queue, the packet is acknowledged and removed from
Qip. For multi-packet messages, the routing information can be transmitted just once and
stored in node n;.

As long as a high-priority queue, Q)p, is non-empty it blocks any lower priority queues,
Qop; - - -, Q(h—1)p from transmitting their contents on the physical channel. This blocking
of lower priority channels may be undesirable for message-flow performance, but does not
introduce a deadlock. In a practical system a more complex protocol could be used to grant
lower priority virtual channels access to the physical channel while a high priority channel
is blocked.

C.’ ~ Cl
D
A, ~
C"3 Cia
T O —Cy
Con Coz
b
B,

Figure 2: Breaking Deadlock by Adding Virtual Edges

ack F . Lrgmm
{

43 ‘ f .

4
€
&
w

Q : -

°f r— hod

. R jueve

. [_,. select
Qy ve ¥ » to sveues

e <
i :
A~ Parallel Tup lewentation

‘PA;Kt‘h data Idest Ic.h\& \ —

R - Forwat s~ Ser al prfew\ﬂn‘t&"k:c‘v\

Figure 3: Implementation of Virtual Channels

The same protocol can be implemented serially using the format shown in Figure 3B. The
virtual channel id, routing information and data are transmitted serially from n; to n;.
When this packet is accepted by n;, an acknowledge signal is transmitted back to n; to
remove the packet from its queue and enable transmission of the next packet.

4 K-ary n-cubes

The E-cube routing algorithm [3,4] guarantees deadlock free routing in binary n-cubes.
In a cube of dimension d, we denote a node as n; where k is an d-digit binary number.
Node nj has d output channels, one for each dimension, labeled co,...,c(4—1)x- The E-
cube algorithm routes in decreasing order of dimension. A message arriving at node nj

6

()

Mo . Cozr My TT Ce2 Nyy
Cizo 1 Gz Ciza
!
o0 ; :
| } L
<
ﬂlo ‘. ol ﬁ\\ -1y N nlL
Cie ‘ <y (TP
Coos | |
. w 3
MCEEINRUEEE
(=]
rA
oo ¢, ol ey, Cioa

Figure 4: 3-ary 2-cube

destined for node n; is routed on channel ¢;; where ¢ is the position of the most significant
bit in which k and [differ. Since messages are routed in order of decreasing dimension and

hence deceasing channel subscript, there are no cycles in the channel dependency graph and
E-cube routing is deadlock-free.

Using the technique of virtual channels, this routing algorithm can be extended to handle all
k-ary n-cubes: cubes with dimension n and k nodes in each dimension. Rings and toroidal
meshes are included in this class of networks. This algorithm can also handle mixed radix
cubes. Each node of a k-ary n-cube is identified by an n-digit radix k number. The it}
digit of the number represents the node’s position in the i*" dimension. For example, the
center processor in the 3-ary 2-cube of Figure 4 is n;;. The channels are identified by the
number of their source node and their dimension. For example, the dimension 0 (horizontal)
channel from nj; to njo is co11. To break cycles we divide each channel into an upper and
lower virtual channel. The upper virtual channel of ¢g;; will be labeled cg111, and the lower
virtual channel will be labeled ¢go11. To give internal channels the lowest priority, they are
labeled with a dimension higher than the dimension of the cube. To assure that the routing
is deadlock-free, we restrict it to route through channels in order of descending subscripts.
Priority is always given to the message from the channel with a lower subscript.

As in the E-cube algorithm we route in order of dimension, most significant dimension first.
In each dimension, 1, a message is routed in that dimension until it reaches a node whose
subscript matches the destination address in the ¢*" position. The message is routed on
the high channel if the i*! digit of the destination address is greater than the ¢*® digit of
the present node’s address. Otherwise the message is routed on the low channel. It is

7

easy to see that this routing algorithm routes in order of descending subscripts, and is thus
deadlock-free.

Formally, we define the routing function:

Ca1(n-ré) if (dig(n,d) < dig(s,d)) A (dig(n, d) # 0),
Cdo{n—r) if (dig(n, d) > dig(j: d)) v (dig(n’ d) = 0); (4)
Cir(nrd) if (VK > §,dig(n, k) = dig(J, k))A

(dig(n,4) # dig(4,1)).

RiNc(civm, nj) =

Where dig(n, d) extracts the d*® digit of n, and r is the radix of the cube. The subtraction,
n — r4, is assumed to be performed modulo r.

Assertion 1 The routing function, RgNC, correctly routes messages from any node to any
other node in a k-ary n-cube.

Proof: By induction on dimension, d.

For d = 1, a message, destined for n;, enters the system at n; on the internal channel, cqo;.
I { < j, the message is forwarded on channels, cqy;, . . . , co10, coor, - - - » Coo(j+1) to node n;. If
i > 7, the path taken is, cooi; . - -, Coo(j+1)- In both cases the route reaches node n;.

Assume that the routing works for dimensions < d Then for dimension d + 1 there are two
cases. If dig(s,d) # dig(j,d), then the message is routed around the most significant cycle
to a node n; 3 dig(k,d) = dig(s,d), as in the d = 1 case above. If dig(¢,d) = dig(j,d),
then the routing need only be performed in dimensions d and lower. In each of these cases,
once the message reaches a node, ng, 3 dig(k, d) = dig(y, d), the third routing rule is used
to route the message to a lower dimensional channel. The problem has then been reduced
to one of dimension < n and the routing reaches the correct node by induction. W

Assertion 2 The routing function RgNc on a k-ary n-cube interconnection network, I, is
deadlock-free.

Proof: Since routing is performed in decreasing order of channel subscripts, Ve;,cj,n. >
R(ci,ne) = ¢j, § > j, the channel dependency graph, D is acyclic. Thus by Theorem 1 the
route is deadlock-free. W

5 Cube Connected Cycles

The cube-connected cycle (CCC) [5] is an interconnection network based on the binary
n-cube. In the CCC, each node of a a binary n-cube is replaced with an n-cycle and the
cube connection in the n*t dimension is attached to the n'® node in the cycle. A CCC of
dimension 3 is shown in Figure 5.

Each node in the CCC is labeled with the position of its cycle, (an n-bit binary number), and
its position within the cycle. For example, in Figure 5, processor 2 in cycle 111 is labeled
n2111. There are two channels out of each node: an in-cycle channel and an out-of-cycle
channel. The in-cycle channel is split into three virtual channels. One set of virtual channels
is used to rotate a message around the cycle to get to the most significant node in the cycle.
These channels are labeled ¢240.cc Where d is the dimension of the node, (its position in the
cycle), and ccc is the cycle address. The next set of virtual channels is used to decrement
the dimension during the E-cube routing of the message between cycles. These channels
are labeled ¢141ccc. The out-of-cycle channels, labeled c14o.cc, are used to toggle the bit of
the current cycle address corresponding to dimension d. Note that the channels c;40c.c are
actually physical channels. These connections are not shared with any other channels. The
third set of virtual channels is used to rotate the message around the cycle to its destination
once it is in the proper cycle. These channels are labeled cogoccc. As above, we will restrict
our routing to route through channels in order of descending subscripts. Priority is given
to messages from channels with lower subscripts.

The routing algorithm proceeds in three phases. During phase 1, messages are routed around
the cycle using the first set of virtual channels until they reach a node with dimension greater
than or equal to the position of the most significant bit in which the destination cycle address
differs from the current cycle address. During phase 2 we route the message to the proper
cycle using a variant of the E-cube algorithm. At each step of phase 2, we find the most
significant dimension, ¢, in which the current cycle and destination cycle addresses differ.
The message is routed around the current cycle until it reaches the node with dimension ¢
and is then routed out of the cycle. When the message arrives in the destination cycle it is
routed around the cycle using the third set of virtual channels to reach its destination node.
It is easy to see that routing is always performed in order of decreasing channel numbers,
and thus the routing is guaranteed to be deadlock-free.

While most cube-connected cycles are binary, this routing algorithm can be extended for
k-ary cube-connected cycles, that is, cycles with k cycles in each dimension. The only
modification required is to split each out-of-cycle channel into two virtual channels. For
simplicity, however we will analyze the routing for the binary case only. Formally, we define
the routing function:

€2(d-1)0n if (U > 2) A (d > 0)/\
(3 > d > dig(i,n) # dig(¢,7)),
C1(d-1)1n if (1) > 1) A (.’t = 0)/\
(Vi > d dig(s, n) = dig(s, 5))A
(dig(d, n) # dig(s, 7)),
eyd-non if (V2 1) A(z=0)A
(Vi > ddig(i, n) = dig(i,), i
€1d0(n—r?) if (v = 1) A (:E = 1)/\ ()
(Vi > d dig(s, n) = dig(s, 7)),
C1di(n—ré) if (V=1) A (z=1)A
(Vi > d dig(i,n) = dig(s,5))A
(dig(d, n) # dig(i,),
cod-1)on if (2=0)A(n=7)A(d < d),
| Co(a)on if (z=1)A(n=j)A(d < d).

Rccc(Cvdzns narj) = S

9

Mo n:.lo(ﬂIIDI
Nzu0 fany Mooy
“ml
None Moy
Neeoo "
N2 ool leel
N
2010 noaco N2 . Noca
‘ore MNon
Neoro Roaty

Figure 5: Cube Connected Cycle of Dimension 3

The following two assertions apply to the routing function, Rocc-
Assertion 3 (v < 2) = dig(¢, n) = dig(i,n') Vi > d.

Proof: The only way v can be decreased to less than 2 is for the right side of the assertion
to hold. Initially v = 3, the message arrives on the internal channel. Then as long as
3 > d > dig(s, n) # dig(s,n'), the first routing rule forwards the message along channels
for which v = 2. When the arriving channel has d = 0, the current node has d = m (where
m is the dimension of the CCC). In this case the first routing rule forwards the message
along a channel for which v = 1. The assertion holds since there are only m digits in n and
n', so there is no i > m for which the s** digit of these two cycle addresses differ.

Once v < 2, the right side of the assertion continues to hold because of routing rules 2,3,4
and 5. We prove this by induction on d. For d = m, the assertion holds as stated above. If
we assume the assertion holds for d = ¢, then for d = ¢ — 1 it also holds since routing rules
2 and 5 route the messages out-of-cycle to toggle the d*® digit of n if the addresses disagree
in that digit. i

Assertion 4 (v=10) = (n' =n)A(d' < d).

Proof: The only way to decrease v to zero is by routing rules 6 and 7 which require the
right side of the assertion. By Assertion 3, when v < 2 and d = 0, after one or two more

10

traversals, the right side of the assertion will be met. Once v = 0, no out-of-cycle channels
will be used so n does not change. |l

Assertion 5 The routing function, Rccg, correctly routes messages from any node to any
other node in a k-ary cube-connected cycle.

Proof: Since there are only a finite number of channels, and Rccc routes in order of
decreasing channel subscripts, v will eventually be decreased to 0. Then by Assertion 4,
n' = n and d' < d, so the message will be rotated about the cycle until it reaches its

destination. Hi

Assertion 6 The routing function Rocc on a k-ary cube-connected cycle interconnection
‘network, I, is deadlock-free.

 Proof: As in the case of k-ary n-cubes, since routing is performed in decreasing order of
channel subscripts, Ve;, ¢j,n. @ R(ei,ne) = ¢j, § > 7, the channel dependency graph, D is
acyclic. Thus by Theorem 1 the route is deadlock-free. |

6 Shuffle-Exchange Networks

The shuffle-exchange network [6], shown in Figure 6, provides two channels out of each
node: a shuffle channel and an exchange channel. The shuffle channel from node n; has as
its destination the node n; where the binary representation of j is the left rotation of the
binary representation of ¢, denoted here j = rol(s). The exchange channel from n; routes
messages to n; where the binary representations of k& and ¢ differ in the least significant bit.

The exchange channel out of n; is labeled ¢;;. The shuffie channel is labeled cp;. For the
shuffle-exchange network we split each channel into n virtual channels where N = 2". That
is, we have one virtual channel for each bit of node address. Readers understanding the
relationship between the binary n-cube and the shuffle will find this assignment of virtual
channels unsuprising. The virtual channels are labeled c4;;. Where0 < d < n-—1,z € {0,1},
and 0 < ¢ < N. The internal channel at each node is labeled with d = n to give it lower
priority than any other channel.

The routing algorithm, like the E-cube algorithm, routes a message toward its destination
one bit at a time beginning with the most significant bit. At the ith step of the route, the
n — i bit of the destination address is compared to the least significant bit of the current
node address. If the two bits agree, the message is forwarded over the shuffie channel to
rotate the node address around to the next bit. Otherwise, the message is forwarded over
the exchange channel to bring the two bits into agreement and then over the shuffle channel
to rotate the address. At the ¢! step messages are forwarded over channels with d = n — 1.
Since d is always decreasing and, during a single step, the exchange channel is used before
the shuffle channel, messages are routed in order of decreasing virtual channel subscripts.

Formally, we define the routing function:

11

Figure 6: Shuffle-Exchange Network, N = 8

€(d—1)0rol(i) if (z = 0) A (dlg(d - l:i) = dig(oaj))’
RsEN(Cdzis i) = { cd-1)1ea(s) if (z =0) A (dig(d — 1,¢) # dig(0, 5)), (6)
caogier) if (z=1).

Assertion 7 If a message is routed on channel cq4p; destined for node nj;, then Vm >
d, dig(m, j) = dig(m, k), where k is 1 rotated left d bits.

Proof: By induction on dimension, d. For d = n—1, a message is only routed on the shuffle
connection, z = 0, of dimension n—1 if dig(n—1, ¢) = dig(0, j) = dig(n—1,1) = dig(n—1,k)
by the definition of k. Since there is only one possible value for m, the assertion is satisfied.

If the assertion is true for dimension d, then after routing on connection c(4_1)0i, the as-
sertion also holds for d — 1 by the same argument: a message is only routed on the shuffle
connection, z = 0, of dimension d—1 if dig(d—1,1) = dig(0, j) = dig(d—1,¢) = dig(d—1,k).
[|

Assertion 8 The routing function, Rggn, correctly routes messages from any node to any
other node in a shuffle-exchange network.

Proof: From Assertion 7, after routing on channel coo;, the message will be at its destination.
It may reach its destination before this. Since the function routes in order of decreasing
channel subscripts and there are a finite number of channels messages will reach their
destinations. |}

12

Assertion 9 The routing function, RggnN, on a shuffle-exchange network, I, is deadlock-free.

Proof: Since routing is performed in order of decreasing channel numbers, D is acyclic and
the routing is deadlock-free. |

7 Conclusion

We have shown how a deadlock-free routing algorithm can be constructed for an arbitrary
communications network by introducing virtual channels. This technique has been applied
to construct deadlock-free routing algorithms for k-ary n-cubes, for cube-connected cycles,
and for shuffle exchange networks.

The use of virtual channels to construct deadlock-free routing functions is motivated by
the definition of a routing function that maps C X N to C, rather than the conventional
definition of a routing function that maps N x N to C. By including C in the domain
of the routing function, we explicitly define the dependencies between channels. These
dependencies are represented by a channel dependency graph D. A necessary and sufficient
condition for deadlock-free routing is that D be acyclic.

To develop deadlock-free routing algorithms for specific networks we assign a subscript
to each virtual channel using a mixed radix notation. Routing is performed in order of
decreasing subscripts. Since the subscripts define a total order on the channels, there are
no cyclic dependencies and the routing is deadlock-free.

The cost of implementing virtual channels need not be high. Each virtual channel requires
its own queue, but the queue size can be as small as the unit of data that is transmitted
on each handshake, possibly a single bit. With single bit queueing, virtual channels can be
used to implement the low latency wormhole routing technique [7].

The availability of deadlock-free routing algorithms encourages the investigation of different
interconnection topologies. While O(logN) diameter networks such as the binary n-cube
and the shuffle are attractive because of their richness of interconnection, these networks
are almost always embedded in a grid for physical implementation. In keeping with the
VLSI imperative of making form fit function, high bandwidth grid interconnections may
turn out to be more attractive.

References

[1] Seitz, Charles L., “The Cosmic Cube,” CACM, 28(1), January 1985, pp. 22-33.
[2] Kleinrock, Leonard, Queueing Systems, Wiley, 1976, Vol. 2, pp. 438-440.

/8] Sullivan, H. and Brashkow, T.R., “A Large Scale Homogeneous Machine,” Proc. 4th
Annual Symposium on Computer Architecture, pp 105-124, 1977.

[4] Lang, Charles R., The Eztension of Object-Oriented Languages to a Homogeneous
Concurrent Architecture, Caltech Ph.D. Thesis, 5014:TR:82, 1982, pp. 118-124.

13

[5] Preparata, F.P. and Vuillemin, J.E., “The Cube-Connected Cycles: A Versatile Net-
work for Parallel Computation,” Proc. 20*t IEEE Symposium on the Foundations
of Computer Science, pp. 140-147.

[6] Stone, H.S., ”Parallel Processing with the Perfect Shuffle,” IEEE Transactions on
Computers, vol. C-20, February 1971, pp. 153-161.

[7] Seitz, C. et. al, Wormhole Chip Project Report, Winter 1985.

14

