Positron Polarization in a Mirror Transition

F. Boehm and T. B. Novey,† Norman Bridge Laboratory of Physics, California Institute of Technology, Pasadena, California

AND

C. A. Barnes and B. Stech,‡ Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California

(Received August 29, 1957)

The positron polarization in the mirror transition N^4, a predominantly Fermi transition, has been measured by detecting the circular polarization of the annihilation-in-flight quanta. The results indicate complete polarization of the positrons parallel to their momentum, showing that Fermi coupling contributes significantly to the positron polarization in the same sense as the Gamow-Teller coupling.

I. INTRODUCTION

Experimental studies of the longitudinal electron and positron polarization in a beta decay process provide information about the beta decay law. In particular, these studies can determine the relative magnitude of the parity-conserving and parity-nonconserving couplings. In allowed transitions with spin change, that is in pure Gamow-Teller transitions, it has been found by several workers that the longitudinal polarization is approximately $-e/c$ for electrons and $+e/c$ for positrons. For transitions without spin change, however, where both Fermi and Gamow-Teller interactions contribute, contradictory results on the degree of longitudinal polarization has been obtained. A careful study of the Fermi part of the interaction seemed, therefore, desirable. This part of the beta interaction can be studied in a 0-0 transition or a mirror transition where the nuclear matrix elements are known. Among the mirror transitions N^3 is particularly suitable because the Fermi matrix element is larger than the Gamow-Teller matrix element. Consequently, the positron polarization will be determined mainly by the Fermi part of the transition.

We have studied the positron polarization in N^3 by measuring the circular polarization of the high-energy annihilation-in-flight quanta. The measurements indicate that the positrons are completely polarized, from which it can be concluded that the Fermi transition as well as the Gamow-Teller transition exhibit the maximum effect of parity nonconservation.

II. EXPERIMENTAL PROCEDURES

A suitable method for the study of positron polarization is the annihilation in flight recently discussed by Page. Annihilation-in-flight photons of high energy have their spins in the direction of the initial spin of the positron.

The degree and sense of the circular polarization of photons can be measured by using the spin dependence of the Compton scattering cross section. We have measured the transmission of the annihilation quanta through magnetized iron. This detection method is similar to the one applied by Goldhaber et al.

A sketch of the apparatus used is shown in Fig. 1. The annihilation-in-flight photons are produced in a carbon target surrounded by a small Lucite cover. They impinge upon a 3 inch long by 1\(\frac{1}{2}\) inch Armco iron magnet which is magnetized with the help of two coils. The detector is a 1\(\frac{1}{4}\) inch NaI crystal, which is located at a distance of 4\(\frac{1}{4}\) inches from the magnet. Lead absorbers in the amount of 1 to 1\(\frac{1}{2}\) inches were used to further discriminate against the 511-kev

*Supported in part by the joint program of the Office of Naval Research and the U. S. Atomic Energy Commission.
† Permanent address: Argonne National Laboratory, Lemont, Illinois.
‡ On leave from Heidelberg University, Heidelberg, Germany.
4 Frauenfelder, Hanson, Levine, Ross, and DePasquale, Phys. Rev. 107, 643 (1957).
8 Cavanagh, Turner, Coleman, Gard, and Ridley (private communication).
photon. Under these conditions the number of pile-up pulses in the detecting system at high energy is negligible.

The 13N sources were prepared by deuteron bombardment of a spectroscopically pure carbon target in the 3-Mev Van de Graaff generator with beam currents of about 20 μA at 3 Mev. Sources of 0.2 to 0.6 curie strength were measured for a period of about two half-lives, taking one-minute counts at alternate magnetic field directions in the polarization analyzer. Altogether, 20 irradiations were performed. The percent difference in counting rate for the two directions of magnetization, δ, corrected for decay, was measured at four different energies of the photons, 620 kev, 830 kev, 1040 kev, and 1140 kev. To ensure the absence of gamma-ray emitting impurities, the annihilation-in-flight spectrum was studied with a 100-channel differential analyzer. No gamma ray other than the annihilation radiation was found. Furthermore, the observed half-life in each run confirms the absence of impurity photons as well as pile-up effects.

Figure 2 shows a typical differential channel photon spectrum of 13N. Curve (a) is the experimentally observed uncorrected pulse distribution. Curve (b) shows the same distribution after correcting for detector sensitivity and absorption in the analyzer. The theoretical annihilation-in-flight spectrum is given in curve (c). The procedure for obtaining this curve is discussed below. The deviations at lower energies are presumably due to forward scattered quanta of originally higher energy.

III. CALIBRATION

In order to determine the 13N positron polarization from the measured effect, one has to calculate the degree of photon polarization for the annihilation-in-flight quanta as a function of the positron polarization. In the experimental arrangement which has been used the positron source is mostly surrounded by carbon. The positrons therefore annihilate isotropically in this material. The number of right (+) or left (−) circular polarized annihilation quanta of energy k is then given by the expression

$$W_{\pm}(k) = \int_{E_{\text{min}}(k)}^{E_{\text{max}}(k)} dE' \left[\frac{1}{2} \left(\frac{\omega_{\pm}(E',k)}{\omega_{\text{c}}(E')} \right) \right] N(E'),$$

where

$$\omega_{\pm}(E',k) = 2n_{0}Z \int_{E_{\text{min}}(k)}^{E'} dE \frac{\sigma_{\pm}(E,k)}{(-dE/dx)},$$

n_{0} = carbon atoms per unit volume, and Z = charge number = 6. Here $N(E')$ represents the 13N positron spectrum with a maximum energy, E_{0} = 1200 kev. dE/dx gives the energy loss per path length in carbon and $E_{\text{min}}(k)$ denotes the minimum positron energy required to produce a γ quantum of energy k. The cross section for the two-quantum annihilation at energy E yielding a right or left circular quantum k is denoted by $\sigma_{\pm}(E,k)$ and can be derived from the formulas given by Page. The degree of positron polarization is written as $\alpha_{\pm} = \omega_{\pm}/\omega_{\text{c}}$ (or ω_{\pm} to be taken at energy E') where ω_{\pm} is the positron velocity. A numerical integration of Eq. (1) gives the theoretical γ spectrum presented in Fig. 2.

![Fig. 2. Photon spectrum from 2-quantum annihilation-in-flight of 13N positrons in carbon. The intensity scales are arbitrary. Curves (b) and (c) are normalized at 1200 kev.](image)

![Fig. 3. Calculated polarization of γ quanta from annihilation-in-flight of 13N positrons in carbon. A positron polarization $P = +\alpha_{\pm} / c$ is assumed and curves are shown for $\alpha_{\pm} = +1$ and $\alpha_{\pm} = +\frac{1}{2}$.](image)
The γ-polarization resulting from Eq. (1) is plotted in Fig. 3 for the case α = 1, i.e., for +ν/c polarization, and for α = ½. In these cases the γ polarization is such that the photon advances as a right-handed screw.

The efficiency of the magnetic analyzer in determining the degree of γ polarization has been calculated by using the spin-dependent part of the total Compton cross section. The effective length of fully saturated iron is estimated to be 2½ inches. The expected percent difference in counting rate, δ, for alternate magnetic field directions in the iron is the product of this efficiency with the calculated polarization of Fig. 3 and is given in Fig. 4.

An attempt was made to check the efficiency of the analyzer experimentally using the bremsstrahlung photons produced in lead by the β rays of a 150 mC and 500 mC P²¹ source. The P²¹ electrons are polarized to a degree +ν/c, as has been found by several workers, and the bremsstrahlung photons should therefore have a circular polarization of similar magnitude and sign. The experimental points obtained with our geometry follow, as expected, the calculated efficiency curve except for a region around 1 Mev where the experimental points are approximately 30% lower. The calibration curve in Fig. 4 can therefore be considered as an upper limit and perhaps should be somewhat lower near 1 Mev.

RESULTS AND DISCUSSION

The results of the present experiments on N²¹ are plotted in Fig. 4. The errors are statistical errors. The size of the effect and the energy dependence indicate a polarization of positrons of the amount (0.93±0.20)ν/c with the spin pointing in the same direction as the momentum vector.

N²¹ is a well-analyzed mirror transition. From an analysis of the ft values it has been concluded that the ratio of the square of the Gamow-Teller and Fermi matrix elements is 0.40. Our result shows clearly that the Fermi part of this transition contributes significantly to the positron polarization in the same sense as the Gamow-Teller transition. If only the Gamow-Teller part of the transition contributed to the polarization, one would expect the points to follow approximately the curve for α = ½. In fact, our result is consistent with the largest possible polarization and indicates, therefore, a positron polarization +ν/c for pure Fermi transitions.

This result is in contradiction with the small electron polarization values found in Au²⁹⁺, Sc⁴⁶⁺, and Ga⁶⁶⁺, but is in agreement with recent measurements by Deutsch et al., who find a large polarization for the 0-0 transitions in Ga⁴⁶⁺ and CP²¹.

Assuming that the polarization is exactly ν/c, as seems likely from the present experiment, one can conclude that the following relations for the scalar and vector coupling constants hold:

\[C_s' = -C_s \quad \text{and} \quad C_v' = C_v. \]

If the two-component neutrino theory is valid, it follows from this result that the β-coupling contains either S and T, or V and A interactions.

ACKNOWLEDGMENTS

The authors are much indebted to Mr. D. Kohler for assistance with the source preparation, and to Professor J. W. M. DuMond, Professor W. A. Fowler, Professor M. Gell-Mann, Professor C. C. Lauritsen, and Dr. A. H. Wapstra for their advice and interest in this work. One of us (B. S.) wishes to thank the Deutsche Forschungsgemeinschaft for a grant.

§ Recent measurements by Benczer, Koller, Schwarzschild, Vise, and Wu [Phys. Rev. (to be published)] and by Cavanagh, Turner Coleman, Gard, and Ridley (to be published) give a large electron polarization for the forbidden transition in Au²⁹⁺.