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1. Introduction

Dekker’s algorithm [1] is the historically first solution to the mutual exclusion problem among
two processes. The only two atomic actions allowed on shared variables are read and write actions
on a single shared variable and no synchronization primitives are used. Dekker’s solution for two
processes and a gencralization to an arbitrary number of processes have been presented and proved
by Edsger W. Dijkstra in [1] and [2].

Dijkstra’s original generalization is not “fair”: in a fair solution, any process that requests the
critical section will eventually get it. The standard fair solutions are Eisenberg and McGuire’s [4],
Lamport’s [5 ], and Peterson’s [6].

A new generalization of Dekker’s solution is proposed. Although the solution is not fair, its
simplicity compared to all other solutions—for n processes, n Booleans and one bounded integer
are used—makes it attractive for applications in which the shared resource is not heavily used.

2. Notation

We use Dijkstra’s guarded commands [3] with a slightly different syntax: *[...] and [...] stand
for do ... od and if ... fi respectively. Moreover, *[S] and [B] are simplifications for *[true — S|
and [B — skip] respectively. Given the semantics of the selection-command, which requires that
at least one guard be true for the selection to terminate, the semantics of [B] can be interpreted
as “wait until B holds”. (An equivalent implementation of waiting is the busy wait *[-B — skip].)

3. The solution

The cyclic activity of a process is an alternation of a “non-critical section” NCS and a “critical
section”, C'S. These two actions are further left unspecified apart from the fact that they both
leave the control variables unchanged, that NCS need not terminate, and that C'S is guaranteed
to terminate.

In Dekker’s solution, both processes pl and p2 behave similarly. Process pl, for instance,
“declares its interest” for the CS by setting the Boolean variable z1 to true. It then tests z2 to
check whether p2 is also interested in the C'S. If p2 is not, p1 enters its C'S. If p2 is, pl withdraws its
candidacy by setting z1 to false and tries again. Because both processes have the same behavior, a
subtle form of deadlock may occur—called “after-you-after-you blocking”— where both processes
keep trying to enter and keep withdrawing at the same time. In order to exclude this possibility,
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an additional shared variable t—for “turn”—equal to 1 or 2, is introduced to give priority to one
of the two candidates. A process leaving the C'S changes the value of t.

Our solution for n,n > 2, processes is a straightforward generalization of Dekker’s algorithms.
Process p(¢),1 < ¢ < n, uses variable z(¢) to declare its interest to the CS and checks whether
other processes are interested by the test (Ej : 7 # ¢ : z(j)). Variable t is used in the same way as
in Dekker’s solution. But a special value 0 has to be introduced in order to reset t to a “neutral”
value after completion of the C'S. Hence the solution for an arbitrary process p(z).

p(t) = *[NCSq;

z(7) := true;

*[(By : 7 # 1 : z(5)) —z(d) = false;
t=0Vvt=1i]
t =1
z(i) := true

Ji

CSt;

z(1),t := false,0

Initially: t =0, (Af:1<4{ < n:-z(d)).
4. Proof of correctness

i) Mutual exclusion.
We introduce the ghost integer variable m, initialized to zero, and for each process p(i), the ghost
integer variable c(¢), initialized to zero. In the program, each action z(7) := true is replaced by
the atomic sequence
X (@) : (z() = true;c(s) :=m; m:=m+1).

For each process p(z), let us determine a precondition Pi of C'Si. Since z(¢) holds as precondition
of CS1, Pt contains the conjunct z(z).

Let L(7) be the last X(i) executed before CSi. Such an L(:) exists. By definition of the
semantics of the repetition, for each j, j # ¢, z(j) has been evaluated to false after L(:). Hence,
either —z(5) holds as precondition of CS7 or an X(j) has been executed after L(3), i.e., ¢(5) > ¢(¢)

holds. Hence:
PG) = (al) A (Aj 15 £ 1 =2(3) v (3) > ().
For 1 # £, (P(z) A P(£)) = false, which guarantees mutual exclusion. [J

ii) Absence of deadlock.
A deadlock situation is one in which a non-empty subset of processes—the “blocked” processes—
are inside their repetition R¢ : [(Ej : j # ¢ : z(§)) — ...], Ri does not terminate, and all other
processes are in NCS. Since initially ¢ = 0 and any process leaving the CS performs ¢t := 0, in
a deadlock situation t # k for any process p(k) in NCS. In other words, in a deadlock situation
t = 0Vt =1, where p(¢) is a blocked process. Hence not all blocked processes are blocked at the
wait-action [t =0Vt =1].

Let p(k) be “actively blocked” i.e. Rk does not terminate for p(k), but p(k) is not blocked at
the wait-action. Starting from a deadlock state, any activity of p(k) consists of an infinite repetition
of the sequence u(k) of actions:

t .= k; z(k) := true; {Bk}; z(k) := false;[t =0Vt = k]{t = k}
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with Bk = (Ej : 7 # k : 2(4)) holding at some point between the two assignments to z(k), and
t = k holding after the wait action. From the structure of u(k), we see that

(1) z(k)= true holds only inside u(k)
(2) t = & holds everywhere inside u(k).

From (1) and (2): z(k) = ¢ = k, i.e. since —z(5) holds for all processes other than the actively
blocked ones:

z(k) = - Bk.

Which contradicts Bk holding at some point between the two assignments to z(t).
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