A Delay-insensitive Fair Arbiter

Alain J. Martin

Computer Science Department
California Institute of Technology

5193: TR: 85
A Delay-Insensitive Fair Arbiter

Alain J. Martin

Computer Science Department
California Institute of Technology

5193:TR:85

The research described in this paper was sponsored by
the Defense Advanced Research Projects Agency, ARPA Order No. 3771,
and monitored by the Office of Naval Research
under contract number N00014-79-C-0597

© California Institute of Technology, 1985
A Delay-Insensitive Fair Arbiter

Alain J. Martin
Computer Science
California Institute of Technology
Pasadena CA 91125
June 1985, May 1986

1. Introduction

In any device communicating with its environment by two—or more—dependent channels, the problem arises of selecting one request for communication among several ones. This problem is called the "arbitration problem", and the part of the device that makes the selection is called an "arbiter". The main building-block of an arbiter is a so-called "basic arbiter" or "mutual exclusion" element, which is used for making a non-deterministic choice between two elementary input signals.

It is by now well-known that in any physical realization of a basic arbiter, the time the device takes to reach a stable state when both input signals are true i.e., when both input signals may be selected—is potentially unbounded because of the metastability phenomenon [1], [5]. However, this timing property of the basic arbiter does not cause any problem in a delay-insensitive, or self-timed (we use the two terms as synonyms) design discipline in which no timing assumptions are made on the delays in wires and operators, except that the delays are finite.

But the realization of a delay-insensitive arbiter raises another issue: that of fairness. An arbiter is strongly fair when a pending communication request is guaranteed to be granted after at most N other requests are granted, where N is a given positive integer constant. An arbiter is weakly fair when a request is granted after a finite number of other requests. Whether it is possible to construct a delay-insensitive fair arbiter has been, so far, an open question. It has been conjectured, [6], that delay-insensitive, fair arbiters do not exist. In this paper we prove the existence of delay-insensitive fair arbiters by constructing one.

We apply the synthesis method described in [3] and [4]. We first describe the arbiter in terms of a communicating process. It is easy to prove that this arbiter is fair. We then "compile" this program into a delay-insensitive circuit by applying a series of systematic, semantics-preserving transformations. Hence the circuit obtained is correct by construction, i.e. has the same fairness properties as the original program.
The choice of the operators used in the circuit will be discussed after constructing the arbiter. We use only standard operators: wire, fork, and-gate, or-gate, C-element, basic arbiter, and synchronizer. (An operator may have any number of inputs or outputs negated.) Furthermore we do not assume the basic arbiter or any other operator to be fair. All operators except the forks are delay-insensitive i.e. no assumption is made on the propagation delays in these operators.

The fork is the only operator with more than one output—in this paper we use only forks with two outputs—, which poses the additional problem of guaranteeing that a change of input value is followed by a corresponding change of value on both outputs of a fork. For reasons of simplicity, we solve this problem by assuming that the propagation delays in forks is short compared to the delays in all operators the fork can be connected to (all other operators except wires and forks). Forks with this property are said to be “isochronic”.

2. A fair arbiter program

Processes communicate with each other by communication commands. Communication command \(X \) in process \(p \) is paired with communication command \(Y \) in process \(r \) by declaring the pair \((X,Y) \) to be a channel between \(p \) and \(r \). \(X \) and \(Y \) form a pair of synchronization primitives: the completion of the \(n \)th \(X \)-action in \(p \) coincides with the completion of the \(n \)th \(Y \)-action in \(r \) (synchronization requirement). From initiation until completion, an action is “pending” or “suspended”. An action is suspended if and only if the completion of that action would violate the synchronization requirement (progress requirement).

We also provide a general Boolean command on channels, called the probe. In the original definition proposed in [2], given the channel \((X,Y) \), the “probe on \(X \)”, denoted by \(\overline{X} \), has the same value as the predicate “a \(Y \) action is pending”, denoted by \(qY \). In the context of a delay-insensitive implementation, we use a weaker definition, namely:

\[
\overline{X} \Rightarrow qY,
\]
\[
qY \Rightarrow \circ \overline{X},
\]

where \(\circ P \) means \(P \) holds eventually, i.e. \(P \) holds after a finite, but possibly unbounded, number of actions. (Either definition can be used, but the discussion about the fairness of the arbiter is clearer with the weaker definition.)

Given the above communication primitives, an arbiter can be described in its simplest form as a process \(R \) communicating with the environment by two independent channels \((A,A') \) and \((B,B') \). The arbiter is a non-terminating process, each elementary step of which is either \(A \) or \(B \), and which is suspended if and only if neither \(A \) nor \(B \) can be completed, i.e. neither \(A' \) nor \(B' \) is pending. Without taking fairness into account, a solution for \(R \) is

\[
*[[A \rightarrow A \\
\rightarrow B \rightarrow B] \\
\rightarrow B]
\]

(1)
The construct $\ast [S]$ means "repeat S forever". The execution of the selection command $[G_1 \rightarrow S_1 | G_2 \rightarrow S_2]$, where G_1 and G_2 are Boolean expressions called the guards, and S_1 and S_2 are program parts, amounts to the execution of an arbitrary S_i for which G_i holds. (The expression $G_i \rightarrow S_i$ is called a guarded command). If none of the guards is true, the execution of the selection command is suspended until some guard is true. Since when several guards are true, the choice of the guarded command to be executed is arbitrary, the selection command is not fair. The choice of an unfair selection command is consistent with the implementation: in order to select one out of two true guards, we need to use a mutual exclusion element, and such an element is not fair.

Given the above semantics for the selection command, solution (1) is obviously not fair. There are several ways to transform the above solution into a fair one. They all require testing whether a certain communication action is pending, which is easy to do with the probe primitive. We choose to implement the following solution, suggested by Kevin Van Horn:

$$\ast [[\overline{A} \rightarrow A | \overline{\overline{A}} \rightarrow \text{skip}]; [\overline{B} \rightarrow B | \overline{\overline{B}} \rightarrow \text{skip}]]$$

According to (2), when \overline{A} holds, A will be completed after at most one B action, whatever the current state of R is. Hence, R is strongly fair towards requests A and B. Assume that A' is pending at a certain point of the computation. By definition of the probe, \overline{A} is true eventually, i.e., a finite but unbounded number of B actions can be completed between the moment \overline{A}' holds and the moment \overline{A} holds. Hence, the arbiter is only weakly fair towards requests A' and B'. Therefore, with this definition of the probe, we can say that the arbiter is strongly fair towards requests that have reached the arbiter and weakly fair towards all pending requests. With the stronger definition, a request is pending only when it has reached the arbiter, and therefore the arbiter is strongly fair towards all pending requests.

3. The "compilation" method

Next, we shall transform program (2) into a delay-insensitive circuit, according to the method described in [3]. The main steps of the method will be explained briefly as we proceed with the transformation of (2).

Process decomposition

Decomposition rule: A process P containing an arbitrary program part S is semantically equivalent to two processes P_1 and P_2, where P_1 is derived from P by replacing S by a communication C on the newly introduced channel (C, D) between P_1 and P_2, and $P_2 = \ast [[D \cdot S; D]]$.

Observe that the above decomposition does not introduce concurrency. Although P_1 and P_2 are potentially concurrent processes, they are never active concurrently: P_2 is activated from P_1 as a procedure or a coroutine would be. The only purpose of this transformation is to simplify the structure of each command.

Applying this decomposition rule, we decompose (2) into three processes $(P_1 || P_2 || P_3)$. Channels (C, D) between P_1 and P_2, and (E, F) between P_1 and P_3 are introduced. (See figure 1.)
Handshaking expansion

The next step, called "handshaking expansion", replaces each channel by a pair of wire-operators and each communication action by its four-phase handshaking implementation. Channel \((X,Y) \) is implemented by the two wires \((x_0 \uparrow \ y_0)\) and \((y_0 \uparrow \ x_0)\). The communication actions on \((X,Y)\) can be implemented either with \(X\) "active" and \(Y\) "passive" as follows:

\[
X \equiv x_0 \uparrow; \ [x_i]; \ x_0 \downarrow; \ [-x_i]
\]

\[
Y \equiv [y_i]; \ y_0 \uparrow; \ [-y_i]; \ y_0 \downarrow
\]

or vice-versa with \(X\) passive and \(Y\) active. Initially, all variables are false. A probed communication action \(X \rightarrow \ldots X\) must be implemented:

\[
xi \rightarrow \ldots xo \uparrow; \ [-xi]; \ xo \downarrow.
\]

Hence a probed action is implemented as passive and the matching \(Y\)-action must then be implemented as active.

Production-rule expansion

The next step consists in replacing the set of guarded commands obtained after handshaking expansion by an equivalent set of guarded commands in which all explicit sequencing (every semicolon) has been removed. Such a guarded command is called a "production rule". The problem is to define the guard of each rule such that the firing sequence of the rules is equivalent to the execution of the original program. In this transformation step, an important property of the four-phase handshaking is used, namely that the first and third semicolons of (3) and the second semicolon of (4) need not be implemented: the sequencing is enforced by the protocol.
Operator reduction

The last step consists in identifying sets of production rules in the program with sets of production rules describing the semantics of operators. The operators and their production rule specifications are given in the appendix. The program can then be identified with a network of operators. P_1, P_2, P_3 will now be compiled in sequence.

4. Compilation of P_1

Since commands D and F are probed, they have to be implemented as passive, and thus commands C and E have to be implemented as "active". Hence P_1 is the standard "AA-adaptor" circuit [4]. The handshaking expansion of P_1 gives:

$$P_1 \equiv \star[eo \uparrow; [ci]; eo \downarrow; [\neg ci]; co \uparrow; [ci]; co \downarrow; [\neg ci]]$$

The first—and easiest—way to compile P_1 is to reshuffle some actions. For instance, we can postpone the sequence $eo \downarrow; [\neg ci]$ until after $[ci]$. Since this reshuffling introduces some synchronization between E and C, and thus between A and B, it can be performed only if the actions A' and B' are independent. (Otherwise the synchronization introduced could be incompatible with the synchronization between A' and B' and could introduce deadlock.) We get:

$$P_1 = \star[eo \uparrow; [ci]; eo \uparrow; [ci]; eo \downarrow; [\neg ci]; eo \downarrow; [\neg ci]]$$

The production rule expansion is straightforward:

$$\neg ci \rightarrow eo \uparrow$$
$$ei \rightarrow co \uparrow$$
$$ci \rightarrow eo \downarrow$$
$$\neg ei \rightarrow co \downarrow$$

And the circuit is simply one inverter and one wire as shown in figure 2.

[Figure 2 shown]
The compilation of $P1$ without reshuffling requires introducing a state variable u.

\[P1 \equiv \ast [eo \uparrow; [ei]; u \uparrow; [u]; eo \downarrow; [\neg ei]; co \uparrow; [ci]; u \downarrow; [\neg u]; co \downarrow; [\neg ci]] \]

The production rule expansion gives:

\begin{align*}
\neg ci \land \neg u & \rightarrow eo \uparrow \\
\neg ci \land ei & \rightarrow u \uparrow \\
ci \lor u & \rightarrow eo \downarrow \\
u \land \neg ei & \rightarrow co \uparrow \\
ci \land \neg ei & \rightarrow u \downarrow \\
\neg u \lor ei & \rightarrow co \downarrow
\end{align*}

The operator reduction gives:

\begin{align*}
(\neg ci, \neg u) & \triangle eo \\
(\neg ci, ei) & \subseteq u \\
(u, \neg ei) & \triangle co
\end{align*}

The circuit is shown in figure 3.

- Figure 3 -

5. Compilation of $P2$

The handshaking expansion gives:

\[P2 \equiv \ast[[\text{di} \land \text{bi} \rightarrow \text{bo} \uparrow; [\neg \text{bi}]; \text{bo} \downarrow; \text{do} \uparrow; [\neg \text{di}]; \text{do} \downarrow]] \] \hspace{1cm} (5.1)

\[[\text{di} \land \neg \text{bi} \rightarrow \text{do} \uparrow; [\neg \text{di}]; \text{do} \downarrow]] \hspace{1cm} (5.2)

Because bi can change from false to true asynchronously, the second guard of $P2$ is not “stable”, i.e. its value can change from true to false at any time. In order to make both guards of $P2$ stable, we have to replace bi and $\neg bi$ in the guards by the stable copies u and v, i.e. the values of u and v are the same as the values of bi and $\neg bi$ respectively, before the transition $di \uparrow$. When the transitions $bi \uparrow$ and $di \uparrow$ take place concurrently, u and v may take any values, provided $u \equiv \neg v$ holds. To this effect, we introduce the synchronizer $(bi, di) \not\in (u, v)$. $P2$ becomes:
\[P2 \equiv \star [\begin{align*}
&bi \land di \land \lnot u \rightarrow u^+ \\
&\lnot bi \land di \land \lnot u \rightarrow v^+ \\
&\lnot di \land u \rightarrow u^+ \\
&\lnot di \land v \rightarrow v^+ \\
&u \rightarrow bo^+; [\lnot bi]; bo^+; do^+; [\lnot di]; do^+ \\
&v \rightarrow do^+; [\lnot di]; do^+.
\end{align*}] \]

Commands (5.3) through (5.6) are the specification of the synchronizer; (5.7) and (5.8) are derived from (5.1) and (5.2) respectively, by replacing the guard of (5.1) by \(u \) and the guard of (5.2) by \(v \). The rest of the compilation of \(P2 \) consists in compiling (5.7) and (5.8). The compilation of (5.7) is facilitated if transition \(bo \) is postponed until after \([\lnot di] \). This transformation does not introduce deadlock since the completion of \(D \) does not depend on the completion of \(B \). We also introduce the sequences \(u^+; [\lnot u] \) in (5.7) and \(v^+; [\lnot v] \) in (5.8) in accordance with (5.5) and (5.6) respectively. We obtain:

\[\begin{align*}
u \rightarrow bo^+; [\lnot bi]; do^+; [\lnot di]; u^+; [\lnot u]; bo^+; do^+ \\
v \rightarrow do^+; [\lnot di]; v^+; [\lnot v]; do^+.
\end{align*} \]

Which gives the production rules:

\[\begin{align*}
u &\rightarrow bo^+ \\
u \land \lnot bi &\rightarrow do^+ \\
\lnot di \land u &\rightarrow u^+ \\
bio \land \lnot u &\rightarrow do^+ \\
\lnot u &\rightarrow bo^+ \\
v &\rightarrow do^+ \\
\lnot di \land v &\rightarrow v^+ \\
\lnot u &\rightarrow do^+
\end{align*} \]

The operator reduction gives

\[\begin{align*}
u \cdot w \cdot bo \\
(u, \lnot bi) \land do' \\
v \cdot w \cdot do'' \\
(do', do'') \lor do.
\end{align*} \]

The graph of the circuit is shown in figure 4:
The implementation of P3 is identical.

6. The circuit

The final circuit is obtained by composing the two identical circuits implementing P2 and P3 by the circuit of P1. The simpler version of P1 gives the circuit of figure 5. The “quick-return linkage” implementation of P1 gives the circuit of figure 6. During the construction of those circuits, we have applied a minor optimization procedure: we have eliminated the negated inputs that are also the output of a fork. We leave it as an exercise to the reader to convince himself that the transformations do not change the semantics of the circuits.
Figure 6

7. Concluding remarks

We have constructed a circuit for fair arbitration by "compiling" a program into a network of logical operators. For each step of the transformation, it can be verified that the "object" program is equivalent to the "source" program. Hence the final circuit is semantically equivalent to the original program. The circuit is delay-insensitive, i.e., its correct interaction with the environment is independent of delays in wires and operators.

The circuit is particularly simple because we have deliberately destroyed the symmetry between A and B and because we allow busy waiting. Busy waiting can be eliminated by implementing the program:

$$*\left[\overline{A} \lor B \rightarrow \left[A \rightarrow \overline{A} \rightarrow \text{skip}\right]; \right.$$
$$\left[B \rightarrow B \mid \overline{B} \rightarrow \text{skip}\right]$$

The implementation of this program requires a mutual exclusion element in order to evaluate $\overline{A} \lor B$ without introducing a hazard.

It is interesting to notice that the solution we have constructed can be immediately generalized for an arbitrary number of requests.

Acknowledgement This work benefited from many stimulating discussions with David Black, Martin Rem, Charles Seitz, Jan van de Snepscheut, and Kevin Van Horn. Acknowledgement is also due to W. Dally, Pieter Hazewindus, Blake Lewis, and Peggy Li for their comments.
Appendix

The operators used in the construction of the arbiter are the following.

The C-element:

\[(x, y) \ C \ z \equiv \ x \land y \rightarrow z \uparrow \]

\[\neg x \land \neg y \rightarrow z \downarrow.\]

The “and”:

\[(x, y) \land z \equiv \ x \land y \rightarrow z \uparrow \]

\[\neg x \lor \neg y \rightarrow z \downarrow.\]

The “or”:

\[(x, y) \lor z \equiv \ x \lor y \rightarrow z \uparrow \]

\[\neg x \land \neg y \rightarrow z \downarrow.\]

The wire:

\[x \lor y \equiv \ x \rightarrow y \uparrow \]

\[\neg x \rightarrow y \downarrow.\]

The fork:

\[x_f(y, z) \equiv \ x \rightarrow y \uparrow, z \uparrow \]

\[\neg x \rightarrow y \downarrow, z \downarrow.\]

The basic arbiter (mutual exclusion element):

\[(x, y) \ A \ (u, v) \equiv \ x \land \neg v \rightarrow u \uparrow \]

\[y \land \neg u \rightarrow v \uparrow \]

\[\neg x \lor u \rightarrow u \downarrow \]

\[\neg y \land v \rightarrow v \downarrow.\]

The synchronizer:

\[(b, z) \ S \ (u, v) \equiv \ b \land z \land \neg v \rightarrow u \uparrow \]

\[\neg b \land z \land \neg u \rightarrow v \uparrow \]

\[\neg z \land u \rightarrow u \downarrow \]

\[\neg z \land v \rightarrow v \downarrow.\]

References

