California Institute of Technology
Computer Science

5104:TR:83

A Graph Model and the Embedding of MOS Circuits
by
Tek-Kwoung Ng

The author is supported by IBM Corp. under its Residency Study Program.

The research described in this report was sponsored in part by the
Office of Naval Research under contract number N-00014-84-K-0043.

The research was also sponsored in part by the Defense Advanced Research
Projects Agency, ARPA order number 3771, and monitored by the
Office of Naval Research under contract nurnber NOO014-79-C-0597.

Copyright California Institute of Technology, 1984

Abstract

The direct automated transformation of a circuit into the "best” physi-
cal layout is hard. An alternative is the transformation of a circuit into a suit-
able intermediate form, the layout topology. Bach layoul Lopology defines an
equivalence class of physical layouts. A few layout topologies can be chosen
according to their likeliness for leading to the "best” design. Each of these
layout topologies can then be transformed into a physical layout that will be
‘optimize'd. The ﬂnal design can be chosen from the set of optimized physical
layouts. Each optimized physical layout corresponds to a unique layout topol-
ogy.

A circuit is modeled as a graph. The circuit’s graph model is analyzed by
the embedding algorithm. The embedding algorithrn determines the set of
layout topologies that will be transformed into the physical layouts for
further processing. A layout topology is specified as a graph together with

the set of cyclic orders of the vertices, and the layer assignment of the

edges.

“"Faith is the confident assurance that
something we want is going to happen, It is
the certainty that what we hope for is wait-
ing for us, even though we cannot see it up
ahead. "’

Hebrews 11:1

ii

Special acknowledgement is due to Professor Lennart
Johnsson for his supervision and discussion on the
research.] must also thank him for the comments,
suggestions, and the many hours he spent in the read-
ing and the editing of the drafts that lead to this

manuscript.

iii

Acknowledgements

I want to thank many pecple who have helped my research, in one way or

another. In particular, I want to thank the following:

I want to thank my wife Ya-En for everything and, in particular, for her

encouragement.

I want to thank Mr. Ralph Solomon of the IBM Corp. Without his recommenda-

tion I would not be participating in the Residency Study program.

1 want to thank Dr. William Heller of the IBM Corp. Without his recommenda-
tion I would not be studying at Caltech. .

I want to thank Dr. Alexander Frey, Professor Randy Bryant, and William Dally

for their valuable comments on the drafts.

] want to also mention Dr. Ronald Ming of R.P.1. for his suggestion of adapting
the Hopcroft-Tarjan's planarity testing algorithm for the graph embedding

problem.

iv

Table of Contents

1 The VLSI Design Processcccccvinviiimniciinniecrcniereeriresssssiinenesseseonvnnnns
1.1 Overview of the VLSI Design Process ..ccccceveeiviiiiicvcciniionieriinicvnerecceen,
1.2 Silicon Compilation and the Physical Design Processccceueennnee.
1.3 Connection Costcccviriimimieeiiii e
1.4 An Alternative Design Strategy ...coccoviiiiievniiiiiicce e,
1.5 Remarkes .icciriciiemeieieniiieiemieinaiericiinetssterosstsnstnerssssrerssesnssosssstonsonsansas

1.8 Definitions and Conceptscccccoorieiieirieiierieririeriereie e rresecesreanerensrnens

2 Circuit to Graph Transformationc..cccccciviiiiciieimiieciciierir e,
2.1 Introductioncorieiiiiiici e
2.2 Topological Characteristics of MOS Circuitscooeovvvieiieiicniiininnnnenn,
2.3 A Graph Model for MOS Circuitscoovvviviiiiiiiiniicic s
2.4 Summary of the Graph Model for MOS Circuits ...
2.5 Circuit Description .ccvcceisicenicianinemenn s
2.8 A Circuit to Graph Transformation Algorithmccccveeniiiiivninnineinnn,
2.7 Algorithm Coﬁplexity ...

2.8 REIMATKS .vivvveveiruiiirieecnioeirernrerersssresionseractsesssrsasrassssessssstatssssssnsnesenssnnse

3 An Application of the Graph Model - the Embedding Problem

3.1 Introduction ... e e e s s s e
3.2 Planarity Testingccccievmemmmeiniivirinnieeemminressninesreiie e nesnaaees
3.3 Hopcroft and Tarjan’s Planarity Testing Algorithm ...l

3.4 Extensions of Hopcroft-Tarjan's Algorithm for Graph Embedding

--

3.5 General Graph Embeddingcccccceessessisscsisisssesessessescssssnmenessssencenes

3.8 Valid Graph Embeddingsccccscsevemerensvnnnrmnmenereinenesicnnseesnomnsenes

3.7 Algorithm Complexity ... e

3.8 Remarks

..

4 Circuit Graph Embedding Topology to Layout Topologycccccceunnee.

4.1 INLTOQUCLION ceccurrrarencreanreiernerscssacennsassosssrasssacssvassesrsesesssssatssasesssresassns

4.2 Creating a Layout TOPOIOZY ...ccovervsereimuseiermueeineneenicciininnermmenereeenasecans

4.3 Layout Topology to Physical Layout Transformationccccccuuiueennen.

4.4 An Algorithm for Drawing Embedded Graphs ...

4.5 Algorithm Complexitycccoiiceineiiienniniereiienreseteee e eree e

4.8 Remarks

--

8 EXPEIIBIICE cuiiitiiriiiieninirisciisinasicttesssasiessssstessseras aesaassarssnsensnssonsasse

B CONCIUSION ceererrerrreerenrnnriracresronssessarsssesnsasessssasarsassrnsssssssssssrassassansasnnse

Bibliography

--

50
53

58

87
57
58
60
B2
70

70

71

94
89

List of Illustrations

Figure 1.2.1 Implementations of an Exclusive OR Circuit.ccccccemeneeeees 5
Figure 2.1.1a A Planar Circuit.ccccummeeimiiniinnnennmenecnineesenscniennee 21
Figure 2.1.1b Goldstein-Schweikert's Model of the Planar Circuit. 22
Figure 2.1.1c VanCleemput’s Model of the Planar Circuit.ccccoeecec. 23
Figure 2.3.1 Non-Planarity Caused by Using 2 Gate Terminals. 25

Figure 2.3.2 Another Circuit Topology/Models for the Circuit in Figure 2.1.1.

... 26
Figure 2.8.1a Circuit Specification of an XOR.cccccciiimiiccimimniciinuennnees 31
Figure 2.6.1b A Graph Model of an XOR.ccciiriinnicirmeeirimrensinenecinenineen. 32
Figure 3.2.1 Pairwise Incompatibility Test.ccoeimiiiniiiincceiinnnnnen. 36
Figure 3.3.1 Relations of Cycles and Paths.cccccieeeiininvenvneenicinninnnn, 38
Figure 3.3.2 Rules for Determining the Orientation of a Cycle. 39
Figurc 3.4.1 The Initial Cycle and Exterior Vertex.cceeeeemercrercececns 43
Figure 3.4.2a A Planar Graph, its Paths and Path Tree.ccccccicennnncn. 44
Figure 3.4.2b The Orientation Constraint/Compensation Graph. 45
Figure 3.4.3a KB, its Paths, Path Tree, Orientation Constraint Graph.

... 48
Figure 3.4.3b The Compensation Graphs for KB.coivcveeeienieninsncisinnrenss 47
Figure 3.5.1 Orientatio? Assignment for the Graph of Figure 3.4.2.

... 48
Figure 3.5.2 Orientation/Plane Assignment for the Graph of Figure 3.4.3.

50

Figure 3.6.1 An Example of an Invalid Cyclic Order.cccmeeinenene
Figure 3.6.2 An Example of a Valid Cyclic Order.ccccoimciseicserans
Figure 4.2.1 Expansion of a Gate Vertex.ciiiricniiicciinncninnacsenns
Figure 4.4.1 Working Example for the Drawing Algorithm.ccoeeenn.
Figure 4.4.2 Rules to Determine the Drawing Direction of Edges.
Figure 4.4.3a The Drawing of 8 Graph.ccceieniniennnniinnimeee.
Figure 4.4.3b The Horizontel Position Constraint Graph.cccoeeecue.
Figure 4.4.3c The Vertical Position Constraint Graph.cccceeeeueeeeee,
Figure 5.1.1 Area Penalty Caused by a Contact. ...cccccovvicrenncnnnirnnencn.
Figure 5.1.2a Circuit Schematic and Specification of an XOR.
Figure 5.1.2b The XOR's Circuit Graph. ...cceecureeceeeseumreomcrcmarerrecoenns
Figure 5.1.2c Patbs, and Path Tree of the XOR's Circuit graph.

Figure 5.1.2d The Orientation Constraint Graph and Compensation Graphs.

Figure 5.1.2e An Orientation and Layer Assignment.cccmeiiininaneee.
Figure 5.1.2f The Topological Circuit Graph.cccecevvvicinsrneiinccinnnne,
Figure 5.1.2g The Transistor Trees. ...,
Figure 5.1.2h Result of the Gate Vertex Expansion.cccccvciiiiinennnn.
Figure 5.1.2i A Rectangular Drawing of the Layout Topology.

Figure 5.1.2j The Compacted Layout of the XOR, {Graph Approach).

55
61

85

87
88
69
T2
74
75

76

78
7
80
81
B2

83

85

86

Figure 5.1.2m The Compacted Layout of the XOR {(G.S. Model).ccecer.

Figure 5.1.2n Summary of the Quality of Various Topology of the XOR.

Figure 5.1.3a The Schematic of a Pulse Synchronizer Circuit.
Figure 5.1.3b Two Layouts of the Pulse Synchronizer Circuit.
Figure 5.1.4a A 4 Bit Carry Chain. ...,

Figure 5.1.4b A Compacted Layout of the 4 Bit Carry Chain.c.cceceent

88
89
80
91

82

Preface

The automated transformation of designs specified in circuit schematics
into the "best" physical layout is a problem of great importance. We have
teken a graph oriented approach to this problem. Circuit schematics are
modeled B'.S graphs, that are embedded in planes. The embedded graphs are
then mapped into physical layouts, by mapping abstract planes into physical
layers, and transforming the graph description into a description of a layout
(gecmetry). A graph model for circuits implemented by metal oxide sem-
iconductor {MOS) transistors is presented. An algorithm for mapping a cir-
cuit into its circuit graph model is described.

Graph embedding topologies are derived in two sleps. The graph is ini-
tially a.nélyzed and the information about possible crossings between paths is
captured in a set of constraint graphs. The second stei: is hhe derivation of a
solition in which the constraints are satisfied and some criteria are optim-
ized. An algorithm for the first step is described. The second step is usually
NP complete. A heuristic algorithm is given.

A circuit graph embedding topology does not necessarily specify a valid
physical implementation. This situation end the algorithm for determining
the validity of the embedding topology is described. An algorithm for gen-
erating a drawing from a layout topology that can be easily expanded into a
valid physical layout is also presented.

The graph model and the algorithms are presented in the context of the

N-channel MOS (nMOS) technology with a single layer of poly-crystalline sili-

con and a single layer of metal. The graph model for the MOS transistor is

universal. The cross-over resolving strategy depends on the number of
electrically conducting layers of materials and it must be tailored for each

specific technology.

Figure 0.1.1 illustrates our approach to the circuit embedding problem
es encountered in VLSI design. Logic designs are specified in circuit schemat-
ics. Circuit schematics are then transformed into circuit graphs. The
specification format of circuit schematic, our graph model and the transfor-
mation algorithm are discussed in Chapter 2. Other circuit graph models are

also discussed in Chapter 2.

Circuit graphs are analyzed by our embedding algorithm. For each cir-
cuit graph, a path tree. an orientation constraint graph and a set of compen-
sation graphs are generated by the algorithm. The embedding problem is
then mapped inle a graph coloring problem. A graph embedding topology is
totally defined by the path tree, the set of orientation assignments (left or
right) of the bridges, and the set of plane assignments of the paths . The vari-
ations in the orientation and the plane assignment define different graph
embedding topologies. The embedding algorithm and the selection of embed-
ding topologies for further processing is discussed in Chapter 3. The algo-
rithm for the drawing of an embedding representing a particular topology is
described in Chapter 4.

The embedding algorithm is applicable to any graph. The algorithm,
when applied to a circuit graph, generates circuit graph embedding topolo-
gies. Additional checking is needed when the algorithm is applied to a circuit
graph to guarantee that the generated circuit graph embedding topologies
have physical implementations. Furthermore, an expansion step is needed to

convert circuit graph embedding topologies into layout topologies. A

CIRCUIT SCHEMATIC

l

CIRCUIT GRAPH

'

GRAPH ANALYSIS:
PATHS,PATH TREE,

ORIENTATION CONSTRAINT G.,
COMPENSATION GRAPHS.

RCOUIT G o ° IRCUIT G
YOUT‘I' l l
: g i
TOPQOI G Y G
, } |
DRAWING ° © | DRAWING
] | |
OPTIMIZATION | © © | OPTIMIZATION
~ ! | -
SELECTION
I
FINAL LAYOUT

Figure 0.1.1 Our Approach to the Circuit Embedding Problem

definition of the layout topology and the algorithm for transforming graph
embedding topologies to layout topologies are presented in Chapter 4. The

layout topology is captured in a layout topology graph together with the

xiii

topological specification. The expansion is aided by the generation of a

transistor tree for each gate vertex.

Finally, a drawing can be generated for each layout topology. The order
of the drawing of the paths is defined by the path tree. Directions are
assigned to the edges of the layout topology graph based on the orientation
assignment of the bridges. Layers are assigned to the edges of the layout
topology gfaph based on the layer assignment of the paths. The physical
positions of the vertices of the layout topology graph are computed with the
aid of the two position constraint graphs, one is for the horizontal direction,
and the other is for the vertical direction. The drawing representing a layout
topology can then be optimized. The final layout can be chosen from the set

of optimized layouts.

Examples of layouts generated with the described process, some run
time data, and the layout of the same circuit corresponding to a "poor"
topology are given in Chapter 5. The conclusions of the report is given in

Chapter 6.

CHAPTER 1

The VLSI Design Process

1.1. Overview of the VLS] Design Process

Vith the arrival of the micro-chip age, very large scale integration (VLSI)
chips with millions of transistors will be fabricated in the necar future. Even
though a physical layout is the final product of the VLSI design process, it is
undesirable to work at the geometric level for two major reasons. First, the
amount of geometric data of a VLSI chip is enormous. A chip with oné million
transistors may have tens of millions of geometric shapes. This is similar to
the situation in programming. Machine code is the only form executable by a
computer. It is tedious to program in machine code. The second reason is
that there are many decisions made during the design process that do not
depend on the physical implementation. For these decisions there is no
advantage to work at the geometric level. This is similar to the task of
developing en algorithm. The decision on using a certain data structure
depends mainly on the problem at hand rather than the programming
language in which the algorithm is implemented.

The design process is usually partitioned into two stages. They are the
logic design stage and the physical design stage. In the logic design stage,
the designer may use a component without specifying its physical inplemen-
tation or its physical location within the chip. The designer may specify that
there should be an electrically conducting path between two terminals of
components without specifying the physica] implementation of the path. In
general, during the logic design stage, the designer need not deal with the

physical aspect of the design. The design can be expressed in an abstract
form, the circuit schematic.

Circuit schematic captures the design with a set of components and the
connections of components. Components must be transformed into physical
layouts. A physical layout is a set of geometric shapes on different layers
that will carry adequate information for the fabrication of the component.
The physical locations of components within the chip must be specified. Con-
nections must be i.mplemenf.ed by providing the necessary electrically con-
ducting paths between terminals of components. This is the physical design
.stage. The design can be expressed in some symbolic specification for
geometry. An example of a symbolic specification language is the Caltech
Intermediate Form (CIF) [Mead,Conway 80]. CIF is accepted by many silicon

foundries as a specification language for mask information.

A circuit schematic consists of two types of information. It consists of a
list of components in the design. Each component has a set of terminals. The
schematic also consists of a list of nets. A net is a set of related terminals.
There must be at least one electrically conducting path between each pair of
terminals belonging to the same net. This is usually accomplished by con-
necting all terminals belonging to the same net with a strip of conducting
material. This process is the net routing process. Terminals belonging to

different nets are not to be connected.

The continuous strip of conducting material used in the routing process
is a wire. For the nMOS technology, the conducting material can either be
metal, diffused silicon, or poly-crystalline silicon. Wires made up of these

materials are metal wires, diffusion wires, and poly wires respectively.

The physical design problem is the problem of determining the positions
of components on a plane and realizing the nets such that an objective func-
tion is optimized and none of the technological or physical constraints are
violated. Constraints may consist of maximum layout dimensions and

minimum spacing between wires.

1.2. Silicon Compilation and the Physical Design Process

Tremendous advances have been made towards high level design tools.
The notion of silicon compilers is discussed widely in the literature [Ayres 83,
Bergmann 83, Johannsen 81, Siskind, et al 82, Shrobe 82)]. The goal of a sili-
con compiler is similar to the goal of a software compiler. A design can be
specified easily and precisely with a high level language. Procedures arc pro-

vided for the transformation of the design from its high level description into

possibly many levels of circuit schematics. Each circuit schematic specifies a
building block. Building blocks can be nested, i.e., a building block may be
composed of many other building blocks. The primitive building blocks are
the standard components with predefined layouts. A building block in this
context is equivalent to a procedure in software. Each primitive building

block is equivalent to a machine instruction.

Silicon compilers, like software compilers, differ from each other in
many ways. The high level languages can be different. The set of primitive
building blocks can be different. The procedures for transforming a design
from its high level description into the hierarchy of building blocks can be
different.

Current silicon compilers have two common shortcomings. First, the
functions of the set of the primitive building blocks are few at the level which

they are defined, and rigid. In some compilers each primitive building block

defines a class of closely related functions. as in [Johannsen 81). which some-
what alleviates the problem. The second drawback of current silicon com-
.pilers is that the layouts of primitive building blocks are rigidly defined. In
compilers where primitive building blocks define a class of closely related
functions the layouts are also close. The parameterized register cells in Bris-
tle Blocks, [Johannsen 81], illustrates the level of flexibility at the primitive
building block level that might be available in state-of-the-art silicon com-

pilers. Such compilers also have a restricted way of composing primitives.

The rigidness of the functions of the set of primitive building blocks,
their layout and interconnection hurts the efficiency of a silicon cornpiler. It
only allows a restricted local optimization at best. The importance of suitable
primitives is illustrated with the following example that is naive, but
emphasizes the point we are making. Let us assume that the only primitive
building block is the NAND gate. An exclusive OR circuit can be implemented
with four NAND gates. If there is no restriction on the functions of the primi-
tive building blocks, then an exclusive OR circuit can be implemented with
seven transistors. Both circuits are shown in Figure 1.2.1. The layout of the
second implementation would be more compact. Software compilers have
similar shortcomings. A program can be smaller and its execution can be fas-

ter if it is compiled into the micro instructions of the machine.

The rigidness of the layouts of the set of primitive building blocks hurts
the efficiency of a silicon compiler in another way. Silicon is equivalent to
memory in software. Building blocks are equivalent to subroutines. Since the
cost of branching is small and uniform in a random access model of compu-
tation, and memory is logically a one dimensional entity, the simplest pro-

cedure for packing the subroutines into the memory is to place them con-

U/
v

——ex

S nl o
L

Figure 1.2.1 Implementations of an Exclusive OR Circuit.

secutively in the memory. Hence, there is usually no unusable space in the
memory.

Silicon is a two dimensional entity. Building blocks occupy the area.
Connection cost is not uniform. It is desixjable to place the highly intercon-
nected building blocks close to each other to minimize the connection cost.
The dimensions of the building blocks usually are not uniform. It is unlikely
that the rigid layouts of the pri.rnitivé building blocks can be packed tightly

in the overall design every time. The only exception is the gate array. The

physical dimensions of the primitive building blocks of the gate array are
identical and the locations of the building blocks are fixed. There is no possi-
bility for compaction. However, this does not imply that the area for the

logic function is minimized.

1.8. Connection Cost

The rigidness of the layouts of the set of primitive building blocks hurts
the efficiency of a silicon compiler in connection cost. This shortcoming is
not severe in a software compiler. Connection between building blocks is
,équivalent to branching to a new memory location in software. Each branch
in the random access model of computation is considered as having a uni-
form cost in program length and performance. Every memory location is log-
ically one unit of cost away from others. Connection cost between building
blocks is not uniform and it depends on the length of the actual conducting
path. The shapes and the placements ﬁf every building block, as well as the
locations of the terminals within each building block, affect the connection
cost. The rigid layouts of the primitive building blocks will, in general, lead to

higher connection cost than layouts with fewer constraints.

Connection cost is composed of two factors, the routing area and the
delay. There is a finite resistance and capacitance for each unit of a wire. The
propagation delay through a long wire depends on the length and the proper-
ties of the wire as well as the driving source and the receiving sink [Seitz 79,
Bilardi et al 81]. If we assume that the source and the sink are simple,
n'umrnum size, nMOS inverters, then the delay can be approximated by the
diffusion equation relating it to time and distance. A simple nMOS inverter is
an inverting circuit that uses one depletion mode pull-up transistor and one

enhancement mode pull-down transistor. The wire delay increases

guadratically with the length of the wire normalized by a constant that

increases linearly with the transit time of a basic switching device.

The propagation delay for a 1 millimeter (mm.) diffusion wire in the six
micron nMOS technology is typically 1 nanosecond (ns.). This wire may be
used for connecting building blocks with an internal delay of about 25 ns. The
oconnection delay is small compared to the delay of the building blocks. With
feature siées scaled down by a factor of ten in the linear dimension, the
length of the 1 mm diffusion wire will be 0.1 mm. The wire delay will remain 1
ns. The transit time of a basic switching device in the new technology will be
reduced by a factor of ten. The connection delay will be of the same order as
the internal delay of the building blocks. Hence, in the new technology it is
important to minimize the lengths of the connections between building

blocks.

The above argument is simplistic. The use of an additional metal layer
for connection will greatly reduce the wire delay. The scaling of the thickness

of the conducting material will increase the wire delay.

1.4. An Alternative Design Strategy

The total transistor area usually accounts for less than two percent of
the total area of a chip. The remaining area is either unused or it is taken up
by wires. Some improvement in the packing of the building blocks and the
reduction in the routing area will not only reduce the total layout area, but
may also increase performance. Connection cost can be reduced by changing
the logic design or the physical layout.

Manua! physical design with some computer aids produce compact
designs, usually after a few iterations. Manual physical design is time-

consuming and requires experienced personnel to achieve a good result.

An alternative to manual design and silicon compilers with rigid building
blocks is to have tools based on transistors and wires as the only primitives.
The procedure for transforming a design from its high level description into a
circuit of only transistors and wires is non-trivial. The problem of transform-
ing a circuit of only MOS transistors and wires into a layout is the general lay-
out problem. We address the latter problem in this report.

The general layout problem is intractable. Many special cases of the gen-
eral layout problem, such as the Steiner tree problem [Salwii,Gonzelez 70]
and the quadratic assignment problem [Karp 72], are NP-complete. A physi-
cal layout is characterized by the specification of the positions and the reali-
zation of components, as well as the realization of the nets. Since finding an
optimal solution of the physical layout problem is NP-complete, it is in most
interesting cases prohibitively expensive to compute because of the enor-

mous size of the solution space.

One possible simplification is to partition the physical layout process
into two stages, a topological layout stage, and a layout optimization stage. In
the topological layout stage the relative positions of components and the net
configurations are determined. The design is then expressed as a layout
topology that can be readily transformed into a physical layout. It is during
the layout optimization phase that the final positions of components and the
physical specification of wires are determined. Optimization algorithms have
the option of adjusting the positions of components, and the position and

physical dimension of wires for optimal final layout.
The advantage of this approach is that there are some characteristics of

the physical layout that do not depend significantly on the actual physical

specification of the components and the wires. We have found layout topol-

ogy, defined below, to be a suitable intermediate form between the abstract
logic design and the physical layout. The layout topology depends primarily
on the architecture and the logic design, and it is readily translatable to a

layout. This belief has yet to be supported by empirical data.

1.5. Remarks

Logic designed directly with transistors will result in, at most, the same
number of transistors as the same logic implemented with higher level build-

ing blocks. In practice, logic designed directly with transistors will result in
much fewer transistors. The superior result would, without automated circuit
to physical layout transformation, require a substantial manual effort. This is
a major reason for not designing directly with transistors. Providing an
automated link between circuits and layouts will eliminate most of the
manual effort, which in turn will encourage designers to work directly with

transistors.

It is unlikely that an automated transformation from circuits to layouts
is effective for a "chip full” of transistors because the resource requirement
of the process is enormous. One way to manage the complexity is to build a
hierarchy of layouts. The transformation can then be applied to only a small
portion of the chip. Each piece of the circuit is a building block. This implies
that other algorithms are needed to determine the placement of the building
blocks and to provide connections between building blocks. The placement
and routing problem is usually hard and often ineffective for the case of
building blocks with rigid layouts.

The ability to generate a layout from the circuit automatically implies
that the shapes of the layouts can be changed guickly to improve the packing

of the overall layout. Placement algorithms, such as the min-cut

10

algorithm[Breuer 77}, and the chip planning algorithm [Heller,Sorkin,Maling
82], that depend on the flexibility of the shapes of the building blocks may
become workable. Routing may be improved by changing the shapes of the
layouts of the building blocks to provide extra routing tracks such that the
need to route around building blocks is eliminated.

1.6. Definitions and Concepts

Our approach to the layout problem is based on graphs. In the subse-

quent sections of this report the following definitions will be used.

Circuit schematic is a set of transistors, a set of ports, a set of nets, and
a perimeter. It captures the logic design. Transistors have three terminals
and a type. The terminals are traditionally called drain, source, and gate. In
nMQS technology the transistor types are enhancement mode and depletion
mode. Ports are connection peints to the exterior of a circuit schematic.
Ports are located on the perimeter qf the circuit schematic, as well as of the
layout. All connections between the exterior énd the interior of a circuit
schematic must be made through ports. A net is a set of terminals and/or
ports, connected at all times, by wires and contacts. The layout correspond-
ing to a circuit schematic is confined to some bounded area. The perimeter
of the layout encloses the implementation of the circuit. The circuit

schematic can be assigned a perimeter in an analogous way.

In our graph representation of a circuit schematic. nets are represented
by vertices, called net vertices. Net vertices are of two types, gate and
nogate. A gate net vertex, or gate vertex for short, is & vertex that
corresponds to a net with at léast one terminal being a gate terminal of a
transistor. If none of the terminals in a net is a gate terminal, then the

corresponding vertex in the graph representation is of type nogate, and the

11

vertex labeled nogate vertex for short. In a typical design most vertices are
gate vertices. The exterior of a circuit is represented by the exterior vertex.
There are no other vertices in our graph representation of a circuit
schematic.

A transistor is in our graph model defined implicitly by a pair of directed
edges terminating on the net vertex to which the gate terminal of the
transistor‘ belongs. The two edges are named the drain edge and the source
edge, respectively. The drain edge emanates from the vertex representing
the net to which the drain terminal belongs. The source edge emanates from

the vertex representing the net to which the source terminal belongs.

If the gate is tied to the drain (source), the drain({source) edge will
emanate from and terminate on the same vertex. Note that drain and source
edges can emanate from a gate vertex of one transistor and terminate on a
gate vertex of another transistor. Gate vertices in general have emanating as
well as terminating edges. Only terminating edges 'represent transistors

associated with the gate vertex on which they terminate.

Ports are represented by undirected edges in our graph representation
of a circuit schematic. A port edge has one end incident on the exterior ver-
tex, and one end on a net vertex. There is one port edge for each port. A
prescribed order of ports at the perimeter of a circuit schematic is

represented by a constraint on the cyclic order of the exterior vertex.

A circuit graph is a labeled, connected graph consisting of one exterior
vertex, at least one net vertex, and a set of edges. Vertices are labeled with
the names of the nets they represent. The exterior vertex is labeled exterior.
Drain and source edges are labeled with the name of the transistor to which

they belong and the name of the vertex from which they emanate. Port edges

12

are labeled with the name of the net to which they belong. A constraint on

the cyclic order of the exterior vertex may be included.

A net in the circuit schematic is sometimes referred to as the drain,

gate or source net if the transistor it is being viewed from has its drain, gate

or source terminal belonging to that net. Note, the same net can be labeled

drain, source, or gate net depending on from which transistor (terminal) it is

viewed.

The folluowing conunun graph notions arc used:

- A path is an alternating sequence of distinct vertices and edges,
beginning and ending with vertices. '

- Disjoint paths have no edges in common.

- A cycle is an alternating sequence of vertices and edges in which all
vertices are distinct, except the beginning and ending vertices that are

the same.

- The direction of a path or a cycle is determined by the order in which

the vertices are given.

- A connected graph is a graph in which every pair of vertices are

joined by a path.

- A subgraph of a graph G has a vertex set that is a subset of the vertex
set of G and a set of edges that is a subset of the edge set of G.

- A connected component of a graph is a maximal connected subgraph

- A partition of a graph G is a set of subgraphs with disjoint edge sets

13

such that their union is the edge set of the graph G. Each such sub-
graph is a component of the partition. The vertex set of & component is

the set of end vertices of its edges.

- A graph is biconnected when its edge set can be partitioned into more
than one equivalence class by an equivalence relation ~. Two edges are
related by ~ iff there is a cycle containing both edges,
[Ahc;Hopcroft.Ulhnan 74). The relation ~ partitions the edge set. The

edges in each such set and the set of vertices of these edges forms a

connected subgraph. Each subgraph is a biconnected component of the

graph.

- Bridges are deflned by a cycle. The bridges and the cycle are com-
ponents of a partition of a graph, and the vertex sets of the bridges less
the vertex set of the cycle are disjoint. Bridges are made up of disjoint
paths. A graph can be decomposed into a set of disjoint paths. With the
proper choice of paths and bridges it is possible to partially order the

bridges under the set inclusion relation.

- The attachments of a bridge is the set of vertices defined by the inter-
section of the vertex set of the cycle and the vertex set of the bridge.

The set of attachments are ordered according to their relative posi-

tions in the cycle.
- A drawing of a graph is any drawing of the graph on a plane.

- The cyclic order of a vertex in a drawing is the order of edges incident

on the vertex in the counter-clockwise direction.

- A plane embedding is an embedding of a graph in a plane such that no

14

two edges cross in a drawing. The graph is said to be a plane
graph(subgraph).

- A planar graph has a plane embedding.

- An embedding of a graph is a set of plane subgraphs that constitutes a

partition of the graph.

- A region of a plane graph is a maximal portion of the plane for which

any two points may be joined by an arc such that any point of the arc
neither corresponds to a vertex of the graph nor lies on an arc

corresponding to an edge of the graph.

- Interior regions are bounded regions.

- The exterior region is unbounded.

- An interior cycle encloses an interior region.

- The exterior cycle is the perimeter of a plane graph.

- Two plane graphs of the same graph are equivalent if there is a bijec-
tive mapping of the interior cycles between the two plane graphs, and

the exterior cycles are identical

It is proven [Burstein 80] that two plane graphs of the same graph are
equivalent if they have a common exterior cycle, and for each vertex,
the cyclic order of the vertices of one plane graph are identical to the

eyclic order of the corresponding vertices of the other plane graph.

- Equivalent plane graphs have the same plane topology. A plane topol-
ogy of a plane graph is totally specified by the graph, the exterior

15

cycle, and the set of cyclic order of vertices of the graph.

- Two graph embeddings are equivalent if for each plane, the plane sub-
graph of one embedding is equivalent to the corresponding plane sub-
graph of the other embedding.

- Equivalent graph embeddings have the same embedding topology.
The embedding topology of an embedded graph is totally specified by

the graph, and for each plane, the plane topology.

- The left side of an embedded cycle is the region to the left of an edge
traversed in the direction of the cycle. The right side is defined accord-

ingly. The region on the left side of an embedded cycle is the left

region. Correspondingly, the right side defines the right region.

- The clock-wise or counter clock-wise orientation of an embedded

cycle is defined by the direction of the cycle.

- The left side of an embedded counter-clockwise cycle is the inside
region. The right side of an embedded counter-clockwise cycle is the
outside region. For an embedded clockwise cycle the left region is the

outside region, and the right region is the inside region.
- A path tree is a labeled directed tree.

A vertex corresponds to a path in the circuit graph. The paths in thé
path tree are disjoint. Vertices are labeled with the identiflcation of the
path. The number of vertices equals the number of disjoint paths. Each
subtree represents a bridge composed of the paths defined by the ver-

tices of the subtree. The subtrees of vertex i represent the bridges of

16
the cycle formed by the path i and a path from some previous cycles.

- A left oriented bridge is a bridge of an embedded graph that is
confined to the left region of a cycle, has its attachments adjacent to
the pcrimeter of the bridge embedding, and with the same order of its

attachments at the perimeter as the order of the attachments in the

cycle.

- A right oriented bridge is defined correspondingly.

- The orientation constraint graph is an undirected, labeled graph.
Each bridge is represented by a vertex in this graph. Vertices are
labeled with the identification of the bridges they represent. Each con-
straint on the orientation of bridges is represented by an edge. There
are two types of edges; s-edges, and u—edgeé. An s-edge implies that the
bridges represented by its end vertices are copstrained to have the
same orientation. An o-edge implies that the bridges represented by its
end vertices are constrained to have opposite orientations in order that

the bridges will not cross.

- A 2-coloring of the orientation constraint graph is a coloring using two
colors such that the end vertices of an s-edge have the same color, and
the end vertices of an o-edge have different colors. A graph is planar

when its orientation constraint graph can be 2-colored.

- A compensation graph is a labeled, undirected graph. There is a com-
pensation graph for each edge in the orientation constraint graph.
Each disjoint path of the graph being analyzed is represented by a dis-

tinct vertex in the compensation graph. A vertex is labeled with the

17

path it represents. Two paths represented by adjacent vertices would
cross each other in drawings if the orientation assignment conflicts the
orientation constraint (edge), which the compensation graph

represent.

- A total compensation graph is the union of the vertex sets and the
union of the edge sets of those compénsation graphs that corresponds
to edges in the orientation constraint graph for which the orientation

assignment of bridges conflicts the assignments defined by the edge.

The total compensation graph can be n-colored. A n-coloring of a graph
implies that adjacent vertices are assigned different colors. The color-
ing of the vertices in the total compensation graph assigns paths to
planes. The coloring of the total ‘cbmpensation graph corresponds to a
partition of the graph. The coloring of the orientation constraint graph
specifies a planar embedding of the subgraphs in the partition.

Together the two graphs specify an embedding of the circuit graph.

- A horizontal(vertical) position constraint graph is a directed, acyclic
graph. A vertex in the position constraint graph represents the vertices
of the circuit graph that, according to the embedding, (or an explicitly
given constreint) must have the samc position. An edgc between vertex
A and iits son B with weight C implies that B must be at least C units
away from A in the drawing of the circuit graph.

We assign positions to the vertices of the position constraint graph such

that the size of the embedding is minimized.

- A layout topology graph is a directed, labeled graph. It is derived from

18

the circuit graph It has one exterior vertex. nogate vertices, and
transistor vertices. A transistor vertex has 4 edges, 2 for the gate of a
transistor, and one for each of drain and source. Vertices have cyclic

order.

- A layout topology is an embedding topology of the layout topology

graph.

CHAPTER 2

Circuit to Graph Transformation

2.1. Introduction

The problem of circuit embedding and the problem of graph embedding
have many similarities. A transistor can be identified with a vertex in a
graph, a wire with an edge. A physical layer corresponds to a topological
manifold. The cyclic order ol wires Lu a devivce corresponds Lo the cyclic
order of edges to a vertex. Space exterior to a layout can be 'mterpfeted as
the exterior face of a graph. The problem of circuit embedding is equivalent

to the problem of graph embedding.

A graph model of a circuit should reflect the circuits topological charac-
teristics. Goldstein and Schweikert [Goldstein,Schweikert 73] have proposed
a model for testing the planarity of electrical circuits. Goldstein-
Schweikert's model has one vertex for each circuit component, and one ver-
tex for each net. In their model, vertices representing circuit components
are called component vertices and nets, net vertices. A net vertex with con-
nections to k different components will have k incident edges. There will be
an edge between a net vertex and each of the vertices representing the com-
ponents with terminals belonging to this net.

VanCleemput [VanCleemput 76] has proposed a more extensive graph
model for the circuit layout problem. A net is represented by a vertex as in
Goldstein-Schweikert's model. The model for components is more complex. A
component is represented by a partially oriented graph, a component graph.

A partiaily oriented graph is a graph of one cycle. The vertices in the cycle

19

20

represent the terminals of the component. The cyclic order of the terminals
is reflected in the cyclic order of the vertices in the cycle. The component
graph model may be modified to specify the physically or logically equivalent
terminals. Terminals that are physically equivalent are equipotential. A con-
nection can be made to any one of these terminals. Terminals that are logi-
cally equivalent bhave identical logical functions. They may be interchanged

to obtain a better layout.

Our primary interest is to provide a graph model for circuits with only
MQOS transistors. In either model, there are cases that a planar circuit has a
non-planar graph model. An example of such a case is shown in Figure 2.1.1a,
Figure 2.1.1b, and Figure 2.1.1c. The ports are located along the perimeter of

the layout.

2.2. Topological Characteristics of MOS Circuits

A MOS transistor is electrically a three terminals device. It has four ter-
minals physically; the drain terminal, the source terminal, and two gate ter-
minals. The drain terminal and the source terminal are logically equivalent
and the two gate terminals are physically equivalent. Any component of a
chip with at least three terminals is usually oriented, i.e., the cyclic order of
the terminals is prescribed. A MOS transistor, even with all four terminals
connected to other MOS transistors, is not oriented because of the
equivalences of its terminals.

With the current two dimensional MOS technology, circuit layouts can be
adjacent to each other, but not on top of each other. Ports provide connec-
tion points between circuit layouts. The cyclic order of ports at the perime-

ter may be prescribed. The graph model must have provisions for identifying

%]

Figure 2.1.1a A Planar Circuit.

21

22

Figure 2.1.1b Goldstein-Schweikert’s Model of the Planar Circuit.

23

<]

Figure 2.1.1c VanCleemput's Model of the Planar Circuit.

ports and the specification of the prescribed cyelic order. This information is

needed for the computation of an optimal layout topology.

2.3. A Graph Model for MOS Cirenits

The appropriate mode! for a net is a vertex as proposed by Goldstein and
Schweikert. This appears to be the only feasible solution not requiring the

enumeration of all possible combinations of net decompositions.

24

A MOS transistor is not a complex component. It is not necessary to
model transistors explicitly. The transistor type is irrelevant in deriving the
layout topology except in the process of presenting a layout topology as a
drawing. The types of every transistor in the circuit graph are kept in a
separate table. All MOS transistors are topologically identical A nMOS
enhancement mode transistor is defined by a poly wire crossing a diffusion
wire. A deﬂpletion mode nMOS transistor is created by "covering” the poly

diffusion crossing by implant, a separate maslk.

As mentioned above, a MOS transistor is electrically a three terminals
device, but it has four physical terminals. The two gate terminals are physi-
cally equivalent. It is difficult to determine in advance whether the imple-
mentation of a MOS transistor with one gate terminal or two gate terminals
will lead to the better layout. Besides. even if it can be determined in
advance that the two gate terminals implementation will lead to the better
layout, it is still difficult to partition optimally the conneclions to the gate
into two subsets, one subset for each terminal. The circuit in Figure 2.1.1
illustrates that the layout would be planar if transistor 3 is implemented with
two gate terminals. The layout of the circuit of Figure 2.3.1 becomes non-
planar when transistor 2 is implemented with two gate terminals. Hence, it is
hard to determine whether a MOS transistor should be implemented with one

or two gate terminals.

It is desirable to have only one graph model for a given circuit, i.e.,
electrically equivalent circuits shall have the same circuit graph. Otherwise,
a number of graphs that grows combinatorially must be explored to find the
best layout. The assignment of terminals of a circuit component (three ter-

minals) to the terminals of a physical component (four terminals) is not

25

Figure 2.3.1 Non-Planarity Caused by Using 2 Gate Terminals.

trivial in the presence of logically and physically equivalent terminals.
Goldétein—Schweikert's graph model depends on the actual number of physi-
cal terminals of the MOS transistor. VanCleemput's model is independent of
the actual number of physical terminals of the MOS transistor, and so is ours.
Figurc 2.3.2 shows another circuit topology of the circuit shown in Figure
2.1.1. Goldstein-Schweikert’s model of this circuit topology is different from

the one shown in Figure 2.1.1. VanCleemput's model remains the same. Our

model is also identical for both cases.

26

G.S.'s MODEL OUR MODEL

Figure 2.3.2 Another Circuit Topology/Models for the Circuit of Figure 2.1.1.

Our transistor model alsc resolves the difficulty demonstrated in Figure
2.1.1. The two gate terminals of a transistor, besides being physically

equivalent, create a "free" cross-over when it is needed. This "free” cross-

27

over property is not modeled in VanCleemput's model. Our model implicitly
defines the "free" cross-over. This capability is the reason for discarding

VanCleemput's model.

The perimeter of a layout has properties similar to a vertex in a graph.
A vertex of an embedded graph is accessible from all its adjacent regions.
This property is also true for the perimeter of a layout. Hence it is desirable
to map the perimeter of the layout to a vertex. In our model this map is
accomplished by introducing the exterior vertex. The example shown in Fig-
ure 2.3.2 has a vertex identified as the exterior vertex. The prescribed order
of the ports can be represented as constraints in the cyclic order of the

exterior vertex.

It is not possible to specify the prescribed cyclic order of ports and the
requirement of locating ports along the perimeter of the layout with
Goldstein-Schweikert's model. VanCleemput models the exterior face of the
layout by a cycle. The vertices on the eyrle represent the ports. All nets and
components must be embedded in the interior region of the cycle. Our model
is equivalent to that of VanCleempul's model. We choose our special
representation to suit our graph embedding algorithm that will be described

in Chapter 3.

2.4. Summary of the Graph Model for MOS Circuits

The exterior face of a layout is represented by the exterior vertex. This
vertex has a prescribed cyclic order if there is a prescribed order of ports on
the perimeter of the layout. All other vertices are net vertices. There are two
types of net vertices, gate and nogate. Nogate vertices have no constraint on
the cyclic order. Since transistors are defined implicitly by the source and

drain edges incident on the gate vertex, there is a constraint imposed on the

28

possible cyclic order to the gate vertex. The constraint follows from the
electrical characteristics, as discussed in Chapter 3. All vertices are labeled
with labels provided in the description of the circu‘it schematic. Source and
drain edges are directed. Every pair of source and drain edges together with
the gate vertex on which they terminate defines a transistor. The source and
the drain edges are labeled with the transistor they represent as well as the
label of the net vertices from which they emanate. Port edges are labeled

with the name of the port they represent.

Both Goldstein-Schweikert's model and VanCleemput's model would map
each transistor into an unique vertex. The mapping from circuit graph
embedding topology to layout topology would be simpler for their models.
Transistors in our model are defined implicitly. Since transistors are simple
components and they are t.opologicallsr identical, it is easy to build the
transistors by rules embedded in the transformation algorithm. A procedure

is described in Chapter 4.

29

2.5. Circuit Description
We specify a circuit schematic in an informal BNF. Terminals are in
lower case. All terminals must be separated by blanks or end-of-lines. §}

denotes repetition any number of times including zero; | denotes "or”; and ()

denoctes grouping. Upper and lower case distinctions are ignored.

CIRCUIT = § comment } CELL BODY

CELL = HEADER

HEADER = ¢ CELLNAME ;

CELLNAME = name

BODY = PORTS TRANSISTOR END

PORTS = e { (LAYER) PORTNET } { ORDER } ;
LAYER=d|p|m

PORTNET = net

ORDER = net

TRANSISTOR = (T-TYPE) T-NAME L-W-RATIO SOURCE DRAIN GATE ;
T-TYPE=n|p|d

T-NAME = name

1-W-RATIO = number

GATE = net

SOURCE = net

DRAIN = net

END =.

Ports and transistors are specified explicitly. Ports and terminals of
transistors that have the same "net identification"” belong to the same net.
The layer assignment of ports can be specified. Contacts that appear in phy-
sical layouts have no logical function and are not specified in eircuit
schematices. Contacts are introduced later in the layout process. If the order

of the ports is prescribed, then they must be listed in the counter-clockwise

orientation.

2.6. A Circuit to Graph Transformation Algorithm

A fully labeled, partially ordered and partially directed graph requires
the label of all vertices to be specified, the order of ordered vertices to be

given, as well as all the edges and the direction of directed edges. To com-

30

plete the specification of our circuit graph labels are assigned to edges.

The transformation from a circuit schematic to a circuit graph as
described in the previous seclions is carried out by the algorithm outlined

below.

Step 1: Create a vertex for each net. Label it with the name of the net
specified by PORTNET, GATE, SOURCE, or DRAIN in the description of

the circuit schematic.

Step 2: Add two edges for each transistor, one represents the drain, the
other represents the source. Assume that the gate belongs to net G, the
drain is connected te net D, and the source is connected to net S. The
drain edge has its head on the gate vertex, G, and its tail on vertex D.
The source edge has its head on G and its tail on vertex S. Label the
edges with the transistor they represent, and the label of the vertex

from which they emanate (D and S respectively).

Step 3: Create an edge for each port. One end vertex is labeled "exte-

rior”. The other vertex is labeled with the net connected to the port.

The cyclic order of gate vertices is initially given by the order in which
transistors and ports are read, i.e., the order is arbitrary. However, drain

and source edges always appears in pairs in the cyclic order of gate vertices.

An exclusive OR ecircuit is coded in our circuit specification language.
The specification is shown in Figure 2.6.1 together with the corresponding

circuit graph.

31

C XOR
EM+M-PAPBP OUT
N TR1T 1 = N1 A
N TR2 1 - N1 B;
D TR3 1 N1 + N1;
N TR4 1 — OUT N1;
D TRE 1 OUT + OUT;
N TR 1 — N2 A;
N TR7 1 N2 OUT B;
$
TR3 . }'—-0 TRS
ouT
N1 |
© l TR7 — B
TR1 4 TR2 TR4 N2
A
e——l I———g TRE6 | —© A
&

Figure 2.6.1a Circuit Specification of an XOR.

TRANS.
TR1
TR2
TR3
TR4
TRS
TR6
TR7

Figure 2.6.1b A Graph Model of an XCR.

2.7. Algorithm Complexity

S.

10
12
14
16
18

D.

11
13
15
17
19

3<

The complexity of the circuit to graph transformation algorithm is

linear in the number of transistors and the number of ports, i.e., linear in the

number of edges of the circuit graph.

2.8. Remarks

A common configuration of MOS transistors is transistors connected in

series, with intermediate nodes in the circuit graph not accessed. The gate

33

connections may be permuted without changing the function of the circuit. It
is desirable to take advantage of the interchangeability of the gate connec-

tions to improve the circuit layout.

A direct application of Goldstein-Schweikert's model, or VanCleemput's
model, to a circuit schematic containing a series transistor configuration
would imply that all transistors are represented explicitly, and that a unique
circuit graph is obtained for every permutation of the gates. However, it is

desirable to represent all such permutations with a single circuit graph.

The series transistor configuration can be viewed as a single component
Awith multiple gates. Applying VanCleemput’s model to su;h a component
results in only one graph for all permutations of the gates, as desired.
Nevertheless, VanCleemput's model is discarded since it does not capture

the "free” cross-over capability.

Our model also allows the serial transistor configuration to be modeied
as a multi-gates transistor. Such a transistor would have two edges incident
on a vertex representing all the gate nets. The gate net vertex becomes the

gate "nets" vertex.

The multi-gates transistor model is useful if there is an efficient way of
decomposing gate nets vertices. An efficient algorithm for this decomposi-
tion has not yet been found. Therefore, multi-gates can not be specified in
our circuit description notation. A simple change of our BNF is needed,

should an efficient decomposition algorithm be found.

CHAPTER 3

An Application of the Graph Model - the Embedding Problem

3.1. Introduction

The proposed circuit graph model is the same for electrically equivalent
circuits. The graph embedding topology can be derived from the model by
any greph embedding algorithm. The embedding topology can then be
expanded into a unique layout topclogy. In this chapter a graph embedding
algorithm is described. This graph embedding algorithm treats all edges as
undirected. The expansion from graph embedding topologies to layout topo-
logies is described in Chapter 4. *

The major reason for modeling a circuit as a graph is that the problem
of embedding a circuit in a set of physical layers can be mapped into the
problem of embedding a graph in a set of planes. Each piane in the graph
embedding may be equivalent to a layer in Lhe circuit embedding. However,
the embedding algorithm use an arbitrary number of layers. The mapping to
physical layers, described in Chapter 4, is carried out in the generation of a
physical layout. The general graph embedding problem is NP-complete. A
problem related to graph embedding is the problem of the determination of
the genus of a graph. The genus of a graph is the number of handles needed
on a sphere to embed the graph. A planar graph is of genus 0.

The planar graph embedding problem is the least complex embedding
problem. It is also a hard problem. But, there exist linear time algorithms for
planarity testing [Hopcroft,Tarjan 74, Rubin 75]. We will first describe this
algorithm, then our extensions of the algorithm to make it into an algorithm

34

35

that can be used as a first step in thle generation of a graph embedding topol-
ogy. Next we generate a partitioning of the graph into a set of planar sub-
graphs. The partitioning is obtained by coloring graphs derived from the
extended planarity test algorithm.

3.2. Planarity Testing

A powerful technique used in planarity testing of a graph is the sys-
tematic embedding of edges of a graph. When a planar embedding is found,
then the graph must be planar. A graph is non-planar when a planar embed-
ding can not be found. If at some stage of the embedding process, the
embedding is found to be non-planar, then there is no need to continue this
search path. The bi-product of this testing is a planar embedding for a planar
graph.

A graph is planar when all its biconnected components are planar. The
testing algorithm may separate the graph into components. The planarity
test can then be applied to each component independently. There exist
linear time algorithms to partition a graph into its biconnected components
[Aho,Hoperoft, Ullman 74]. Without loss of generality the graph is not bicon-

nected.

The testing algorithm is invoked recursively. The first step is to find a
cycle in a subgraph. In the initial call the subgraph is the graph. A cycle
defines a set of bridges. Bridges must be placed either in the inside region or
the outside region of the embedded cycle for the graph to be planar. A pair
of incompatible bridges are two bridges that will cross when both are
assigned to the same region. Incompatible bridges have attachments that
interleave in the cycle. Testing for pairwise incompatibility is simple. The

example in Figure 3.2.1 helps to illustrate the technique. In Figure 3.2.1

36

bridge A and bridge B are incompatible. Bridge B and bridge C are incompati-
ble also. The assignment of bridge A and bridge C to the inside region, and
bridge B to the outside region resolves the incompatibility. A graph is non-
planar when incompatible bridges cannot be assigned to different regions.

If a planar embedding of a bridge is found it remains to verify that such

an embedding together with the original cycle is also planar. This require-
ment implies that the attachments of the bridge must be adjacent to the

N
/7

ATTACHMENTS OF A (3,1)
B (52)
C (64)

Figure 3.2.1 Pairwise Incompatibility Test.

37

perimeter of the bridge embedding. Furthermore, the order of the attach-
ments of the bridge must agree with the order of the attachments in the
cycle. If these conditions are not fulfilled then the bridge embedding is
invalid. When a planar embedding of the bridge that will also pass this second

test can not be found, then the graph is non-planar.

This planarity testing technique is proposed by Auslander,and Parter
[Auslander,Parter 81]. Their algorithm is corrected and improved by Hop-
croft and Tarjan [Hopcroft.Tarjan 74]. Hopcroft-Tarjan’s algorithm runs in

linear time.

8.3. Hoperoft and Tarjan's Planarity Testing Algorithm

A new cycle must be found in the subgraph to be tested in each recur-
sive call of the algorithm. The new cycle C can be made up of a path from the
previous cycle, C', plus a set of untraversed edges forming a path P with its

end vertices attached to the previous cycle. P is part of a bridge of C'. The

orientation of B is the same as the orientation of P.

The cycle C' consists of a path P’ plus a path of edges in the previously
found cycle C". This situation is illustrated in Figure 3.3.1. The orientation of
the new cycle Cis a function of the orientation of C’, the orientation of P, the
last vertex of P, and the last vertex of P'. The table in Figure 3.3.2 defines the

rules for determining the orientation of C.

P is assigned to the left region of C'. The algorithm then searches for the
bridges of C' that have left orientation and that are incompatible with P. The
algorithm attempts to resolve the incompatibility by changing the orienta-
tion assignment of the bridges of C'. When a compatible assignment is found
then the algorithm will invoke itself to establish a new cycle from C. When a

compatible assignment is not found then the algorithm halts and declares

38

\
95
Y,

PI
N2 ¢ P > — Va
Ve
%
N N J
Vj
CYCLE C Va,Vb,Ve,Va

CYCLE C' Vj,Va,Vb,Ve,Vj
CYCLE C" VjVa,Vb.Vj
PATH C1' Vj.Vb

Figure 3.3.1 Relations of Cycles and Paths.

the graph non-planar.

The drawing in Figure 3.3.1 is used as a reference. After all the bridges
of C' are explored the algorithm will check whether these bridges with their
assigned orientation can be combined with C” and remain planar. This test
is the upward compatibility test. Each bridge of C' with attachments in C1'
except the end vertex Vj must have the same orientation as P'. This type of
bridge needs upward compatibility. The algorithm changes the assigned

orientation of the bridges of C' such that the upward compatibility is

38

CW = CLOCKWISE
CCW = COUNTER CLOCKWISE
CASE(1):
 LAST VERTICES OF P AND P' ARE THE SAME
SET ORIENTATION OF C 70 C'
CASE(2):
LAST VERTICES OF P AND P' NOT THE SAME,
ORIENTATION OF P = LEFT =>
SET C TO CCW
ORIENTATION OF P = RIGHT =>
SET C TO CW

Figure 3.3.2 Rules for Determining the Orientation of a Cycle.

maintained and the incompatible bridges are assigned with different orienta-
tion. When such an assignment can be found the algorithm returns to the cal-
ling procedure. When such an assignment can not be found, the graph is

declared non-planar.

A depth-first search would divide the graph into paths that may be
assembled into the cycles needed for planarity testing. In order for the
planarity test to be efficient, the adjacent lists are specially ordered such

that the needed paths have certain important properties. These properties

40

are outlined in [Hopcroft,Tarjan 74]. With these special properties the tests

of incompatibility and upward compatibility become efficient.

3.4. Extensions of Hopcroft-Tarjan's Algorithm for Graph Embedding
Hoperoft-Tarjan's algorithm is invoked recursively. This invocation
scheme implicitly defines a hierarchy of paths. The hierarchy is captured in
a path tree. The path tree is directed. Each vertex is labeled with the
identification of a path, i.e., the path explored during each recursive invoca-
tion of the algorithm. Hence each vertex represents a path that is coming off
the cycle formed by the path represented by its father plus a path in the
previous cycle. The subtrees of a vertex i represent the bridges of the cycle

formed by the path represented by vertex i and a path in the previous cycle.

Hopcroft-Tarjan's algorithm attempts to assign orientations to the
bridges of a cycle such that pairwise incompatible bridges have different
orientation. The algorithm halts when such an assignment can not be found.
In our extension to the algorithm it continues to run, but pairwise incompati-
bility between pairs of bridges is captured in the orientation constraint
graph. In this graph each bridge is represented by a vertex. When two
bridges are pairwise incompatible, then a type o-edge is added to the orien-
tation constraint graph. The end vertices are the vertices that represent the
two incompatible bridges.

The extended algorithm also generates a compensation graph for each
o-edge of the orientation constraint graph. A vertex is created for each dis-
joint path of the graph being analyzed. Edges are introduced between ver-
tices representing paths that will cross if the bridges related by the o-edge

are assigned the same orientation.

41

After all the bridges of the current cycle are explored Hopcroft-Tarjan’'s
algorithm will do the upward compatibility test as described earlier. The
bridge B that needs to be upward compatible is the bridge that must be
assigned the same orientation as the orientation of a previously defined path
P' as described earlier. The relation of upward compatibility is between a
path and a bridge. The orientation of path P’ is the orientation of the bridge
with P’ as the first path. Hence the relation of upward compatibility is also a
relation between two bridges. This relation is captured in the same orienta-
tion constraint graph. A type s-edge is added to the orientation constraint
graph for each bridge that needs to be upward compatible. The end vertices
are the vertices that represents bridge B and the bridge with P’ as the first

path.

A compensation graph is also created for each s-edge in the orientation
constraint graph. A vertex is created for each disjoint path of the graph
being analyzed. Paths represented by adjacent vertices will cross when the
bridges represented by the end vertices of the s-edge are not assigned the

same orientation.

In our application of the extended Hopcroft-Tarjan algorithm the initial
cycle is always restricted to be a cycle that contains the exterior vertex.
Furthermore, the the exterior vertex is always taken to be the first vertex of
the first cycle. This particular choice of the initial cycle guarantees that the
exterior vertex will be adjacent to the exterior phase in the embedding of the
graph. The exterior vertex must be adjacent to the exterior phase in order

that a layout can be generated from the embedding.

Figure 3.4.1 is used to illustrate the effects of our choice of initial cycle.

The graph has 4 vertices numbered 1,2,3,4. Let the initial cycle C have the

42

direction 1,2,3, and 4. C has a counter-clockwise orientation. If the path P
between 2 and 4 is assigned to the inside region, then vertex 1 is adjacent to
the exterior phase. If P is assigned to the outside region, then vertex 1 is
still adjacent to the exterior face, because P and a path segment of C must
form a cycle with clockwise orientation. The newly formed cycle will not

enclose vertex 1.

A planar graph, its paths, its path tree, its orientation constraint graph,
and its set of compensation graphs are shown in Figure 3.4.2. The complete
graph of six vertices is non-planar. It is shown in Figure 3.4.3 along with its
path, its path tree, its orientation constraint graph, and the set of compensa-
tion graphs.

In summary, the extended Hopcroft-Tarjan's algorithm creates the path

tree, the orientation constraint graph, and the compensation graphs.
3.5. General Graph Embedding

In order to obtain an embedding topology it remains to determine the
orientation of bridges, and the plane assignment of paths. The cyclic order of
vertices is also needed to completely specify an embedding topology. The
cyclic order of vertices in the circuit graph is implicitly specified by the
hierarchy of paths as defined by the path tree and the orientation assign-
ment of bridges. The plane assignment of paths partitions the circuit graph
into' planar subgraphs. Hence, specifying the orientation of bridges and
planes of paths suffice to complete the specification of an embedding topol-
ogy.

The orientation assignment of bridges and plane assignment of palhs is
treated as a coloring problem of the orientation constraint graph and the

compensation graphs. The vertices related by an o-edge must be assigned

1 = EXTERIOR

Figure 3.4.1 The Initial Cycle and Exterior Vertex.

c1: 1,2,3,4,5,9,10,11,14,15,1

P2 11,124
P3 12,13,10 PATH TREE
P4 5,6,7,2
P5 7,8,3
2 4
P86 8,4
3 5 ¥
6 ¥

Figure 3.4.2a A Planar Graph, its Paths and Path Tree.

ORIENTATION CONSTRAINT GRAPH

(d)
S

@ &3
(b) %
5
) o&—3
@ &8
) &8

Figure 3.4.2b The Orientation Constraint /Compensation Graph.

S 4 PATH TREE

1 2

PATHS:
c1: 1,2,3,1 ORIENTATION CONSTRAINT GRAPH
P2: 3,4,1

P3: 4,5,1 2

P4: 5,6,1 S

P5: 6,2 s 3 °ma N,
P6: 6,3 4 S/ .S
P7: 6,4

P8: 5,2 S.
P9: 5,3

P10: 4,2

Figure 3.4.3a KB, its Paths, Path Tree, Orientation Constraint Graph.

47

COMPENSATION GRAPHS

g 1g—e?> h: 30—65
b: 1o——98 i 3o——ob
c: 1g—¢ 10 i 39________07
d 20——05 kk 76——o9

e: 29_._9 6 Iz 7 8

£ 26— o8 6:;

qg: 29——.—0 9 m: 970
6

Figure 3.4.3b The Compensation Graphs for K6.

different colors. The vertices related by a s-edge must be assigned the same
color. When the constraint graph can be 2-colored according to the above
rules, the greph is planar. The orientation constraint graph of the planar
graph shown in Figure 3.4.2 can be 2-colored. The coloring is shown in Figure
3.5.1. The two colors used are L and R that represent the left orientation and
the right orientation respectively. The orientation constraint graph of the

complete graph of six vertices can not be 2-colored.

The general graph emnbedding algorithm proceeds in the following steps:

1. Color the orientation constraint graph with two colors. Obtain a list
of orientation constraints that are not met. A s-edge constraint is not
satisfied when the bridges represented by the end vertices of the s-
edge are assigned with different orientation. An o-edge constraint is not

satisfied when the bridges represented by the end vertices of the o-

Figure 3.5.1 Orientation Assignment for the Graph of Figure 3.4.2.

edge are assigned with the same orientation.

2. Generate a total compensation graph as the union of the edge sets,
and the union of the vertex sets of the individual compensation graphs
of the unsatisfled orientation constraints. Color the total compensation
graph. Adjacent vertices must be colored with different colors. There is

no constraint on the number of colors allowed.

The vertices of the total compensation graph represent paths. A non-
planar graph can be embedded in two planes if paths can make transitions
between planes. If an entire path is constrained to lie within a single plane,
then an arbitrary number of colors may be needed for the embedding of the
graph. Coloring of the total compensation graph corresponds to this situa-

tion. Allowing an arbitrary number of colors in the coloring of the total com-

49

pensation graph guarantees that an embedding can always be found. The
mapping on to the layers available in the technology being used is made in

the generation of a physical layout by introducing contaets.

Note: The edges of the circuit graph are by the plane assignment pro-
cedure assigned to unique planes in their entirety, but vertices in the circuit
graph are, in general, shared between several different paths and hence

often assigned to several planes.

The coloring of the orientation constraint graph and the corresponding
total compensation graph can be carried out in many ways. There are several
embedding topologies for each path tree and orientation constraint graph.

One heuristic algorithm is the following:

Start by assigning an orientation of bridges to satisfy the s-edge con-
straints. Then assign orientations to the unassigned bridges such that the
number of unsatisfled o-edge constraints is small. Build a total compensation
graph according to step 2. Assign most of the paths to the first plane. When
the graph is a circuit graph, and the first plane(layer) is the diffusion/poly
plane, then this heuristic tends to minimize the number of contacts. The poly
and diffusion layers in the layout are topologically related and are therefore
considered as one plane. A poly wire must not cross a diffusion wire. Figure
3.5.2 shows a valid orientation and plane assignment for the non-planar

graph shown in Figure 3.4.3.

In our implementation the cyclic order implied by the path tree and the
orientation assignments is made explicit by the drawing algorithm described

in Chapter 4.

50

ORIENTATION CONSTRAINT
GRAPH 2L

TOTAL COMPENSATION
GRAPH

COLOR=
OUTSIDE NUMBER

Figure 3.5.2 Orientation/Plane Assignment for the Graph of Figure 3.4.3.

8.8. Valid Graph Embeddings

Not all graph embedding topologies obtained by the general graph
embedding procedure are feasible for the generation of a layout. The

embedding topology needs to possess the following properties:

1. The exterior vertex must be adjacent to the exterior face of the

embedding.

2. The cyclic order of the exterior vertex must equal the reverse of the

51
cyclic order of the ports on the perimeter of the layout.

3. The cyclic order of every gate vertices must correspond to a valid

expansion into individual transistors.

We will first comment on 3. In our circuit graph model a gate vertex will,
in general, represent several transistors. Before creating a layout, gate ver-
tices are expanded so that each transistor is explicitly represented. The
expansion procedure is described in Chapter 4. The expansion of a gate ver-
tex must preserve the cyclic order of connections to other vertices. This

,'requirement is justified because the transistors defined implicitly by a gate
vertex must be implemented within a bounded area. The drains ‘and the
sources of the transistors are accessed from the perimetér of the area. The
drain and source of a transistor are, in MOS technology, ends of a diffusion
wire. Each such wire divides the bounded area into one more region. The
diffusion wire of one transistor must not cross the diffusion wire of another
transistor. There will be a crossing if the drain and source of a transistor are

located in different regions.

MOS transistors vare formed by crossing poly and diffusion wires. The
ends of the poly wire are the gate terminals. Since the gate is accessible
from either region, the gate is accessible from any position around the per-
imeter. Hence, there is no constraint in the cyclic positions of the gate con-

nections.

We Aalso note that, even though the edges of the circuit graph may be
assigned to many different planes, drain and source edges must have their
heads on the diffusion/poly layer. Hence, even though formally, edges
embedded in different planes are topologically unrelated, this propérty is not

true in the final mapping to a physical layout. In a bounded area around the

52

heads of drain and source edges the cyclic order has to be valid ignoring

their plane assignment. An additional observation is that the transistor type
is irrelevant topologically.

Condition 1 is guaranteed by the way the initial cycle is chosen for the
invocation of the extended Hopcroft-Tarjan's algorithm.

Condition 2 is verified straightforwardly.

Condition 3 is verified by creating a data structure for each gate vertex.
The terminating state discloses whether the cyclic order of the gate vertex is
valid.

A transistor tree is the data structure chosen to capture the nesting
relations of the transistors defined implicitly by the incident edges and the
cyclic order of the gate vertex. The edges of the transistor tree are called
arcs to a_void confusion. The vertices are referred to as the root vertex, the
internal vertices, or the leaf vertices. The transistor tree is generated in
preorder, [Aho,Hopcroft,Ullman 74]. The shape of the tree is defined by the
cyclic order of the gate vertex. The plane assignment of edges is ignored,
i.e., all edges incident on the vertex is included in the cyclic order.

The construction of the transistor tree T starts with a null tree and
proceeds in the following steps. The current vertex and the new vertex refers
to the transistor tree. After the algorithm is halted and if the current vertex
is not the root, then no planar subgraph exists with the cyclic order of the

gate vertex. The algorithm proceeds as follows:
1. Add a vertex to T and label it root. Mark this vertex current.

2. Process each edge incident on the gate vertex according to the

cyclic order. Start with any edge. Call it the current edge. Anarcanda

53

vertex are added to T for each edge incident on the gate vertex. The
arc starts from the current vertex and ends at the new vertex. The new
vertex is labeled with the label of the current edge. The rules for updat-
ing the current vertex are based on the edge being processed as out-

lined below.

Case a: The edge is a port edge or the edge is emanating from the

current vertex, then the current vertex stays the same.

Case b: The edge is terminating on the current vertex, then there

arc two sub-cascs depending on the label of the current vertex.

1. The label of the current vertex and the current edge
represent a drain-source pair of a transistor, then the father of

the current vertex will become the current vertex.

2. The label of the curjrent vertex and the current edge do not
represent a drain-source pair of a transistor, then the new ver-

tex will become the current vertex.
The algorithm halts after all edges in the cyclic order are exhausted.
Figure 3.6.1 is an example of an invalid cyclic order with its transistor tree.
The last current vertex is identified. Figure 3.8.2 is an example of a valid

cyclic order with its transistor tree.

3.7. Algorithm Complexity

The complexity of the graph embedding algorithm is no worse than
0(e?), where e is the number of edges in the graph. The worst case occurs
when the path tree has only one level, and every bridge crosses other

bridges. In practice, the complexity is closer to O(e).

TRANSISTORS SOURCE DRAIN

TR1 1 2
TR2 3 4
TR3 5 6
TR4 7 8

CYCLIC ORDER: G2—-1-2-3-G1-5-G3-6-7—4-8

8 IS THE LAST
CURRENT VERTEX

ROOT G2

Figure 3.6.1 An Example of an Invalid Cyclic Order.

55

TRANSISTORS SOURCE DRAIN

TR1 1 2
TR2 3 4
TR3 5 6
TR4 7 B

CYCLIC ORDER: G2—-1-2-3~G1—-5—-6—4—7-8

8 4
5 .6
LAST CURRENT 7 4 3 G1
VERTEX 1 2
\ G2

ROOT

Figure 3.6.2 An Example of a Valid Cyclic Order.

The complexity of the algorithm for checking the validity of an embed-
ding topology is no worse than O(e?), because the maximum number of edges
in the orientation constraint graph and the compensation graphs is less or
equal to the square of the number of edges in the original graph. In practice,
the coniplexity is better than O(e), because the number of edges in the
orientation constraint graph and the cbmpensation graphs is far less than

the number of edges in the original graph.

586

The elgorithm for checking the validity of a topological circuit graph is

linear in the number of transistors.

8.8. Remarks

Currently a path assigned to the left(right) of a cycle implies that the
entire path must lie to the left(right) of the cycle. This constraint is not
needed when the path and the cycle are assigned to different planes. The
implication of the elimination of this constraint will be studied.

We do intend to study optimization criteria computable from the orien-
tation assignment of the bridges and the layer assignment of the paths.

The complexity of the assignment of both the orientation constraint
graph and the total compensation graph such that some criteria are optim-

ized are usually NP complete.

CHAPTER 4

Circuit Graph Embedding Topology to ‘Laj'out Topology

4.1. Introduction

The g‘oal of our effort is the generation of circuit layout topologies from
circuit schematics. If a valid embedding topology is found by the embedding
algorithm the next step is to expand the gate vertices of the circuit graph to
obtain a layout topology graph. In the layout topology graph cach transistor
is represented explicitly as a vertex of degree four. The transistor is
modeled es having 2 gate terminals and one terminal for each of source and
drain. This transistor model is also used by Goldstein and Scweikert
[Goldstein,Séweikert 73]. The layout topology graph together with plane
embedding information and cyclic order of vertices define the layout topol-

ogy.
Once the layout topology is obtained it is straightforward to generate a

physical layout. An algorithm is given in section three of this chapter.

The transformation of a layout topology to a physical layout is a one-to-
many transformation. It is possible to define an equivalence relation on phy-
sical layouts such that each class has a unique layout topology. It is conceiv-
able that the finite number of layout topologies can be ranked according to
the likelihood of leading to an optimum design. The optimization can be
divided into two phases, classifying layout topologies and finding optimum
physical layouts within each class. Different optimization criteria are likely

to lead to different classifications and different physical layouts.

57

58

We also present an algorithm for drawing en embedding or layoul Lopol-

ogy on a rectangular grid.

4.2. Creating a Layout Topology

The 4process of generating a layout topology graph end corresponding
layout topology starts from a valid embedding topology. The layout topology
graph is obtained by expanding all gate vertices of the circuit graph. Even if
a gate vertex only models a single transistor it needs to be "expanded" since
the transistor model is different. Vertices in the layout topology graph
-ﬁlodeﬁng transistors are referred to as transistor vertices. Nogate vertices
in the circuit graph remain nogate vertices. The exterior vertex also stays
the same, New undirected edges are introduced in the expansion of gate ver-

tices to represent connections {poly wires) between transistor gates.

The cyclic orders of the transistor vertices are null initially. The order of
the added edges defines the cyclic order. The end vertices of the edges
incident on the gate vertices will be updated since they may be adjacent to

the new vertices instead.

The gate vertices are processed one at a time. The cyclic order of the
gate vertex is assumed valid. The generation of the layout topology graph use
the transistor tree generated in verifying the validity of the embedding topol-
ogy. There are different rules for processing the root vertex, the internal
vertices, and the leaf vertices. The algorithm will be described with the graph
G and the transistor tree T. G will equal the layout topology graph on comple-
tion of processing the transistor tree T. The cyclic order of vertices in the

layout topology graph is also determined so the {ayout topology is known as

well.

59

1. The root is processed in the following steps. Add a vertex to G to
represent the root. The label of this vertex is R. The vertices in T are

visited in the order they were created, i.e., preorder. There are two

cases:

a) If the son is a leaf vertex, then identify the edge of G that is
represented by the leaf vertex using its label. One end vertex of this
edge is the gate vertex being expanded. Change the label of this
end vertex to R. Add this edge to the cyclic order of R.

b) If the son is an internal vertex, then add a vertex to G to
represent the transistor. The label of this vertex is denoted as TR.
Add an edge to G. The end vertices are R and TR. Add this edge to
the cyclic order of R. Add this edge to the cyclic order of TR. The
label TR is then stored as part of the information about the son for
future use.
2. The internal vertex V is processed in the following steps. A vertex has
been added to G to represent this transistor when the father of this
vertex is processed. The label of this vertex in G is TR. Identify the
edge in G that is represented by the internal vertex V using its label.
One end vertex of this edge is the gate vertex being expanded. Change
the label of this end vertex to TR. Add this edge to the cyclic order of
TR. Add a vertex to G. Label it G2. Add an edge to G. The end vertices of
this edge are TR and G2. Add this edge to the cyclic order of TR. Add
this edge to the cyclic order of G2 Identify the edge in G that is
represented by the last son of the internal vertex V using the label of
the last son of Lhe inlernal vertex V. One end vertex of this edge is the

gate vertex. Change the label of this end vertex to TR. Add this edge to

80

the cyclic order of TR.

The next step is to process the sons of the internal vertex V. The sons
are processed according to the order of the descending edges. The last
son has been processed already and will not be processed again. The
sons are processed the same way as the processing of the sons of the

root with R replaced by G2.
3. The leaf vertices need no further processing.

The algorithm ends after every vertex in T is traversed. An example of

the expansion is shown in Figure 4.2.1.

4.3. layout Topology to Physical Layout Transformation

It is always possible to produce a valid physical 1ayqut from a valid lay-
out topology by separating the physical locations of transistors and wires as
much as necessary. The transformation from a layout topology to a physical
layout is simple. A transistor vertex is transformed into a physicai layout of &
transistor, i.e., a diffusion wire crossed by a poly wire. The "yellow box" that
identify a depletion mode transistor from an enhancement mode transistor
in nMOS is added to the physical layout at the last step. A net vertex is
transformed into a continuous strip of the proper material. A contact is
added where the level assignment of an edge does not agree with the level
assignment of other edges incident on the same vertex. For the nMOS pro-
cess plane 1 of the planes assigned in the embedding process is taken as the
poly/diffusion plane (poly and diffusion wires must not cross), plane 2 is
taken to be the metal layer. The remaining planes are all mapped into the

metal layer with sections on the poly la}ver to avoid intersecting metal wires.

81

TRANSISTORS SOURCE DRAIN

TR1 1 2
TR2 3 4
TR3 5 6
TR4 7 8
CYCLIC ORDER: G2—1-2-3—G1-5—-6—4—7—8
8 4
5 6

LAST CURRENT 7 4 = G1

1 2

VERTEX
\ G2

Figure 4.2.1 Expansion of a Gate Vertex.

The cyclic order of connections to a transistor and a net vertex shall

egree with the cyclic order of the corresponding vertex in the layout topol-

ogy.

62

The drawing algorithm outlined below will efficiently produce drawings

corresponding to layout topologies.

4.4, An Algorithm for Drawing Embedded Graphs

The drawing algorithm generates a graph embedding based on the path
tree, the orientation assignment of the bridges and the plane assignment of
the paths. The drawing algorithm assumes that the orientations of the
bridges and the layers of the paths are specified. The drawing is done on a
rectangular grid with uniform spacing. All edges start with a length of one.
They may be stretched as the situation requires. The drawing procedure is
invoked recursively, once for each cycle. The drawing procedure establishes
the directions of the edges and the constraints on the positions of the end
vertices. These constraints are kept in two constraint graphs, one for the
vertical direction and one for the horizontal direction. The constraint graphs

are similar to the graphs uses by Liao and Wong [Liao,Wong 83].

The position constraint graph is an acyclic, weighted, directed graph
that specifies the minimum spacing between related vertices. The roots of
these two graphs are place in position 0 in the respective coordinate direc-
tions. The position of a vertex of the embedded graph is computed as the
longest path between the root and the corresponding vertices {one for each

direction) of the position caonstraint graphs.

The graphic data needed for the drawing of the embedded graph can be
easily derived from the positions of the vertices. The drawing procedure is
outlined below. The procedure is invoked by applying it to the initial cycle of
the graph G. The vertical position constraint graph is denoted V. The horizon-
tal position constraint graph is denoted H. An edge pointing left or right is a
horizontal edge. An edge pointing up or down is a vertical edge. The

63

drawing algorithm is explained with the aid of an example in Figure 4.4.1.

1. Denote the path to be added to the drawing by P. P and a path of
edges of a previously found cycle C' will form a cycle C. P has two
attachments, Va and Vb, to the previous eycle C'. The new path P ean
be drawn either inside or outside the cycle C'. Directions are assigned
to every edge in P such that the first edge and the last edge of P are at
a right angle with C'. The directions of the edges of P are assigned
based on the orientation of P and C, and the direction of the edges
preceding Va and Vb in C'. The difference in the direction of the edges
preceding Va and Vb in C' is either 0, 90, 180, or 270 degrees (mod 360).
This accounts for eight cases. All other cases can be transformed into

one of these cases. The construction rules are demonstrated in Figure

4.4.2.

When P is the initial cycle, then the edges of P will be assigned direc-
tions such that P will form a rectangle with counter-clockwise orienta-
tion. All the edges but one of the initial rectangle are horizontal with
direction 0 degrees. This choice is arbitrary, but simplifies the algo-
rithm. Any other rectangle could have been chosen. Auxiliary vertices
may be added to P to ease the drawing. In the case that there are not
enough edges in the path to form the pattern, e.g., if there is only one
edge in the path, but it must form a "U" in the drawing to connect up to
its parent cycle, then two auxiliary vertices are added for the two miss-

ing corners, and two edges added to complete the U.

2. The vertica! positions of the end vertices of a horizontal edge are the

same. Such a constraint can be captured in V by using only one vertex

84

to represent the positions of the vertices of G that must have the same
vertical position. Similarly, only one vertex in H is used to represent
the positions of the vertices of G that must have the same horizontal
position. The algorithm, based on the directions of the edges of P, adds
vertices to H and V according to the rules just described. Figure 4.4.1
shows that vertices 1 and B in G are represented by one vertex in H.

Similarly the vertices 8 and 9 are represented by one vertex in V.

3. The algorithm then invokes the drawing provedure for Lhie bridges of

C.

4. Before the return to the calling procedure, more constraint edges
are added to H and V to prevent the bridges of the same cycle from
overlapping. This is done by adding edges to H and V to guarantee that
parallel edges of different bridges are separated by at least one unit. In
the example of Figure 4.4.1, the set of vertices 3,11,12,and 13 should be
at least one unit away from the set of vertices 9 and 10 in the horizon-
tal direction. Hence a directed edge is added to H. The edge terminates
on the vertex representing the positions of the set of vertices 9 and 10
of G. The edge emanates from the vertex representing the positions of
the set of vertices 3,11,12, and 13 of G. Edges are also added to Hand V
to guarantee the minimum separation of parallcl edges between the
cycle and its inside bridges. In the same example the set of vertices 13
and 14 should be at least one unit away from the set of vertices 7 and 8
in the vertical direction. Hence a directed edge is added to V. The edge
terminates on the vertex representing the positions of the set of ver-
tices 13 and 14 of G. The edge emanates from the vertex representing

the positions of the set of vertices 7 and B of G.

85

The drawing algorithm is applied to the planar graph shown in Figure
4.4.1. The orientation assignment of the bridges are shown in Figure 4.4.3.
The directions of the edges, the horizontal position graph, and vertical posi-

tion graph, and the drawing of the embedded graph is shown in Figure 4.4.3.

The drawing algorithm uses the information on layer assignmenl of
edges to draw the different subgraphs in different colors. Neither the drawing

sequence nor the resultixig drawing depend on the plane assignment.

? 7
1$_1‘% 9 16
54 ?12 y 10.1
o11
(3 © S © ©
1 2 3 4 5

Figure 4.4.1 Working Example for the Drawing Algorithm.

66

VA
VA
c ¢ P
VB
VA ,
h | i
P
Cl
VB
cl
P VA

e

VB

Figure 4.4.2 Rules to Determine the Drawing Direction of Edges.

_15.2

15.1 191 1.1 f45

13.2
12.3

12.1

13.1

12.2

Figure 4.4.3a The Drawing of a Graph.

87

88

HORIZONTAL POSITION CONSTRAINT GRAPH

AR

1.1,1.2 FIN6L POSITIONS

2.1.7.1 1
3.1,8.2,8.1,8.3,7.2
12.2,4.3
4.1,4.2,8.4

5.1,6.1
13.1,13.2,10.1
12.1,12.3,11.1
15.1,15.2 10

a Nd 00 2 N

Figure 4.4.3b The Horizontal Position Constraint Graph.

VERTICAL POSITION CONSTRAINT GRAPH

)

Q

FINAL POSITIONS
g 12.2,12.1 0
K: 13.1,12.3
L 13.2
M: 1.2,2.1,3.1,4.3,4.1,5.1,10.1,11.1,15.1
N: 8.2
O: 8.1
P: 8.3,8.4
Q 4.2
R: 7.1,7.2,6.1
S: 11.1,15.2

@ N 2 N -

Figure 4.4.3c The Vertical Position Constraint Graph.

It is easy to obtain the cyclic order of vertices by an extension to the
drawing algorithm. The cyclic order of vertices and the exterior cycles are

recorded as the edges are drawn. After all the edges are drawn an accurate

T0

description of the cyclic order of vertices and the exterior cycles of the

embedding is obtained.

4.5. Algorithm Complexity
The algorithm for decomposing a circuit graph into a layout topology

graph is linear in the number of transistors.

The complexity of the a_lgorithm for establishing the two position con-
straint graphs for the drawing of the layout topology is no worse than O(e?),
where e is the number of edges in the layout topology graph. The worst case
occurs when the path tree has only one level. In practice, the complexity is

closer to O(e log e).

4.6. Remarks

The reason for modeling a transistor as two edges incident on the gate
net vertex is that the "“free” cross-over property of the gate of a transistor is
captured in this model. When there are more than one transistor with con-
nected gates, the gates of these transistors are required to be connected
with an uninterrupted poly wire. This constraint is imposed by the definition
of the validity of the circuit graph embedding topology. If there are gates of
many transistors connected in a bus-like structure, then the best strategy
for connecting the gates may not be the use of an uninterrupted poly wire.
The implication of allowing non-planar decomposition of a gate vertex on the

embedding algorithm will be studied.

There is no provision for modeling the serial transistor configuration,
because of the lack of an efficient algorithm for decomposing the multiple

nets represented by a vertex.

CHAPTER 5

Experience

We have tested our algorithms on circuits with up to 38 transistors. It is
our experience, from the circuits used to test our algorithms and evaluate
our approach as well as other circuit designs, that interconnects are local-
ized. The degree of net vertices are fairly independent of the number of

transistors. Hence, a small circuit can serve a macroscopic view of larger cir-

cuits.

Our algorithms are coded in Mainsail! and executed on a DEC/2080°
computer. The algorithms are coded for simplicity rather than efficiency.
Knowing the time complexity of the algorithms, the embedding cost for a

hundred transistors circuit will be less than ten seconds.

For circuits with about 10 transistors the analysis required about a 10th
of a second. The orientation and layer assignment, and the expansion step
took less than a tenth of a second each. The 32 transistor circuit, a pulse
synchronizer, [Johannsen 81}, required a total execution time of less than
one second.

We have also observed that, for a small circuit, minimizing the number
of contacts in the layout would reduce the final layout area significantly. In
our approach contacts only enter in the transformation of the layout topol-
ogy to the physical layout. Contacts do not have any logical function. They

only serve to form nets of wires on different layers. The area penalty of a

1Trademark,Xidak Corp.
®Trademark,Digital Equipment Corporation.

71

({3

contact is largely due to the fact that other features must be separated to
make room for it. The physical area of a contact is small, but adding a con-
tact may increase one dimension of a layout by k, where k is the difference in
the feature size of a contact and a wire. This is a high penalty. This
phenomenon is illustrated in Figure 5.1.1. This is a global effect and it
accounts for most of the penalty.

Different strategies for using the different layers are possible. The metal
layer is desirable for most functions. It is often determining the area of the
layout. In a structured design of Mead-Conway type chip, communication is
planned at the floor planning stage and the assignment of layers to, for
instance, power, ground, and clock signals is related to how the communica-

tion is planned. The attempt is always, in particular in less structured

W/0 CONTACT WITH CONTACT

Figure 5.1.1 Area Penalty Caused by a Contact.

73

designs where the degree of freedom is higher, to assign power, clock, and
data buses to the metal layer. For a large circuit, "long distance' wires
should also be assigned to the metal layer to improve performance and most
likely packing density. Long distance wires connect terminals that are
several logic stages apart, or many terminals. It becomes necessary to iden-
tify the "long distance"” connections and incorporate the result into the cir-
cuit specification, and the orientation/layer assignment strategy. In prac-
tice, the number of "long distance’” nets is only a small portion of the total
number of nets.

Our drawing algorithm is adequate for presenting a drawing of a topol-
ogy, but it does not produce a compact drawing. The inefficiency is caused by
the determination of the drawing directions of edges by simple, local, rules.
We attempt to improve the ability of the drawing algorithm to generate a
compact layout by formulating the problem of assigning drawing directions
as a set of constraint equations of binary variables and with an optimizing
function.

A picture is worth a thousand words. We present a set of Figures that
show the result of various steps of our embedding approach. The circuit is an
exclusive OR circuit. The circuit schematic and its specification are shown in

Figure 5.1.2a. This circuit specification is the input to our algorithms.

Figure 5.1.2b is a drawing of the circuit graph with the internal number-
ing of the edges. There are five ports. Edges 1 through 5 are the port edges.
Edges 8 through 19 are drain/source edges and these edges are directed.
These edges terminate on the net vertices to which the gate terminals of the
transistors belong. Edge 10 and 14 are self loops. They are the source edges

of two depletion mode pull-up transistors. A depletion mode transistor in the

74

XOR
M+M~PAPBP OUT
TRT 1 — N1 A
TR2 1 — N1 B;

TR3 1 N1 + NT;
TR4 1 — OUT NT1;

TRS 1 OUT + OUT;

TRE 1 — N2 A;

TR7 1 N2 OUT B;

Z Z2 O Z o zZ zZzmO

® < f—o ®s < |—o

ouT
o

© | R7 | —eB
1 & TR2 TR4

TR
Ae—-{ l»——g TR6 | }—o A

Figure 5.1.2a Circuit Schematic and Specification of an XOR.

pull-up configuration will have the source terminal connected to the gate ter-

minal.

TRANS.
TR1
TR2
TR3
TR4
TRS
TR6
TR7

Figure 5.1.2b The XOR's Circuit Graph.

S.

10
12
14
16
18

7

11
13
15
17
19

75

The numbering of the vertices is shown in Figure 5.1.2c. The exterior

vertex is designated as the starting vertex. Hence, the analysis algorithm

assigns it to be vertex 1. Vertex 1 has the special property that it is

guaranteed to be adjacent to the exterior region. The paths and the path

tree are also shown in Figure 5.1.2c.

Figure 5.1.2d is a drawing of the orientation constraint graph and the set

of compensation graphs for the constraints. Figure 5.1.2e shows an orienta-

tion assignment of the graph in 5.1.2d made by inspection. If instead the

NET I.D.
EXTERIOR
ouT

N1

N2

PATH TREE

VERTEX NO.

0O N O O Db WUN -

76

PATHS:

C1:
P2:
P3:
P4:
PS:
P6:
P7:
P8:
P9:

1,2,3,1
3,4,5,1
5,6,1
6,7.8,1
B,2
8,4
8,5
6,4
6,5

P10: 4,2

Figure 5.1.2c Paths, and Path Tree of the XOR's Circuit Graph.

heuristics outlined in Chapter 3 is applied, every bridge would be assigned a

left orientation. As a consequence of this orientation assignment one path

will be assigned to the metal layer in the layout. The orientation assignment

7

in Figure 5.1.2e also results in one path being assigned to the metal layer,
but it is nevertheless superior. The path in Figure 5.1.2e is actually a connec-
tion to the "-" port. Hence, this assignment does not result in an extra con-
tact. The example demonstrates that there is rcom for improvement in our
heuristic. The graphs contain the necessary information for making the
proper decisions.

A draﬁing of the topological circuit graph is shown in Figure 5.1.2f. The
transistor trees of the gate vertices A,B,N1,and OUT are also shown in Figure
5.1.2g. The result of the expansion step is shown in Figure 5.1.2h. The uncon-
nected gate terminal is not drawn. Figure 5.1.2i is a rectangular drawing of
the topology corresponding to the orientation/layer assignment of Figure

5.1.2e.

Finally, the topology is entered into a sticks design system, [Mosteller
81]. The compacted layout is shown in Figure 5.1.2j. A manually designed XOR
circuit is shown in Figure 5.1.2k. It is laid out in the fnost obvious way, i.e.,
following a drawing of the circuit schematic. The topology expressed in the
drawing of the circuit schematic is not random. A significant time was spent
on finding a good topology. The layout corresponding to this topology has one
extra contacts and a larger area. The topology generated with our approach

is not easily envisioned even hy an experienced designer.

78

ORIENTATION CONSTRAINT GRAPH

COMPENSATION GRAPHS

a
b
c:
d
e

30— o5
30— o6
30— o7
26— o5

26— o6

Vertices of degree O are omitted.

Figure 5.1.2d The Orientation Constraint Graph and Compensation Graphs.

ORIENTATION ASSIGNMENT ~ PLANE ASSIGNMENT
N ()

s

6
(1)

PATH VERTICES NOT
SHOWN ARE ASSIGNED
TO PLANE 1

Figure 5.1.2e An Orientation and Layer Assignment.

79

80

TOPOLOGICAL CIRCUIT GRAPH

1
7
A

1

=

15

POLY/DIFFUSION METAL

Figure 5.1.2f The Topological Circuit Graph.

TRANSISTOR TREE OF TRANSISTOR TREE OF

GATE VERTEX A GATE VERTEX N1
6 7
10
RO 6 1 7
3 13
TRANSISTOR TREE oF oot 1 9
GATE VERTEX B TRANSISTOR TREE OF
18 GATE VERTEX OUT
ROQT f:) S 14
19 8 8 f
. 3
4 ROOT 13
5

Figure 5.1.2g The Transistor Trees.

81

LAYOUT TOPOLOGY GRAPH W/0 THE EXTERIOR VERTEX

OLY/DIFFUSION é:!.\-/

Figure 5.1.2h Result of the Gate Vertex Expansion.

82

A DRAWING OF THE LAYOUT TOPOLOGY
LS —st
N1 N1

fpit |

1 B TR7 TRZL
1% — i — e —

out ouT TRS

—> ARROW INDICATES DRAWING DIRECTION

Figure 5.1.2i A Rectangular Drawing of the Layout Topology.

83

ouT

Figure 5.1.2j The Compacted Layout of the XOR, {Graph Approach).

85

= '
OUT

B

A

Figure 5.1.2k The Compacted Layout of the XOR, (Manual Approach).

In order to develop an understanding for the properties of layout topolo-
gies and their relationship to physical layouts a few experiments were con-
ducted in which our algorithms were "tuned” to render what was believed to
be poor layout topologies. The orientation assignment algorithm was
modified such that it will choose a topology having the "most" unsatisfied

orientation constraints. The compacted layout corresponding to such a topol-

ogy is shown in Figure 5.1.21.

86

We have also created an input specification of the XOR circuitl which
forces our algorithm to generate a circuit graph that is equivalent to the G.S.
model. The compacted layout corresponding to the "best” topology generat-
ed by our algorithm is shown in Figure 5.1.2m. The increase in layout area is

measurable.

ouT

Figure 5.1.21 The Compacted Layout of the XOR with "Poor" Topology.

87

R

e
D

2ezeza [

Figure 5.1.2m The Compacted Layout of the XOR (G.S. Model).

The number of contacts and the layout areas of the different topologies

is summarized in Figure 5.1.2n.

As a somewhat larger test case for our approach the pulse synchronizer
circuit in [Johannsen 81] was analyzed and laid out. Its circuit drawing is
shown in Figure 5.1.3a. A layout corresponding to the "best” topology gen-

erated by our algorithms is shown as a circuit drawing in Figure 5.1.3b.

88

TOPOLOGY #CONTACTS AREA

(LAMBDAZ)
GOOD 7 1060
MANUAL 8 1550
POOR 7 1408
G.S. 7 1402

Figure 5.1.2n Summary of the Quality of Various Topology of the XOR.

The two layout topologies are different. The topology of Johannsen's lay-
out implements the power and most signal nets as metal wires across the
layout. The vertical dimension of the layout corresponding to this topology is
bounded by the spacé for embedding the metal wires. The positional order of
the transistors are fixed by the horizontal power and clocks wires. A layout
based on this topology is less "compactable".

The topology éenerated by our algorithm uses metal wires as jumpers.
Most of the interconnects are assigned to the poly/diffusion layer. Transis—
tors are relatively free to be positioned anywhere in the layout. A layout
based on this topology is more "compactable”.

The exact dimensions of Johannsen's layout are not given. Based on the

minimum spacing between metal wires, and the minimum dimension of

89

MgDE

Clé)CK

$94d
e

Figure 5.1.3a The Schematic of a Pulse Synchronizer Circuit.

SET [: -
RESET - '] = yisim
CLOCK [[mia PSP TE—h g’-—
MODE w1
B 0 8 o= ul
. o
- L
R IE i) B 11l A) I

90

“ Fig. 5-3: Layout of Pulse Synchronizer

SET
RESET &5
MODE
CLOCK E

Figure 5.1.3b Two Layouts of the Pulse Synchronizer Circuit.?

depletion mode pull-up transistors, its dimension is estimated to be 200 by

80 Lambda. Lambda is a the basic spacing unit used in Mead and Conway's

S5The top layout is from Figure 5-3 of Johannsen's [Johannsen 81] report.

CoMP

ouT

91

design style[Mead,Conway B0]. Our layout is 130 by 55 l.ambda, about half the
area of Johannsen's regular layout.

We have included another example that has different interconnect pro-
perties than the previous examples. This example is a 4 bit carry chain cir-

cuit from Mead and Conway [Mead,Conway 80] with a total of 36 transistors.

The circuit is shown in Figure 5.1.4a.

CIN Cout

COLL LL I1

1" P2 K22 P3' K3 P4 K&

Q1 + PH 2
i 2| i

_TL

Figure 5.1.4a A 4 Bit Carry Chain.

n

22

When the power and clock wires are assigned to the metal layer, the
penalty for connecting to these wires via jumpers are small. We demonstrate
a method for treating the power and clock wires differently. The power and
clock wires are assigned to the metal layer a priori. The circuit specification
was modified to exclude the connections for the power and clock. We initially
applied our embedding algorithms to the circuit. Starting with this decompo-
sition of the circuit graph, we then added the edges for the power and clock
connections. The orientation assignment and layer assignment were carricd
out in the same way except that cross-overs of the power and clock wires by
other wires are assessed with no penalty. The layout of the 4 bit carry chain
circuit is shown in Figure 5.1.4b. Our layout is about 80 percent the size of a

compatible layout shown in Mead and Conway [Mead,Conway 80].

B X

RS e e R o 2 §%8)

e S TRl A0S haneeth 113539 ,,.-é}!! 5358
% 2 2

Pe’

-:I
%

s

Figure 5.1.4b A Compacted Layout of the 4 Bit Carry Chain.

93

The detail of the extension of our algorithms has yet to be worked out.
There is no difficulty to distinguish the power and clock nets from others
vbecause they are speciél in any design. We expect that our approach, with
the extension, is capable of embedding circuits with several hundred

transistors. The "bus'-type nets can be treated the same way.

CHAPTER 6

Conclusion

We have taken a graph theoretic approach to the circuit embedding
problem. Circuits are modeled as graphs. The circuit embedding problem is
solved as the graph embedding problem. Though the graph model and the
graph embedding algorithm are two separate issues, they must complement

each other to form a total viable solution.

We have discussed two other graph models; one proposed by VanCleem-
put, the other by Goldstein and Schweikert. We were not successful in locat-
ing any embedding algorithm that complements their models. A fundamental
difficulty with their models is that therc is a unique model for each decompo-
sition of gate nets. The number of models increases exponentially with the
number of transistors in the circuit. There is no obvious criteria for pruning

the number of models that must be analyzed by the embedding algorithm.

With our graph model, there is only one circuit graph for each circuit.
We achieve this result by being less explicit, i.e., transistors are not
represented explicitly. We have assumed that the "quality” of the topology of
lransistors with common gate signal is indcpendent of the valid nesting
structure of the transistors. It has been observed that the "quality” of layout
topology has direct bearing on the guality of the corresponding physical lay-

out. The definition of quality is subjective and it varies between designs.

Others [Wolf, et al 83] have observed that jumpers have an adverse
effect on the overall layout area of small circuits. A jurnper allows two wires

that belong to different nets to share the same planar space. The two wires

94

85

are in different layers. There are contacts at the ends of the jumper to
assure electrical connectivity.

Yith the current fabrication technique, the minimum center to center
distance of contacts is always larger than the minimum center to center dis-
tance of wires. The ratio of these two numbers, K, is typically 2 in today’s
NMOS technology. We can assert that the area of the "best"” layout of a circuit
corresponding to the three different graph models differ by less than a con-
stant factor R**2, where R is the larger of € or K. Since the set of topologies
of our model includes those of the G.S. and VanCleemput's models, there is a
potential to generate a "better" layout from our model (topologies). This
assertion is true because we can convert a layout that corresponds to a
topology from our model to a layout that corresponds to a topology from the
other two models by converting each four terminals transistor to a three ter-
minals transistor with a pseudo gate terminal implemented as a jumper. This
requires the expansion of each dimension of the layout by at most a factor of
R.

In general, we have observed that the compacted result of a layout with
"poor” topology can be much larger than the compacted result of a layout
with "good" topology. An attractive feature of the graph theoretic approach
is the systematic emulation of different layout topologies. A decision may be
made after many different topologies are considered. A hand designer usu-
ally considers only a few topologies before focusing on one. 1t is likely that a
superior topology may not be envisioned by the designer, but it can be found
by systematic emulation. The qualily of the result generated with the graph
approach can be superior to the traditional placement and routing

approaches because the traditional approaches lack the ability to systemati-

96

cally consider different topologies. We have observed that some layouts
derived from the topologies generated with our approach have 50 percent
less area compared to the corresponding hand layouts. Our samples are too
small to be statistically significant.

_ Our current embedding algorithm, with a fixed starting vertex, does not
emulate all topologies. It will, in general, generate a different hierarchy of
paths with a different starting vertex. A different hierarchy of paths will lead
to additional topologies. It has not been proven that it is possible to emulate

all topologies with our algorithms.

The computational complexity of deriving the graph model and.analyz-
ing it is better than O(n?), where n is the maximum of the number of vertices
and edges in the circuit graph (which equals the number of edges except for
dégenerate cases). In practice, the complexity is closer to O(n log n). The
intent is that the embeddings generated with our algorithm will be com-
pacted with some compaction algorithm. Hence, the computational complex-
ity of the overall process is dominated by the assignment of orientations to

paths and planes to edges, and the compaction process.

Denote C as the average number of transistors in a circuil that have
gate terminals belonging to the same net. C is typically 3. The number of ver-
tices of a circuit graph based on the G.S. model is about C times the number
of vertices of a circuit graph based on our model. The number of edges of a
circuit graph based on the G.S. model is about 1.5 times the number of edges
of a circﬁit graph based on our model. The execution time of our embedding

algorithm, in the best case, can be a factor of 3 faster than a circuit graph

based on the G.S. model.

97

The compaction problem is NP complete. Most compaction heuristics
are based on the iterative improvement technigue. The number of iterations
is usually linearly dependent on the number of transistors. The computa-
tional complexity for each iteration usually varies from linear to quadratic
with the number of transistors. Hence, compaction heuristics have guadratic
to cubic complexity.

The c;omplexity of traditional circuit embedding heuristics is the pro-
duct of the number of topologics for a given circuit and the compaction algo-
rithm complexity. Since the complexity for evaluating the quality of a topol-
ogy in our domain is (a small) constant, the overall computational complex-
ity of cur approach is proportional to the sum of the number of topologies
and the compaqtion algorithm complexity. Our approach can be several ord-
ers more efficient than the traditional approaches. The efficiency of our
approach depends on the assumption that there is a correlation between the

quality of a topology with the quality of the corresponding physical layout.

An important aspect of the layout topology problem that is not fully
addressed is the optimal assignment of orientation and planes. The domain of
the optimizing metric is the set of regions and exterior cycle of each plane.
Hence the optimizing metric is easy to compute. It is reasonable to expect
that the computation for the optimal topology can be based on the branch-
and-bound technique in which the validity test can be incorporated as a cri-
terion for pruning the decision tree. The on-line validity verification has con-
stant computational complexity.

‘The complexity of the planar compaction algorithm is about O(n%),

where n is the number of transistors. It is expected that efficient heuristics

can be developed for the orientation and layer assignment problem such that

B8

the complexity of the automated transformation from circuit to layoul is no

worse than O(n%).

Bibliography

Aho, A., Hopcroft, J., and Ullman, J., [1974], The Design and Analysis of Com-
puter Algorithms, Addison-Wesley, Mass., 178-187.

Auslander, L., and Parter, S., [1961], "On Imbedding Graphs in the Sphere," J
of Math. and Mech., vol. 10, No. 3, 517-523.

Ayres, R.F., [1983], VLSI Silicon Compilation and the Art of Automatic Micro-

chip Design, Prentice-Hall, NJ.

Bergmann, N., [1983], "A Case Study of the F.LR.S.T. Silicon Compiler,” in
Bryant, R.,(eds), Proc., Third Caltech Conference on VLS], Computer Science

Press, 413-430.

Bilardi, G., Pracchi, M., Preparata, F., [1981], "A Critique and an Appraisal of
VLSI Models of Computation,” in Kung, H., Sproull, B., Steele, G., (eds), VLSI

Systems and Computations, Computer Science Press, 81-88.

Breuer, M., [19"77]. "A Class of Min-Cut Placement Algorithms,"” Proc. of the
IEEE/ACM 14th DA Conf., 284-290.

Burstein, M., [1980], “An Approach to Design Automation of Custom LSI Chip
Layout Based on Heuristic Planarization and Annular Imbedding,” IEEE ICCC,

1056-1059.

Goldstein, A.J., and Schweikert, D.G. [1973], "A Proper Model for Testing the
Planarity of Electrical Circuits,” The Bell Sys. Tech. J., Vol. 52, No. 1, 135-142.

Heller, W., Sorkin, G., and Maling, K., [1982], "The Planar Package Planner for

99

100

System Designers,” Proc. of the IEEE/ACM 18th DA Conf., 253-260.

Hopcroft, J., and Tarjan, R., {1974], "Efficient Planarity Testing,” J. of ACM 21,

4, 549-568.

Johannsen, D.L. [1981], Silicon Compilation, T.R. 4530, Computer Science

Department, Cealifornia Institute of Technology.

Karp, RM. [1972], "Reducibility Among Combinatorial Problems,” in Miller,
R.E. and Thatcher J.W. (eds.), Complexity of Computer Computations, Ple-

num Press, New York, 85-103.

liao, Y., and Wong, C., [1983], "An Algorithm to Compact a VLSI Symbolic Lay-
out with Mixed Constraints,” IEEE Trans. on CAD of IC and Sys., Vol. CAD-2, No.

2, 62-69.

Mead,C., and Conway,L., [1980], Introduction to VLSI System,Addison-Wesley.

Mosteller, R. [1981], Rest - A Leaf Cell Design System, Silicon Structures Pro-

ject Report 4317, California Institute of Technology, CA.
&

Rubin,F., [1975], "An Improved Algorithm for Testing the Planarity of a
Graph,” IEEE Trans. on Computers, Vol. C-24, No. 2, 113-121.

Sahni, S., and Gonzalez, T., [1976], "P-complete Approximation Problems,’

JACM, 23, 555-565.

Seitz, C., [1979], "Self-Timed VLS] Systems,” The Caltech Conference on VLS],

345-355.

Shrobe, H., [1982], "The Data Path Generator,” Proc., Conf. on Advanced

Research in VLSI., Artech House, 175-181.

101

Siskind, J., Southard, J., Crouch, K., [1982], "Generating Custom High Perfor-
mance VLSI Designs From Succinct Algorithmic Descriptions,” Proc., Conf. on

Advanced Research in VLSI., Artech House, 28-40.

Wolf, W., Newkirk, J., Mathews, R.,, and Dutton, R., [1983], "Dumbo, A
Schematic-To-Layout Compiler,” in Bryant, R., (eds), Proc, Third Caltech

Conference on VLSI, Computer Science Press, 379-394.

VanCleemput, W.M. [1976], "Mathematical Models for the Circuit Layout Prob-

lem," IEEE Trans. Circuits and Systems, Vol. CAS-23, No. 12, 759-767.

