A Self-Timed Chip Set for Multiprocessor Communication

Douglas L. Whiting

Computer Science Department
California Institute of Technology

5000:TR:82

CALIFORNIA INSTITUTE OF TECHNOLOGY

Computer Science Department

Technical Report 5000

A Self-Timed Chip Set For Multiprocessor Communication

by

Douglas L. Whiting

Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

February 24, 1982

Table of Contents

1. INTRODUCTION
1.1 Motivation
1.2 Results
2. BUS STRUCTURE
2.1 The 1IP Chip
2.2 Message Protocol
2.3 The F-Box
2.4 Message Routing
2.5 Deadlock Avoidance
2.6 Observations
3. SIGNALLING CONVENTION
3-1 Wires
3.2 Arbitration
3.3 Request/Acknowlege Cycles
3.4 Observations
4. DESIGN OF THE 1IP CHIP
4.1 Design Methods
4.2 Parts
5. VERIFICATION TECHNIQUES
5.1 An Example
5.2 Obstacles
5.3 Possible Approaches
6. CONCLUSIONS
ACKNOWLEDGEMENTS

REFERENCES

i

W N e

24
25

31
33
35
38
40

41

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

il

List of Figures

: The IP Chip

A Local IP Bus

¢ Message Format

: Alias Sharing

: A Global Bus Using the F-Box

: Global Bus Topology

: Possible Extensions of the Bus Concept
: IP Signal Wires

: Local Equipotential Assumption

: The Bus controller Cﬁip

: Normal Data Transmission Cycle

Negative Acknowledge Cycle

: IP Chip Floor Plan
: Emptiness Detection in the Receiver Queue

: Receiver Logic Design

Transmitter Logic Design

An F-Box Constructed from IP Chips

: Verification of the Priority Logic

11
14
16
18
19
20
22
24
25
27
28
29

32

1
ABSTRACT

This paper describes a family of chips used to 1link multiple processors
together on a speed-independent communication bus. Sendership arbitration is
included as an integral part of the signalling scheme, incurring very little
overhead and providing a measure of fairness, The protocol allows for
one-to-many communication in which the sender must wait for all receivers to
respond to each datum transmitted. The width of the data bus is arbitrary,
and only three control wires are necessary for normal transmission cycles. In
order to alleviate congestion, the global bus may be divided into several
local buses by a method which is entirely transparent to the processor
software. Thus the bus topology may be reconfigured for each processing

network using these chips as building blocks.

Functional verification of speed-independent circuits is also discussed.
The problem is seen to be very complex, but some conclusions are drawn about

the type of tools which will be helpful in implementing self-timed systems.

1. INTRODUCTION

1.1 Motivation

An initial aim of this project was to deterﬁine what type of self-timed
building blocks might be useful for the VLSI age. One of the first
conclusions reached was that since small synchronous processing systems can be
built cheaply and reliably in today’s technology, any immediate contributions
from the self-timed discipline would have to come at a higher level than that
of a small system such as a microprocessor. It became clear that to achieve
the goal of having self-timed VLSI building blocks, the issue of communication

must be squarely addressed.

Self-timed signalling schemes have many advantages over synchronous designs
in connecting multiple processing units, since the composition of self-timed
components can be spepified entirely by the interconnection topology, withoﬁt
regard to the electrical parameters that determine worst-—case timing. Thus it
is much simpler to construct large computing systems if eagh subsystem has a

speed~independent interface.,

Historically, the most significant attempt to define a speed-independent
processing framework was the macromodules [3]. The internal logic of the
modules was implemented in standard ECL, mostly SSI, and each macromodule was
a emall box which could be inserted into a rack. Typical module functions
were arithmetic operations, Boolean operations, memory, registers, and control
flow (forks, joins, etc.). The overall system function was determined wholly
by the topology of interconnéction, some of which was implicit in the
placement within the rack and the rest of which was explicitly determined by

data and control cables. One nice feature was the ease with which concurrent

3
processing could be implemented. No knowledge about timing constraints was
needed, and the only rule was, "if it fits, it works." Unfortunately, the
concept of macromodules does not map well into the era of VLSI, where many
module functions can be placed on a single chip, and random interconnection by

cable is impossible.

More recently, various speed-independent bus schemes have been proposed to
allow independent processors to communicate with one another. An example is
the TRIMOSBUS [7], which allows for any sender on the bus to send a message to

one or more receivers, and wait for the last of them to respond.

1.2 Results

One product of this research is a bus comﬁunication technique which is quite
flexible and (for the most part) transparent to the processors. A typical
application is for message communication between microprocessors. Each sender
specifies a destination for its message, and, since receivers may have shared

aliases, there is the capability of one-to-many communication.

The bus is speed-independent. On each data transmission cycle of the

message, the sender interface waits until all participants have signalled
receipt of the data before initiating the next cycle. By employing such a

speed-independent signalling scheme, any number of ports may be put on the bus

without loading problems.

In addition to the goal of finding useful self~timed building blocks,
another purpose of this research was to produce an exemplary self-timed design
in MOS. The design was done in a top—down fashion. In the following

chapters, the bus specifications are presented in the order in which they were

devised: the global bus structure, the signalling conventions, and the
implementation in MOS. Finally, it was hoped that this experience in
self-timed design would provide insight into the type of tools needed for
functional verification of such designs, and chapter five presents some of the

conclusions reached in this area.

2. BUS STRUCTURE

2.1 The IP Chip
GUBUB
COﬂneCJLECl

Lo S Reg

R/I R:\/? Ack
WP 0Lk YMTR eBUS

Data| 5 |Data

Figure 2-1: The IP Chip

The fundamental unit of the bus is the inte?face—to-processor (IP) chip
(fig.2-1). On one side, it 1looks 3just 1like an ordinary microprocessor
peripheral, with clock, chip select, read/write, address, and data pins. On
the other side it is connected to the bus. Actually the chip consists of twé
almost independent halves, the receiver and the transmitter, which are
queue-connected between the bus side and the processor side. Outgoing
messages are written into the transmitter queue by the microprocessor and are
subsequently sent asynchronously on the bus. When a message comes into the
receiver queue, a processor interrupt is generated, and the message may then

be read.

Multiple IP chips are connected together on the bus side to form a

communication pathway. This bus may be thought of as a wheel, in which

IP

Communlication

wP IP g IP EI
us

IP Priority

Figure 2—-2: A Local IP Bus

sendership priority is passed serially around the rim, and communication takes

place in parallel through the hub (fig.2-2).

Upon obtaining sendership, control logic in the IP chip determines if there
is a message in the transmitter queue. An arbiter 1is wused to make the
decision, so the necessary synchronization between the processor side and the
bus side will never exhibit synchronization failure[5]. If the queue is
empty, sendership is immediately relinquished to the next IP chip in the ring;
otherwise, one message is sent, and then priority is passed. This ring
arbitration scheme inherently provides a measure of fairness: since at most

one message will be sent each time an IP obtains sendership, every bus

participant is assured that it will receive sendership within a finite time.

2.2 Message Protocol

address

data
data

EOM

Figure 2-3: Message Format

Each message consists of a destination address, followed by the data, and
concluded by a special end-of-message (EOM) character (fig.2-3). Note that
the width of the communication path is arbitrary, as the signalling scheme is
independent of bus width. For example, there could be eight data wires, plus
one wire for codes such as EOM. This implementation would enable
byte-parallel communication and in addition would allow for up to 256 special
codes. There would not be a need for so many special codes, so they could be

rather loosely encoded.

Each processor gives to its IP(s) an identity, which consists of an address
and an address mask. This initialization defines a set of addresses to which
each IP will respond. Since each IP may have several aliases, it is possible
to share these addresses with other IPs, thus allowing multiple receivers for

a single message. In particular, if there were eight (or less) IPs on the bus

with eight data wires and each IP masked all but one (unique) bit of the

IO 2(‘\

i

C 1 Y

Figure 2-4: Alias Sharing

address, tﬁen. a message could be directed to any subset of the IPs. In
general, however, alias sharing should be optimized for the communication flow
expected in the network. The alias overlap can be seen by plotting each IP’s
identity on a Karnaugh map. An example is shown in figure 2-4 for a data bus
width of four. In this example there are five IPs on the bus, and ﬁessages
can be directed to any of the following subsets: {1;2;3;4;5;2&3;26&4;284&5;

4&5}

At the beginning of each message, the receiver examines the destination
address and decides if it is one of the intended receivers for the message.

If so, the ensuing data will be put into the queue; if not, the receiver waits

for the next message to begin.

2.3 The F-Box

As IPs are added on the ring, message traffic on the bus may become
congested. To alleviate this problem, the F-box (F=filter or forward),
another member of the chip family (fig.2-5), may be inserted to split the
global bus into smaller local buses. Thus it filters the bus activity on one

side from the other by forwarding only inter-bus messages. If the processors

IP

l

[

ARVER

IP

Figure 2-5: A Global Bus Using the F-Box

10
can be split into groups with dense communication within the group and sparse

communication outside the group, the congestion is relieved by use of the

F-Box.

The F-box may be thought of as two bus halves of an IP chip stuck back to
back. The priority ring is broken on the global bus and reconnected to form
independent rings, one for each local bus. Each F-box or IP on the local bus
is then termed a port. Note that the F-box actually has two ports, one on

each local bus to which it is connected.

2.4 Message Routing

The routing of inter-bus messages was one of the first issues addressed in
the bus specifications. The first alternative was to provide explicit routing
information in the message itself. In this case there could be multiple
routes available, and the processors would have to choose the desired route.
Although~such a scheme imposes no constraints on the bus topology, it would

require each processor to have a knowledge of the topology.

The other choice was to insure that there is a unique route for each
message, thus relieving the IPs and the processors of the necessity of knowing
how the global bus is structured. This latter alternative was chosen because

of its ‘transparency’. A few of the consequences of this decision are

examined below.

First, unique routing imposes a constraint on the topology of the bus
network. If each local bus is viewed as a vertex and each F~box as an edge of
an undirected graph, there must be no closed cycles on the resulting graph

(fig.2-6). Otherwise, it would be possible for a message to be forwarded

11

F
i F
00O
i F
sl 00

Figure 2-6: Global Bus Topology

12
indefinitely by the F-boxes around a cycle. In fact, the only connection
between the receiver and transmitter halves of the F-box is due to the
necessity of inhibiting the receiver when the transmitter is active, so that

this problem can be avoided.

Also, since routing is entirely left up to the F-boxes, they must learn the
location of each receiver. This information is distributed by a very simple
mechanism. After a system reset, each IP chip must send out a message
consisting of a 1list of its aliases. This message is distinguished by a
special code used. as the destination address. These messages are ignored by
the IP chips but are forwarded by the F-boxes, which also take note of ’‘who is
where’ and store the information on-chip. After the powér up sequence is
complete, the F-boxes know from the address whether to forward a message

across buses.

Perhaps the most important result of the unique route scheme is that the
F-box is entirely transparent to the processors! That is, since the processor
is unaware of how messages are routed, no processor code changes are required
if an F-box is inserted in a bgs. This allows great flexibility in design,
since radical changes in bus topology may be made without affecting the

software.

2.5 Deadlock Avoidance

One system issue which must be handled carefully is that of deadlock.
Suppose for example that one of the recipients of a message has no room in its
queue. This receiver cannot acknowledge without losing the data, and thus the
entire local bus must wait until there is room in the queue. If the queue

will eventually be emptied, there is no danger of deadlock, although bus

13
throughput will suffer. However, suppose the receiver is an F-box, attempting
to forward the message to another local bus. If both sides of the F-box are
waiting for their queues to empty before giving an acknowledge, the two local

buses are deadlocked.

A straightforward solution is for each intended receiver to determine at the
beginning of the message 1if there is Toom in its queue to hold the entire
packet, and if there is not; the attempt to send the message must be refused
until the next time the sender is given priority. The simplest way to
implement such a scheme is to legislate a maximum message length. If a
receiver determines that there is not room in its queue for a maximum length
message, it intiates a negative acknowledge cycle, which informs the sénder
(and all other receivers) that this message transmission must be deferred.
Other mechanisms were considered to circumvent the problem, but all were much

more complicated and showed little promise of higher performance.

2.6 Observations

The modularity and flexibility offered by this communication structure are
truly impressive. Note that the scheme is independent of the signalling
convention involved and indeed could work effectively even for a synchronous
protocol. Also, no mention has been made of what type of processor is
involved. Thus, for example, the bus could be used to connect multiple
processors to a shared resource such as memory (fig.2-7a) by a suitable
modification to the processor side of the IP chip. The shared aliases may be
dynamically reconfigured, and it is possible to statically reconfigure the bus
topology to accomodate changes in number of processors and communication

bandwidth without affecting the software,

14

C g

MEN P2 > BUS

C b

\'%
.
—
U

uP [P

Cc D

[F— P IP|

(]
F
]

Figure 2-7: Possible Extensions of the
Bus Concept

15

Furthermore, this bus concept should remain viable as VLSI enables more and
more function to be put on one chip. For example, if the processor were
implemented as a single chip, it would be very attractive to include the bus
interface on=-chip also (fig.2-7b). In fact, if several such processors could
be placed on a single chip, the bus scheme could be used quite effectively
inside the chip, and an F-box connection brought out to connect multiple chips
(fig.2-7c). Such a scheme would take advantage of the Inherent disparity in
speed between on-chip and off-chip communication. Many alternatives are

conceivable which fit well into the general framework.

16
3. SIGNALLING CONVENTION

3.1 Wires

PU

Figure 3-1: IP Signal Wires

The several signal wires used in this self-timed protocol can be grouped

into data, priority, and control wires (fig.3-1). The number of data wires is

arbitrary, and they require no special termination. Each port on the local

bus has one priority in (PI) and one priority out (PO) wire, which are

connected in a ring as described below. The first control wire is the request

line (REQ), used by the sender to notify the system that there is valid data

available. This is a tri-state line and must be terminated with a negative

17
resistance so that it will retain its value even when no sender is driving it.
There are two acknowledge lines (ACK and ACK™), which are wire—anded, and are
used to return a system acknowledge to the sender that the data has been read
and a new value may be' placed on the bus. Note that the basic
request/acknowledge scheme requires three wires, just as in the TRIMOSBUS, and
indeed the signalling here is somewhat similar in flavor, although easier to
implement. Finally, the wire-anded negative acknowledge line (NEG) is used to

refuse a message if an intended receiver does not have room in its queue.

Although the signalling is speed-independent, in this implementation each
local bus is assumed to be an equipotential region (fig.3-2). Thus when the
transmitter senses that the data are valid, it can assume that the receivers
see the same values on the wires. Actually, the condition is slightly weaker:
as long as the transmission delay on the data wires is less than or equal to
the delay on the request wire, the assumption holds. Note that, if needed,
the F-boxes can be used as ‘repeaters’ to extend the effective range of the
equipotential region. If this solution were not acceptable, the protocol
would have to be encoded into the data, for example by a dduble—rail scheme
[6], which would add the requirement of a negative resistance on the data
lines. In the equipotential case, the only wire requiring negative resistance

is the Request line.

3.2 Arbitration

The sendership arbitration mechanism described in the previous chapter
requires only two pins per porf, regardless of the number of ports on the bus.
A transition on the priority input pin notifies the port that it is now the

sender and may transmit a message if one is available. When the message

18

O — equipotential region

g)

_

L

s

T

Figure 3-2: Local Equipotential Assumption

19
transmission is complete, or 1if there is no message to be sent, the port
causes a transition on the priority output pin, passing sendership to the next
port on the ring. Note that ’‘receive-only’ ports may be excluded from the

ring, thus removing any unnecessary overhead.

RESET
PO < (o

—/\\ R
VDD

PUHUP

lines

%

Figure 3-3: The Bus Controller Chip

Somewhere in the ring there must be an inverter to insure that sendership is
rotated indefinitely. This function will be performed by an extremely simple
member of the chip family, the bus controller chip (fig.3-3). On system
reset, to allow the priority ring to stabilize, this SSI chip will source a
logical zero. Once the reset is complete, the nor output switches high, and
the priority ring essentially becomes a ring oscillator. This chip will also
provide negative resistance on the requést line and pullup resistors for the

wire-anded acknowledge lines.

20

3.3 Request/Acknowlege Cycles

0

ACK \

Data

e

REQ

ACK~ /

Figure 3-4: Normal Data Transmission Cycle

Once a port has obtained sendership, each word (address, data, and EOM) is
sent in the following manner (fig.3-4). The sender first drives the data pins
until they are seen to be valid (this is where the equipotential assumption is
important). Some hysteresis is added to the comparator to help insure that
the data lines are well past the threshold voltage of all devices on the bus.
The sender continues to drive the data lines until the eystem acknowledge is
received, thus providing an additional margin of safety. Next, a transition

is put on REQ to notify all bus participants that there is valid data on the

bus.

Each receiver drives ACK with i1its two-cycle acknowledge, and uses the

complement to drive ACK™; thus the system acknowledge occurs only after both

21
acknowledge lines have changed state. This scheme effectively computes the
Muller C function of all the receiver acknowledges. Note that a port must
participate in the acknowledge even if it 1is ignoring the present message.
Internally, receivers and transmitters use a four-cycle scheme, but this is
converted to transition signalling at the pins to enhance performance. After
the EOM has been sent, the sender relinquishes priority to the next port on

the ring.

At the receiver end, the most interesting activity takes place on the
address cycle of each message. The previous EOM (or system reset) sets a flag
which 1s used to detect the address cycle. Each receiver compares the address
with its own identity to determine if it is to be a recipient of the ensuing
message. If there is not a match, the receiver ignores the packet, passively
acknowledging each datum until an EOM is seen. Otherwise, two possibilities
arise. When there is room in the receiver queue for a maximum length. message,
a normal acknowledge sequence i1s followed, and the receiver then puts the

message into its queue,

However, if there is not room in the queue, a negative acknowledge cycle
(fig.3-5) is initiated in order to avoid deadlock, as was explained in the
previous chapter. After pulling NEG low, the receiver waits until it senses
that the line has gone low, and then gives a normal acknowledge. Each time a
system acknowledge 1is received, the sender samples NEG. If there is a
negative acknowledge, the message is immediately terminated with a special EOM
cycle (special in the sense that the EOM word is not put into any receiver
queue), and sendership is relinquished to the next port on the ring. After

this EOM cycle, the receiver releases the NEG line, and all ports must delay

Dt g XXX address 7@(e XX
) , [/

REU
NEG
ACK
ACK~

e

23

their acknowledge of the follbwing address cycle until they have seen NEG
return to its inactive state. Another attempt will be made to send the
message the next time the port obtains sendership. Note that the assumption
of an equipotential region is invoked here, because the system must see the
transition on NEG before the system acknowledge 1is received. However,
adapting this scheme to a non~equipotential system would only require that the
system give an acknowledgement that it had seen the NEG transition before the
receiver could give its acknowledge. Obviously the equipotential case is much

more economic and thus was used in this implementation.

3.4 Observations

The above protocol 1is very efficient in its use of wires and transitioms.
For normal communication cycles, only three control wires are used, and only
three transition times are required: one to drive valid data onto the bus, one
to put a transition on REQ, and one to respond on ACK and ACK~ (changes take
place concurrently oﬁ these two lines). Unlike the TRIMOSBUS, the control
wires have the same function on each cycle, which greatly simplifies design of
the control logic. Debugging and testing are accomodated by the fact that the
bus can be single-stepped with pulldowns on the acknowledge lines; such a
facility could very easily be incorporated into the bus "control chip.
Sendership arbitration 1s automatically included and: incurs very little
overhead. Despite the simplicity and parsimony of this scheme, it provides a
fairly complex communication mechanism which will proceed at the maximum speed

allowed by the prevailing load and operating conditionmns,

24

4. DESIGN OF THE IP CHIP

4.1 Design Methods

A gate and MOS transistor level design of the IP chip has been completed,
and efforts are underway to have the chip laid out and fabricated in MOS. In
order to insure the speed-independence of the signalling scheme, 1t was
decided to approach the chip as a self-timed circuit from the bottom up. Only
in a few instances were concessions made to chip area by invoking a knowledge
of the actual timing involved. Very limited use was made of formal
asynchronous 1logic design techniques, since they ténd to be rather
combinatorial and do not take advantage of the pass structures available in
MOS. An intuitive approach was found to be more effective for design, but

formal techniques were used for analysis and verification.

<E___..
°CVR RCVR CONTROL

QUFUE ADDRESS
WP COMP.

INTER- B
CACE VTR XMTR CONTROL

QUEUE PRIORITY
LOGIC

Figure 4~1: IP Chip Floor Plan

The design split rather naturally into small modules with a minimal number
of interconnections (fig.4-1). These sections are: processor interface logic,
queues, address comparator, receiver control, priority logic, and transmitter

control. Several advantages result from this modularity. First, because the

25
number of interconnections i1is small, each module may be fabricated as a
separate chip, which greatly aids in testing the design, even though the final
system will be put on a single chip. Also, each modulg is simple enough to be
drawn easily on a single sheet of paper; thus the control flow mway be

understood intuitively for each section.

This modularity allows the use of abstraction, one of the most powerful
toois available in the design of self-timed systems. After functional
verification of a module, its internal characteristics can be abstracted away,
leaving only the behavior at its external interface. The function> of the
composition of several such modules can then be verified using only the
abstracted behavior of each module. For example, an arbiter is a fairly
complex analog circuit, but once it is certified to work, one may confidently
use arbiters in a design without concern about the internal workings of the

circuit,

4.2 Parts

n * MML MML

Figure 4~2: Emptiness Detection in the Receiver Queue

26

The queues are implemented as RAM-based FIFOs with speed—independent control
logic. To maximize circuit density, the RAM cells are dynamic and only the
control logic is static. Design of the FIFO reduces to creating one slice
which can then be cascaded to form queues of arbitrary length. The queue
length is left unspecified at present, although this parameter will have a
major impact on the maximum message length (MML). In order to detect easily
whether there is room for a maximum length message, the receiver FIFO will be
built in two stages (fig.4-2), the first of which will be of length MML and
thus will only need to be tested for emptiness. This first stage feeds into a
second queue, which provides additional buffering and will probably be several

times longer.

The processor interface is very elementary, consisting of a few latches, a
decoder, and some random logic. This interface is assumed to be synchronous,
and it will be the responsibility of the processor to insure that setup and
hold times are met. Fortunately, the logic is simple enough that this should
present no limitation for conventional processors. This section is one of the

rare pieces of conventional design on the chip.

The address comparator is used in the receilver during the address cycle of

each message, and 1s a good example of abstraction. Note that, in the

receiver design below, the comparator is shown as a box with only its external

connections made explicit.

By far the most complicated parts of the chip were the receiver and
transmitter control modules, which required several design iterations before
their correctness was verified. Use of four-cycle signalling on chip greatly

simplified the design, and the two-cycle interface at the pins was easily

J____MLK'" 5
l .
RO\

ACK

>
by
o
It . <]
=] . :
o :
. .,, .
- . \
E |
. ¥ 3
WLF‘.H' Z_ i B .
M
12 N » [
zl H
k>3
.Y
4 d F
‘:
e e <
> .
e
- “gj__—
o ¢ <
p tozws w P
o« - <

Figure 4-3: Receiver Logic Design

Discble
Reve

28

D‘JLL‘(_ Riv R‘

fo

Figure 4-4: Transmitter Logic Design

29
implemented with the aid of MOS dynamic storage nodes. No attempt is made
here to explain the internal workings of these sections, as they are rather
~

involved. However, the reader may find it valuable to study these designs

(figs. 4-3, 4-4) to get a feel for how self-timed logic maps into MOS.

The priority logic section (upper left portion of fig.4~4) is small enough
that the entire functional verification 1is presented concisely in the
following chapter, giving an excellent indication of how the verification was

done for the more complex modules.

[P uP [P

Figure 4-5: An F-Box Constructed from IP Chips

The extensive use of abstraction should be apparent in these designs. At
every interface between different sections, only the external behavior of the
modules is important. It is also important to note that almost all of these
modules can be used unchanged in the design of the F-box. In fact, the only
modification necessary is that, in the F-box, the address comparator becomes a
RAM which 18 used to store the topology informafion for the bus. Conceptually
this is only a minor change, although the implementation will require

substantial effort. Note that an F~box (albeit a slow one) can be implemented

30

as two IP chips with a processor in between to accomplish the forwarding
(fig.4-5). Thus the IP chip alone can be used to test the validity of this

bus concept.

31

5. VERIFICATION TECHNIQUES

5.1 An Example

Once an integrated circuit is fabricated, internal nodes are virtually
inaccessible, and it becomes exceedingly difficult to locate the cause of
functional errors, or even to determine whether the problem is in the design
or in the layout. Because mistakes must be found and eliminated before the
chip is actually fabricated, design and verification must be addressed as a
single issue. Generally, the functional verification of an integrated circuit
is accomplished by an analog circuit simulator or a logic simulator, using
information either supplied by the designer or extracted from éhe layout
itself. Unfortunately, since such tools implicitly model a circuit in the

time domain, neither technique is useful for speed-independent circuits.

Before describing some possible methods of automating the verification
process, perhapé it would be helpful to explain the manual technique used to
verify the design of the IP chip. The basic algorithm is to make a sequence
diagram (not a timing diagram) of the levels of each wire in the circuit,
starting from some initialized state. Arrows show the precedence relation
between events, and transitions which cannot be ordered by the arrows are
concurrent., This method is illustrated for the priority logic section of the

chip in figure 5-1.

Note that in the sequence sense, the acknowledge from fhe arbiter follows
fhe request input, although there may be activity on the other half of the
arbiter which takes an indefinite period of time. Concurrent activity is
represented by transitions occurring in the same vertical ‘slice’ of the

diagram. No transitions, other than those shown, are possible; thus the

PI -?—L—DO{LD“ PO
Vo

Rl Al

-

X %
A /

PO

_—

[WS

Figure 5-1: Verification of the Priority Logic

33

entire circuit behavior has been demonstrated. Unfortunately; this method
requires a large amount of intuition to see which transitions are enabled, and
also to realize that the circuit has returned to its original state, implying
further simulation is unnecessary. However, the designer can see from such a
diagram that the circuit is performing as intended, and, by excluding all
iﬁternal wires and invoking the transitivity of the ‘precedes’ relation, the

external behavior of the circuit may be abstracted for use at a higher level.

5.2 Obstacles

Obviously there is a need for a simulator for speed-independent circuits,
but it is unclear what algorithm could be used to implement such a simulator.
There are several approaches, each involving an attempt to characterize all
possible sequence behaviors of the circuit, assuming arbitrary delays in the
gates and/or wires. The problem can easily become combinatorial for all but
the simplest circuits, such as those in which there is only one possible
sequence of events (e.g.— a suitably initialized ring oscillator). Another
difficulty that arises in this characterization is the question of when to
terminate the simulation. For example, a ring oscillator has a infinite
gsequence behavior; however, this infinite behavior can easily be described as
repetition of a finite sequence. Therefore some means of pattern recognition

must. be included to stop the simulation reliably.

Concurrent activity dis the root of the problem. If a circuit has no
possible conéurrent transitions, there is only one sequence behavior. One way
to prohibit concurrency is to disallow the forking of wires in a circuit, so
that one transition can cause at most one other transition, and then

initialize the circuit to a state in which there is only one transition

34

enabled. However, such a limitation 1is hardly satisfactory, and concurrency

is. very desirable for high performance in integrated systems.

To get an idea of the magnitude of the problem, suppose a certain transition
enables n other independent chains of events, each chain consisting of k
ordered transitions; after all nk events there is a ‘join’, and the activity
again proceeds serially. The possible number of sequences 1is then
(nk)!/(k!)n, which grows faster than (n!)k. As an example, for n=2, k=3,
there are twenty possible behaviors. Further, if several such fork-joins
occur in series, the total number of sequences is the product of the
individual numbers. Obviously this rate of growth is tot#lly unacceptable, so

no successful algorithm can handle the problem in a brute force manner.

A subtlety should be noted at this point. The analysis of the priority
circuit above was done for the case of arbitrary gate delay, not arbitrary
wire delay. It is interesting to realize thag the priority logic circuit can
misbehave in the sequence sense if the latter is assumed. From a practical
standpoint, the model should only assume arbitrary gate delay, treating the
elements as if they all resided in an equipotential region. Where the
equipotential assumption breaks down, it is the responsibility of the designer
to insert ‘ghost’ buffer elements, effectively informing the simulator that a
wire delay is to be modelled. Thus, although the question of wire delay
versus gate delay is a fundamental one, it can be handled very well with a

little insight on the part of the designer.

There is a much more difficult problem to account for in a simulator,

however. It was noted in the previous chapter that assumptions about the

sequence behavior can occasionally be deduced from a knowledge of circuit

35

timing parameters. For example, in the receiver section of the IP chip there
is a two-input NOR gate which decodes the EOM character. It 1s implicitly
assumed that the output of this gate will be valid before the system
a;‘.knowledge is received and the data on the bus is changed (otherwise the NOR
gate requires longer to change state than two off-chip transition times).
Obviously this is a safe assumption from a practical standpoint. In making a
sequence diagram, the designer can show such an assumption by an ‘orange arc’,
an arrow drawn with a different color to indicate that the precedence is
enforced only in the timing domain, not in the sequence sense. However, the
simulator does not ‘know’ that such an assumption was made and will show the
consequences of this assumption being false as a possible misbehavior of the
circuit. Specifying an orange arc to the simulator is very complicated, since
it involves placing sequence constraints on independent elements, which
violates the principle of arbitrﬁry delay. No satisfactory method of

incorporating orange arcs 1into an automatic verification tool has yet been

devised.

Even ignoring orange arcs, the problem is still substantial. A major
difficulty arises 1in specifying exactly what characterizes the correct
behavior. The designer certainly knows what he intends the circuit to do, but
how can the simulator intuit that the observed behavior matches the desired
behavior, particularly when the intended sequence is usually specified only at

the external interface?

5.3 Possible Approaches
One method is to list any incorrect behaviors and have the simulator search

the possible sequences to insure that these behaviors are never observed.

36

This approach amounts to proving theorems about the circuit, and logic
programming languages allow such concepts to be expressed quite elegantly.
Unfortunately, the idea has a few major drawbacks. First, circuit
specifications are generally not given in terms of what it doesn’t do, and the
designer would have to be certain to list all incorrect behaviors for the
simulator to verify that a design functions properly. Also, such a technique
requires an exhaustive search through all possible behaviors, which was shown

above to be intolerable for most circuits of interest.

Ternary logic simulation has also been suggested as a solution by Bryant
[1]. The algorithm is linear in circuif gize and 1is very effective at
locating critical races in synchronous systems. Unfortunately, the underlying
model 1is so conservative that it flags any unclocked feedback path as a

critical race, and it is not clear whether this difficulty can be overcome.

Perhaps the most promising approach is to generate the possible behaviors in
a way which efficiently exhibits the concurrency (thus avoiding the
combinatorial explosion), allowing the designer to decide if the circuit
functions correctly. One method is the use of Petri nets, which provide a
very concise medium for describing concurrent activity. The gate level
description of a circuit may be mapped onto a Petri net, and simulation
consists of firing the enabled transitions [4]. Also, an algebraic method of
dealing with this type of eimulation has been developed by Young-Il Choo [2].
The main advantage of these methods is that they incorporate the ‘shuffle’ of
events as a single sequence. For example, the two distinct sequences (ab,ba)
are considered as one sequence (a]|b). One can see that these methods avoid
the combinatorial explosion encountered in the brute force enumeration

technique.

37

Speed-independent circuit implementation requires much iteration between
design and verification. For the IP chip, the iteration time was quite long
because verification was done manually. For larger designs this delay would
become intolerable, although abstraction could relieve some of the burden. An
automated self-timed circuit simulator would be invaluable, enabling the
effect of any modification to be seen very quickly, and drastically cutting
design time. Also, abstraction could be effectively utilized by verifying
each module and then extracting its external behavior for use by the simulator
at a higher 1level. It seems likely that the simulator will be fairly
interactive, utilizing the designer’s intuition to interpret and guide the
progress of the simulation. Research in this area will hopefully prove

fruitful in the future.

38
6. CONCLUSIONS
The major goals of this research were to discover self-timed building blocks
that would be useful in VLSI, to produce an exemplary self-timed design in MOS
technology, and to gain insight into the design and verification of self-timed

systems.

In the first area, a family of chips has been proposed to implement a
speed~independent communication bus. Because the signalling is

speed-independent, a bus may be composed from these chips without concern for
electrical problems. By considering both system aspects and the signalling
scheme, the bus specifications allow for a flexible yet powerful .
interconnection of multiple processing units (or other resources) with the
~capability of one-to-many comunication. Great care must be taken at the

. system level in choosing a topology which maximizes the communication

bandwidth, but it is clear that the chips do form a useful set of building

blocks for multiprocessing systems.,

The design of the IP chip has been prescnted, along with an overview of how
the design was verified. The modularity of this design allows fabrication of
the various parts to facilitate testing, and most of the F-box design can be
copied directly from these modules. The IP will soon be fabricated as part of

a multi-project chip.

The question of verification methods remains a very difficult one.
Unfortunately, conventional techniques of circuit simulation are not
applicable to self-timed systems, and since formal asynchronous désigﬁ
techniques prove unwieldy for large systems, intuition and abstraction are

often the only tools available for both design and verificaiton. There is a

39
great need for a simulator which can concisely present all possible sequence
behaviors of a circuit. The combinatorics of the problem dictate that
exhaustive enumeration of all behaviors is unfeasible, so some method must be
developed which takes concurrent activity into account in the sequence domain,
not in the time domain. Some progress has been made in this area, but no

workable algorithm has yet been discovered.

40
ACKNOWLEDGEMENTS
Special thanks are due to my advisor, Chuck Seitz, for his continued
guidance (and zealous proofreading) in this research. Most of the ideas
presented here were conceived during discussions held in his office, and his
enthusiasm for this project was truly infectious, In particular, the idea of
a two-port device (which became the F-box) was his inspiration, and this

concept was the key to developing such a flexible bus structure.

I also wish to thank Randy Bryant and Young-il Choo, with whom I spent many
hours discussing the problem of verification of self-timed systems. Many
thanks to everyone in the computer science department, for their willingness

to help and to be friendly.

I gratefully acknowledge the support of my wife and daughter, who have
always encouraged my research efforts. They also make home a nice place to

be.

The research described in this thesis was sponsored in part by the Defense
Advanced Research Projects Agency, ARPA Order number 3771, and monitored by

the Office of Naval Research under contract number N0Q014-79-C-0597.

(1]

(2]

(3]

[4]

(51

(6]

(7]

R.

Y.

We

c.

c.

c.

E.

41

REFERENCES

Bryant. A Switch-Level Simulation Model for Integrated Logic
Circuits. PhD thesis, MIT, 1981.

Choo. Concurrency Algebra: Towards an Algebraic Semantics of Petri

Nets. Display File #4085, Caltech, December, 1980.

A. Clark. Macromodular Computer Systems., AFIPS Conference
Proceedings 30:335-6, Spring, 1967.

L. Seitz. Asynchronous Machines Exhibiting Concurrency.

In Proceedings of the Project MAC Conference on Concurrent Systems
and Parallel Computation. ACM Conference Record, Woods Hole,
Massachusetts, June, 1970.

L. Seitz. System Timing. In Introduction to VLSI Systems by Carver
A, Mead and Lynn A. Conway, Chapter 7, pages 236-242.
Addison-Wesley, 1980.

L. Seitz. System Timing. In Introduction to VLSI Systems by Carver
A. Mead and Lynn A. Conway, Chapter 7, page 248. Addison-Wesley,
1980.

E. Sutherland, C. E. Molnar, R. F. Sproull, and J. C. Mudge. T h e

Trimosbus. In Proceedings of Caltech Conference on VLSI, pages
395-427. Caltech, January, 1979.

