CALIFORNIA INSTITUTE OF TECHNOLOGY

Computer Science Department

Silicon Structures Project
‘Technical Report 2686
The Caltech Intermediate Form for LSI Layout Description
by
Robert Sproull and Richard Lyon
revised by
Stephen Trimberger

February 11, 1980

Silicon Structures Project
sponsored by

Burroughs Corporation, Digital Equipment Corporation, Hewlett-Packard Company,

Honeywell Incorporated, International Business Machines Corporation, Intel

Carporation, Xerox Corporation, and the Natioal Science Foundation.

Copyright, 1980, Addison-Wesley Publishing Company, Inc., Reprinted with permission of Lhe

publishar. Mead/conway, Introduction to VLSI Systems, Chapter 4, pages 115-127, section

4.5, contributed by Roberi F. Sproull, Carnegie~Melleon University, Pitlgburgh, Pepn., and

Richard F. Lyon, XEROX PARC, Palo Alto, CA.

The Caltech Intermediate Form for L.SI Layout Description

The Caltech Intermediate Form (CIF Version 2.0) is a means of describings graphic
items (mask features) of interest to LSI circuit and system designers. Its purposeis
to serve as a standard machine readable representation from which other forms can
be constructed for specific output devices such as plotters, video displays, and
pattern-generation machines. The intermediate form is not intended as a symbolic
layout language: CIF files will usually be created by computter programs from other
representations, such as a symbolic Jayout language or an intevactive design
program. Nevertheless, the form is a fairly readable text file, in order to simplify

combining files and tracing difficulties.

~The basic idea of the form is to specify literally every geometric object in the design
using ample precision. Use of this form provides participating design g#rouns easy
access to output devices other than their own, enables sharing designs with others,
allows combining several designs to form a larger chip, and the like. Tt is not
- necessary for all participating groups to implement the entirve sel of features of CIF,
as Jong as their programs and documents contain warnings about unintglennented
fuvuctions; nevertheless, the syntax must be correctly interpreted by all programns

that read CIF, to assure a reasonable result.

CIF thus serves as the common denominator in the descriptions of various integrated
system projects. No matter what the original input methods are (haud layout and
coding, or a design system), the designs will be translated to CIF as an intermediate,

before being translated again to a variety of formats for output devices or other

design aids.

The original CIF was conceived by Ivan Sutherland and Ron Ayres in 1976.
Subsequent improvements were contributed by Carlo Sequin, Douglas Faivhairn, and

Stephen Trimbevger.

This specilication is divided into four parts: a description of the syntax of the forin,
a descripiion of the semanfics, an explanation of the transformations used, and a

discussion of the conversion of wires to boxes.

Syntax

A CIF file is composed of a sequence of characters in a limited character set. The file
contains a list of commands, followed by an end marker; the commands are

separated with semicolons. Commands are:

Command Form
Polygon with a path P path
Box with length, width, center, and directtion
(direction defaults to (1,0) if omitted) B integer integer point point
Round flash wiih diamefer and ceniler R dinteger point
Wire with width and path W integer path
Layer specification L shortname

Start symbol definition with index, a, b

(a and b both default to 1 if omitted) DS dinteger integer integer
Finish symbol. definition DF
Delete symbol definitions oD integer
Call sywbo C inteyer transformation
User extepsion digit userText
Comments with arbitrary text (commentText)
End marker E

A more formal definition of the syntax is given below. The standard notation
proposed by Niklaus Wirth [1] is used: production rules use equals = to relate
identifiers to expressions, vertical bar | for or, and double guotes " " around
terminal characters; curly brackets { } indicate repeiition any number of times
including zero; square brackets [] indicate optional factors (i. e. revo oy ane
repetition): parentheses () are used for grouping; rules are terminated by period.
Note that the syntax allows blanks before and after commands, and blanks or other
kinds of separators (almost any character) before integers, etc. The syutax reflects

the fact that symbol definitions may not nest,

]

cifFitle { blank } { [command] semi } endComnand { blank }.

command = primCommand | defDeleteCommand | defStartCommand semi
{ { blank} [primCommand] semi } deffFinishCommand.

primCommand = polygonCommand | boxCommnand | roundfFlashCommand |
wireCommand | laverCommand | callCommand |
userExtensienCommand | commentCommand.

polygonCommand = P opath,

boxCommand “B" dnteger sep integer sep point [sep point].

roundf TashCommand "R" dinteger sep pcint.

wireCommand "W" dnteger sep path.

JayerCommand "L { blank } shortname.

defStartCommand "D" { blank } “S" dinteger [sep integer sep integer J.

defF inishCommand "D" { blank } “F".

defbeleteCommand "D" { blank } "D" integer.

callCommand "C" dnteger transformation.

usertExtensionCommand digit userText.

commentCommand (" comnentText ")".

"

wononon

"now

o

1t

endCommand = "ET.
transformation = { { blank} ("T" point | "M" { blank } "X" |
"M" { bYank} "Y" | "R" point) }.
path = point { sep point }.
point = sinteger sep slinteger.
sfnteger = {sep } ["~" 7 dntegerD.
integer = { sep } integerD.
integerD = digit { digit }.
shoriname = clecedJ{c]l[c].
c = digit | upperChar.
userText = {userChar }.
commentText = { commentChar }
commentText "("commentText ")" commentText.
semi = { blank } ";" { blank}.
sep = upperChar | blank.
d'lq'lt = IIOH } “1" | nzu ‘ n3n ' "4” ’
11511 I nﬁu [u7t| , usu ‘ "9“.
uppel‘Char = uAn ' neu | wenn ‘ . t uzn'
blank = any ASCII character except digit, upperChar,
u_n u(n n)n gr M.u
k]) 1 »
userChar = any ASCII character except ";".
commentChar = any ASCII character except "“(" or ")".
Semantics

The fundamental idea of the intermediate form is to describe unambiguously the
geometry of patterns for LSI circuits and systems. Consequently, it is Linportant
that all readers and writers of files in this form have exaclly the same
uuderstanding of how the file is to be interpreted. Many of the decisions in
designing the file format were made to avoid ambiguity or small but troublesome
errors: floating point numbers are avoided; there are no iterative constr ucts, though

there may be in future additions to CIF.

A simple file format might include only primitive geometric constructs, such as
polygons, boxes, flashes and wires. Unfortunately, the geometric dezcription of a
chip with hundreds of thousands of rectangles on it would require an immense file
of this sort. Consequently, we have made provision for defining and calling

symbols; this should reduce the size of the file substantially.

It is important that programs processing CIF files operate cautiously, main taining a
constant vigilance for mistakes or entries that will not be processed properly. The
description below mentions implementation suggestions or cause for caution inside
brackets[J.

-

Measurements. The intermediate form uses a right-handed coordinate system
shown in Figure 1, with x increasing to the right and y increasing upward.
(Directions and distances are always interpreted in terms of the front gsurface of the
finished chip, not in terms of the various sizes and mirrorings of the intermediate
artifacts.) The units of distance measurement are hundredths of a micron (um);

there is no limit on the size of a number. [Programs reading numbers from CIF files should
check carefully to be sure that the number does not overflow the number of bits in the

internal representation used, and should specify their own Timits, if any.]}

Directions. hRather than measure rotalion by angles, CIF uses a pair ol integers to
specify a "direction vector.” (This eliminates the need for trigonometrvic functions
in many applications, and avoids the problem of choosing units of angutar measure.)
The first integer is the component of the direction vector along the N axis; the
second integer along the y axis. Thus a direction vector pointing to the right (the
+x axis) could be represented as direction (1 0), or equivalently as direction (17 0);
in fact, the first number can be any positive integer as long as the second is zero., A
direction vector pointing NorthEast (i.e., rotated 45 degrees counterclockwise from

the x axis) would have direction (1 1), or equivalently (3 3), and so on. [A (0 0)

direction vector may be defaulted to mean the +x axis; a warning should be generaied].

Geometric primitives. The various primitives that specify geometric objncts are not

intended to be mutually exclusive or exhaustive. CIF may be extendced occasionally
to accommodate more exotic geometries. At the same time, it is not neceszary to usé
a primitive just because it is provided. Notice in the examples brlow that lower
case comments and other characters within a command are treated as blanks, and

that blanks and upper case characters are acceptable scparators,

“Bm- Box Lenath 25 Width 60 Center 80,40 Direction -20,203 (or B25 60 80 40 -20 203)%
The fields which define a box are shown graphically in Figure 1. Center and
direction (optional, defaults to +x axis) specify the position and orientation of the
box, respectively. Length is the dimension of the box parallel to the direction, and
Width is the dimension perpendiciular to the direction.

Polygons: Polygon A 0,0 8 10,20 C -30,40; (or PO 0 10 20 -30 40;); A polygon is an
encinsed region determined hy the vertices given in the path, in order. For a
polygon with n sides, n vertices are specified in the path (the edge connecting the

last vertex with the first is implied; see Figure 2). {Programs that try to interpret

polygons may place varjous restrictions on their paths; no set of constraints has been

generally accepted, and no program currently exists for converting completely goeneral

polygons te pattern generator output.]

Flashes: RoundFlash Diam 200 Center -500,800; {or R200 -500 $00;); The diameter of a
flash is sufficient to specify its shape, and the center specifies its position. (see

Fig11r53 2). [Some programs may substitute octagons, or other approximations, for round
flashes.]

‘Wires: Wire Width 50 A 0,0 B8 10,20 C -30,40; (or W50 0 9 10 20 -30 40:); Tt is
sometimes convenient to describe a long, uniform width run by the path along its
centerline. We call this construct a wire (see Figure 2). An ideal wire is the locus
of points within one half-width of the given path. Each segment of the ideal wire
therefore includes semicircular caps on hoth ends. Connecting segments of the wire
is a transparent operation, as is connecting new wires {0 an existing one: the
semicircular overlap ensures a smooth connection between segments in a wire and
between touching wires, [For output devices that have a hard time constructing circles,
we approximate the ddeal wire with squared-off ends. Notice that squared-off ends work
nicely for segments meeting at right angles, but cause problems if wires or wire segments
are connected at arbitrary angles. A way to circumvent this problem is to converl, prior 1o
output, any wires in a file into connected sets of boxes of appropriate Tengih, width, angle
and center position (Figure 3). The width of cach box is5 the same as the width of the wire.
The Jength of the boxes must be adjusted to minimize unfilled wedges and overlapping "ears',
An algoritbm for constructing boxes from a wire description is given in a latnr subsaction.

If the wire is specified within a symbol definition, the approximation need he computed only

ance, and can ther he used each time the symbol s instantiated.]}

Layer specification: Layer 0 pmos diffusion; (or LNDi); Fach primitive geometry
element (polygon, box, flash, or wire) must be labeled with the exact name of a
fabrication mask on which it belongs. Rather than cite the name of the layer for
each primitive separately, the layer is specified as a "mode" that applivs to all
subsequent primitives, until the layer is set again (layer mode is preserved across

symbol calls which are discussed later).

The argument to the layer specification is a short name of the layer. Names are used
to improve the legibility of the file and to avoid interfering with the vavious biases
of designers and fabricators about numbers (one person's "first layer” is another's
"last"). [The iﬁtention of the layer specification command is to label Tecally ithe layer for

a particular geometry. It is therefore senseless to specify a box, wire, polyagon or flash

if no layer has been specified. In order to detect this error, the comwnand LIZZZ is

implicitly inserted at the beginning of the file, and as the first ccmmand of a symbol

definition (DS: see below). Any attempt 1o generate geometric output on layer ZZ7Z wil}

result in an error.]

It is important that layer names be unique, so that combining scveral files in
intermediate form will not generate conflicts. The general idea is that the first
character of the name denotes the technology and the remainder is mnemonic for

the layer, At present, the following layers are defined:

NO NMOS Diffusion

qP NMOS Polysilicon

NC NMOS Contact Cut

NM o HMOS Metal

NI NMOS depletion mede Implant
NB NMOS Buried contact

NG NMOS overGlass openings

New layer name layer names will be defined as needed.

[Programs that read CIF should check To be sure thal layer names used do in tactl correspond
to fabrication masks being consiructed., However, the file may cite layer names not used in

a particular pass over the CIF file. It would he helpful for the program to provide a 1ist

of the layer names that it dgnored.]

Symbols. Because many LSI layouts include items that are often repeated, it ig
helpful to define often-used items as “"symbols.” This facility, together with the
ability to "call" for an instance of the symbol to be generated at a specific position,

greatly reduces the bulk of the intermediate form.

The symbol facilities are deliberately limited, in order to avoid the m 1‘1:;}1).‘t_>ominng
difficulties of implementing programs that process CIF files. For exomple, symbols
have no parameters; calling- a symbol does not allow the symbol geometry to be
scaled up or down: there are no direct facilities for iteration. The main reason for
symbol facilities is to limit the file size: if the symbol mechanism is not adcquate
for some application, the desired geometry can still be achieved with the use of

symbols, and more use of explicit geometrical primitives, [Symbols need nol be used al
all; this eliminates the need for intermediate storage for symbol definitions, hut results
in larger design files. Machines which must process a fully-instantiated representation of
a layer (such as pattern generators) might only accept CIF files without symbol definitions,
to reduce the cost of imolementation. Therefore, it would be useful 1o have a proaram that

would convert general CIF files to fully instantiated CIF files, and maybe to sort by iaycr,

location, or whatever.]

The ability to call for iterations (arrays) of symbols is not provided in CIF Version
2.0. This is primarily due to the difficulty of defining a standard method of
specifying iterations, without introducing machine-dependent computation
prohlems. It is possible to achieve a great deal of file compaction by deflining
several layers of symbols (e.g. cell, row, double-row, array, etc). However, the

ability to iterate symbol calls is a likely prospect for a future addition to CIF.

Defining Symbols: Definition Start #57 A/B = 100/1; ... ; Definition Finish;y {or DS57

100 1; ...;DF;); A symbol is defined by preceding the symbol geometry with the DS
command, and following it with the DF command. The first argument of the DS

command is an identifying symbol number (unrelated to the order of listing of the
symbol in the file).

The mechanism for symbol definition includes a convenient way to scale distance
measurements. The second and third arguments to the DS command are callrd a and
b respectively. As the intermediate form is read, each distance (position or size)
measurement cited in the various commands (polygons, boxes, flashes, wires and
calls) in the symbol definition is scaled to (a*distance)/b. For example, if the
designer uses a grid of 1 micron, the symnbol definition might cite all distauces in
microns, and specify a = 100, b = 1. Or the designer might choose lambda as a
convenient unit. This mechanism reduces the number of characters in the file by
shrinking the integers that specify dimensions and may improve the lngibility of
the file (it does not provide scaling or the ability to change the size of a svmbol

called within the definition).

Definitions may not nest. That is, after a DS command is specified, the terminating

DF must come before the next DS. The definition may, however, contain calls to

other symbols, which may in turn call other symbols., [If a definition redefines a
syinbol that already exists, the previous definition is discarded: a warning merssage should
be generated. When several people contribute to a design, some symbol management s

therefore necessary: see Deleting symbol definitions below.]

There is only one restriction on the placement of symbol definitions in the file: a
symbol must be defined before its instantiation becomes necessary. This constraint
can be satisfied by placing all symbol definitions first in the file, and then calls on
the symbols. In fact, it is often convenient to have the file consist exclusively of

symbol definitions and ONE call on a symbol. This call will be the last comumand in

the file before the end command. [A CIF file is meant to be dinterprefed 1in one pass.
Symbol calls not embedded within definitions are meant to be instantiated before any more of
the file 1is read. This is significant in some cases. See also the note following the first

paragraph of Deleting symbol definitiens, below.]

Calling symbaols: Call Symbol #57 Mirrored in X Rotated o -1,1 then Transiated 1o 10,20,

The C command is used to call a specified symbol and to specify a transformation
that should bhe applied to all the geometry contained in the symbol definition. The
call command identifies the symbol to be called with its "symbol index", established

when the symbol was defined. [The symbal dndex refers to whichever cell happens ta be
defined with that index when the symbol is called, not the symbol that might have been
defined with thal index when the symbol in quesiion was defined., Symbo) calls are resolved
in the context 1in which they are called, not ithe context in which they are written. See

also the note following the first paragraph of Deleting symbol definitions, below.]

The transformation to be applied to the symbol is specified by a list of primitive

transformations given in the call command. The primitive transformations are:

T point Transtate the current sywmbol oriygin te the point.
M X Mirror in X, i1.e., multiply X coordinate by -1.
MY Mirror in Y, i.e., multiply Y coordinate by -1.
R point Rotate symbol's x axis to this direction.

Intuitively, each coordinate given in the symbol is transformed according to the
first primitive transformation in the call command, then according to the second,
etc. Thus "C1 T500 0 MX" will first add 500 to each x coordinate from symbol 1,
then multiply the x coordinate by -1. However, "C1 MX T500 0" will first
multiply the x coordinate by -1, and then add 500 to it; the order of application of
the transformations is therefore important. In order to implement the
transformations, it is not necessary to perform each primitive operation separately;

the several operations can be combined into one matrix multiplication (see the

subsection on transformations).

Symbol calls may nest; that is, a symbol definition may contain: a call to another
symbol., When calls nest, it is necessary to "concatenate” the effects of the
transformations specified in the various calls (see the subsection transformations).
[There is no sensible way in which a symbol may be invoked recursively {i.e., call itsedf,
either directly or indirectly). Programs that read the intermediate form should check that
no recursion occurs. This can be achieved by retaining a single flag with each symbol to
indicate whether the symbol is currently being instantiated: the flags are initialized lo

"false". When a symbol is about to be instantiated, we check the flag: if it is "true", we

have detected recursion, print an error message and do not perform the call. Otherwise, we

mark the flag "true", instantiate the symbol as specified, and mark the flag "false" when

the tnstantiation is complete.]

Layer settings are preserved across symbol calls and definitions. Thus, in the

sequence:

LNM;

R6 20 0;

C 57 745 13,
DS 114...;
DF; :
LM

R3.0 0;

the second LNM is not necessary, regardless of specification of symbols 57 and 11,

Deleting symbol definitions: Delete. Definitions greater than or equal ta 100; {or

0B100;); The DD command signals the program reading the file that all symbols with
indices greater than or equal to the argument to DD can be "forgotten” -~ they will
not be instantiated again. This feature is included so that several intermediate form
files can be appended and processed as one. In such case, it is essential to delete
symbol definitions used in the first part of the file both because the definitions may
conflict with definitions made later and because a great deal of storage can usually

be saved by discarding the old definitions. [The proper interprefation of fhe DD is as
text removal. A1l definitions of symbols greater than or equal to the argument of the 00
are removed. Furiher processing of the file continues as if the text of those symbols had
not beéen dncluded 1in the file. Thus, a symbol call always refers to the most recent
definition the symbol with the given symbol index. This can be seen in the following

example in which the call on symbol 1 produces a call on the second definition of symbol 2:

0s 2: ... OF:

Ds 1: ... C 2: ... DF:

Do 2: {Def 2 is deleted and removed):

DS 2: DF: (This is now the only version of symbol 2):
C 1: {This calls symbol 1 which calls the new symbol 2):]

The argument to DD that allows some definitions to be kept and some deleted is
intended (o he used in conjunction with a standard "library" of definitions that a
group may develop. For example, suppuse we use symbol indices in the rangs 0 to
99 for standard symbols (pullup transistors, contacts, etc.) and want to design a
chip that has 2 student projects on it. Each project defines symbols with indices

100 or greater, The CIF file will look like:

-10-

(Definitions of Tibrary symbols):

DS 0 100 1;

(...definition of symbol O in library);
DF 5

DS 1 100 14

{ ...definition of symbol 1);

DF

(...remainder of library);

{Begin project 1);

DS100 100 13

(...first student's first symbol definition};
OF 3

DS109 100 14

{ ...first student's main symbol definitien):

DF 4

€108 T403 -110; {call on first student's main symbol);

001003 {preserve only symbols 1 to 99);
(Begin project 2};

psS106 100 13

{ ...second student’s first symbol definition);
DF 3

0S113 100 13

(...second student's main symbol definition);
Cl T-3 45; (call on library symbol, still available);
DF 3

€113 T401 06; (call on second student's main symbol);

E

User expansion: 3'SYMBOL.LIBRARY'; 5:NONSTANDARD DESIGN RULES:LAMRODA - 4.0; Several

command formats (any command starting with a digit) are reserved for expansion
by individual users; the authors of the intermediale form agree never 1o use these
formats in future expansions of the standard format., For example, private
expansions might provide for (1) requesting that another file be "inserte:l" at this
point in the processing, thus simplifying the use of symbol libraries; (2) inserting
jinstructions to a preprocessor that will be ignored by any program reading only
standard intermediate form constructs: ore (3) recording ancillary information or
data structures (e.g., circuit diagrams, design-rule check results) that are to be
maintained in parallel with the geometry specified in the style of the interinediate

form.

Comments: (HISTORY OF THIS DESIGN:); The comment facility is provided simply to

make the file easier to read. [It is possible to deactivate any number of compands by
simply enclosing them within a pair of parentheses, even if they aiready inciude balanced

parentheses.]

-11-

End Command: End of file. The final E signals the end of the CIF file. {Programs
that read CIF should gave an error message if ihe file ends without an End Command, or a

warning if more text other than blanks follows the €.]

Data Conventions for Transporting CIF Code

The description of CIF syntax makes no mention of record lengths or line lengths or
end-of-line information. However, in order to transport CIF files among

installations, it is necessary to standardize the data representation.

CIF files are composed of ASCII characters. CIF should be implemented without a
line length or record lemngth restriction. However, if this is impossible, CI¥F
processing programs should accept lines at least 132 characters long. Every
installation should be able to produce CIF output with lines less than 132
characters. Since ends of lines are treated as blanks in the CIF syntax, a program to

break CIF lines is easy to write,

12~

‘Transformations (see also [2])

When we are expanding a symbol, we need to apply a transformation to the
specification of an item in the symbol definition to get the specification into the
coordinate system of the chip. There are three gorts of measurements that must be
transformed: distances (for widths, lengths), absolute coordinates {(for "points” in

all primitives) and directions (for boxes).

Distances are never changed by a symbol call, because we allow no scaling in the

call. Thus a distance requires no transformation.

A point {x,y) given in the symbol is transformed to a point (x',y') in the chip

coordinate system by a 3x3 transformation matrix T:

[x' y' 1] = [xy11 7T

[It is a good 1idea to check either the last column of T, or the 1 at ihe end of the

transformed vector, even though they never need to be computed.]

T is itself the product of primitive transformations specified in the call: T = T1 T2
T3, where T1 is a primitive tfransformation matrix obtained from thoe first
transformation primitive given in the call, TZ from the second, and 13 tfrom the
third (of conrse, there may be fewer or more than 3 primitive transformations
specified in the call.) These matrices are obtained using the following templates for

each kind of primitive transformation:

T ab. Tn:l 0 0
9 1 0
a b 1
M X. Tn = ~1 0 0
0 1]
0 0 1
M Y. Tn= 1 0 [y}
0 -1]
0 0 1
Rab. T_= a/e b/e 0

~b/c a/c 0 where ¢ = Sqrt(az + p?)

Transformation of direction vectors (x ¥y) 1is slightly different than the

transformation of coordinates, We form the vector [x y 0], and transfovm it by T

-13~

into the new vector {x' y' 0]. The transformed direction vector is simply (x' y").
[Note that some output devices may require rotations to be specified by angles, rather than
direction vectors. Conversion into this form may be delayed until nacessary to aenerate the

output fFile. Then we calculate the angle as ArcTan(y/x}, applying care when x=0.]

Nested calls require that we combine the transformations already in effect with
those specified in the new call. Suppose we are expanding a symbol a, as describnd
above, transforming each coordinate in the symbol to a coordinate on the chip by
applying matrix Tac. Now we encounter, in a's definition, a call to be. What is to
happen to coordinates specified in b? Clearly, the transformations specified in the
call will yield a matrix Thba that will transform coourdinates specified in symbol b to
the coordinate system used in symbol a. Now these must be transformed by Tac to
convert from the system of symbol a to that of the chip. Thus, the full

transformation becomes

fx' y' 1] = [xy 1} 7Tbha Tac

The two matrices may be multiplied together to form one transformation The = (T"ba
Tac) that can be applied to convert directly from the coordinates in symbol b to the

chip. This procedure can be carried to an arbitrary depth of nesting.

To implement transformations, we proceed as follows: we maintain a "current
transformation matrix" T, which is initialized to the identity matrix., We use this

matrix to transform all coordinates. When we encounter a symbol call, we:

-1. "Push" the current transformation and layer name on a stack.

Z. Set layer-name to ZZZZ.

3. Collect the individual primitive transformations specified in
the call into the matrices T1, T2,T3,etc.

4, Replace the current transformation Twith T1 T2T3 ... T:

i.e,, premultiply the existing transformation by the new primitive
transformations, in order).

5. Now process the symbol, using the new T matrix,

6. When we have completed the symbol expansion, "pop" the saved
matrix and layer name from the stack., This restores the

transformation to its state immediately before the call.

14~

Decomposing Wires Into Boxes

The following algorithm for decomposing wires into boxes was developed by Carver
Mead, and first implemented at Caltech by Ron Ayres; it was further modified to be
consistent with the use of direction vectors, to allow more general path lengths,
and to avoid use of trigonometric functions. [Note that this decomposition covers more
area than the locus of points within w/2 of the path for small angles of bend, bul less area
for sufficiently sharp bends; in particular, if a path bends by 180 degrees {reverses) it
will have no extension past the point of reversal (it is missing a full semicircle). Other

decompositions are possible, and may betier approximate the correct shape.]

Let the wire consist of a path of n points pl,...,pn’
Let w represent the width of the wire.

"Initialization:"
If n = 0 THEN DONE; “no path”
IF n = 1 THEN
{MAKEFLASH[Diameter <- w, Center <- plj; "single-point gets a flash";

DOME ;¥4
i <~ 1;
OldExtension <— w/2; "initial end of wire"
Segment <~ p, - Py "Segment is a veclor (a point}"

" popConditions:”
FOR pgy Py 0 path UNTIL p, ., is Tast DO
"Calcutate the box for the segment from p. tn p. ,:"
IF Pivy is last THEN {Extension <{- w/2; “end of wire")
ELSE
{ "compute Extension for intermediate point:”
MextSegment Piip = Pyypi "next vector in path”
T <— MATRIX[XESegmen 5, ~Y[Segment],
Y[Segmentd, X[Segment] J;
"T transforms Secoment to +x axis™
gend <- MULTIPLY[MNextSegment, T]; ‘"relative direction vector"
"if Bend 1s (0 0), cdelete n., ., reduce n, and siart over"
Extension <~ w/2 % {ABS[Y[8end]]/
{ LENGTH[Bend] + ABS[{X[Bend]]));
33
MAKEBOX [{Length {— LENGTH[Segment] + Extension + OldExtension;},
{Width <-wsly
{Center <~ (pi+p1+1)/2+ (Segment/LENGTH[Segment])%
{Extension - QOldExtension}/2;},
{Direction <~ Segment; “careful, may be zero vector"}];
i <~ j+1;
OldExtension <- Extension;
Segment <~ NextSegment; "next vector in path"
ENDLOOP;
DONE 3

References

(1] N. Wirth, "What Can We Do aboutl the Unnecessary Diversity of Notations for

Syntactic Definitions?", Communications of the ACM, Nov., 1977.

[2] W.M. Newman, R.F. Sproul], Principles of Interactive Computer Graphics,
MeGraw-Hill, 1973,

This document contains material that s almost didentical to that found on pages 115-127

(section 4.5) of Introduction to VLSI Systems [Mead and Conway 19807, copyriaht 1980 bhy

Addison-Yesley Publishing Company, Inc. and is reprinted by permission.

16

A
T4
Direction
‘\ T2
t
=20

' . RoundFlash
¥
" Polygon . wif‘h T'
: ’ et Diamctcr

Fig. 2. Other Items in CIF

T transforms Segment to the +X axis
AB s Segment * T Similar triangles BCD, EFG, BFH
BC = NextSegment * T BC:.CD:DB = EF:FG:GE = BF:FH:HB
Bend = Vector BC FG = FB + BG
Extension = BG = BH = BH * (BC/DB) + BG
= (1 + BC/DB) * BG
BG = FG 7/ (1 +-BC/DB)
« GE * (CD/DB) 7 (1 + BC/DB)
s GE * (CD /7 (DB + BC))
E or Extension = w/2 * Y[Bend] / (LENGTH[Bend] + X[Bend])

Fig. 3. Converting Wires to Boxes

ciffig.press

