
A NOTATION FOR DESIGNING RESTORING LOGIC CIRCUITRY IN CMOS

by
Mar t in Rem

Eindhoven Univers i ty o f Technology
and California l ns t i tu te o f Technology

and
Carver Mead

Professor o f Computer Science,
Electrical Engineering and Applied Physics

California Ins t i tu te o f Technology

Technical Report #4600

Computer Science Department
California l ns t i tu te o f Technology

Pasadena, Cal i fornia 91 125

Sponsored by
Defense Advanced Research Contracts Agency

ARPA Order Number 3771

Monitored by
Off ice o f Naval Research

Contract #N00014-79-C-0597

Copyr ight , Cal i fornia Ins t i tu te o f Technology, 1981

A NOTAT~ION FOR DESIGNING RESTORING LOGIC CIRCUITRY I N CMOS

Martin Rem
Eindhoven Universi ty of Technology

and Ca l i fo rn ia I n s t i t u t e of Technology
and

Carver Mead
Professor of Computer Science, Electrical Engineering

and Applied Physics
Ca l i fo rn ia I n s t i t u t e of Technology

1 INTRODUCTION

A s the underlying s i l i c o n f a b r i c a t i o n technology has become
capable of producing chips with t r a n s i s t o r counts i n excess of
1,000,000, problems associa ted with c o r r e c t design a r e assuming ever
g r e a t e r importance. Exhaustive checking of mask artwork f o r e r r o r s
becomes prohibi t ive . Technologies and design s t y l e s which obviate la rge
classes of p o t e n t i a l e r r o r s a r e enormously preferable t o those t h a t d o
not.

A modular, h i e ra rch ica l design s t y l e can, with proper
r e s t r i c t i o n , confine many types of checks to one l e v e l of the h ierarchy
wi th in each module. A set of such r e s t r i c t i o n s is given i n t h i s paper,
together with a mechanism f o r t h e i r enforcement. These r e s t r i c t i o n s
capture a s u b s t a n t i a l f r a c t i o n of the design s t y l e given i n (11.

As f ea tu re s i z e s a r e sca led below one micron, r a t i o l o g i c
processes l i k e nMOS and I'L become progressively less a t t r a c t i v e .
Straightforward sca l ing t o smaller s i z e s r e s u l t s i n a l i n e a r increase i n
c u r r e n t per u n i t ch ip area , Technological t r i c k s such a s high
r e s i s t i v i t y polys i l icon pullup devices o r very small i n j e c t o r cu r ren t
can be used t o decrease cu r ren t d ra in , b u t the r e s u l t i n g devices become
increas ingly vulnerable t o " s o f t e r r o r W problems from alpha p a r t i c l e s ,
etc. Fully res tored " s t a t i c " log ic using a complementary process is the
na tu ra l choice f o r systems with submicron components. Present bulk CMOS
processes have a number of very ugly analog r u l e s associa ted with the
4-layer na ture of the process. As a r e s u l t , the designer must be aware
of d e t a i l s of the technology t o an alarming degree, CMOS on an
i n s u l a t i n g s u b s t r a t e is, on the o the r hand, a conceptually c lean
process: it requ i res no analog r u l e s whatsoever i f proper timing
conventions a r e observed, There a r e r ecen t s igns t h a t it may become
r e l i a b l y producible a s w e l l ,

W e introduce a programming nota t ion i n which every s y n t a c t i c a l l y
c o r r e c t program s p e c i f i e s a r e s t o r i n g log ic component, i.e., a component
whose outputs are permanently connected, v i a "not too many" t r a n s i s t o r s ,
t o the power supply. It is shown how the spec i f i ed components can be
t r a n s l a t e d i n t o t r a n s i s t o r diagrams f o r CMOS in tegra ted c i r c u i t s . A s
these components are designed a s strict h ie ra rch ies , it is hoped that
the t r a n s l a t i o n of the t r a n s i s t o r diagrams i n t o layouts f o r in teg ra ted
c i r c u i t s can be accomplished mechanically.

i n t h i s paper we do n o t address t h e dynamic behavior of the
l o g i c components. The "proper timing conventions," al luded t o above, a r e
l e f t f o r a subsequent paper.

2. SWITCHES I N CMOS

The CMOS technology uses two types of t r a n s i s t o r s : the N-channel
enhancement t r a n s i s t o r (l a) and the P-channel enhacement t r a n s i s t o r (l b) .

Fig. 1

Both of them a c t a s switches bu t they a r e "on" and "off" f o r complemen-
t a r y values on t h e i r gates, Denoting a high voltage by "1" and a low
voltage by "Om, switch l a is on i f the ga te i s 1 and Ib is on i f the
g a t e is 0 . When the switches a r e on, however, they do not convey a 1
and a 0 on t h e i r pa ths (i n Fig. 1 the hor izon ta l connections) equally
w e l l . Switch l a conveys a 0 v i r t u a l l y pe r fec t ly , b u t it i s no t a
p e r f e c t switch f o r a 1. Switch lb, conversely, is a good conveyor f o r a
1 only.

Using these CMOS t r a n s i s t o r s we want t o make two types of
switches, a "normally-off" switch (2a) and a "normally-onn switch (2b).

"7" 28 we "7" 2b gate

Fig. 2

I f the ga te is 0 switch 2a is off (nonconveying) and 2b is on
(conveying). O t h e r w i s e 2a is on and 2b is of f . The po in t s e l and e2
a r e c a l l e d the end po in t s of the switch. We c a l l the connection between
t h e end p o i n t s its path. I f nothing is known about the values conveyed
through its path, except t h a t they a r e 0 ' s and l ' s , the r e a l i z a t i o n of a
switch requ i res two t r a n s i s t o r s : (t h e complement of g is denoted as g ')

A r e s t o r i n g l o g i c component (RL) has e x t e r n a l prts. The pur-
pose of an RL i s t o e s t a b l i s h a r e l a t i o n between t h e values it communi-
c a t e s v i a its e x t e r n a l por t s . W e r e s t r i c t ou r se lves to t h e va lues 0 and 1.

W e des ign components i n a h i e r a r c h i c a l fashion. A t y p i c a l RL i s
shown i n Fig. 5.

Fig* 5

It c o n s i s t s of subcomponents A, B, and C, which a r e a l s o RL's,
and a p a t t e r n of connect ions between them. W e r e s t r i c t the poss ib l e
connection p a t t e r n s t o guarantee t h a t t h e composite is aga in an RL.
Such r e s t r i c t i o n s a r e only use fu l i f t hey can be formulated i n terms of
t h e connect ion p a t t e r n , i.e., independent of t h e i n t e r n a l s t r u c t u r e s of
t h e subcomponents thus connected. Before we can formulate t hese
connect ion r u l e s w e have t o g ive a few d e f i n i t i o n s . Each p o r t is either
an i n p u t p o r t o r an ou tpu t por t . The connection p a t t e r n of an RL
s p e c i f i e s connect ions between i ts e x t e r n a l p o r t s and t h e e x t e r n a l p o r t s
of t he subRL's. W e ca l l t h e e x t e r n a l ports of a subRL i n t e r n a l p o r t s of
t h e RL. An e x t e r n a l o u t p u t p o r t of a subRL is an i n t e r n a l i n p u t p o r t of
the RL. Conversely every e x t e r n a l i n p u t p o r t of a subRL gives t he RL an
i n t e r n a l ou tpu t por t . The r u l e s on connect ion p a t t e r n s w i l l be s t a t e d
i n terms of e x t e r n a l and i n t e r n a l p o r t s of t h e RL.

W e assume t h a t t h e d i s t r i b u t i o n of power and ground t o a l l
components is taken c a r e of by the compiler. Johannsen [I] has ou t l i ned
a method f o r t he d i s t r i b u t i o n of power and ground over h i e r a r c h i c a l l y
def ined components. I n our nomenclature: each RL has two cons t an t
' i n t e r n a l i n p u t p o r t s , denoted by 0 and 1. These cons t an t s a r e t h e power
supply rails which must be p r e s e n t i n every component.

I n Sec t ion 2 we have in t roduced the term path f o r t h e connection
between t h e two end p o i n t s of a switch. W e now gene ra l i ze t h a t term.
W e s ay t h a t t h e r e is a pa th between two p o r t s p l and p2 i f e i t h e r they -
a r e connected by a wire (a "wire pa th") o r t h e r e is a switch such t h a t
t h e r e a r e p a t h s between p l and one end p o i n t of t h e switch and between
p2 and the o t h e r end point . I n t h e lat ter case w e s a y t h a t t h e s w i t c h
is on t h e path. A p a t h is called a conveying path i f a l l swi tches on

a r e r ea l i zed as

1
-0

T T 9 '
Fig* 3

These double t r a n s i s t o r s make our switches good conveyors f o r
both 0 ' s and l ' s , which allows the use of longer s t r i n g s of switches.
These s t r i n g s of switches, however, should not be too long: the dis tance
t o the "power supply* must not be excessive, otherwise the s i g n a l w i l l
become inaccura te and the c i r c u i t slow. To do j u s t i c e to the nature of
r e s t o r i n g l o g i c we disal low the d r iv ing of e x t e r n a l outputs by long
s t r i n g s of switches. This s h a l l be r e f l e c t e d i n the composition r u l e s
t o be formulated i n Sect ion 3.

The g a t e inputs a r e run i n two-rail l o g i c t o accommodate both
the g and the g ' s ignals . For switches t h a t a r e known t o convey always
the same value the re a r e two ins tances i n which they can be rea l i zed by
j u s t one t r a n s i s t o r :

value 0 7-• a d =lu=+=j=-
a r e r ea l i zed a s

Fig* 4

I n t h a t case, the two-rail representa t ion of the ga te s i g n a l is no t
necessary. It is assumed t h a t the compiler can recognize ins tances i n
which one t r a n s i s t o r su f f i ces . From now on w e s h a l l simply design i n
terms of switches and apply the above knowledge only i f w e wish t o count
the number of t r a n s i s t o r s a component requi res .

t h e path are' on. The values on the inpu t p o r t s (ex te rna l o r i n t e r n a l)
determine which switches a r e on and which a r e o f f , and hence between
which por t s the re are conveying paths, (Whenever w e do n o t speci fy
whether a p o r t i s ex te rna l o r i n t e r n a l , t h a t is done in tent ional ly .)

Two i n p u t por t s a r e s a i d t o be f i g h t i n g i f the re e x i s t s any
assignment of values t o a l l i npu t p o r t s such t h a t the re is a conveying
path between the two inpu t ports .

W e introduce three r u l e s t h e connection p a t t e r n must s a t i s f y : -

Rule 1. [no f ight ing] : No two i n p u t p o r t s a r e f ight ing .
Rule 2 . [res tored ex te rna l outputs] : Every ex te rna l output port

(a) has a wire path t o an i n t e r n a l por t , o r
(b) has a conveying path to 0 o r 1 f o r every assignment

of values t o a l l i n p u t ports .
Rule 3. Inonfloat ing i n t e r n a l outputs] : For every i n t e r n a l

output p o r t p and f o r every assignment of values t o a l l
i npu t p o r t s there is a conveying path between p and an
inpu t por t ,

Notice t h a t Rule 1 includes 0 and 1 (t h e two constant i n t e r n a l i n p u t
p o r t s) , Remember t h a t i n t e r n a l outputs a r e regarded a s (ex te rna l) inpu t s
of the subcomponent and t h a t the subcomponent's ex te rna l outputs a r e
i n t e r n a l inputs f o r the component.

The j u s t i f i c a t i o n of Rule 1 i s obvious, The r e s u l t of Rule 2 is
t h a t a l l ex te rna l outputs a r e driven by power o r ground. They may be
dr iven v i a a number of switches, b u t such a s t r i n g of switches is
confined t o one component, viz. the component i n which the a c t u a l
connection t o 0 o r 1 is made.

The r u l e s f o r i n t e r n a l outputs , i.e,, outputs t o subcomponents,
a r e more l i b e r a l . W e allow t h a t inpu t s from subcomponents and inputs
from the environment a r e d i rec ted through switches before they a r e
output to. subcomponents. For inpu t s from subcomponents t h i s is
reasonable: they a r e res tored by the subcomponents. With inputs f rom
the environment we have t o be more ca re fu l . We have t o allow that such
a s i g n a l from an ex te rna l inpu t p o r t goes through a switch t o an
i n t e r n a l output port . Otherwise w e would be unable t o make the f l i p -
f l o p t o be shown i n Example 3. But it does al low long s t r i n g s of switches
"going i n t o " t h e hierarchy, a s sketched i n Fig. 6.

W e do n o t consider #is a se r ious drawback. One may expect a sub-
component t o have (physica l ly) s h o r t e r connections than the component
i t s e l f , Restoring i n the "inward" d i r e c t i o n , theref ore , seems less
v i t a l than i n t h e '@outwardm d i rec t ion , S t i l l , i f we wish t o bound the
lengths of such inward s t r i n g s of switches w e could have the compiler
i n s e r t ampl i f i e r s i n t o them t o r e s t o r e their s igna l s ,

The consequence of allowing the switches i n the outputs to sub-
components i s t h a t Rule 2 has t o be s t ronger than one might expect. I n
Rule 2 w e could no t al low wire paths between ex te rna l inpu t p o r t s and
ex te rna l output por ts . This may seem t o disal low running through a

---c)-- s tands
f o r a connection
v i a one o r more
switches

component wire whose s i g n a l s a r e not used by the component. I n f a c t , it
does not. Such a w i r e is j u s t no t p a r t of the component. (On the ch ip
a wire between two components may run through t h e "area" of another
component, but t h a t is a matter of ch ip layout. I t is a physica l
property, no t a funct ional one.) Allowing wire paths between e x t e r n a l
i n p u t p o r t s and ex te rna l output p o r t s would have given rise t o the
p o s s i b i l i t y of i l l - r e s t o r e d outputs. Fig. 7 sketches an RL t h a t is
allowed by Rules 2 and 3. Now assume t h a t each S i i s j u s t a wire pa th
from i t 8 inpu t t o its output, which would be allowed i f we weakened Rule
2. The output of t h e RL is then no t res tored . Imagine now t h a t each Si
a c t u a l l y has t h e same s t r u c t u r e a s the whole RL. It is c l e a r t h a t t h i s
would v i o l a t e our goal of having res to red e x t e r n a l outputs.

I n one respec t is Rule 3 s t ronger than necessary. I t requ i res
t h a t a l l subcomponents rece ive well-defined inpu t s , even a subcomponent
whose ouputs a r e not used. W e could have r e s t r i c t e d the r u l e t o
subcomponents whose outputs a r e a c t u a l l y used i n the computation, but
t h a t would have made both the r u l e and the checking whether it is obeyed
more complicated.

Fig* 7

I n t h i s sec t ion w e introduce a programming nota t ion i n which
connection p a t t e r n s can be spec i f i ed t h a t s a t i s f y the th ree r u l e s of the
preceding sect ion. There a r e two p roper t i e s a good nota t ion should
enjoy. F i r s t , it should be r e l a t i v e l y simple f o r the compiler t o check
t h a t a program i s s y n t a c t i c a l l y co r rec t . I f t h i s mechanical check is
simple, it w i l l probably be simple f o r programmers t o convince
themselves t h a t t h e i r designs s a t i s f y the rules. W e s h a l l show how the
s y n t a c t i c checking can be performed. Second, it should be poss ib le to
give a formal d e f i n i t i o n of the semantics of our programs. W e have n o t
y e t achieved the second goal , bu t u l t ima te ly we must be ab le t o prove
t h a t a component performs a c e r t a i n computation. That seems a much
b e t t e r technique than a demonstration of its e f f e c t with an a p o s t e r i o r i
simulation. (Besides, how do w e know t h a t t h e simulat ion is c o r r e c t i f
we do no t have a r igorous d e f i n i t i o n of the meaning of our s tatements?)
It w i l l not be simple, b u t remember: a program of more than, say, 20
l i n e s is probably too long, we then have n o t chosen the r i g h t
subcomponents.

For the formulation of connection p a t t e r n s we introduce t h e term
node. Every p o r t is a node, bu t the program may introduce add i t iona l
(i n t e r i o r) nodes. For each node n we s h a l l introduce a connection
condit ion C (n) and a connected-to-constant condit ion CC(n 1. We s h a l l ,
furthermore, d i s t ingu i sh a d i r e c t l y dr iven set D, which is a subse t of
the set of nodes. These concepts w i l l be used i n the syntax checking.
A formal d e f i n i t i o n of how they depend on the connection pa t t e rn
spec i f i ed w i l l be given l a t e r . I n t u i t i v e l y , C(n1 w i l l be the condit ion
on the inpu t values under which node n is connected t o an input , and
CC(n) w i l l be the condit ion under which it is connected to a constant.
The C (n) ' s w i l l be used t o enforce t h e no-fighting ru le . The set D w i l l
comprise a l l nodes t h a t a r e connected by a wire path t o an i n t e r n a l
i n p u t port.

The program c o n s i s t s of a sequence of statements. Each statement
introduces a number of connections and switches between nodes, and
thereby a f f e c t s the C(n) and CC(n) of each node involved and the s e t D.
I n i t i a l l y , i.e., p r i o r t o the f i r s t s tatement, D is the set of a l l
i n t e r n a l i n p u t por t s , C(n) i s 1 f o r each inpu t p o r t and CC(n) is 1 f o r
the two constant i n t e r n a l inpu t por t s , The C(n) and CC(n) a r e 0 f o r a l l
o t h e r nodes. (" 1 " should be i n t e r p r e t e d a s "true" and "0" a s "false.")

The program is complete i f f i n a l l y we have:

f o r every ex te rna l output p o r t p : p e B v CC(p) = 1
f o r every i n t e r n a l output p o r t p : C(p) = 1

(These completeness condit ions correspond t o Rules 2 and 3. The observ-
i n g of Rule 1 is discussed below.)

EXAMPLE 1 3 i n v e r t e r (in?,out!):
begin i n 1 + o u t = 1; i n -c o u t = 0 end

P r i o r t o the statement

we should have

f o r a l l nodes n i n BE : C(n) = 1 , and

(C(x) A C(y) A BE) = 0

The f i r s t requirement is introduced to permit the syntax check-
i n g t o be done incrementally a t each statement of the program. A con-
sequence, however, is t h a t not every order of the statements i n t h e
program i s . p e d s s i b l e . It is s t i l l an open quest ion whether t h i s
s e r i a l i z a b i l i t y requirement is not too strong. I f w e succeed i n design-
ing our components under t h i s regime it w i l l c e r t a i n l y enhance both t h e
r e a d a b i l i t y and the checkabil i ty of our programs.

The second requirement guarantees the observance of the no-
f igh t ing rule. The statement does not have an e f f e c t on the s e t D. The
e f f e c t on C(n) and CC(n) is

Z(x):= (Z(x) V (Z(y) A BE))

i n which Z s tands f o r C o r CC.

The set D is affec ted only by a statement t h a t s p e c i f i e s a
d i r e c t connection, i.e., one t h a t does not go through a s w i t c h . W e
obta in such a statement by dropping t h e condi t ional p a r t "BE+*:

A s for the e f f e c t on C(n) and CC(n) t h i s statement i s l i k e a switch
spec i f i ca t ion w i t h " 1 " a s its boolean expression. P r io r t o t h e
statement, the condit ion

should hold, and its e f f e c t is t h a t Z(x) and Z(y) both become Z(x) V
Z (y) (Z s t i l l standing f o r C o r CC). The e f f e c t on the s e t D is t h a t i f
e i t h e r node x o r node y w a s a member of D then D is extended with the
o ther node.

I n t h e example of the i n v e r t e r we i n i t i a l l y have out 6 D. A s the
program leaves the set D unchanged w e have t o show t h a t it e s t a b l i s h e s
CC(out1 = 1. The f i r s t statement i s leg i t ima te as w e i n i t i a l l y have
C(in) 1 and

The e f f e c t is t h a t both C(out) and CC(out) become i n ' . The second
statement is legi t imate a s w e l l : C (i n) i s still 1 and

The above is a simple example of an RL, it does not have
subRLVs. The f i r s t l i n e s p e c i f i e s the name of the component and i t s
e x t e r n a l por ts . A quest ion mark o r an exclamation po in t ind ica tes t h a t
the p o r t is an inpu t p o r t o r an output por t , respectively. I n the
connection p a t t e r n two switches are spec i f i ed , t e x t u a l l y separated by a
semicolon. The f i r s t s tatement expresses t h a t t h e output p o r t o u t is
connected t o the cons tant inpu t p o r t 1. The condit ion i n f r o n t of the
arrow s p e c i f i e s under which circumstances the switch i n the connection
should be on. I n t h i s case a normally-on switch whose ga te is connected
t o the inpu t p o r t i n {or a normally-off switch w i t h its gate connected
t o i n ') is speci f ied . The second statement s p e c i f i e s the second switch.

For the more p i c t o r i a l l y inc l ined reader we observe the resem-
blance of the program and the following diagram.

out

Why is the program syxitact ical ly co r rec t? In order t o be ab le t o show
t h a t the only output p o r t out s a t i s f i e s

out c D VCC(out) = 1

we have t o be more p rec i se a s t o how a statement a f f e c t s C (n) , CC (n) and
D.

I n a program switches a r e introduced by statements

i n which x and y a r e nodes, and BE is a boolean expression i n terms of
nodes, more prec ise ly : BE is a production of the grammar

C(out) A C (0) A i n = i n * A 1 A i n
= 0

It es tab l i shes CC(out) 5 i n g V i n , which is 1, Hence, it i s a complete
program.

Notice t h a t both switches i n t h e i n v e r t e r a r e of the type t h a t
can be implemented by one t r ans i s to r . The i n v e r t e r , consequently,
requires only two t r ans i s to r s . W e s h a l l use t h i s i n v e r t e r a s a sub-
component i n our t h i r d example.

EXAMPLE 2.
comp nor(a3, b?, out1 I :
begin a v b + out = 0 ; a ' A b g + o u t = 1 9

I n the f i r s t statement the boolean expression is a d i s junc t ion
of two nodes. This gives rise t o a diagram i n which two switches a r e
placed i n p a r a l l e l . The boolean expression of the second statement
s p e c i f i e s two switches t h a t a r e placed i n series. The whole component
requires four t r a n s i s t o r s . The following p ic tu re shows a diagram of the
component.

1 '

10
Fig. 9

A new node is introduced by mentioning i t i n t h e right-hand s ide (i n the
p a r t t o the r i g h t of the arrow) of a statement. There is no example of
t h i s i n the paper.

EXAMPLE 3 .

comp f l ip - f lop (in?, ld? , ql , qbar l) : -
begin i l , i 2 : inver te r ;

i2. in = i l .out;
I d * + i l . i n = i2.out; Id -t i l . i n = i n ;
q I i 2 . 0 u t ~ qbar = i l .out

end -
The second l i n e of the program s p e c i f i e s t h a t the component

f l ip - f lop has two subcomponents, named i l and 12, of type inver te r . As
each i n v e r t e r has two ex te rna l por ts , t h i s dec la ra t ion provides the
component with four i n t e r n a l ports . An i n t e r n a l p o r t t h a t corresponds
t o t h e e x t e r n a l p o r t p of a subcomponent S is denoted a s S.p. A s both
i l and 12 have an ex te rna l output p o r t out , the component f l ip - f lop has
t h e i n t e r n a l inpu t p o r t s i l . ou t and i2.out. Likewise, it has the
i n t e r n a l output p o r t s i l . i n and i2.in.

*fie reader is encouraged t o check t h a t t h e component s a t i s f i e s
t h e r u l e s by formally deriving t h a t a l l s tatements a r e legi t imate and
t h a t the program es tab l i shes

A possible diagram of the component is

Fig. 10

5 . BUSES

I f we want t o design a random access memory o u t of inver ters , we
must be ab le to connect t h e i r inputs and outputs v ia buses t o the inputs
and outputs of the memory. We want t o connect t h e outputs of many
subcomponents (i n v e r t e r s) t o the same bus. J u s t connecting these
outputs (i n t e r n a l inputs t o the memory) t o t h e bus would v i o l a t e the
no-fighting rule. W e s h a l l remedy t h i s by pu t t ing switches i n these
connections.

To ind ica te when the memory cell has t o d r ive the bus
(nreading") and when it has t o receive a value from the bus (n w r i t i n g Y)
two inputs, r and w, go i n t o the cell:

~ b u
Fig. 11

W e a t t ach a number of cells to t h e same bus. Such a composition w i l l
only be an RL i f we guarantee t h a t , a t most one of the c e l l s can have
its r equal to 1. The s igna l s r come from another subcomponent of the
memory, usual ly ca l l ed the "decoder." The purpose of the decoder is t o
assure t h a t a t most one r equals 1. Given t h a t the outputs of the
decoder s a t i s f y t h a t requirement, we can show t h a t the composition is
again an RL. This is a new phenomenon: a condit ion on the values output

by a subcompBnent has to be taken i n t o account t o prove t h a t a
connection p a t t e r n s p e c i f i e s an RL. W e c a l l such a check a semantic
check.

The, following program is a 1-of-2 decoder.

comp 1-of-2 decoder(in?, o u t l l , out21 1: -
begin i n + out l = 1; i n -c out2 = 0;

i n ' + ou t l = Or i n ' .r out2 = 1
end

By a s y n t a c t i c check, a s described i n Section 4, we can show t h a t t h i s
is a l eg i t ima te RL. In t h i s case it is a l s o simple t o check t h a t the
output values s a t i s f y (out l A out21 = 0, bu t t h a t is a semantic check.

The moral is t h a t we w i l l design components t h a t a r e only
"condit ional RL's," i.e., they a r e RL's under the condit ion t h a t the
output values of o the r components s a t i s f y c e r t a i n cons t ra in ts . When
such components a r e pu t together w e w i l l have t o see to it t h a t such
semantic c o n s t r a i n t s a r e indeed s a t i s f i e d .

6 . A GLANCE INTO THE FUTURE OF COMPUTING

In t h i s paper we have no t addressed the dynamic behavior of
components, i .e., how they r e a c t t o t r a n s i t i o n s on t h e i r inputs . That
is obviously the next s tep. By adopting proper timing and s igna l ing
conventions (cf . Chapter 7 of [21) one should be ab le t o address the
dynamic behavior i n an equally d i s c r e t e fashion. The purpose of such
conventions i s t o generate "data va l idH inputs t h a t s i g n a l t h a t the
inpu t da ta a r e well-defined and may be inspected. Such a da ta va l id
s i g n a l may come from a clock o r it may be an asynchronous acknowledge
s ignal .

Af ter t h a t the re a r e two roads w e can follow. W e can make a
machine. .That machine w i l l accept programs and execute them. W e then
concentra te on the programs and i f w e wish t o have a c e r t a i n computation
performed, w e write a program f o r it. That is the t r a d i t i o n a l road.

W e a r e l e d t o the o ther , more promising, road i f we observe t h a t
we are a l ready designing programs, programs t h a t can be compiled i n t o
t r a n s i s t o r diagrams f o r CMOS. W e make components ou t of subcomponents.
Every time they w i l l be more "powerful" o r "sophis t ica tedn than t h e i r
subcomponents. We can inspec t how a component is implemented by looking
a t its program t e x t t o see how it is composed o u t of subcomponents.
Every component i s again an implementation of a "higher l e v e l n concept.
W e can, e.g., introduce components t h a t communicate o ther da ta types
than j u s t 0 ' s and 1 I s . I f we look a t the implementation of t h a t
concept, w e may no t i ce t h a t it is .achieved by multiplexing o r by the use
of mult iple por ts . In t h a t way the components w e introduce w i l l g ive u s
new modes of expression s o t h a t w e can formulate our programs i n terms
of concepts t h a t a r e more appropr ia te t o our computations. After a
while, we w i l l have a mode of expression t h a t one would customarily call
a "higher l e v e l programming language."

Throughout a l l the l eve l s of the hierarchy we have maintained
t h a t we prograh by composing components out of communicating sub-
components. But by expressing a program i n such a notat ion we have also
spec i f i ed an implementation f o r it, we have a c t u a l l y speci f ied f o r the
program a t r a n s i s t o r diagram i n CMOS. From there , t h e s t e p t o a
complete s i l i c o n compiler is a (n o n t r i v i a l) matter of generat ing the
proper geometric representat ion of the t r a n s i s t o r diagrams.

Of course, we do not have to t r a n s l a t e a l l our programs i n t o
s i l i c o n t o have them executed. W e could a l s o compile them i n t o machine
code, e.g., i n t o code fo r a machine designed by taking the o the r
aforementioned road. Our choice w i l l depend on such ex te rna l f a c t o r s as
the speed with which the computation has to be performed or the expected
frequency o f - i t s use. I t is a l s o poss ib le t h a t w e want to make a
t r a n s l a t i o n i n t o machine code f i r s t i n order to g e t some experience with
the program and t h a t we do not have it compiled i n t o s i l i c o n u n t i l it is
i n a form t h a t s u i t s us.

POSTSCRIPT

Is t h i s an a r t i c l e about machine design o r about programming?
The answer t o t h a t quest ion f a d e f i n i t e l y "Yesl".

ACKNOWLEDGEMENTS

The research described i n this paper was sponsored by the
Defense Advanced Research Projects Agency, ARPA Order Number 3771, and
monitored by the Office of Naval Research under con t rac t number
N00014-79-C-0597.

REFERENCES

[I 1 Johannsen, Dave, "Hierarchicaf Power Routing." Display f i l e 2069,
Computer Science Department, Ca l i fo rn ia I n s t i t u t e of Technology,
Pasadena, CA, October 1978

t21 Mead, Carver & Lynn Conway, "Introduction t o VLSI Systems."
Addison-Wesley Publishing Company, Reading MA, 1980

