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1 INTRODUCTION 

A s  the underlying s i l i c o n  f a b r i c a t i o n  technology has become 
capable of producing chips with t r a n s i s t o r  counts i n  excess of 
1,000,000, problems associa ted  with c o r r e c t  design a r e  assuming ever 
g r e a t e r  importance. Exhaustive checking of mask artwork f o r  e r r o r s  
becomes prohibi t ive .  Technologies and design s t y l e s  which obviate la rge  
classes of p o t e n t i a l  e r r o r s  a r e  enormously preferable  t o  those t h a t  d o  
not.  

A modular, h i e ra rch ica l  design s t y l e  can, with proper 
r e s t r i c t i o n ,  confine many types of checks to one l e v e l  of the  h ierarchy 
wi th in  each module. A set of such r e s t r i c t i o n s  is given i n  t h i s  paper, 
together  with a mechanism f o r  t h e i r  enforcement. These r e s t r i c t i o n s  
capture a s u b s t a n t i a l  f r a c t i o n  of the  design s t y l e  given i n  (11. 

As f ea tu re  s i z e s  a r e  sca led  below one micron, r a t i o  l o g i c  
processes l i k e  nMOS and I'L become progressively less a t t r a c t i v e .  
Straightforward sca l ing  t o  smaller s i z e s  r e s u l t s  i n  a l i n e a r  increase  i n  
c u r r e n t  per u n i t  ch ip  area ,  Technological t r i c k s  such a s  high 
r e s i s t i v i t y  polys i l icon pullup devices o r  very small i n j e c t o r  cu r ren t  
can be used t o  decrease cu r ren t  d ra in ,  b u t  the  r e s u l t i n g  devices become 
increas ingly  vulnerable t o  " s o f t  e r r o r W  problems from alpha p a r t i c l e s ,  
etc. Fully res tored  " s t a t i c "  log ic  using a complementary process is the  
na tu ra l  choice f o r  systems with submicron components. Present  bulk CMOS 
processes have a number of very ugly analog r u l e s  associa ted  with the 
4-layer na ture  of the  process. As a r e s u l t ,  the  designer must be aware 
of d e t a i l s  of the  technology t o  an alarming degree, CMOS on an 
i n s u l a t i n g  s u b s t r a t e  is, on the  o the r  hand, a conceptually c lean  
process: it requ i res  no analog r u l e s  whatsoever i f  proper timing 
conventions a r e  observed, There a r e  r ecen t  s igns  t h a t  it may become 
r e l i a b l y  producible a s  w e l l ,  

W e  introduce a programming nota t ion  i n  which every s y n t a c t i c a l l y  
c o r r e c t  program s p e c i f i e s  a r e s t o r i n g  log ic  component, i.e., a component 
whose outputs  are permanently connected, v i a  "not too  many" t r a n s i s t o r s ,  
t o  the  power supply. It is shown how the  spec i f i ed  components can be 
t r a n s l a t e d  i n t o  t r a n s i s t o r  diagrams f o r  CMOS in tegra ted  c i r c u i t s .  A s  
these components are designed a s  strict h ie ra rch ies ,  it is hoped that 
the  t r a n s l a t i o n  of the  t r a n s i s t o r  diagrams i n t o  layouts  f o r  in teg ra ted  
c i r c u i t s  can be accomplished mechanically. 



i n  t h i s  paper we do n o t  address t h e  dynamic behavior of the  
l o g i c  components. The "proper timing conventions," al luded t o  above, a r e  
l e f t  f o r  a subsequent paper. 

2. SWITCHES I N  CMOS 

The CMOS technology uses two types of t r a n s i s t o r s :  the  N-channel 
enhancement t r a n s i s t o r  ( l a )  and the  P-channel enhacement t r a n s i s t o r  ( l b ) .  

Fig. 1 

Both of them a c t  a s  switches bu t  they a r e  "on" and "off"  f o r  complemen- 
t a r y  values on t h e i r  gates,  Denoting a high voltage by "1" and a low 
voltage by "Om, switch l a  is on i f  the  ga te  i s  1 and Ib  is on i f  the  
g a t e  is 0 .  When the  switches a r e  on, however, they do not  convey a 1 
and a 0 on t h e i r  pa ths  ( i n  Fig. 1 the  hor izon ta l  connections) equally 
w e l l .  Switch l a  conveys a 0 v i r t u a l l y  pe r fec t ly ,  b u t  it i s  no t  a 
p e r f e c t  switch f o r  a 1. Switch lb, conversely, is a good conveyor f o r  a 
1 only. 

Using these  CMOS t r a n s i s t o r s  we want t o  make two types of 
switches, a "normally-off" switch (2a )  and a "normally-onn switch (2b).  

"7" 28 we "7" 2b gate 

Fig. 2 

I f  the  ga te  is 0 switch 2a is off  (nonconveying) and 2b is on 
(conveying). O t h e r w i s e  2a is on and 2b is of f .  The po in t s  e l  and e2 
a r e  c a l l e d  the  end po in t s  of the  switch. We c a l l  the connection between 
t h e  end p o i n t s  its path. I f  nothing is known about  the values conveyed 
through its path,  except t h a t  they a r e  0 ' s  and l ' s ,  the r e a l i z a t i o n  of a 
switch requ i res  two t r a n s i s t o r s :  ( t h e  complement of g is  denoted as g ' )  



A r e s t o r i n g  l o g i c  component (RL) has e x t e r n a l  prts. The pur- 
pose of an RL i s  t o  e s t a b l i s h  a r e l a t i o n  between t h e  values it communi- 
c a t e s  v i a  its e x t e r n a l  por t s .  W e  r e s t r i c t  ou r se lves  to t h e  va lues  0 and 1.  

W e  des ign  components i n  a h i e r a r c h i c a l  fashion.  A t y p i c a l  RL i s  
shown i n  Fig. 5. 

Fig* 5 

It  c o n s i s t s  of subcomponents A, B, and C, which a r e  a l s o  RL's, 
and a p a t t e r n  of connect ions between them. W e  r e s t r i c t  the poss ib l e  
connection p a t t e r n s  t o  guarantee t h a t  t h e  composite is aga in  an  RL. 
Such r e s t r i c t i o n s  a r e  only  use fu l  i f  t hey  can be formulated i n  terms of 
t h e  connect ion p a t t e r n ,  i.e., independent of t h e  i n t e r n a l  s t r u c t u r e s  of 
t h e  subcomponents thus  connected. Before we can formulate  t hese  
connect ion r u l e s  w e  have t o  g ive  a few d e f i n i t i o n s .  Each p o r t  is either 
an i n p u t  p o r t  o r  an  ou tpu t  por t .  The connection p a t t e r n  of an  RL 
s p e c i f i e s  connect ions between i ts  e x t e r n a l  p o r t s  and t h e  e x t e r n a l  p o r t s  
of t he  subRL's. W e  ca l l  t h e  e x t e r n a l  ports of a subRL i n t e r n a l  p o r t s  of 
t h e  RL. An e x t e r n a l  o u t p u t  p o r t  of a subRL is an  i n t e r n a l  i n p u t  p o r t  of 
the RL. Conversely every e x t e r n a l  i n p u t  p o r t  of a subRL gives  t he  RL an 
i n t e r n a l  ou tpu t  por t .  The r u l e s  on connect ion p a t t e r n s  w i l l  be s t a t e d  
i n  terms of e x t e r n a l  and i n t e r n a l  p o r t s  of t h e  RL. 

W e  assume t h a t  t h e  d i s t r i b u t i o n  of power and ground t o  a l l  
components is taken c a r e  of by the compiler. Johannsen [ I ]  has  ou t l i ned  
a method f o r  t he  d i s t r i b u t i o n  of power and ground over  h i e r a r c h i c a l l y  
def ined  components. I n  our nomenclature: each RL has  two cons t an t  
' i n t e r n a l  i n p u t  p o r t s ,  denoted by 0 and 1. These cons t an t s  a r e  t h e  power 
supply rails which must be p r e s e n t  i n  every component. 

I n  Sec t ion  2 we have in t roduced  the term path f o r  t h e  connection 
between t h e  two end p o i n t s  of a switch. W e  now gene ra l i ze  t h a t  term. 
W e  s ay  t h a t  t h e r e  is a pa th  between two p o r t s  p l  and p2 i f  e i t h e r  they  - 
a r e  connected by a wire (a "wire pa th" )  o r  t h e r e  is a switch such t h a t  
t h e r e  a r e  p a t h s  between p l  and one end p o i n t  of t h e  switch and between 
p2 and the o t h e r  end point .  I n  t h e  lat ter case w e  s a y  t h a t  t h e  s w i t c h  
is on t h e  path. A p a t h  is  called a conveying path i f  a l l  swi tches  on 



a r e  r ea l i zed  as 

1 
-0 

T T 9 ' 
Fig* 3 

These double t r a n s i s t o r s  make our switches good conveyors f o r  
both 0 ' s  and l ' s ,  which allows the  use of longer s t r i n g s  of switches. 
These s t r i n g s  of switches, however, should not  be too  long: the dis tance  
t o  the  "power supply* must not  be excessive, otherwise the  s i g n a l  w i l l  
become inaccura te  and the  c i  r c u i t  slow. To do j u s t i c e  to  the  nature of 
r e s t o r i n g  l o g i c  we disal low the  d r iv ing  of e x t e r n a l  outputs  by long 
s t r i n g s  of switches. This s h a l l  be r e f l e c t e d  i n  the  composition r u l e s  
t o  be formulated i n  Sect ion  3. 

The g a t e  inputs  a r e  run i n  two-rail  l o g i c  t o  accommodate both 
the  g and the  g '  s ignals .  For switches t h a t  a r e  known t o  convey always 
the same value the re  a r e  two ins tances  i n  which they can be rea l i zed  by 
j u s t  one t r a n s i s t o r :  

value 0 7-• a d  =lu=+=j=- 
a r e  r ea l i zed  a s  

Fig* 4 

I n  t h a t  case,  the  two-rail  representa t ion  of the  ga te  s i g n a l  is  no t  
necessary. It is assumed t h a t  the  compiler can recognize ins tances  i n  
which one t r a n s i s t o r  su f f i ces .  From now on w e  s h a l l  simply design i n  
terms of switches and apply the  above knowledge only i f  w e  wish t o  count 
the number of t r a n s i s t o r s  a component requi res .  



t h e  path are' on. The values on the inpu t  p o r t s  ( ex te rna l  o r  i n t e r n a l )  
determine which switches a r e  on and which a r e  o f f ,  and hence between 
which por t s  the re  are conveying paths,  (Whenever w e  do n o t  speci fy  
whether a p o r t  i s  ex te rna l  o r  i n t e r n a l ,  t h a t  is done in tent ional ly . )  

Two i n p u t  por t s  a r e  s a i d  t o  be f i g h t i n g  i f  the re  e x i s t s  any 
assignment of values t o  a l l  i npu t  p o r t s  such t h a t  the re  is a conveying 
path  between the  two inpu t  ports .  

W e  introduce three r u l e s  t h e  connection p a t t e r n  must s a t i s f y :  - 

Rule 1. [no f ight ing] :  No two i n p u t  p o r t s  a r e  f ight ing .  
Rule 2 .  [ res tored  ex te rna l  outputs] :  Every ex te rna l  output  port 

( a )  has a wire path t o  an i n t e r n a l  por t ,  o r  
(b) has a conveying path to  0 o r  1 f o r  every assignment 

of values t o  a l l  i n p u t  ports .  
Rule 3. Inonfloat ing i n t e r n a l  outputs] :  For every i n t e r n a l  

output  p o r t  p and f o r  every assignment of values t o  a l l  
i npu t  p o r t s  there  is a conveying path between p and an  
inpu t  por t ,  

Notice t h a t  Rule 1 includes 0 and 1 ( t h e  two constant  i n t e r n a l  i n p u t  
p o r t s ) ,  Remember  t h a t  i n t e r n a l  outputs  a r e  regarded a s  ( ex te rna l )  inpu t s  
of the  subcomponent and t h a t  the  subcomponent's ex te rna l  outputs  a r e  
i n t e r n a l  inputs  f o r  the  component. 

The j u s t i f i c a t i o n  of Rule 1 i s  obvious, The r e s u l t  of Rule 2 is  
t h a t  a l l  ex te rna l  outputs  a r e  driven by power o r  ground. They may be 
dr iven v i a  a number of switches, b u t  such a s t r i n g  of switches is 
confined t o  one component, viz. the  component i n  which the a c t u a l  
connection t o  0 o r  1 is made. 

The r u l e s  f o r  i n t e r n a l  outputs ,  i.e,, outputs  t o  subcomponents, 
a r e  more l i b e r a l .  W e  allow t h a t  inpu t s  from subcomponents and inputs  
from the environment a r e  d i rec ted  through switches before they a r e  
output  to. subcomponents. For inpu t s  from subcomponents t h i s  is  
reasonable: they a r e  res tored  by the  subcomponents. With inputs  f rom 
the  environment we have t o  be more ca re fu l .  We have t o  allow that such 
a s i g n a l  from an ex te rna l  inpu t  p o r t  goes through a switch t o  an 
i n t e r n a l  output  port .  Otherwise w e  would be unable t o  make the  f l i p -  
f l o p  t o  be shown i n  Example 3. But it does al low long s t r i n g s  of switches 
"going i n t o "  t h e  hierarchy,  a s  sketched i n  Fig. 6. 

W e  do n o t  consider #is a se r ious  drawback. One may expect  a sub- 
component t o  have (physica l ly)  s h o r t e r  connections than the  component 
i t s e l f  , Restoring i n  the "inward" d i r e c t i o n ,  theref  ore ,  seems less 
v i t a l  than i n  t h e  '@outwardm d i rec t ion ,  S t i l l ,  i f  we  wish t o  bound the 
lengths  of such inward s t r i n g s  of switches w e  could have the compiler 
i n s e r t  ampl i f i e r s  i n t o  them t o  r e s t o r e  their s igna l s ,  

The consequence of allowing the switches i n  the  outputs  to  sub- 
components i s  t h a t  Rule 2 has t o  be s t ronger  than one might expect. I n  
Rule 2 w e  could no t  al low wire paths  between ex te rna l  inpu t  p o r t s  and 
ex te rna l  output  por ts .  This may seem t o  disal low running through a 



---c)-- s tands  
f o r  a connection 
v i a  one o r  more 
switches 

component wire whose s i g n a l s  a r e  not  used by the  component. I n  f a c t ,  it 
does not. Such a w i r e  is j u s t  no t  p a r t  of the  component. (On the  ch ip  
a wire between two components may run through t h e  "area" of another  
component, but  t h a t  is a matter of ch ip  layout.  I t  is  a physica l  
property, no t  a funct ional  one.) Allowing wire paths  between e x t e r n a l  
i n p u t  p o r t s  and ex te rna l  output  p o r t s  would have given rise t o  the  
p o s s i b i l i t y  of i l l - r e s t o r e d  outputs.  Fig. 7 sketches an RL t h a t  is 
allowed by Rules 2 and 3. Now assume t h a t  each S i i s  j u s t  a wire pa th  
from i t 8  inpu t  t o  its output,  which would be allowed i f  we  weakened Rule 
2. The output  of t h e  RL is  then no t  res tored .  Imagine now t h a t  each Si 
a c t u a l l y  has t h e  same s t r u c t u r e  a s  the whole RL. It is c l e a r  t h a t  t h i s  
would v i o l a t e  our goal  of having res to red  e x t e r n a l  outputs.  

I n  one respec t  is Rule 3 s t ronger  than necessary. I t  requ i res  
t h a t  a l l  subcomponents rece ive  well-defined inpu t s ,  even a subcomponent 
whose ouputs a r e  not  used. W e  could have r e s t r i c t e d  the  r u l e  t o  
subcomponents whose outputs  a r e  a c t u a l l y  used i n  the computation, but  
t h a t  would have made both the  r u l e  and the checking whether it is obeyed 
more complicated. 

Fig* 7 



I n  t h i s  sec t ion  w e  introduce a programming nota t ion  i n  which 
connection p a t t e r n s  can be spec i f i ed  t h a t  s a t i s f y  the th ree  r u l e s  of the 
preceding sect ion.  There a r e  two p roper t i e s  a good nota t ion  should 
enjoy. F i r s t ,  it should be r e l a t i v e l y  simple f o r  the compiler t o  check 
t h a t  a program i s  s y n t a c t i c a l l y  co r rec t .  I f  t h i s  mechanical check is 
simple, it w i l l  probably be simple f o r  programmers t o  convince 
themselves t h a t  t h e i r  designs s a t i s f y  the  rules.  W e  s h a l l  show how the 
s y n t a c t i c  checking can be performed. Second, it should be poss ib le  to  
give  a formal d e f i n i t i o n  of the  semantics of our programs. W e  have n o t  
y e t  achieved the  second goal ,  bu t  u l t ima te ly  we must be ab le  t o  prove 
t h a t  a component performs a c e r t a i n  computation. That seems a much 
b e t t e r  technique than a demonstration of its e f f e c t  with an a p o s t e r i o r i  
simulation. (Besides, how do w e  know t h a t  t h e  simulat ion is c o r r e c t  i f  
we  do no t  have a r igorous d e f i n i t i o n  of the meaning of our s tatements?)  
It w i l l  not  be simple, b u t  remember: a program of more than, say, 20 
l i n e s  is  probably too long, we then have n o t  chosen the r i g h t  
subcomponents. 

For the  formulation of connection p a t t e r n s  we introduce t h e  term 
node. Every p o r t  is a node, bu t  the  program may introduce add i t iona l  
( i n t e r i o r )  nodes. For each node n we s h a l l  introduce a connection 
condit ion C (n )  and a connected-to-constant condit ion CC(n 1. We s h a l l ,  
furthermore, d i s t ingu i sh  a d i r e c t l y  dr iven set D, which is a subse t  of 
the  set of nodes. These concepts w i l l  be used i n  the  syntax checking. 
A formal d e f i n i t i o n  of how they depend on the  connection pa t t e rn  
spec i f i ed  w i l l  be given l a t e r .  I n t u i t i v e l y ,  C(n1 w i l l  be the  condit ion 
on the  inpu t  values under which node n is connected t o  an input ,  and 
CC(n) w i l l  be the  condit ion under which it is connected to  a constant.  
The C ( n ) ' s  w i l l  be used t o  enforce t h e  no-fighting ru le .  The set D w i l l  
comprise a l l  nodes t h a t  a r e  connected by a wire path t o  an i n t e r n a l  
i n p u t  port.  

The program c o n s i s t s  of a sequence of statements. Each statement 
introduces a number of connections and switches between nodes, and 
thereby a f f e c t s  the C(n) and CC(n) of each node involved and the  s e t  D. 
I n i t i a l l y ,  i.e., p r i o r  t o  the  f i r s t  s tatement,  D is the  set  of a l l  
i n t e r n a l  i n p u t  por t s ,  C(n)  i s  1 f o r  each inpu t  p o r t  and CC(n) is 1 f o r  
the  two constant  i n t e r n a l  inpu t  por t s ,  The C(n)  and CC(n) a r e  0 f o r  a l l  
o t h e r  nodes. ( "  1 " should be i n t e r p r e t e d  a s  "true" and "0" a s  "false.")  

The program is complete i f  f i n a l l y  we have: 

f o r  every ex te rna l  output  p o r t  p : p e B v CC(p) = 1 
f o r  every i n t e r n a l  output  p o r t  p : C(p) = 1 

(These completeness condit ions correspond t o  Rules 2 and 3. The observ- 
i n g  of Rule 1 is  discussed below.) 

EXAMPLE 1 3 i n v e r t e r  ( in?,out!  ): 
begin i n 1  + o u t  = 1; i n  -c o u t  = 0 end 



P r i o r  t o  the  statement 

we should have 

f o r  a l l  nodes n i n  BE : C(n) = 1 ,  and 

(C(x) A C(y) A BE) = 0 

The f i r s t  requirement is introduced to  permit the  syntax check- 
i n g  t o  be done incrementally a t  each statement of the  program. A con- 
sequence, however, is t h a t  not  every order of the  statements i n  t h e  
program i s . p e d s s i b l e .  It is s t i l l  an open quest ion whether t h i s  
s e r i a l i z a b i l i t y  requirement is not  too  strong. I f  w e  succeed i n  design- 
ing  our components under t h i s  regime it w i l l  c e r t a i n l y  enhance both t h e  
r e a d a b i l i t y  and the  checkabil i ty of our programs. 

The second requirement guarantees the  observance of the  no- 
f igh t ing  rule.  The statement does not  have an e f f e c t  on the  s e t  D. The 
e f f e c t  on C(n) and CC(n) is 

Z(x):= (Z(x) V (Z(y)  A BE))  

i n  which Z s tands  f o r  C o r  CC. 

The set D is affec ted  only by a statement t h a t  s p e c i f i e s  a 
d i r e c t  connection, i.e., one t h a t  does not  go through a s w i t c h .  W e  
obta in  such a statement by dropping t h e  condi t ional  p a r t  "BE+*: 

A s  for the  e f f e c t  on C(n) and CC(n) t h i s  statement i s  l i k e  a switch 
spec i f i ca t ion  w i t h  " 1 "  a s  its boolean expression. P r io r  t o  t h e  
statement, the  condit ion 

should hold, and its e f f e c t  is t h a t  Z(x) and Z(y) both become Z(x) V 
Z ( y )  ( Z  s t i l l  standing f o r  C o r  CC). The e f f e c t  on the  s e t  D is  t h a t  i f  
e i t h e r  node x o r  node y w a s  a member of D then D is extended with the 
o ther  node. 

I n  t h e  example of the  i n v e r t e r  we i n i t i a l l y  have out  6 D. A s  the 
program leaves the  set D unchanged w e  have t o  show t h a t  it e s t a b l i s h e s  
CC(out1 = 1. The f i r s t  statement i s  leg i t ima te  as w e  i n i t i a l l y  have 
C( in )  1 and 

The e f f e c t  is t h a t  both C(out)  and CC(out) become i n ' .  The second 
statement is legi t imate  a s  w e l l :  C ( i n )  i s  still 1 and 



The above is a simple example of an RL, it does not  have 
subRLVs. The f i r s t  l i n e  s p e c i f i e s  the  name of the  component and i t s  
e x t e r n a l  por ts .  A quest ion mark o r  an exclamation po in t  ind ica tes  t h a t  
the  p o r t  is an inpu t  p o r t  o r  an output  por t ,  respectively.  I n  the  
connection p a t t e r n  two switches are spec i f i ed ,  t e x t u a l l y  separated by a 
semicolon. The f i r s t  s tatement expresses t h a t  t h e  output  p o r t  o u t  is 
connected t o  the  cons tant  inpu t  p o r t  1. The condit ion i n  f r o n t  of the 
arrow s p e c i f i e s  under which circumstances the  switch i n  the  connection 
should be on. I n  t h i s  case a normally-on switch whose ga te  is connected 
t o  the  inpu t  p o r t  i n  {or a normally-off switch w i t h  its gate connected 
t o  i n ' )  is speci f ied .  The second statement s p e c i f i e s  the  second switch. 

For the  more p i c t o r i a l l y  inc l ined  reader we  observe the  resem- 
blance of the  program and the  following diagram. 

out 

Why is  the  program syxitact ical ly co r rec t?  In  order  t o  be ab le  t o  show 
t h a t  the  only output p o r t  out  s a t i s f i e s  

out  c D VCC(out) = 1 

we have t o  be more p rec i se  a s  t o  how a statement a f f e c t s  C (n) , CC (n) and 
D. 

I n  a program switches a r e  introduced by statements 

i n  which x and y a r e  nodes, and BE is a boolean expression i n  terms of 
nodes, more prec ise ly :  BE is a production of the grammar 



C(out)  A C ( 0 )  A i n  = i n *  A 1 A i n  
= 0 

It es tab l i shes  CC(out) 5 i n g  V i n ,  which is  1, Hence, it i s  a complete 
program. 

Notice t h a t  both switches i n  t h e  i n v e r t e r  a r e  of the  type t h a t  
can be implemented by one t r ans i s to r .  The i n v e r t e r ,  consequently, 
requires  only two t r ans i s to r s .  W e  s h a l l  use t h i s  i n v e r t e r  a s  a sub- 
component i n  our t h i r d  example. 

EXAMPLE 2. 
comp nor(a3, b?, out1 I :  
begin a v b + out  = 0 ;  a '  A b g  + o u t  = 1 9 

I n  the  f i r s t  statement the  boolean expression is  a d i s junc t ion  
of two nodes. This gives rise t o  a diagram i n  which two switches a r e  
placed i n  p a r a l l e l .  The boolean expression of the  second statement 
s p e c i f i e s  two switches t h a t  a r e  placed i n  series. The whole component 
requires  four t r a n s i s t o r s .  The following p ic tu re  shows a diagram of the  
component. 

1 '  

10 
Fig. 9 

A new node is  introduced by mentioning i t  i n  t h e  right-hand s ide  ( i n  the  
p a r t  t o  the  r i g h t  of the  arrow) of a statement. There is no example of 
t h i s  i n  the  paper. 

EXAMPLE 3 .  

comp f l ip - f lop  ( in?,  ld? , ql , qbar l ) : - 
begin i l , i 2 :  inver te r ;  

i2. in = i l  .out; 
I d *  + i l . i n  = i2.out; Id  -t i l . i n  = i n ;  
q I i 2 . 0 u t ~  qbar = i l  .out 

end - 
The second l i n e  of the program s p e c i f i e s  t h a t  the  component 

f l ip - f lop  has two subcomponents, named i l  and 12, of type inver te r .  As 
each i n v e r t e r  has two ex te rna l  por ts ,  t h i s  dec la ra t ion  provides the 
component with four  i n t e r n a l  ports .  An i n t e r n a l  p o r t  t h a t  corresponds 
t o  t h e  e x t e r n a l  p o r t  p of a subcomponent S is denoted a s  S.p. A s  both 
i l  and 12 have an ex te rna l  output  p o r t  out ,  the  component f l ip - f lop  has  
t h e  i n t e r n a l  inpu t  p o r t s  i l . ou t  and i2.out. Likewise, it has the  
i n t e r n a l  output  p o r t s  i l . i n  and i2.in. 



*fie reader is encouraged t o  check t h a t  t h e  component s a t i s f i e s  
t h e  r u l e s  by formally deriving t h a t  a l l  s tatements a r e  legi t imate  and 
t h a t  the  program es tab l i shes  

A possible diagram of the  component is 

Fig. 10 

5 .  BUSES 

I f  we  want t o  design a random access  memory o u t  of inver ters ,  we 
must be ab le  to connect t h e i r  inputs  and outputs  v ia  buses t o  the  inputs 
and outputs  of the memory. We want t o  connect t h e  outputs  of many 
subcomponents ( i n v e r t e r s )  t o  the  same bus. J u s t  connecting these 
outputs  ( i n t e r n a l  inputs  t o  the  memory) t o  t h e  bus would v i o l a t e  the 
no-fighting rule.  W e  s h a l l  remedy t h i s  by pu t t ing  switches i n  these 
connections. 

To ind ica te  when the memory cell  has t o  d r ive  the  bus 
(nreading")  and when it has t o  receive a value from the bus ( n w r i t i n g Y )  
two inputs,  r and w, go i n t o  the cell: 

~ b u  
Fig. 11 

W e  a t t ach  a number of cells to t h e  same bus. Such a composition w i l l  
only be an RL i f  we  guarantee t h a t ,  a t  most one of the  c e l l s  can have 
its r equal  to 1. The s igna l s  r come from another subcomponent of the 
memory, usual ly  ca l l ed  the  "decoder." The purpose of the  decoder is  t o  
assure  t h a t  a t  most one r equals 1. Given t h a t  the  outputs of the  
decoder s a t i s f y  t h a t  requirement, we can show t h a t  the  composition is 
again an  RL. This is a new phenomenon: a condit ion on the  values output 



by a subcompBnent has to  be taken i n t o  account t o  prove t h a t  a 
connection p a t t e r n  s p e c i f i e s  an RL. W e  c a l l  such a check a semantic 
check. 

The, following program is a 1-of-2 decoder. 

comp 1-of-2 decoder(in?, o u t l l ,  out21 1: - 
begin i n  + out l  = 1; i n  -c out2 = 0; 

i n '  + ou t l  = Or i n '  .r out2 = 1 
end 

By a s y n t a c t i c  check, a s  described i n  Section 4, we can show t h a t  t h i s  
is a l eg i t ima te  RL. In t h i s  case it is a l s o  simple t o  check t h a t  the  
output  values s a t i s f y  (out l  A out21 = 0, bu t  t h a t  is a semantic check. 

The moral is t h a t  we w i l l  design components t h a t  a r e  only 
"condit ional  RL's," i.e., they a r e  RL's under the  condit ion t h a t  the  
output  values of o the r  components s a t i s f y  c e r t a i n  cons t ra in ts .  When 
such components a r e  pu t  together  w e  w i l l  have t o  see to  it t h a t  such 
semantic c o n s t r a i n t s  a r e  indeed s a t i s f i e d .  

6 .  A GLANCE INTO THE FUTURE OF COMPUTING 

In  t h i s  paper we have no t  addressed the  dynamic behavior of 
components, i .e., how they r e a c t  t o  t r a n s i t i o n s  on t h e i r  inputs .  That 
is obviously the  next  s tep.  By adopting proper timing and s igna l ing  
conventions (cf .  Chapter 7 of [21) one should be ab le  t o  address the  
dynamic behavior i n  an equally d i s c r e t e  fashion. The purpose of such 
conventions i s  t o  generate "data va l idH inputs  t h a t  s i g n a l  t h a t  the  
inpu t  da ta  a r e  well-defined and may be inspected. Such a da ta  va l id  
s i g n a l  may come from a clock o r  it may be an asynchronous acknowledge 
s ignal .  

Af ter  t h a t  the re  a r e  two roads w e  can follow. W e  can make a 
machine. .That machine w i l l  accept  programs and execute them. W e  then 
concentra te  on the  programs and i f  w e  wish t o  have a c e r t a i n  computation 
performed, w e  write a program f o r  it. That is the  t r a d i t i o n a l  road. 

W e  a r e  l e d  t o  the  o ther ,  more promising, road i f  we  observe t h a t  
we are a l ready designing programs, programs t h a t  can be compiled i n t o  
t r a n s i s t o r  diagrams f o r  CMOS. W e  make components ou t  of subcomponents. 
Every time they w i l l  be more "powerful" o r  "sophis t ica tedn than t h e i r  
subcomponents. We can inspec t  how a component is implemented by looking 
a t  its program t e x t  t o  see how it is composed o u t  of subcomponents. 
Every component i s  again an implementation of a "higher l e v e l n  concept. 
W e  can, e.g., introduce components t h a t  communicate o ther  da ta  types 
than j u s t  0 ' s  and 1 I s .  I f  we  look a t  the implementation of t h a t  
concept, w e  may no t i ce  t h a t  it is .achieved by multiplexing o r  by the  use 
of mult iple por ts .  In t h a t  way the  components w e  introduce w i l l  g ive u s  
new modes of expression s o  t h a t  w e  can formulate our programs i n  terms 
of concepts t h a t  a r e  more appropr ia te  t o  our computations. After a 
while, we w i l l  have a mode of expression t h a t  one would customarily call 
a "higher l e v e l  programming language." 



Throughout a l l  the  l eve l s  of the  hierarchy we have maintained 
t h a t  we prograh by composing components out  of communicating sub- 
components. But by expressing a program i n  such a notat ion we have also 
spec i f i ed  an implementation f o r  it, we have a c t u a l l y  speci f ied  f o r  the  
program a t r a n s i s t o r  diagram i n  CMOS. From there ,  t h e  s t e p  t o  a 
complete s i l i c o n  compiler is a ( n o n t r i v i a l )  matter of generat ing the 
proper geometric representat ion of the  t r a n s i s t o r  diagrams. 

Of course, we do not  have to t r a n s l a t e  a l l  our programs i n t o  
s i l i c o n  t o  have them executed. W e  could a l s o  compile them i n t o  machine 
code, e.g., i n t o  code fo r  a machine designed by taking the  o the r  
aforementioned road. Our choice w i l l  depend on such ex te rna l  f a c t o r s  as 
the  speed with which the computation has to be performed or  the expected 
frequency o f - i t s  use. I t  is a l s o  poss ib le  t h a t  w e  want to make a 
t r a n s l a t i o n  i n t o  machine code f i r s t  i n  order to g e t  some experience with 
the  program and t h a t  we  do not  have it compiled i n t o  s i l i c o n  u n t i l  it is 
i n  a form t h a t  s u i t s  us. 

POSTSCRIPT 

Is t h i s  an a r t i c l e  about machine design o r  about programming? 
The answer t o  t h a t  quest ion f a  d e f i n i t e l y  "Yesl".  

ACKNOWLEDGEMENTS 

The research described i n  this paper was sponsored by the 
Defense Advanced Research Projects  Agency, ARPA Order Number 3771, and 
monitored by the  Office of Naval Research under con t rac t  number 
N00014-79-C-0597. 

REFERENCES 

[ I 1  Johannsen, Dave, "Hierarchicaf Power Routing." Display f i l e  2069, 
Computer Science Department, Ca l i fo rn ia  I n s t i t u t e  of Technology, 
Pasadena, CA, October 1978 

t21  Mead, Carver & Lynn Conway, "Introduction t o  VLSI Systems." 
Addison-Wesley Publishing Company, Reading MA, 1980 


