Supporting Online Material for

Primary Alcohols from Terminal Olefins: Formal Anti-Markovnikov Hydration via Triple Relay Catalysis

Guangbin Dong, Peili Teo, Zachary K. Wickens, Robert H. Grubbs*

*To whom correspondence should be addressed. E-mail: rhg@caltech.edu

Published 16 September 2011, Science 333, 1609 (2011)
DOI: 10.1126/science.1208685

This PDF file includes:

Materials and Methods
SOM Text
Table S1
NMR Spectra
Full Reference List
Supporting Online Material

Primary Alcohols from Terminal Olefins: Formal Anti-Markovnikov Hydration via Triple Relay Catalysis

Guangbin Dong, Peili Teo, Zachary K. Wickens and Robert H. Grubbs

1Arnold and Mabel Beckman Laboratories for Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

2Visiting Chair Professor at King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia 31261

3Institute of Chemical & Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833

*To whom correspondence should be addressed at e-mail: rhg@caltech.edu

I. Materials and Methods:

All reactions unless otherwise specified were carried out in a Vacuum Atmospheres Glovebox under a nitrogen atmosphere. All substrates were passed through a column of basic alumina prior to usage except for 1-octene, which was distilled over CaH2 before being passed through a column of basic alumina under a nitrogen atmosphere. PdCl2(MeCN)2 was prepared following literature procedures. Benzoquinone was recrystallized from i-PrOH prior to usage. Shvo’s catalyst [1-Hydroxytetraphenyl-cyclopentadienyl(tetraphenyl-2,4-cyclopentadien-1-one)-μ-hydrotetracarbonyldiruthenium(II)] was purchased from Strem and CuCl2 was from Aldrich. Both were used as received. H2O was distilled under argon. Anhydrous i-PrOH from Aldrich was freeze-pump-thawed three times under argon and anhydrous t-BuOH also from Aldrich, was degassed, before use. 1H and 13C NMR spectra were recorded on a Varian 500 Mhz, Varian 400 Mhz or a Varian 300 Mhz spectrometer. High resolution mass spectra were provided by the California Institute of Technology Mass Spectrometry Facility using JEOL JMS-600H High Resolution Mass Spectrometer. GC-MS data was also provided through the California Institute of Technology Mass Spectrometry Facility using HP 5970 series MSD with HP 5890 GC.

Gas chromatography data was obtained using an Agilent 6850 FID gas chromatograph equipped with a HP-5 (5%-phenyl)-methylpolysiloxane capillary column (Agilent). Instrument conditions-inlet temperature: 250 °C; detector temperature: 250 °C; hydrogen flow: 30 ml/min; air flow: 400 ml/min; constant col + makeup flow: 25 ml/min. Method: 50°C for 2 min., followed by a temperature increase of 10 °C/min to 115°C, hold for 0.5 min., another temperature increase of 1°C/min. to 125 °C, hold for 0.5 min., then a temperature increase of 5 °C/min to 140 °C, hold 0.5 min. and a final temperature increase of 60 °C/min to 300 °C and hold at 300 °C for 5 min. (total run time = 30.67 min). Response factors were collected for styrene (1a), 2-phenylethanol (2a), ethylbenzene (3a), 1-phenylethanol (4a), phenylacetaldehyde (5a) and acetophenone (6a) following literature procedures.

Condition A: Procedure for hydration of styrene (for [styrene] = 0.25 M): PdCl2(MeCN)2 (0.01 mmol, 0.0026 g), Shvo’s catalyst (0.01 mmol, 0.0109 g), CuCl2 (0.02 mmol, 0.0027 g) and
benzoquinone (0.08 mmol, 0.0088 g) were weighed into a 1 dram vial in the glovebox, followed by the addition of \(i\)-PrOH (0.2 ml) and \(t\)-BuOH (0.2 ml). Styrene (0.1 mmol, 11.5 μl) was added to the mixture followed by addition of \(H_2O\) (0.11 mmol, 2 μl). The resulting mixture was stirred in the glovebox at 85 °C for 6 h.

GC sample preparation: Tridecane (0.00123 mmol, 3 μl) was added to the reaction mixture as an internal standard. The mixture was then diluted with diethyl ether (3 ml) and ca. 0.5 ml of the resultant mixture was filtered through a plug of silica gel followed by flushing with ethyl acetate (ca. 1 ml). GC retention times (min) were as follows: ethylbenzene 3a (5.31), styrene 1a (5.80), phenylacetaldehyde 5a (8.37), 1-phenylethanol 4a (8.67), acetophenone 6a (8.75), 2-phenylethanol 2a (9.62) and tridecane (14.35).

Condition B: Procedure for hydration of other substrates (for [substrate] = 0.125 M):
PdCl\(_2\)(MeCN)\(_2\) (0.04 mmol, 0.0104 g), Shvo’s catalyst (0.04 mmol, 0.0436 g), CuCl\(_2\) (0.08 mmol, 0.0108 g) and benzoquinone (0.32 mmol, 0.0352 g) were weighed into a 20 ml vial in the glovebox, followed by the addition of \(i\)-PrOH (1.1 ml) and \(t\)-BuOH (2.2 ml). The substrate (0.4 mmol) was added to the mixture followed by addition of \(H_2O\) (0.4 mmol, 8.1 μl). After the resulting mixture was stirred in the glovebox at 85 °C for 6 h, it was diluted with pentane (6 ml) and filtered through a plug of silica gel followed by flushing with ethyl acetate (6 ml). The solvent was removed under vacuum, and the desired primary alcohol product was purified via a standard silica gel flash chromatography.

Condition C: Procedure for hydration of other substrates (for [substrate] = 0.067 M):
PdCl\(_2\)(MeCN)\(_2\) (0.04 mmol, 0.0104 g), Shvo’s catalyst (0.04 mmol, 0.0436 g), CuCl\(_2\) (0.08 mmol, 0.0108 g) and benzoquinone (0.4 mmol, 0.0432 g) were weighed into a 20 ml vial in the glovebox, followed by the addition of \(i\)-PrOH (2 ml) and \(t\)-BuOH (4 ml). The substrate (0.4 mmol) was added to the mixture followed by addition of \(H_2O\) (0.4 mmol, 8.1 μl). After the resulting mixture was stirred in the glovebox at 85 °C for 6 h, it was diluted with pentane (6 ml) and filtered through a plug of silica gel followed by flushing with ethyl acetate (6 ml). The solvent was removed under vacuum, and the desired primary alcohol product was purified via a standard silica gel flash chromatography.

Condition D: Procedure for hydration of 1-octene (for [1-octene] = 0.067 M):
PdCl\(_2\)(MeCN)\(_2\) (0.04 mmol, 0.0104 g), Shvo’s catalyst (0.04 mmol, 0.0436 g), CuCl\(_2\) (0.08 mmol, 0.0108 g) and benzoquinone (0.4 mmol, 0.432 g) were weighed into a 20 ml vial in the glovebox, followed by the addition of \(i\)-PrOH (3 ml) and \(t\)-BuOH (3 ml). 1-octene (0.4 mmol, 62.8 μl) was added to the mixture followed by addition of \(H_2O\) (0.4 mmol, 8.1 μl). After the resulting mixture was stirred in the glovebox at 85 °C for 6 h, it was diluted with pentane (6 ml) and filtered through a plug of silica gel followed by flushing with ethyl acetate (6 ml). The solvent was removed under vacuum, and purification of the alcohol products were attempted via a standard silica gel flash chromatography.

II. Characterization Data

Except 2-(3,5-bis(trifluoromethyl)phenyl)ethanol (2j), all the alcohols products are either known compounds or commercially available. \(^1H\) NMR and HRMS data were provided for all the primary alcohol compounds. We further checked the \(^{13}C\) NMR data of known compounds 2a, 2b, 2c, 2e and 2g. Full characterization data was provided for compound 2j.

2-phenethanol (2a) (36): 41 mg, 84% yield. \(^1H\) NMR (500 MHz, CDCl\(_3\)) \(\delta 7.35 – 7.29\) (m, 2H), 7.27 – 7.21 (m, 3H), 3.86 (t, \(J = 6.6\) Hz, 2H), 2.88 (t, \(J = 6.6\) Hz, 2H); \(^{13}C\) NMR (126 MHz,
2-(4-(tert-butyl)phenyl)ethanol (2b) (36): 30 mg, 42% yield. \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.35 \((d, J = 8.1\ Hz, 2H)\), 7.17 \((d, J = 8.1\ Hz, 2H)\), 3.86 \((t, J = 6.4\ Hz, 2H)\), 2.85 \((t, J = 6.5\ Hz, 2H)\), 1.32 \((s, 9H)\); \(^{13}^C\) NMR (101 MHz, CDCl\(_3\)) \(\delta\) 149.30, 135.27, 128.66, 125.47, 63.66, 38.61, 34.38, 31.34; HRMS (EI+) calcd for C\(_8\)H\(_{10}\)O 122.0732, found 122.0730.

2-(4-methylphenyl)ethanol (2c) (36): 33 mg, 61% yield. \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.13 \((s, 2H)\), 3.84 \((t, J = 6.5\ Hz, 2H)\), 2.84 \((t, J = 6.6\ Hz, 2H)\), 2.33 \((s, 2H)\); \(^{13}^C\) NMR (101 MHz, CDCl\(_3\)) \(\delta\) 136.18, 135.41, 129.44, 129.05, 63.94, 38.91, 21.17; HRMS (EI+) calcd for C\(_9\)H\(_{12}\)O 136.0886, found 136.0888.

2-(2-Naphthyl)ethanol (2d) (37): 41 mg, 60% yield. \(^1^H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.84 – 7.76 \((m, 3H)\), 7.69 \((s, 1H)\), 7.51 – 7.41 \((m, 2H)\), 7.37 \((d, J = 8.3\ Hz, 1H)\), 3.96 \((brs, 2H)\), 3.05 \((t, J = 6.5\ Hz, 2H)\), 1.42 \((s, 1H)\); HRMS (EI+) calcd for C\(_{12}\)H\(_{12}\)O 172.0888, found 172.0892.

2-(2-methylphenyl)ethanol (2e) (38): 39 mg, 72% yield. \(^1^H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.21 – 7.09 \((m, 4H)\), 3.85 \((q, J = 6.3\ Hz, 2H)\), 2.84 \((t, J = 6.6\ Hz, 2H)\), 2.34 \((s, 3H)\), 1.49 – 1.35 \((m, 1H)\); \(^{13}^C\) NMR (126 MHz, CDCl\(_3\)) \(\delta\) 136.65, 136.56, 130.57, 129.75, 126.74, 126.19, 62.78, 36.53, 29.84, 19.58; HRMS (EI+) calcd for C\(_9\)H\(_{12}\)O 136.0888, found 138.0888.

2-(4-chlorophenyl)ethanol (2f) (39): 46.3 mg, 60% yield. \(^1^H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.31 – 7.26 \((m, 2H)\), 7.20 – 7.14 \((m, 2H)\), 3.85 \((q, J = 6.3\ Hz, 2H)\), 2.84 \((t, J = 6.5\ Hz, 2H)\), 1.36 \((t, J = 5.6\ Hz, 1H)\); HRMS (EI+) calcd for C\(_8\)H\(_9\)ClO 156.0342, found 156.0340.

2-(4-bromophenyl)ethanol (2g) (40): 58 mg, 72% yield. \(^1^H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.43 \((d, J = 8.3\ Hz, 2H)\), 7.11 \((d, J = 8.4\ Hz, 2H)\), 3.83 \((q, J = 6.5\ Hz, 2H)\), 2.82 \((t, J = 6.5\ Hz, 2H)\); \(^{13}^C\) NMR (126 MHz, CDCl\(_3\)) \(\delta\) 137.69, 131.74, 130.89, 120.44, 63.50, 38.66; HRMS (EI+) calcd for C\(_8\)H\(_9\)BrO 199.9839, found 199.9837.

2-(4-fluorophenyl)ethanol (2h) (38): 47 mg, 84% yield. \(^1^H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.23 – 7.15 \((m, 2H)\), 7.05 – 6.95 \((m, 2H)\), 3.85 \((t, J = 6.3\ Hz, 2H)\), 2.85 \((t, J = 6.5\ Hz, 2H)\); HRMS (EI+) calcd for C\(_8\)H\(_9\)FO 140.0638, found 140.0637.

2-(4-nitrophenyl)ethanol (2i) (41): 55.4 mg, 83% yield. \(^1^H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.15 \((d, J = 8.7\ Hz, 2H)\), 7.38 \((d, J = 8.7\ Hz, 2H)\), 3.90 \((dd, J = 6.5, 4.8\ Hz, 2H)\), 2.95 \((t, J = 6.4\ Hz, 2H)\), 1.40 \((t, J = 4.7\ Hz, 1H)\); HRMS (EI+) calcd for C\(_8\)H\(_9\)NO\(_3\) 167.0582, found 167.0590.

2-(3,5-bis(trifluoromethyl)phenyl)ethanol (2j): 87 mg, 84% yield. Rf: 0.3 (30% ethyl acetate in hexane); \(^1^H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.76 \((d, J = 8.4\ Hz, 2H)\), 7.71 \((s, 2H)\), 3.94 \((t, J = 6.3\ Hz, 2H)\), 3.00 \((t, J = 6.3\ Hz, 2H)\), 1.40 \((t, J = 4.7\ Hz, 1H)\); \(^{19}^F\) NMR (282 MHz, CDCl\(_3\)) \(\delta\) -62.87; IR (NaCl plate) 3382 (br), 2919, 2849, 1995, 1624, 1461, 1278, 1137 cm\(^{-1}\); HRMS (EI+) calcd for C\(_{10}\)H\(_8\)F\(_3\)O 258.0479, found 258.0487.

1-octanol (2k) and 2-octanol (4k): The yield of compounds 2k and 4k was determined via crude \(^1^H\) NMR using mesitylene as an internal standard by comparing the integration of the \(\alpha\) protons of the alcohols with the methyl peaks of mesitylene. Purification of compounds 2k and 4k was attempted via silica gel flash chromatography, and a mixture of compounds 2k and 4k with an unknown aromatic impurity was isolated. \(^1^H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 3.79 (m, 1H, compound...
4k) 3.64 (t, \(J = 7.0\) Hz, 2H, compound 2k), 1.56 (m, 2H, compound 2k), 1.45-1.28 (CH₂ protons for both 2k and 4k), 1.18 (d, \(J = 6.5\) Hz, 3H, compound 4k), 0.88 (t, \(J = 6.5\) Hz, 3H, for both compounds 2k and 4k); HRMS (M-H) calcd for C₈H₁₇O 129.1279, found 129.1276. The identity of compound 4m was further confirmed by GC-MS, in which the synthetic sample gave an identical retention time (8.6 min for 4k and 9.9 min for 2k) and mass spec as the authentic sample: for 2k, m/z 129 (M-1), 112, 97, 84, 69, 55, 45, 41.

3-phenylpropan-1-ol (2m): 6.4 mg, 12% yield. \(^1\)H NMR (300 MHz, CDCl₃) \(\delta 7.33 – 7.26\) (m, 2H), \(7.24 – 7.16\) (m, 3H), 3.69 (q, \(J = 6.3\) Hz, 2H), 2.72 (t, \(J = 6.3\) 2H), 1.97 – 1.85 (m, 2H), 1.25 (t, \(J = 5.3\) Hz, 1H). HRMS (EI+) calcd for C₉H₁₂O 136.0888, found 136.0884. The ratio between compounds 2m and 4m was determined via crude \(^1\)H NMR by comparing the integration of the \(\alpha\) protons of the alcohols. Isolation of pure compound 4m was unsuccessful due to contamination of an unknown impurity. The identity of compound 4m was further confirmed by GC-MS, in which the synthetic sample gave an identical retention time (11.1 min) and mass spec as the authentic sample: m/z 136 (M), 121, 117, 103, 92, 91, 77, 65, 51, 45, 39.

Recovery of hydroquinone:
PdCl₂(MeCN)₂ (0.04 mmol, 0.0104 g), Shvo’s catalyst (0.04 mmol, 0.0436 g), CuCl₂ (0.08 mmol, 0.0108 g) and benzoquinone (0.37 mmol, 0.040 g) were weighed into a 20 ml vial in the glovebox, followed by the addition of \(\text{i-PrOH}\) (2 ml) and \(\text{t-BuOH}\) (4 ml). Styrene (46 \(\mu\)L, 0.4 mmol) was added to the mixture followed by addition of H₂O (0.4 mmol, 8.1 \(\mu\)l). The resulting mixture was stirred in the glovebox at 85 °C for 6 h. Crude reaction mixture was washed three times with toluene (2 ml) and filtered through a celite plug. The celite plug was subsequently washed with ethyl acetate (ca 5 ml). The ethyl acetate fraction was recombined with the remaining material after the toluene wash. After removal of the solvent, pure hydroquinone was obtained as a white crystal (30mg, 74% yield). \(^1\)H NMR (300 MHz, CD₃CN) \(\delta 6.64\); HRMS (EI+) calcd for C₆H₆O₂ 110.0368, found 110.0390.

Synthesis and characterization of vinyl enol ether:
PdCl₂(MeCN)₂ (0.04 mmol, 0.0104 g), CuCl₂ (0.08 mmol, 0.0108 g) and benzoquinone (0.4 mmol, 0.432 g) were weighed into a 20 ml vial in the glovebox, followed by the addition of \(\text{t-BuOH}\) (6 ml). Styrene (46 \(\mu\)L, 0.4 mmol) was added to the mixture and the resulting mixture was stirred in the glovebox at 85 °C for 6 h. Yield was determined via crude NMR using mesitylene as an internal standard. The olefin peaks for the \(\text{cis}\) and \(\text{trans}\) isomers were both observed by crude NMR: \(^1\)H NMR (300 MHz, CDCl₃) \(\text{trans isomer:}\) \(\delta 7.02\) (d, \(J = 12.4\) Hz, 1H), 5.99 (d, \(J = 12.4\) Hz, 1H); \(\text{cis isomer}\) 6.45 (d, \(J = 7.1\) Hz, 1H), 6.45 (d, \(J = 5.24\) Hz, 1H). The ratio between \(\text{trans}\) and \(\text{cis}\) isomers is 1.5:1. This data fits with previously reported values for these vinyl enol ethers (42). GC/HRMS was additionally employed to characterize the compounds ([C₁₂H₁₀O] cald 176.1201, found 176.1216).

Labeling studies:
Synthesis of deuterated products 9 and 10: General procedure (styrene as the substrate, Condition C) was followed using \(\text{i-C₃H₇OD}\) and \(\text{t-BuOH-OD}\). Deuterated 2-phenylethanol products were isolated by silica gel chromatography as an inseparable mixture of 9 and 10. The yield (77%) was determined via GC using response factors calculated for 2a relative to tridecane. \(^1\)H NMR (300 MHz, CDCl₃) \(\delta 7.35 – 7.29\) (m, 2H), \(7.27 – 7.21\) (m, 3H), (m, \(J = 6.6\) Hz, 2H), 2.88 (m, 0.68H). HRMS HRMS (EI+) calcd for C₈H₁₈OD₂ 124.0857, found 124.0860; calcd for C₈H₁₇OD 123.0794, found 123.0796. Integration analysis indicates the \(\beta\)-position incorporated one deuterium in 69%
of the product and two deuterium atoms in 31% of the product. This calculation approximates that no 2a was formed.

Synthesis of deuterated products 11 and 12: General procedure (styrene as the substrate, Condition C) was following using i-propanol-d8 and t-butanol-OD. Deuterated 2-phenylethanol products were isolated by silica gel chromatography as an inseparable mixture. The yield (67%) was determined via GC using response factors calculated for 2a relative to tridecane. \(^1H \text{ NMR} \) (300 MHz, CDCl\(_3\)) \(\delta \) 7.35 – 7.29 (m, 2H), 7.27 – 7.21 (m, 3H), (m, \(J = 6.6 \) Hz, 1.13H), 2.88 (m, 0.65H). Integration analysis indicates the \(\alpha \) position incorporated one deuterium in 87% of the product and the \(\beta \) position incorporated one deuterium in 65% of the product and two deuterium atoms in 35% of the product. These calculation approximates that no 2a was formed. Both compounds 11 and 12 do not get ionized on HRMS (EI+). GC-MS spectrum indicates a single peak matched the retention time with compound 2a, but shows a mass of m/z 124 and 125 along with m/z 123 as a minor peak (the m/z 122 peak was only observed marginally).
III. Supporting Table

Table 1S. Studies with styrene as the substrate. The Reaction concentration is 0.25M. Yields and conversions were determined by GC analysis, using tridecane as the internal standard. (BQ: 1,4-Benzquinone; MS: Molecular sieves)*,†

*The loss of mass balance in entry 5 is unclear but presumably caused by either styrene oligomerization or complexation with metal catalysts. †The loss of mass balance in entry 6 (57% vs 88%) is presumably caused by the lability of the benzylic α proton and the reactivity of the aldehyde to form oligomers and aldol condensation products.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Charge from the "standard conditions"</th>
<th>Conversion (%)</th>
<th>Yield of 2a (%)</th>
<th>Yield of byproducts (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3a</td>
<td>4a</td>
</tr>
<tr>
<td>1</td>
<td>none</td>
<td>88</td>
<td>77</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>no RuCl3(CH3CN)2</td>
<td>34</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>no Shvds catalyst</td>
<td>80</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>no CuCl2</td>
<td>>99</td>
<td>48</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>no BQ</td>
<td>58</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>6</td>
<td>no i-PrOH</td>
<td>88</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>no H3BuOH</td>
<td>48</td>
<td>18</td>
<td>2.0</td>
</tr>
<tr>
<td>8</td>
<td>no H3BuOH, but 1.2 equiv H2O</td>
<td>75</td>
<td>64</td>
<td>2.0</td>
</tr>
<tr>
<td>9</td>
<td>replace H2O with 4 Å MS</td>
<td>>99</td>
<td>0</td>
<td>57</td>
</tr>
</tbody>
</table>

IV. NMR Spectra
References and Notes

31. When allylbenzene was used as the substrate, the major by-product was β-methylstyrene arising from olefin isomerization.

