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AN ESTIMATE FOR THE NUMBER OF BOUND STATES
OF THE SCHRÖDINGER OPERATOR
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Abstract. For the Schrödinger operator −∆ + V on R2 let N(V ) be the
number of bound states. One obtains the following estimate:

N(V ) ≤ 1 +

∫
R2

∫
R2
|V (x)| |V (y)| |C1 ln |x− y|+ C2|2 dx dy

where C1 = − 1
2π

and C2 = ln 2−γ
2π

(γ is the Euler constant). This estimate
holds for all potentials for which the previous integral is finite.

1. Introduction

On R3, there is a well-known bound for the number of bound states N(V ) dis-
covered by Birman [3] and Schwinger [9]:

N(V ) ≤ 1
(4π)2

∫
R3

∫
R3

|V (x)| |V (y)|
|x− y|2 dx dy.

The method of proof is the “Birman-Schwinger principle”, which states that for
a potential V ≤ 0 and for a number E < 0:

N(−∞,E](−∆ + V ) = N[1,∞)(|V |1/2(−∆− E)−1|V |1/2)

where NI(T ) denotes the number of eigenvalues (counting multiplicities) of the
operator T in the interval I.

The operator (−∆− E)−1 has integral kernel

G3(x, y, E) =
1

4π
|x− y|−1e−

√
−E|x−y|,

which converges when E ↑ 0 (for x 6= y). This implies that an estimate for N(V )
can be obtained by estimating N(−∞,E](−∆ + V ) first and then taking E ↑ 0. A
detailed proof of this result can be found in [12].

This proof does not work in two dimensions since the integral kernel of (−∆ +
V )−1 contains ln(

√
−E|x− y|) which diverges as E ↑ 0.
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Khuri, Martin and Wu conjectured in [5] the following bound for N(V ) in two
dimensions:

N(V ) ≤ 1 + C1

∫
R2
|V |∗(x)

(
ln
∣∣∣x0

x

∣∣∣)+

dx

+ C2

∫
R2
|V−(x)|

(
ln
∣∣∣∣ xx0

∣∣∣∣)+

dx + C3

∫
R2
|V−(x)| dx

(1.1)

where x0 6= 0 and |V |∗ denotes the symmetric decreasing rearrangement of |V |.
Our goal is to find bounds similar to (1.1) using the “Birman-Schwinger princi-

ple” and a method discovered by Simon in [11]. The idea is to write the integral
kernel of |V |1/2(−∆− E)−1|V |1/2 as the sum of a Hilbert-Schmidt operator and a
rank-one perturbation and then apply the Birman-Schwinger method.

The main results in this paper are Theorem 3.3 and Proposition 3.4, which give
two bounds for N(V ) in two dimensions:

B(V ) = 1 +
∫
R2

∫
R2
|V (x)| |V (y)|

∣∣∣∣− 1
2π

ln |x− y|+ ln 2− γ
2π

∣∣∣∣2 dx dy
and

B̃(V ) = 1 + C3‖V ‖21 + C4‖V ‖1
∫
R2
|V (x)| [ln(1 + |x|)]2 dx

+ C5‖V ‖1
∫
R2
|V |∗(x) [ln |x|]2 χ{|x|≤1} dx.

These bounds are similar to the one conjectured in [5] with the difference that
for large coupling constants, B(λV ), B̃(λV ) ∼ λ2 whereas the bound conjectured
by Khuri, Martin and Wu is ∼ λ.

2. Estimate for nice potentials

One can prove the following:

Theorem 2.1. Let V ∈ L∞(R2) be a real-valued compactly supported potential.
Then

N(V ) ≤ 1 +
∫
R2

∫
R2
|V (x)| |V (y)| |C1 ln |x− y| + C2|2 dx dy

where C1 = − 1
2π and C2 = ln 2−γ

2π (γ ≈ 0.577 is the Euler constant).

Proof. Since V ∈ L∞(R2) and supp(V ) is compact, it follows that V ∈ L2(R2). So
(−∆ + V ) is a well-defined selfadjoint operator with σess(−∆ + V ) = [0,∞).

Without loss of generality, one can assume V ≤ 0. Indeed, if V− = max(−V, 0)
is the negative part of V , then

−∆ + (−V−) ≤ −∆ + V.

So by the min-max principle, N(V ) ≤ N(−V−).
Now, from the Birman-Schwinger principle one gets, for E < 0:

N(−∞,E](−∆ + V ) = N[1,∞)(|V |1/2(−∆− E)−1|V |1/2).

The integral kernel of (−∆ + E)−1 is (cf. [1] and [2]):

(2.1) G2(x, y, E) =
1

2π
K0(
√
−E |x− y|)
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where K0 is a modified Bessel function. In particular,

(2.2) K0(x) = −(lnx)I0(x) + h(x)

where the Bessel function I0 and the function h (defined on R) are real-valued
analytic functions with I0(0) = 1 and h(0) = ln 2 − γ. Let ϕ ∈ C∞0 (R2) be such
that ϕ(x) = 1 for |x| ≤ 1 and ϕ(x) = 0 for |x| ≥ 2. Then, for f(x) = − 1

2π I0(x)ϕ(x)
and g(x) = 1

2πK0(x)− f(x) ln(x), one gets

(2.3)
1

2π
K0(x) = (ln x)f(x) + g(x).

The functions f and g are in C∞(R), with f(0) = − 1
2π and g(0) = ln 2−γ

2π . Fur-
thermore, f has compact support and g has exponential decay at infinity (since the
modified Bessel function K0 has exponential decay at infinity). Using (2.1) and
(2.3) one gets

G2(x, y, E) =
[
ln(
√
−E |x− y|)

]
f(
√
−E |x− y|) + g(

√
−E |x− y|)

= ln
√
−E

[
f(
√
−E |x− y|) +

1
2π

]
+ ln |x− y| f(

√
−E |x− y|)

+ g(
√
−E |x− y|) +

[
− 1

2π
ln(
√
−E)

]
.(2.4)

One can write (|V |1/2(−∆ − E)−1|V |1/2) = AE + BE where AE and BE are
operators on L2(R2) defined by

AEϕ(x) =
∫
R2
|V (x)|1/2

[
ln
√
−E

(
f(
√
−E |x− y|) +

1
2π

)
+ ln |x− y|f(

√
−E |x− y|) + g(

√
−E |x− y|)

]
|V (y)|1/2ϕ(y) dy,(2.5)

BEϕ(x) = |V (x)|1/2
∫
R2

[
− 1

2π
ln(
√
−E)|V (y)|1/2

]
ϕ(y) dy.(2.6)

BE is therefore a selfadjoint rank-one operator with range C|V |1/2.
Now, in order to estimate the number of eigenvalues greater than or equal to 1

of the operator AE , the following lemma will be useful.

Lemma 2.2. Let V,E, f, g, AE be as before, and let FE be the integral kernel of
AE. Then FE ∈ L2(R2 × R2).

Proof. The potential V is compactly supported. So let R > 0 be such that
supp(V ) ⊂ {x ∈ R2, |x| ≤ R}.

Since f and g are bounded, one immediately gets that, for any E < 0, the
functions ln(

√
−E)

(
f(
√
−E |x− y|) + 1

2π

)
, f(
√
−E|x − y|) and g(

√
−E|x − y|)

are bounded on R2.
A simple computation shows that∫

|x|≤R

∫
|y|≤R

(ln |x− y|)2 dx dy ≤ πR2

∫
|z|≤2R

(ln |z|)2 dz <∞

and therefore, since V ∈ L∞(R2), one can conclude that FE ∈ L2(R2 × R2). �

From the previous lemma, it follows immediately that AE is a selfadjoint Hilbert-
Schmidt operator. Therefore, one can estimate N[1,∞)(AE) as in the proof of the
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Birman-Schwinger theorem and, denoting by S the set of eigenvalues of AE , one
gets

N[1,∞)(AE) ≤
∑
λ∈S
|λ|2 = ‖AE‖22 = ‖FE‖22

=
∫
R2

∫
R2
|FE(x, y))|2 dx dy.

(‖AE‖2 denotes the Hilbert-Schmidt norm of the operator AE .) Since BE is a
rank-one operator, the eigenvalues of AE and (AE +BE) interlace. So

N(−∞,E](−∆ + V ) = N[1,∞)(AE +BE)

≤ 1 +
∫
R2

∫
R2
|FE(x, y))|2 dx dy.(2.7)

Now, in order to obtain an estimate for N(V ) one has to take E ↑ 0. The
following lemma shows that the previous integral converges as E approaches 0.

Lemma 2.3. Let V,E and FE be as before. Then

lim
E↑0

∫
R2

∫
R2
|FE(x, y)|2 dx dy

=
∫
R2

∫
R2
|V (x)| |V (y)|

∣∣∣∣− 1
2π

ln |x− y|+ ln 2− γ
2π

∣∣∣∣2 dx dy.

(2.8)

Proof. Taking into account the definition of FE , it suffices to prove the following
three statements:

lim
E↑0

∫
R2

∫
R2
|V (x)| |V (y)|

∣∣∣∣ln(
√
−E)

(
f(
√
−E |x− y|) +

1
2π

)∣∣∣∣2 dx dy = 0;(2.9)

lim
E↑0

∫
R2

∫
R2
|V (x)| |V (y)|

∣∣∣∣ln |x− y|(f(
√
−E |x− y|) +

1
2π

)∣∣∣∣2 dx dy = 0;(2.10)

lim
E↑0

∫
R2

∫
R2
|V (x)| |V (y)|

∣∣∣∣g(
√
−E|x− y|)− ln 2− γ

2π

∣∣∣∣2 dx dy = 0.(2.11)

Since V is compactly supported and f and g are continuous with f(0) = − 1
2π

and g(0) = ln 2−γ
2π , one gets (2.10) and (2.11). As for (2.9) one can write

ln(
√
−E)

(
f(
√
−E |x− y|) +

1
2π

)
= ln(

√
−E)

√
−E |x− y|

f(
√
−E |x− y|) + 1

2π√
−E |x− y|

.

Let

k(z) =
f(z) + 1

2π

z
.

Since f ∈ C∞(R2), it follows that k is continuous (and, in particular, bounded on
compact sets). Therefore (since |x| ≤ R and |y| ≤ R imply |x − y| ≤ 2R), there
exists an M > 0 such that

k(
√
−E |x− y|) χsupp(V )(x) χsupp(V )(y) ≤M

for any E ∈ (−1, 0) and any x, y ∈ R2.
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Since
lim
E↑0

ln(
√
−E)

√
−E = 0,

one gets (2.9). �

Using (2.7) and the previous lemma, one immediately gets

N(V ) ≤ 1 +
∫
R2

∫
R2
|V (x)| |V (y)|

∣∣∣∣− 1
2π

ln |x− y|+ ln 2− γ
2π

∣∣∣∣2 dx dy.

�

The proof of Lemma 2.2 also shows that for V ∈ L∞(R2) with supp(V ) compact,
we have

(2.12)
∫
R2

∫
R2
|V (x)| |V (y)|

∣∣∣∣ − 1
2π

ln |x− y|+ ln 2− γ
2π

∣∣∣∣2 dx dy < ∞.

3. Estimate for a larger class of potentials

The result of Theorem 2.1 can be extended to any potential V for which (2.12)
holds. In order to prove this, the following lemma will be useful.

Lemma 3.1. Let V be a real-valued measurable function such that∫
R2

∫
R2
|V (x)| |V (y)| |C1 ln |x− y|+ C2|2 dx dy < ∞.

Then V ∈ L1(R2).

Proof. Let V be a nonzero measurable function. Then there exists a > 0 such
that for M = {x ∈ R2, |V (x)| ≥ a} one has λ2(M) > 0 (λ2 is the Lebesgue
measure in R2). Furthermore, there exists a bounded open set N ⊂ R2 such that
λ2(M ∩N) = b > 0.

Let ε > 0 be small enough such that

(3.1) λ2

(
{z ∈ R2, |z| ∈ [e−C2/C1 − ε, e−C2/C1 + ε]}

)
≤ b

2
.

For any x ∈ R2, let Nx = {y ∈ R2, |y− x| ∈ [e−C2/C1 − ε, e−C2/C1 + ε]}. From (3.1)
it follows that λ2(Nx) ≤ b

2 for any x ∈ R2.
Since C1 ln |z|+ C2 = 0 if and only if |z| = e−C2/C1 , it follows that there exists

a c > 0 such that for a fixed x ∈ R2, one has

(3.2) |C1 ln |x− y|+ C2| > c for any y /∈ Nx.
Now, for any x ∈ R2, since λ2(M ∩ N) = b > 0 and λ2(Nx) ≤ b

2 one gets
λ2(Px) > b

2 , where Px = (M ∩N)\Nx. So∫
R2
|V (y)| |C1 ln |x− y|+ C2|2 dx dy ≥

∫
Px

|V (y)| |C1 ln |x− y|+ C2|2 dx dy

≥ a · c2 · λ2(Px) ≥ ac2b

2
> 0.

(3.3)

Let d = ac2b/2. Since∫
R2

∫
R2
|V (x)| |V (y)| |C1 ln |x− y|+ C2|2 dx dy
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=
∫
R2
|V (x)|

(∫
R2
|V (y)| |C1 ln |x− y|+ C2|2 dy

)
dx ≥ d‖V ‖1,

one gets ‖V ‖1 <∞; so V ∈ L1(R2). �

Proposition 3.2. Let V be a real-valued measurable function such that∫
R2

∫
R2
|V (x)| |V (y)| |C1 ln |x− y|+ C2|2 dx dy < ∞.

Then V is a relatively form compact perturbation of −∆ that defines −∆ + V with
σess(−∆ + V ) = [0,∞).

Proof. C1 6= 0 implies that |V (x)| |V (y)| |ln |x− y|+D|2 ∈ L1(R2 × R2) where
D = C2/C1. Since V ∈ L1(R2), one gets∫

R2

∫
R2
|V (x)| |V (y)| |ln |x− y||2 dx dy

≤ 2
∫
R2

∫
R2
|V (x)| |V (y)| |ln |x− y|+D|2 dx dy + 2D2‖V ‖21 < ∞.

(3.4)

From previous considerations, the integral kernel of (−∆ + 1)−1 is
1

2π
K0(|x− y|) = (ln |x− y|)f(|x− y|) + g(|x− y|),

and therefore the integral kernel of |V |1/2(−∆ + 1)−1|V |1/2 is

K(x, y) = |V (x)|1/2|V (y)|1/2 [(ln |x− y|)f(|x− y|) + g(|x− y|)] .
Since f and g are bounded, (3.4) implies that K ∈ L2(R2 × R2). Therefore,
|V |1/2(−∆ + 1)−1|V |1/2 is Hilbert-Schmidt. One can now write (−∆ + 1)−1 =
(−∆ + 1)−1/2(−∆ + 1)−1/2 and, using trace class ideals methods (see [10]), it fol-
lows that (−∆ + 1)−1/2|V |(−∆ + 1)−1/2 is Hilbert-Schmidt. This implies (cf. [8])
that V is a relatively form compact perturbation of −∆ and therefore V has relative
form bound zero and σess(−∆ + V ) = σess(−∆) = [0,∞). �

Theorem 3.3. Let V be a real-valued measurable function such that

B(V ) =
∫
R2

∫
R2
|V (x)| |V (y)|

∣∣∣∣− 1
2π

ln |x− y|+ ln 2− γ
2π

∣∣∣∣2 dx dy < ∞.

Then

N(V ) ≤ 1 +
∫
R2

∫
R2
|V (x)| |V (y)|

∣∣∣∣− 1
2π

ln |x− y|+ ln 2− γ
2π

∣∣∣∣2 dx dy.
Proof. As was shown before, one can assume, without loss of generality, that V ≤ 0.
For any positive integer N , let

VN (x) = max(V (x),−N) χ(−N,N)(x).

Obviously, VN ∈ L∞ and supp(VN ) ⊂ [−N,N ] for any N . So from Theorem 2.1,
one gets

N(VN ) ≤ 1 +
∫
R2

∫
R2
|V (x)| |V (y)|

∣∣∣∣− 1
2π

ln |x− y|+ ln 2− γ
2π

∣∣∣∣2 dx dy.
Since (−∆+VN )ϕ→ (−∆+V )ϕ for any ϕ in the domain of (−∆)1/2 it follows,

using a result from [6], that (−∆ + VN ) → (−∆ + V ) in strong resolvent sense,
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which implies that N(V ) ≤ lim supN→∞N(VN ). Since |VN | ↑ |V | one gets, using
the monotone convergence theorem, that

N(V ) ≤ 1 +
∫
R2

∫
R2
|V (x)| |V (y)|

∣∣∣∣− 1
2π

ln |x− y|+ ln 2− γ
2π

∣∣∣∣2 dx dy.
�

Proposition 3.4. Let V ∈ L1(R2) be such that V [ln(1 + |x|)]2 ∈ L1(R2) and
|V |∗ [ln |x|]2 χ{|x|≤1} ∈ L1(R2) where |V |∗ is the symmetric decreasing rearrange-
ment of |V |. Then the integral in Theorem 3.3 is finite (i.e., B(V ) < ∞) and

N(V ) ≤ 1 + C3‖V ‖21 + C4‖V ‖1
∫
R2
|V (x)| [ln(1 + |x|)]2 dx

+ C5‖V ‖1
∫
R2
|V |∗(x) [ln |x|]2 χ{|x|≤1} dx

(3.5)

where C3, C4 and C5 are positive constants.

Proof. As in (3.4),

B(V ) =
∫
R2

∫
R2
|V (x)| |V (y)| |C1 ln |x− y|+ C2|2 dx dy

≤ 2C2
1

∫
R2

∫
R2
|V (x)| |V (y)| |ln |x− y||2 dx dy + 2C2

2‖V ‖21.
(3.6)

Let S1 = {(x, y) ∈ R2 × R2, |x − y| ≥ 1} and S2 = (R2 × R2) \ S1. Then, since
|x− y| ≤ (1 + |x|)(1 + |y|), one gets that

|ln |x− y||2 ≤ 2 [ln(1 + |x|)]2 + 2 [ln(1 + |y|)]2

for any (x, y) ∈ S1 and therefore

(3.7)
∫
S1

|V (x)| |V (y)| |ln |x− y||2 dx dy ≤ 4‖V ‖1
∫
R2
|V (x)| [ln(1 + |x|)]2 dx.

Now let h(z) = |ln |z||2 χ{|z|≤1}. Using the Brascamp-Lieb-Luttinger inequality
[4] one gets:∫

S2

|V (x)||V (y)| |ln |x− y||2 dx dy =
∫
R2

∫
R2
|V (x)||V (y)|h(x − y) dx dy

≤
∫
R2

∫
R2
|V |∗(x)|V |∗(y)h∗(x− y) dx dy

=
∫
R2

∫
R2
|V |∗(x)|V |∗(y)h(x− y) dx dy.

(3.8)

Since for any y ∈ R2,∫
{|x−y|≤1}

|V |∗(x) |ln |x− y||2 dx ≤
∫
{|x|≤1}

|V |∗(x)(ln |x|)2 dx,

one gets, using (3.8),

(3.9)
∫
S2

|V (x)||V (y)| |ln |x− y||2 dx dy ≤ ‖V ‖1
∫
R2
|V |∗(x) [ln |x|]2 χ{|x|≤1} dx.

Combining (3.6), (3.7) and (3.9) one gets (3.5) with C3 = 2C2
2 = (ln 2 − γ)2/2π2,

C4 = 8 C2
1 = 2/π2 and C5 = 2C2

1 = 1/2π2. �
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Remarks. 1. Since N(V ) ≤ N(−V−), one can improve the estimates in Theorem
3.3 and Proposition 3.4 by replacing (on the right-hand side) V with V−.

2. As mentioned before, for large coupling constants, B(λV ), B̃(λV ) ∼ λ2.
Using the trace class ideals methods developed in [10], it should be possible to get
bounds ∼ λ1+ε, for any ε > 0. However, it is not clear how to get a bound ∼ λ as
conjectured by Khuri, Martin and Wu in [5].
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