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Abstract

We propose a rigorous framework for Uncertainty Quantification (UQ) in which
the UQ objectives and the assumptions/information set are brought to the forefront.
This framework, which we call Optimal Uncertainty Quantification (OUQ), is based
on the observation that, given a set of assumptions and information about the prob-
lem, there exist optimal bounds on uncertainties: these are obtained as extreme
values of well-defined optimization problems corresponding to extremizing probabil-
ities of failure, or of deviations, subject to the constraints imposed by the scenarios
compatible with the assumptions and information. In particular, this framework
does not implicitly impose inappropriate assumptions, nor does it repudiate rele-
vant information.

Although OUQ optimization problems are extremely large, we show that un-
der general conditions, they have finite-dimensional reductions. As an application,
we develop Optimal Concentration Inequalities (OCI) of Hoeffding and McDiarmid
type. Surprisingly, contrary to the classical sensitivity analysis paradigm, these re-
sults show that uncertainties in input parameters do not necessarily propagate to
output uncertainties.

In addition, a general algorithmic framework is developed for OUQ and is tested
on the Caltech surrogate model for hypervelocity impact, suggesting the feasibility
of the framework for important complex systems.
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1 Introduction

1.1 The UQ Problem

In this paper, we provide a well-posed framework for the statement and solution of UQ
problems. To make the discussion specific, we describe the framework as it applies to the
certification problem. This is a good model problem since we can also formulate many
important UQ problems, such as prediction, verification and validation as certification
problems. This is similar to the point of view of [4], in which formulations of many
problem objectives in reliability are shown to be representable in a unified framework.

Suppose that we are interested in certifying that the response function G of a given
physical system will not exceed a given safety threshold a with probability at least 1− ǫ.
That is, we wish to certify that

P[G(X) ≥ a] ≤ ǫ. (1.1)

In practice, the event [G(X) ≥ a] may represent the crash of an aircraft, the failure of a
weapons system, or the average surface temperature on the Earth being too high. The
measure P stands for the measure of probability associated with the randomness of some
of the input variables of G.

If enough (on the order of 1
ǫ2

log 1
ǫ
) independent P-distributed samples of G(X) are

available, then the certification of (1.1) can be obtained through a Monte Carlo estimate.
If G is regular and X is controllable with a known distribution and low dimension,
then this number can be reduced to 1

ǫ
ln 1

ǫ
. If G is the solution of a stochastic partial

differential equation with regular coefficients and X is controllable and has a known
distribution, then stochastic collocation methods can reduce the number of required
samples even further. However, in most real applications, only incomplete information
on P and G is available and the number of available samples on G is small or zero.
X may be of high dimension, and may include uncontrollable variables and unknown
unknowns. G may not be the solution of a PDE and may involve interactions between
singular and complex processes such as (for instance) dislocation, fragmentation, phase
transitions, physical phenomena in untested regimes, and even human decisions.

The certification problem exhibits one of the main difficulties that face UQ practition-
ers: many theoretical methods are available, but they require assumptions or conditions
that, oftentimes, are not satisfied by the application. More precisely, the character-
istic elements distinguishing these different methods are the assumptions upon which
they are based, and some methods will be more efficient than others depending on the
validity of those assumptions. UQ applications are also characterized by a set of as-
sumptions/information on the response function G and measure P, which varies from
application to application. Hence, on the one hand, we have a list of theoretical methods
that are applicable or efficient under very specific assumptions; on the other hand, most
applications are characterized by an information set or assumptions that, in general, do
not match those required by these theoretical methods.

Recently, it has been shown that many of these, and other, difficulties acknowl-
edged in the recent NRC report [37] can be resolved if the certification problem is
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well-formulated [28, 47]. Moreover, since these resolutions are quite elementary, we are
encouraged by John Dewey’s assertion that “a problem well formulated is half solved”
to develop a unified framework for the formulation and solution of UQ problems. One
of the objectives of this work is the development of such a framework, which we call
Optimal Uncertainty Quantification (OUQ).

In the OUQ framework, information on and assumptions about G and P are placed
at the forefront of the UQ problem. To that end, let A denote the set of all admissible
scenarios (f, µ) for the unknown reality (G,P). It then follows from (G,P) ∈ A that

inf
(f,µ)∈A

µ[f(X) ≥ a] ≤ P[G(X) ≥ a] ≤ sup
(f,µ)∈A

µ[f(X) ≥ a]. (1.2)

Moreover, it is elementary to observe that
• The quantities on the right-hand and left-hand of (1.2) are values of optimization

problems and elements of [0, 1].
• Both the right-hand and left-hand inequalities are optimal in the sense that they

are the sharpest bounds for P[G(X) ≥ a] that are consistent with the information
and assumptions A.

More importantly, in Proposition 2.1, we show that these two inequalities provide suffi-
cient information to produce an optimal solution to the certification problem.

A well-posed formulation of UQ within the OUQ framework using inequalities such
as (1.2) resolves more than the issues raised in the NRC report [37]. Indeed, we can
show that that difficulties related to the distinction between aleatoric and epistemic
uncertainties disappear, since both are gracefully incorporated in the specification of
A. In a similar way, difficulties related to the multiple “faces” of UQ (e.g. validation,
certification, reduced order modeling, prediction, extrapolation) also disappear, since all
of these aspects can be formulated in a natural and unified way.

1.2 Outline of the Paper

Although the OUQ optimization problems (1.2) are extremely large, we show in Sec-
tion 3 that an important subclass enjoys significant and practical finite-dimensional
reduction properties. More precisely, although the optimization variables (f, µ) live in
a product space of functions and probability measures, for OUQ problems governed by
linear inequality constraints on generalized moments, we demonstrate in Theorem 3.1
and Corollary 3.4 that we can reduce to probability measures that are products of finite
convex combinations of Dirac masses with explicit upper bounds on the number of Dirac
masses. Moreover, all the results in this paper can be extended to sets of extreme points
(extremal measures) more general than Dirac masses, such as those described by Dynkin
[13]; we have phrased the results in terms of Dirac masses for simplicity.

Furthermore, when all constraints are generalized moments of functions of f , we can
also reduce the space of functions to functions on an m-fold product of finite discrete
spaces, and reduce the m-fold products of finite convex combinations of Dirac masses
to the products of probability measures on this m-fold product of finite discrete spaces.
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This latter reduction, presented in Theorem 3.6, completely eliminates dependency on
the coordinate positions of the Dirac masses.

In Section 4, the reduction techniques of Section 3 are applied to obtain optimal Mc-
Diarmid and Hoeffding inequalities, i.e., optimal concentration-of-measure inequalities
with the assumptions of McDiarmid’s inequality [31] or Hoeffding’s inequality [18]. In
particular, in Theorems 4.1, 4.2 and 4.4, we obtain analytic solutions to the McDiarmid
problem for dimension m = 1, 2, 3, and in Proposition 4.6, we obtain an asymptotic for-
mula for general m, thereby obtaining an optimal McDiarmid inequality in these cases.
In Theorems 4.9 and 4.11, we provide analytic solutions under Hoeffding’s assumptions.
Moreover, all of these solutions provide important information on the effects of the diam-
eter parameters (see Equation (3.4)). For example, for m = 2, if D2 is sufficiently smaller
than D1, then the optimal bound only depends on D1, and therefore, any decrease in
D2 does not improve the inequality. Hence, contrary to the standard sensitivity analy-
sis paradigm, uncertainties in input parameters do not necessarily propagate to output
uncertainties.

The OUQ framework allows the development of an OUQ loop that can be used for
experimental design. In Section 2, we show that the problem of predicting optimal
bounds on the results of experiments under the assumption that the system is safe (or
unsafe) is well-posed and benefits from similar reduction properties as the certification
problem. Best experiments are then naturally identified as those whose predicted ranges
have minimal overlap between safe and unsafe systems.

In Section 5, we give examples of numerical OUQ calculations for a surrogate hyper-
velocity impact model; these calculations are made possible by the reduction theorems
of Section 3. We observe that, even if the numerical optimization is allowed to search
over a larger search space than the reduction theorems show is sufficient, the reduced-
order extrema are attractors. This suggests that adequate numerical implementation of
OUQ problems can detect and use “hidden” reduction properties even in the absence of
theorems proving them to be true. Based on these observations, we propose an OUQ
optimization algorithm for arbitrary constraints based on a coagulation/fragmentation
of probability distributions, leveraging possibly hidden reduction properties.

2 Optimal Uncertainty Quantification

In this section, we describe more formally the Optimal Uncertainty Quantification frame-
work. In particular, we describe what it means to give optimal bounds on the probability
of failure in (1.1) given information/assumptions about the system of interest, and hence
how to rigorously certify or de-certify that system.

For the sake of clarity, we will start the description of OUQ with deterministic
information and assumptions (when A is a deterministic set of functions and probability
measures). We refer to Section 7 for an initial description of OUQ with sample data.
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2.1 First Description

We propose to reverse the standard UQ strategy of developing methods with their at-
tendant implicit and explicit assumptions, which may or may not match the relevant
assumptions for the application. In particular, we begin by placing information and
assumptions at the core of UQ. As noted by Hoeffding [17], assumptions about the sys-
tem of interest play a central and sensitive role in any statistical decision problem, even
though the assumptions are often only approximations of reality.

A simple example of an information/assumptions set is given by constraining the
mean and range of the response function. For example, let M(X ) be the set of probability
measures on the set X , and let A1 be the set of pairs of probability measures µ and real-
valued measurable functions f such that the mean value of f with respect to µ is b and
the diameter of the range of f is at most D;

A1 :=















(f, µ)

∣

∣

∣

∣

∣

∣

∣

∣

f : X → R,
µ ∈ M(X ),
Eµ[f ] = b,

(sup f − inf f) ≤ D















. (2.1)

Let us assume that (G,P) ∈ A1. Then, any other pair (f, µ) ∈ A1 constitutes an
admissible scenario representing a valid possibility for the “reality” (G,P). If asked to
bound P[G(X) ≥ a], should we apply different methods and obtain different bounds on
P[G(X) ≥ a]? Since some methods will distort this information set and others are only
using part of it, we instead let the set A1 be viewed as a feasible set for an optimization
problem.

The general OUQ framework. In the general case, we regard the response function
G as an unknown measurable function, with some possibly known characteristics, from
one measurable space X of inputs to a second measurable space Y of values. The input
variables are generated randomly according to an unknown random variable X with
values in X according to a law P ∈ M(X ), also with some possibly known characteristics.
We let a measurable subset Y0 ⊆ Y define the failure region; in the example given above,
Y = R and Y0 = [a,+∞). When there is no danger of confusion, we shall simply write
[G fails] for the event [G(X) ∈ Y0].

Let ǫ ∈ [0, 1] denote the greatest acceptable probability of failure. We say that the
system is safe if P[G fails] ≤ ǫ and the system is unsafe if P[G fails] > ǫ. By information,
or a set of assumptions, we mean a subset

A ⊆
{

(f, µ)

∣

∣

∣

∣

f : X → Y is measurable
µ ∈ M(X )

}

(2.2)

that contains, at the least, (G,P). The set A encodes all the information that we have
about the real system (G,P), information that may come from known physical laws, past
experimental data, and expert opinion. In the example A1 above, the only information
that we have is that the mean performance of the system is b and that the diameter of
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its range is at most D; any pair (f, µ) that satisfies these two criteria is an admissible
scenario for the unknown reality (G,P). Since some admissible scenarios may be safe
(i.e. have µ[f fails] ≤ ǫ) whereas other admissible scenarios may be unsafe (i.e. have
µ[f fails] > ǫ), we decompose A into the disjoint union A = Asafe,ǫ ⊎ Aunsafe,ǫ, where

Asafe,ǫ := {(f, µ) ∈ A | µ[f fails] ≤ ǫ}, (2.3a)

Aunsafe,ǫ := {(f, µ) ∈ A | µ[f fails] > ǫ}. (2.3b)

Now observe that, given such an information/assumptions set A, there exist optimal
upper and lower bounds on P[G(X) ≥ a] corresponding to the scenarios compatible
with assumptions, i.e. the lower L(A) and upper U(A) values of the naturally defined
optimization problems:

L(A) := inf
(f,µ)∈A

µ[f fails] (2.4a)

U(A) := sup
(f,µ)∈A

µ[f fails]. (2.4b)

Since L(A) and U(A) are well-defined in [0, 1], and approximations are sufficient for
most purposes and are necessary in general, the difference between sup and max should
not be much of an issue. Of course, some of the work that follows is concerned with
the attainment of maximizers, and whether those maximizers have any simple structure
that can be exploited for the sake of computational efficiency. Now, since (G,P) ∈ A, it
follows that

L(A) ≤ P[G fails] ≤ U(A).

Moreover, the upper bound U(A) is optimal in the sense that

µ[f fails] ≤ U(A) for all (f, µ) ∈ A

and, if U ′ < U(A), then there is an admissible scenario (f, µ) ∈ A such that

U ′ < µ[f fails] ≤ U(A).

That is, although P[G fails] may be much smaller than U(A), there is a pair (f, µ) which
satisfies the same assumptions as (G,P) such that µ[f fails] is approximately equal to
U(A). Similar remarks apply for the lower bound L(A).

Moreover, the values L(A) and U(A), defined in (2.4) can be used to construct a
solution to the certification problem. Let the certification problem be defined by an
error function that gives an error whenever 1) the certification process produces “safe”
and there exists an admissible point which is unsafe, 2) the certification process produces
“unsafe” and there exists an admissible point which is safe, or 3) the certification process
produces “cannot decide” and all admissible points are safe or all admissible points are
unsafe. Otherwise, the certification process produces no error. The following proposition
demonstrates that, except in the special case L(A) = ǫ, that these values determine an
optimal solution to this certification problem.

7



L(A) := inf
(f,µ)∈A

µ
[

f(X) ≥ a
]

U(A) := sup
(f,µ)∈A

µ
[

f(X) ≥ a
]

≤ ǫ
Cannot decide

Insufficient Information
Certify

Safe even in the Worst Case

> ǫ
De-certify

Unsafe even in the Best Case
Cannot decide

Insufficient Information

Table 2.1: The OUQ certification process provides a rigorous certification criteria whose
outcomes are of three types: “Certify”, “De-certify” and “Cannot decide”.

Proposition 2.1. If (G,P) ∈ A and

• U(A) ≤ ǫ then P[G fails] ≤ ǫ.

• ǫ < L(A) then P[G fails] > ǫ.

• L(A) < ǫ < U(A) the there exists (f1, µ1) ∈ A and (f2, µ2) ∈ A such that
µ1[f1 fails] < ǫ < µ2[f2 fails].

In other words, provided that our information set A is valid (in the sense that
(G,P) ∈ A) then if U(A) ≤ ǫ, then, the system is provably safe; if ǫ < L(A), then the
system is provably unsafe; and if L(A) < ǫ < U(A), then the safety of the system cannot
be decided due to lack of information. The corresponding certification process and its
optimality are represented in Table 2.1. Hence, solving the optimization problems (2.4)
determines an optimal solution to the certification problem, under the condition that
L(A) 6= ǫ. When L(A) = ǫ we can still produce an optimal solution if we obtain further
information. That is, when L(A) = ǫ = U(A), then the optimal process produces “safe.”
On the other hand, when L(A) = ǫ < U(A), the optimal solution depends on whether
or not there exists a minimizer (f, µ) ∈ A such that µ[f fails] = L(A); if so, the optimal
process should declare “cannot decide,” otherwise, the optimal process should declare
“unsafe.” Observe that, in Table 2.1, we have classified L(A) = ǫ < U(A) as “cannot
decide.” This “nearly optimal” solution appears natural and conservative without the
knowledge of the existence or non-existence of optimizers.

Example 2.1. The bounds L(A) and U(A) can be computed exactly — and are non-
trivial — in the case of the simple example A1 given in (2.1). Indeed, the optimal upper
bound is given by

U(A1) = pmax :=

(

1 − (b− a)+
D

)

+

, (2.5)

where the maximum is achieved at the weighted sum of two weighted Dirac delta masses

pmaxδa + (1 − pmax)δa−D .
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This simple example demonstrates an extremely important point: even if the function
G is extremely expensive to evaluate, certification can be accomplished without recourse
to the expensive evaluations of G. Furthermore, the simple structure of the maximizers
motivates the reduction theorems later in Section 3.

Example 2.2. Concentration-of-measure inequalities can be used to obtain upper bounds
on U(A) and lower bounds on L(A); in that sense, they lead to sub-optimal methods.
Indeed, consider the following information/assumptions A2: the space X is a product
space with X = (X1,X2, . . . ,Xm), the mean performance satisfies E[G(X)] ≤ b, the m
inputs X1, . . . ,Xm are independent, and

m
∑

i=1

sup
{

∣

∣G(x) −G(x′)
∣

∣

2
∣

∣

∣
x, x′ ∈ X , xj = x′j for all j 6= i

}

≤ D2.

It follows from McDiarmid’s inequality [31, 32] that, under the assumptions A2,

U(A2) ≤ exp

(

−2
(a− b)2+
D2

)

.

This example shows how existing techniques such as concentration-of-measure inequal-
ities can be incorporated into OUQ. In Section 3, we will show how to reduce U(A2)
to a finite dimensional optimization problem. Based on this reduction, in Section 4, we
provide analytic solutions to the optimization problem U(A2) for m = 1, 2, 3.

2.2 The Optimal UQ Loop

In the previous subsection we discussed how the basic inequality

L(A) ≤ P[G ≥ a] ≤ U(A)

provides rigorous optimal certification criteria. The certification process should not
be confused with its three possible outcomes (see Table 2.1) which we call “certify”
(we assert that the system is safe), “de-certify” (we assert that the system is unsafe)
and “cannot decide” (the safety or un-safety of the system is undecidable given the
information/assumption set A). Indeed, in the case

L(A) ≤ ǫ < U(A)

there exist admissible scenarios under which the system is safe, and other admissible
scenarios under which it is unsafe. Consequently, it follows that we can make no definite
certification statement for (G,P) without introducing further information/assumptions.
If no further information can be obtained, we conclude that we “cannot decide;” (this
state could also be called “do not decide,” because we could (arbitrarily) decide that the
system is unsafe due to lack of information, for instance, but do not).

However, if sufficient resources exist to gather additional information, then we enter
what may be called the optimal uncertainty quantification loop, illustrated in Figure 2.1.
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Selection of New Experiments

Experimental Data
(Legacy / On-Demand)

Expert Judgement

Physical
Laws

Assumptions / Admissible Set, A

Extreme Scale Optimizer: Calculate
L(A) := inf{µ[f fails] | (f, µ) ∈ A}
U(A) := sup{µ[f fails] | (f, µ) ∈ A}

Certification
Process

Sensitivity / Robustness
Analysis w.r.t. A

De-Certify
(i.e. System is

Unsafe)

Cannot
decide

Certify
(i.e. System is

Safe)

Figure 2.1: Optimal Uncertainty Quantification Loop.
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The admissible set A draws on three principal sources of information: known physi-
cal laws, expert opinion, and experimental data. Once the set A has been constructed,
the calculation of the lower and upper bounds L(A) and U(A) is a well-posed opti-
mization problem. If the results of this optimization problem lead to certification or
de-certification, then we are done; if not, then new experiments should be designed and
expert opinion sought in order to validate or invalidate the extremal scenarios that cause
the inequality

L(A) ≤ ǫ < U(A)

to hold. The addition of information means further constraints on the collection of
admissible scenarios; that is, the original admissible set A is reduced to a smaller one
A′ ⊂ A, thereby providing sharper bounds on the probability of failure:

L(A) ≤ L(A′) ≤ P[G(X) ≥ a] ≤ U(A′) ≤ U(A).

The sharper bounds may meet the certification criteria of Table 2.1. If not, and there are
still resources for gathering additional information, then the loop should be repeated.
This process is the feedback arrow on the left-hand side of Figure 2.1.

The right-hand side of Figure 2.1 constitutes another aspect of the OUQ loop. The
bounds L(A) and U(A) are only useful insofar as the assumptions A are accurate. It
is possible that the sources of information that informed A may have been in error:
physical laws may have been extended outside their range of validity (e.g. Newtonian
physics may have been applied in the relativistic regime), there may have been difficulties
with the experiments or the results misinterpreted, or expert opinion may have been
erroneous. Therefore, a vital part of OUQ is to examine the sensitivity and robustness
of the bounds L(A) and U(A) with respect to the assumption set A. If the bounds L(A)
and U(A) are found to depend sensitively on one particular assumption (say, the mean
performance of one component of the system), then it would be advisable to expend
resources investigating this assumption.

Experimental selection and design An important aspect of the OUQ loop is the
selection of new experiments. Suppose that a number of possible experiments Ei are
proposed, each of which will determine some functional Φi(G,P) of G and P. For ex-
ample, Φ1(G,P) could be EP[G], Φ2(G,P) could be P[X ∈ A] for some subset A ⊆ X of
the input parameter space, and so on. Suppose that there are insufficient experimental
resources to run all of these proposed experiments. Let us now consider which exper-
iment should be run for the certification problem. Recall that the admissible set A is
partitioned into safe and unsafe subsets as in (2.3). Define Jsafe,ǫ(Φi) to be the closed
interval spanned by the possible values for the functional Φi over the safe admissible

11



scenarios (i.e. the closed convex hull of the range of Φi on Asafe,ǫ): that is, let

Jsafe,ǫ(Φi) :=

[

inf
(f,µ)∈Asafe,ǫ

Φi(f, µ), sup
(f,µ)∈Asafe,ǫ

Φi(f, µ)

]

(2.6a)

Junsafe,ǫ(Φi) :=

[

inf
(f,µ)∈Aunsafe,ǫ

Φi(f, µ), sup
(f,µ)∈Aunsafe,ǫ

Φi(f, µ)

]

. (2.6b)

Note that, in general, these two intervals may be disjoint or may have non-empty inter-
section; the size of their intersection provides a measure of usefulness of the proposed
experiment Ei. Observe that if experiment Ei were run, yielding the values Φi(G,P),
then the following conclusions could be drawn:

Φi(G,P) ∈ Jsafe,ǫ(Φi) ∩ Junsafe,ǫ(Φi) =⇒ no conclusion,

Φi(G,P) ∈ Jsafe,ǫ(Φi) \ Junsafe,ǫ(Φi) =⇒ the system is safe,

Φi(G,P) ∈ Junsafe,ǫ(Φi) \ Jsafe,ǫ(Φi) =⇒ the system is unsafe,

Φi(G,P) /∈ Jsafe,ǫ(Φi) ∪ Junsafe,ǫ(Φi) =⇒ faulty assumptions,

where the last assertion (faulty assumptions) means that (G,P) 6∈ A and follows from
the fact that Φi(G,P) /∈ Jsafe,ǫ(Φi) ∪ Junsafe,ǫ(Φi) is a contradiction. The validity of the
first three assertions is based on the supposition that (G,P) ∈ A.

In this way, the computational optimization exercise of finding Jsafe,ǫ(Φi) and Junsafe,ǫ(Φi)
for each proposed experiment Ei provides an objective assessment of which experiments
are worth performing: those for which Jsafe,ǫ(Φi) and Junsafe,ǫ(Φi) are nearly disjoint
intervals are worth performing since they are likely to yield conclusive results vis-à-
vis (de-)certification and conversely, if the intervals Jsafe,ǫ(Φi) and Junsafe,ǫ(Φi) have a
large overlap, then experiment Ei is not worth performing since it is unlikely to yield
conclusive results. Furthermore, the fourth possibility above shows how experiments
can rigorously establish that one’s assumptions A are incorrect. See Figure 2.2 for an
illustration.

Remark 2.2. For the sake of clarity, we have started this description by defining ex-
periments as functionals Φi of P and G. In practice, some experiments may not be
functionals of P and G but of related objects. Consider, for instance, the situation
where (X1,X2) is a two-dimensional Gaussian vector with zero mean and covariance
matrix C, P is the probability distribution of X1, the experiment E2 determines the
variance of X2 and the information set A is C ∈ B, where B is a subset of symmetric
positive definite 2 × 2 matrices. The outcome of the experiment E2 is not a function of
the probability distribution P; however, the knowledge of P restricts the range of possi-
ble outcomes of E2. Hence, for some experiments Ei, the knowledge of (G,P) does not
determine the outcome of the experiment, but only the set of possible outcomes. For
those experiments, the description given above can be generalized to situations where
Φi is a multivalued functional of (G,P) determining the set of possible outcomes of the
experiment Ei. This picture can be generalized further by introducing measurement
noise, in which case (G,P) may not determine a deterministic set of possible outcomes,
but instead a measure of probability on a set of possible outcomes.

12



R

Junsafe,ǫ(Φ1)

Jsafe,ǫ(Φ1)

R

Junsafe,ǫ(Φ2)

Jsafe,ǫ(Φ2)

R

Junsafe,ǫ(Φ3)

Jsafe,ǫ(Φ3)

R

Junsafe,ǫ(Φ4)

Jsafe,ǫ(Φ4)

Figure 2.2: A schematic representation of the intervals Junsafe,ǫ(Φi) (in red) and
Jsafe,ǫ(Φi) (in blue) as defined by (2.6) for four functionals Φi that might be the subject
of an experiment. Φ1 is a good candidate for experiment effort, since the intervals do
not overlap and hence experimental determination of Φ1(G,P) will certify or de-certify
the system; Φ4 is not worth investigating, since it cannot distinguish safe scenarios from
unsafe ones; Φ2 and Φ3 are intermediate cases, with Φ2 a better prospect than Φ3.
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3 Reduction of OUQ Optimization Problems

In general, the lower and upper values

L(A) := inf
(f,µ)∈A

µ[f(X) ≥ a]

U(A) := sup
(f,µ)∈A

µ[f(X) ≥ a]

are each defined by a non-convex and infinite-dimensional optimization problem, the so-
lution of which poses significant computational challenges. These optimization problems
can be considered to be a generalization of Chebyshev inequalities. The history of the
classical inequalities can be found in [24], and some generalizations in [8] and [52]; in the
latter works, the connection between Chebyshev inequalities and optimization theory is
developed based on the work of Mulholland and Rogers [35], Godwin [15], Isii [19, 20, 21],
Olkin and Pratt [36], Marshall and Olkin [29], and the classical Markov–Krein Theorem
[24, pages 82 & 157], among others. The Chebyshev-type inequalities defined by L(A)
and U(A) are a further generalization to independence assumptions, more general do-
mains, more general systems of moments, and the inclusion of classes of functions, in
addition to the probability measures, in the optimization problem. Moreover, although
our goal is the computation of these values, and not an analytic expression for them, the
study of probability inequalities should be useful in the reduction and approximation of
these values. Without providing a survey of this large body of work, we mention the
field of majorization, as discussed in Marshall and Olkin [30], the inequalities of Ander-
son [2], Hoeffding [16], Joe [22], Bentkus et al. [7], Bentkus [5, 6], Pinelis [40, 41], and
Boucheron, Lugosi and Massart [9]. Moreover, the solution of the resulting nonconvex
optimization problems should benefit from duality theories for nonconvex optimization
problems such as Rockafellar [44] and the development of convex envelopes for them, as
can be found, for example, in Rikun [43] and Sherali [48]. Finally, since Pardalos and
Vavasis [38] show that quadratic programming with one negative eigenvalue is NP-hard,
we expect that some OUQ problems may be difficult to solve.

Let us now return to the earlier simple example of an admissible set A1 in (2.1): the
(non-unique) extremizers of the OUQ problem with the admissible set A1 all have the
property that the support of the push-forward measure f∗µ on R contains at most two
points, i.e., f∗µ is a convex combination of at most two Dirac delta measures:

sup
(f,µ)∈A1

µ[f(X) ≥ a] = sup
(f,µ)∈A1

#supp(f∗µ)≤2

µ[f(X) ≥ a].

The optimization problem on the left-hand side is an infinite-dimensional one, whereas
the optimization problem on the right-hand side is amenable to finite-dimensional parametriza-
tion for each f . The aim of this section is to show that a large class of OUQ problems
— those governed by independence and linear inequality constraints on the moments, —
are amenable to a similar finite-dimensional reduction, and that a priori upper bounds
can be given on the number of Dirac delta masses that the reduction requires.
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To begin with, we first show that an important class of optimization problems over
the space of m-fold product measures can be reduced to optimization over products of
finite convex combinations of Dirac masses. Consequently, we then show in Corollary
3.4 that OUQ optimization problems where the admissible set is defined as a subset of
function-measure pairs (f, µ) that satisfy generalized moment constraints Gf (µ) ≤ 0 can
also be reduced from the space of measures to the products of finite convex combinations
of Dirac masses. Theorem 3.6 shows that, when all the constraints are generalized
moments of functions of f , the search space G of functions can be further reduced to a
search over functions on an m-fold product of finite discrete spaces, and the search over
m-fold products of finite convex combinations of Dirac masses can be reduced to a search
over the products of probability measures on this m-fold product of finite discrete spaces.
This latter reduction completely eliminates dependency on the coordinate positions in X .
Theorem 3.6 is then used in Proposition 3.7 to obtain an optimal McDiarmid inequality
through the formulation of an appropriate OUQ optimization problem followed by the
above-mentioned reductions to an optimization problem on the product of functions
on {0, 1}m with the m-fold products of measures on {0, 1}m. This problem is then
further reduced, by Theorem 3.8, to an optimization problem on the product of the
space of subsets of {0, 1}m with the product measures on {0, 1}m. Finally, we obtain
analytic solutions to this last problem for m = 1, 2, 3, thereby obtaining an optimal
McDiarmid inequality in these cases. We also obtain an asymptotic formula for general
m. Moreover, the solution for m = 2 indicates important information regarding the
diameter parameters D1 and D2. For example, if D2 is sufficiently smaller than D1,
then the optimal bound only depends on D1 and therefore, any decrease in D2 does not
improve the inequality.

3.1 Reduction of OUQ

For a topological space X , let FX (or simply F) denote the space of real-valued measur-
able functions on X , and let M(X ) denote the set of Borel probability measures on X .
Denote the process of integration with respect to a measure µ by Eµ, and let

∆k(X ) :=







k
∑

j=0

αjδxj

∣

∣

∣

∣

∣

∣

xj ∈ X , αj ≥ 0 for j = 0, . . . , k and
k
∑

j=0

αj = 1







denote the set of (k+ 1)-fold convex combinations of Dirac masses. When X =
∏m

i=1 Xi

is a product of topological spaces, and we speak of measurable functions on the product
X , we mean measurable with respect to the product σ-algebra and not the Borel σ-
algebra of the product. For more discussion of this delicate topic, see e.g. [23]. The
linear equality and inequality constraints on our optimization problems will be encoded
in the following measurable functions:

g′j : X → R for j = 1, . . . , n′,

and, for each i = 1, . . . ,m,

gi
j : Xi → R for j = 1, . . . , ni.
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Let MG ⊆ Mm(X ) denote the set of products of Borel measures for which these all these
functions are integrable with finite integrals. We use the compact notation G(µ) ≤ 0 to
indicate that µ ∈ MG and that

Eµ[g′j ] ≤ 0, for all j = 1, . . . , n′,

Eµ[gi
j ] ≤ 0, j = 1, . . . , ni, for all i = 1, . . . ,m .

Moreover, let r : X → R be integrable for all µ ∈ MG (possibly with values +∞ or
−∞). For any set M ⊆ MG, let

U(M) := sup
µ∈M

Eµ[r],

with the convention that the supremum of the empty set is −∞.
For a measurable function f , the map µ 7→ Eµ[f ] may not be defined, since f may

not be absolutely integrable with respect to µ. If it is defined, then it is continuous in
the strong topology on measures; however, this topology is too strong to provide any
compactness. Moreover, although [1, Theorem 14.5] shows that if f is a bounded upper
semi-continuous function on a metric space, then integration is upper semi-continous in
the weak-∗ topology, we consider the case in which X may not be metric or compact,
and the functions f may be unbounded and lack continuity properties. The following
results heavily use results of Winkler [54] — which follow from an extension of Choquet
Theory (see e.g. [39]) by von Weizsäcker and Winkler [53, Corollary 3] to sets of prob-
ability measures with generalized moment constraints — and a result of Kendall [26]
characterizing cones, which are lattice cones in their own order. These results generalize
a result of Karr [25] that requires X to be compact, the constraint functions be bounded
and continuous, and the constraints to be equalities. The results that follow are remark-
able in that they make extremely weak assumptions on X and no assumptions on the
functions f . Recall that a Suslin space is the continuous image of a Polish space.

Theorem 3.1. Let X =
∏m

i=1 Xi be a product of Suslin spaces and let

Mm(X ) :=

m
⊗

i=1

M(Xi)

denote the set of products of Borel probability measures on the spaces Xi. As above,
consider the generalized moment functions G and the corresponding finite moment set
MG. Suppose that r : X → R is integrable for all µ ∈ MG (possibly with values +∞ or
−∞). Define the reduced admissible set

M∆ :=

{

µ ∈
m
⊗

i=1

∆ni+n′(Xi)

∣

∣

∣

∣

∣

G(µ) ≤ 0

}

.

Then, it holds that
U(MG) = U(M∆).
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Theorem 3.1 says that, on a product X of very general spaces Xi, optimization prob-
lems constrained by n′ linear moment constraints on X and ni linear moment constraints
on each factor space Xi achieve their optima among those product measures whose ith

marginal has support on at most n′ + ni + 1 points of Xi.

Remark 3.2. Using [53, Corollary 3], this theorem and its consequences below easily
generalize from the situation where gk(µ) ≤ 0 for each k to that in which gk(µ) ∈ Ik for
each k, where k indexes the constraint functions, and where each Ik is a closed interval.
Consequently, such pairs of linear constraints introduce a requirement for only one Dirac
mass, not the two masses that one might expect. Moreover, observe that the condition
that the function r is integrable (possibly with values +∞ or −∞) for all µ ∈ MG is
satisfied if r is non-negative. In particular, this holds when r is an indicator function of
a set, which is our main application in this paper.

Remark 3.3. Theorem 3.1 and its consequents below can be expressed more generally
in terms of extreme points of sets of measures, whereas in the above case, the extreme
points are the Dirac masses. To that end, Dynkin [13] describes more general sets of
measures and their extreme points, which can be useful in applications. In particular,
one could consider

1. sets of measures that are invariant under a transformation (the extreme points are
the ergodic measures);

2. symmetric measures on an infinite product space (the extreme points are the simple
product measures);

3. the set of stationary distributions for a given Markov transition function;
4. the set of all Markov processes with a given transition function.

We now apply Theorem 3.1 to obtain the same type of reduction for an admissible
set A ⊆ F×Mm(X ) consisting of pairs of functions and product measures — this is the
case for the OUQ optimization problems L(A) and U(A). Let G ⊆ F denote a subset of
real-valued measurable functions on X and consider an admissible set A ⊆ G ×Mm(X )
defined in the following way. For each f ∈ G, let G(f, ·) denote a family of constraints
as in Theorem 3.1 and Remark 3.2. For each f ∈ G, let MGf ⊆ Mm(X ) denote
those product probability measures µ such that the moments G(f, µ) are well-defined.
Moreover, for each f ∈ G, let rf : X → R be integrable for all µ ∈ MGf (possibly with
values +∞ or −∞). Define the admissible set

A := {(f, µ) ∈ G ×Mm(X ) |G(f, µ) ≤ 0}
and define the OUQ optimization problem to be

U(A) := sup
(f,µ)∈A

Eµ[rf ]. (3.1)

Corollary 3.4. Consider the OUQ optimization problem (3.1) and define the reduced
admissible set A∆ ⊆ A by

A∆ :=

{

(f, µ) ∈ G ×
m
⊗

i=1

∆ni+n′(Xi)

∣

∣

∣

∣

∣

G(f, µ) ≤ 0

}

.
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Then, it holds that
U(A) = U(A∆).

Remark 3.5. Corollary 3.4 is easily generalized to the case where for each f ∈ G, i,
and fixed µj, j 6= i, G(f, µ1, .., µi, .., µm) has affine dimension at most mi as µi varies.
In this case

A∆ :=

{

(f, µ) ∈ G ×
m
⊗

i=1

∆mi
(Xi)

∣

∣

∣

∣

∣

G(f, µ) ≤ 0

}

.

3.2 Simple Generalized Moments

We now consider the case where the function rf := r ◦ f is defined through composition
with a measurable function r, and all n constraints are determined by compositions
g′j := gj ◦ f , with j = 1, . . . , n, of the function f . Hence, the symbol G(f, µ) will mean
that all functions gj ◦ f are µ integrable and will represent the values Eµ[gj ◦ f ] for
j = 1, . . . , n. That is, we have the admissible set

A := {(f, µ) ∈ G ×Mm(X ) |G(f, µ) ≤ 0} (3.2)

and the optimization problem

U(A) := sup
(f,µ)∈A

Eµ[r ◦ f ] (3.3)

as in (3.1). However, in this case, the fact that the criterion function r ◦ f and the
constraint functions gj ◦f are compositions of the function f permits a finite-dimensional
reduction of the space of functions G to a space of functions on {0, . . . , n}m and a
reduction of the space of m-fold products of finite convex combinations of Dirac masses
to the space of product measures on {0, . . . , n}m. This reduction completely eliminates
dependency on the coordinate positions in X .

Formulating this result precisely will require some additional notation. By the Well-
Ordering Theorem, there exists a well-ordering of each Xi. Suppose that a total ordering
of the elements of the spaces Xi for i = 1, . . . ,m is specified. Let N := {0, . . . , n} and
D := {0, . . . , n}m = Nm. Every element µ ∈ ⊗m

i=1 ∆n(Xi) is a product µ =
⊗m

i=1 µi

where each factor µi is a convex sum of n + 1 Dirac masses indexed according to the
ordering; that is,

µi =

n
∑

k=0

αi
kδxk

i

for some αi
1, . . . , α

i
n ≥ 0 with unit sum and some x1

i , . . . , x
n
i ∈ Xi such that, with respect

to the given ordering of Xi,
x1

i ≤ x2
i ≤ · · · ≤ xn

i .

Let FD denote the real linear space of real functions on D = {0, . . . , n}m and consider
the mapping

F : F ×
m
⊗

i=1

∆n(Xi) → FD
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defined by

(F(f, µ)) (i1, i2, . . . , im) = f(xi1
1 , x

i2
2 , . . . , x

im
m ), ik ∈ N , k = 1, . . . ,m.

F represents the values of the function f at the Dirac masses in µ, but does not carry
information regarding the positions of the Dirac masses or their weights.

Theorem 3.6. Consider the admissible set A and optimization problem U(A) defined
in (3.2) and (3.3) where r ◦ f is integrable (possibly with values +∞ or −∞) for all
product measures. For a subset GD ⊆ FD, define the admissible set

AD = {(h, α) ∈ GD ×Mm(D) |Eα[gi ◦ h] ≤ 0 for all j = 1, . . . , n}

and the optimization problem

U(AD) := sup
(h,α)∈AD

Eα[r ◦ h].

If

F

(

G ×
m
⊗

i=1

∆n(Xi)

)

= GD,

then it holds that
U(A) = U(AD).

When the constraint set also includes functions which are not compositions with
f , then Theorem 3.6 does not apply. Although it does appear that results similar to
Theorem 3.6 can be obtained, we leave that as a topic for future work.

3.3 Application to McDiarmid’s inequality

Theorem 3.6 can be applied to the situation of McDiarmid’s inequality in order to obtain
an optimal solution for that problem. Let Di ≥ 0 for i = 1, . . . ,m and define

G := {f ∈ F | Osci(f) ≤ Di for each i = 1, . . . ,m} (3.4)

where
Osci(f) := sup

(x1,...,xm)∈X
sup

x′
i∈Xi

∣

∣f(. . . , xi, . . .) − f(. . . , x′i, . . .)
∣

∣ .

We have a product probability measure P on X and a measurable function H : X → R

such that H ∈ G. Suppose that we have an upper bound

P[H − EP[H] ≥ a] ≤ H(a,G) for all H ∈ G. (3.5)

It follows that if H ∈ G and EP[H] ≤ 0, then

P[H ≥ a] ≤ P[H − EP[H] ≥ a] ≤ H(a,G) for all H ∈ G with EP[H] ≤ 0.
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On the other hand, suppose that

P[H ≥ a] ≤ H
′(a,G) for all H ∈ G with EP[H] ≤ 0. (3.6)

It follows that

P[H ≥ a] ≤ H
′(a,G) for all H ∈ G with EP[H] = 0.

Since the constraints G and the eventH−EP[H] ≥ a are invariant under scalar translation
H 7→ H + c it follows that

P[H − EP[H] ≥ a] ≤ H
′(a,G) for all H ∈ G.

That is, the inequalities (3.5) and (3.6) are equivalent.

McDiarmid’s inequality [31, 32] provides the bound H(a,G) := e−
2a2

D2 for (3.5) and
its equivalent (3.6), with

D2 :=

m
∑

i=1

D2
i . (3.7)

Define the admissible set corresponding to the assumptions of McDiarmid’s inequality:

AMcD = {(f, µ) ∈ G ×Mm(X ) |Eµ[f ] ≤ 0} , (3.8)

and define the optimization problem

U(AMcD) := sup
(f,µ)∈AMcD

µ[f ≥ a].

Since (H,P) ∈ AMcD and McDiarmid’s inequality µ[f ≥ a] ≤ e−
2a2

D2 is satisfied for all
(f, µ) ∈ AMcD, it follows that

P[H ≥ a] ≤ U(AMcD) ≤ e−
2a2

D2 .

Moreover, the inequality on the left is optimal in the sense that, for every ε > 0, there
exists a McDiarmid-admissible scenario (f, µ) satisfying the same assumptions as (H,P)
such that µ[f ≥ a] ≥ U(AMcD) − ε.

To apply the previous results to computing U(AMcD), let D := {0, 1}m and define

GD := {h ∈ FD | Osck(h) ≤ Dk for each k = 1, . . . ,m},
where the inequality Osck(h) ≤ Dk for h ∈ FD means that

|h(s1, . . . , sk, . . . , sm) − h(s1, . . . , sk′ , . . . , sm)| ≤ Di, (3.9)

for all sj ∈ {0, 1}, j = 1, . . . ,m, and all sk′ ∈ {0, 1}. Define the corresponding admissible
set

AD = {(h, α) ∈ GD ×M({0, 1})m |Eα[h] ≤ 0}
and the optimization problem

U(AD) := sup
(h,α)∈AD

α[h ≥ a]. (3.10)
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Proposition 3.7. It holds that

U(AMcD) = U(AD). (3.11)

We now provide a further reduction of U(AMcD) by reducing U(AD). To that end,
for two vertices s and t of D = {0, 1}m, let I(s, t) be the set of indices i such that si 6= ti.
For s ∈ D, define the function hs ∈ FD by

hs(t) = a−
∑

i∈I(s,t)

Di.

For C ⊆ D, define hC ∈ FD by

hC(t) := max
s∈C

hs(t) = a− min
s∈C

∑

i∈I(s,t)

Di. (3.12)

Let C := {C | C ⊆ D} be the power set of D (the set of all subsets of D), define the
admissible set AC by

AC :=
{

(C,α) ∈ C ×M({0, 1})m
∣

∣Eα[hC ] ≤ 0
}

and consider the optimization problem

U(AC) := sup
(C,α)∈AC

α(hC ≥ a). (3.13)

Theorem 3.8. It holds that
U(AD) = U(AC). (3.14)

Remark 3.9. The proof of this reduction theorem utilizes the standard lattice structure
of the space of functions FD in a substantial way. To begin with, the reduction to
maxh = a is attained through lattice invariance. Moreover, we have a lattice FD, with
sub-lattice GD, and for each C ∈ C, the set CD := {h ∈ FD | {s | h(s) = a} = C}}
of functions with value a precisely on the set C is a sub-lattice. For a clipped h, let
C(h) := {s ∈ D | h(s) = a} be the set where h has the value a. Then, if for each C the
set

⋂

h:C(h)=C

{f ≤ h} ∩CD ∩ GD

is nonempty, then we obtain a reduction. However, not only is the set nonempty, but
the map C 7→ hC is a simple algorithm that produces a point in this intersection, and
therefore an explicit reduction. We suspect that the existence of a simple reduction
algorithm in this case is due to the lattice structures, and that such structures may be
useful in the more general case. Indeed, the condition f ≤ h implies that Eα[f ] ≤ Eα[h]
for any α, and the the condition that Eα[f ] ≤ Eα[h] for all α implies that f ≤ h, so that
the above condition may be stated as

⋂

h:C(h)=C

{

⋂

α

{Eα[f ] ≤ Eα[h]}
}

∩ CD ∩ GD.
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For the more general constraints, we would instead have to solve (i.e., find an element
of)

⋂

h:C(h)=C

{

⋂

α

{G(f, α) ≤ G(h, α)}
}

∩CD ∩ GD.

4 Optimal Concentration Inequalities

In this Section, the results of Section 3 will be applied to obtain optimal concentration
inequalities under the assumptions of McDiarmid’s inequality and Hoeffding’s inequal-
ity. The following subsection gives explicit concentration results under the assumptions
of McDiarmid’s inequality, and Subsection 4.2 gives explicit concentration results un-
der the assumptions of Hoeffding’s inequality. Surprisingly, these explicit results show
that uncertainties in input parameters do not necessarily propagate to global (output)
uncertainties. We refer to Subsection 6.2 for the proofs.

4.1 Explicit solutions under the assumptions of McDiarmid’s inequal-

ity

In this subsection, we will apply Theorem 3.8 to obtain explicit formulae for the OUQ
problem U(AMcD) (defined in equation (3.10)) under the assumptions of McDiarmid’s
inequality (3.8). More precisely, we will compute U(AC) defined by equation (3.13) and
use equalities (3.14) and (3.11) to obtain U(AMcD) = U(AC). It is important to observe
that all the following optimization problems possess solutions because they involve the
optimization of a continuous function (with respect to α) in a compact space.

Since the inequalities (3.5) and (3.6) are equivalent, it follows that

U(AMcD) = sup
(f,µ)∈G×Mm

µ
[

f ≥ a+ Eµ[f ]
]

.

In particular, if Eµ[f ] ≤ 0 is replaced by Eµ[f ] ≤ b or Eµ[f ] = b in McDiarmid’s inequality
assumptions (3.8), then the results given in this section remain valid by replacing a by
M := a− b (observe that M plays the role of a margin).

Those results should be compared with McDiarmid’s inequality [31, 32], which pro-
vides the bound

sup
(f,µ)∈G×Mm

µ
[

f ≥ a+ Eµ[f ]
]

≤ e
− 2a2
∑m

i=1
D2

i . (4.1)

The statements of the theorem will be given assuming that a ≥ 0; in the comple-
mentary case of a < 0, the solution is simply U(AMcD) = 1.

To the best of the authors’ knowledge, the optimal bounds given here are new.
There is a substantial literature relating to optimization of concentration bounds and
de-randomization algorithms (see for instance [49] and references therein) but, as far as
the authors know, those bounds were suboptimal because they were obtained through
the moment generating function technique.
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4.1.1 Explicit solutions in dimensions one and two

Theorem 4.1 (Explicit solution for m = 1). For m = 1, U(AMcD) is given by

U(AMcD) =







0, if D1 ≤ a,

1 − a

D1
, if 0 ≤ a ≤ D1.

(4.2)

Theorem 4.2 (Explicit solution for m = 2). For m = 2, U(AMcD) is given by

U(AMcD) =























0, if D1 +D2 ≤ a,

(D1 +D2 − a)2

4D1D2
, if |D1 −D2| ≤ a ≤ D1 +D2,

1 − a

max(D1,D2)
, if 0 ≤ a ≤ |D1 −D2|.

(4.3)

See Figure 4.1 for an illustration comparing the McDiarmid and OUQ bounds for
m = 2. Observe that

• If a ≤ D1 − D2, then a decrease in D2 does not lead to a decrease in the OUQ
bound U(AMcD). In other words, if most of the uncertainty is contained in the first
variable (a +D2 ≤ D1), then the uncertainty associated with the second variable
does not affect the global uncertainty; a reduction of the global uncertainty requires
a reduction in D1.

• For D1 +D2 = 2a, the ratio between the OUQ bound and the McDiarmid bound
is minimized near the diagonal.

Remark 4.3. The maximum of (4.3) over D1,D2 under the constraints D1 +D2 = D
and D1 ≥ D2 is achieved at D2 = 0 and is equal to 1−a/D. The minimum of (4.3) over
D1,D2 under the constraints D1 + D2 = D and D1 ≥ D2 is achieved on the diagonal
D1 = D2 and is equal to (1 − a/D)2.

4.1.2 Explicit solution in dimension three

Assume that D1 ≥ D2 ≥ D3. Write

F1 :=







































0, if D1 +D2 +D3 ≤ a,

(D1 +D2 +D3 − a)3

27D1D2D3
, if D1 +D2 − 2D3 ≤ a ≤ D1 +D2 +D3,

(D1 +D2 − a)2

4D1D2
, if D1 −D2 ≤ a ≤ D1 +D2 − 2D3,

1 − a

D1
, if 0 ≤ a ≤ D1 −D2.

(4.4)

and
F2 := max

i∈{1,2,3}
φ(γi)ψ(γi) (4.5)
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Figure 4.1: Comparison of the McDiarmid and OUQ bounds for m = 2, with mean
performance 0 and failure threshold a = 1. The optimal upper bound is calculated
using the explicit solution (4.3) to the reduced optimization problem U(AC) defined by
equation (3.13).
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where

ψ(γ) := γ2

(

2
D2

D3
− 1

)

− 2γ

(

3
D2

D3
− 1

)

+
γ

1 + γ

(

8
D2

D3
− 2

a

D3

)

and γ1, γ2, γ3 are the roots (in γ) of the cubic polynomial

(1 + γ)3 −A(1 + γ)2 +B = 0, (4.6)

where

A :=
5D2 − 2D3

2D2 −D3
,

B :=
4D2 − a

2D2 −D3
.

Define a function φ by

φ(γ) :=

{

1, if γ ∈ (0, 1) and θ(γ) ∈ (0, 1),

0, otherwise,

where

θ(γ) := 1 − a

D3(1 − γ2)
+
D2

D3

1 − γ

1 + γ
.

By the standard formula for the roots of a cubic polynomial, the roots of (4.6) are
given by

γ1 := −1 − 1

3
(−A+ κ1 + κ2) ,

γ2 := −1 − 1

3
(−A+ ω2κ1 + ω1κ2) ,

γ3 := −1 − 1

3
(−A+ ω1κ1 + ω2κ2) ,

where

ω1 := −1

2
+

√
3

2
i, ω2 := −1

2
−

√
3

2
i,

κ1 :=

(

β1 +
√
β2

2

)

1

3

, κ2 :=

(

β1 −
√
β2

2

)

1

3

,

β1 := −2A3 + 27B, and β2 := β2
1 − 4A6.

Since there are 3 possible values for each cube root, κ1 and κ2 must be taken so that
they satisfy κ1κ2 = A2.

Theorem 4.4 (Explicit solution for m = 3). For m = 3 with D1 ≥ D2 ≥ D3, U(AMcD)
is given by

U(AMcD) = max(F1,F2). (4.7)

Remark 4.5. Figures 4.2 and 4.3 suggest that the inequality F2 > F1 holds only if
D3 ≈ D2, and D2 is large enough relative to D1.
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4.1.3 Explicit solution in dimension m

For C0 ∈ C, write
U(AC0

) = sup
α : (C0,α)∈AC

α[hC0 ≥ a], (4.8)

where hC0 is defined by equation (3.12).

Proposition 4.6. Assume that D1 ≥ · · · ≥ Dm−1 ≥ Dm. For C0 := {(1, 1, . . . , 1, 1)},
it holds that

U(AC0
) =











































0, if
∑m

j=1Dj ≤ a,

(
∑m

j=1Dj − a)m

mm
∏m

j=1Dj
, if

∑m
j=1Dj −mDm ≤ a ≤∑m

j=1Dj,

(
∑k

j=1Dj − a)k

kk
∏k

j=1Dj

, if, for k ∈ {1, . . . ,m− 1},
∑k

j=1Dj − kDk ≤ a ≤∑k+1
j=1 Dj − (k + 1)Dk+1.

(4.9)

Remark 4.7. The maximum of (4.9) over D1, . . . ,Dm under the constraints D1 + · · ·+
Dm = D and D1 ≥ · · · ≥ Dm is achieved at D1 = D and is equal to 1 − a/D.
The minimum of (4.9) over D1, . . . ,Dm under the constraints D1 + · · · +Dm = D and
D1 ≥ · · · ≥ Dm is achieved on the diagonal D1 = · · · = Dm and is equal to (1 − a/D)m.

Proposition 4.8. Assume that D1 ≥ · · · ≥ Dm−1 ≥ Dm. If a ≥∑m−2
j=1 Dj +Dm, then

U(AMcD) is given by equation (4.9).

4.2 Explicit solutions under the assumptions of Hoeffding’s inequality

This subsection treats a further special case of OUQ, where the assumptions correspond
to Hoeffding’s inequality [18]. Define the admissible set

AHfd :=







(f, µ)

∣

∣

∣

∣

∣

∣

f = X1 + · · · +Xm,
µ ∈⊗m

i=1 M([bi −Di, bi]),
Eµ[f ] ≤ 0







, (4.10)

and define the optimization problem

U(AHfd) := sup
(f,µ)∈AHfd

µ[f ≥ a].

By Hoeffding’s inequality, for a ≥ 0,

U(AHfd) ≤ exp

(

−2
a2

∑m
i D2

i

)

.

Theorem 4.9. If m = 2, then

U(AHfd) = U(AMcD). (4.11)
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Figure 4.2: Comparison of the McDiarmid and OUQ bounds for m = 3, with mean
performance m = 0, D1 = D2 = D3, and failure threshold a = 1. Observe that F2 > F1

for D1 large enough.
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Remark 4.10. Another proof of Theorem 4.9 can be obtained using entirely different
methods than presented in Section 6.2. Although omitted for brevity, this method may
be useful in higher dimensions, so we describe an outline of it here. We begin at the
reduction obtained through Proposition 3.7 to the hypercube. Whereas the proof of
Theorem 4.9 first applies the reduction of Theorem 3.8 to subsets of the hypercube,
here we instead fix the oscillations in each direction to be 0 ≤ di ≤ Di, and solve the
fixed d := (d1, d2) case, not using a Langrangian type analysis but a type of spectral
reduction. We then show that the resulting value U(d) is increasing in d with respect to
the standard (lexicographic) partial order on vectors. The result then easily follows by
taking the supremum over all vectors 0 ≤ d ≤ D.

Theorem 4.11. Let m = 3, and define F1 and F2 as in Theorem 4.4. If F1 ≥ F2, then

U(AHfd) = U(AMcD). (4.12)

If F1 < F2, then
U(AHfd) < U(AMcD). (4.13)

Under the assumptions of Hoeffding’s inequality, each variable Xi is bounded from
below and from above. Without the upper bounds on the variables Xi, it is possible to
leverage additional reduction properties and conjecture an explicit form for the optimal
inequality on µ[X1 + · · ·+Xm ≥ a]. Here we refer to the work and conjecture of Samuels
[45] (see also page 542 of [24]), which has been proven true for m = 1, 2, 3.

5 Computational Implementation and Examples

In this section, we discuss the results of numerical implementation of OUQ algorithms
for an analytical surrogate model for hypervelocity impact. In particular, we compute
the upper (U(A)) and lower (L(A)) bounds on the probability of failure for various sets
of assumptions A, and also consider an example of the experimental selection problem.

The physical system of interest is one in which a 400C steel ball of diameter Dp =
1.778mm impacts a 440C steel plate of thickness h (expressed in mm) at speed v (ex-
pressed in km · s−1) at obliquity θ from the plate normal. The physical experiments are
performed at the California Institute of Technology SPHIR (Small Particle Hyperveloc-
ity Impact Range) facility. An analytical surrogate model was developed to calculate
the perforation area (in mm2) caused by this impact scenario. The surrogate response
function is as follows:

H(h, θ, v) = K

(

h

Dp

)p

(cos θ)u
(

tanh

(

v

vbl
− 1

))m

+

, (5.1)

where the ballistic limit velocity (the speed below which no perforation area occurs) is
given by

vbl := H0

(

h

(cos θ)n

)s

. (5.2)
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The seven quantities H0, s, n, K, p, u andm are fitting parameters that have been chosen
to minimize the least-squares error between the surrogate and a set of 56 experimental
data points; they take the values

H0 = 0.5794 km · s−1, s = 1.4004, n = 0.4482, K = 10.3936mm2,

p = 0.4757, u = 1.0275, m = 0.4682.

For the remainder of this section, the surrogate response function, H, will be taken
as given and fixed, and its behaviour will be investigated on the input parameter range

(h, θ, v) ∈ X := X1 ×X2 ×X3, (5.3a)

h ∈ X1 := [1.524, 2.667]mm = [60, 105]mils, (5.3b)

θ ∈ X2 := [0, π
6 ], (5.3c)

v ∈ X3 := [2.1, 2.8] km · s−1. (5.3d)

We will measure lengths in both mm and mils (recall that 1mm = 39.4mils). Since H
has been fixed, the optimizations that follow are all optimizations with respect to the
unknown random distribution P ∈ M(X ) of the inputs of H. We adopt the “gunner’s
perspective” that the failure event is non-perforation, i.e., the event [H = 0].

5.1 Computational Examples

Example 5.1 (Computation of optimal bounds on the probability of non-perforation).
We assume that the impact velocity, impact obliquity and plate thickness are indepen-
dent random variables, and that the mean perforation area must lie in a prescribed
range [m1,m2] := [5.5, 7.5]mm2. Therefore, the corresponding admissible set for the
OUQ problem is

A :=







(H,µ)

∣

∣

∣

∣

∣

∣

H given by (5.1),
µ = µ1 ⊗ µ2 ⊗ µ3,
m1 ≤ Eµ[H] ≤ m2







. (5.4)

By way of contrast, an admissible set that corresponds to this problem and the assump-
tions of McDiarmid’s inequality is

AMcD :=







(f, µ)

∣

∣

∣

∣

∣

∣

µ = µ1 ⊗ µ2 ⊗ µ3,
m1 ≤ Eµ[f ] ≤ m2,

Osci(f) ≤ Osci(H) for i = 1, 2, 3







. (5.5)

We refer to equation (3.9) for the definition of Osci(f) and to equation (3.8) for mea-
surability issues. This example serves to illustrate the extent to which McDiarmid’s
inequality is not sharp. Application of McDiarmid’s inequality to the above situation
yields the bound

P[H = 0] ≤ U(AMcD) ≤ exp

(

− 2m2
1

∑3
i=1 Osci(H)2

)

= 66.4%.
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The “optimal McDiarmid inequality” of Theorem 4.4 and Remark 3.2 instead provide
the upper bound

P[H = 0] ≤ U(AMcD) = 43.7%.

With access to H, not just its componentwise oscillations, even sharper bounds
on the probability of non-perforation can be calculated; these calculations are greatly
simplified by the reduction results of Section 3. Theorem 3.1 implies that in order to
find U(A) it is sufficient to search among those measures µ whose marginal distributions
on each of the three input parameter ranges have support on at most two points. That
is, U(A) = U(A∆), where the reduced feasible set A∆ is given by

A∆ :=















(H,µ)

∣

∣

∣

∣

∣

∣

∣

∣

H given by (5.1),
µ = µ1 ⊗ µ2 ⊗ µ3,

µi ∈ ∆1(Xi) for i = 1, 2, 3,
m1 ≤ Eµ[H] ≤ m2















. (5.6)

A numerical optimization over this finite-dimensional reduced feasible set A∆ using a
genetic algorithm global optimization routine in the mystic framework [34] yields the
following optimal upper bound on the probability of non-perforation:

P[H = 0] ≤ U(A) = U(A∆)
num
= 37.9%.

Observe that P[H = 0] ≤ U(A) = U(A∆) is a theorem, whereas the U(A∆)
num
= 37.9% is

the output of an algorithm (in this case, a Differential Evolution algorithm implemented
in the mystic framework, see Subsection 5.3). In particular, its validity is correlated with
the efficiency of the specific algorithm. We have introduced the symbol

num
= to emphasize

the distinction between mathematical (in)equalities and numerical outputs.
Although we do not have a theorem associated with the convergence of the numerical

optimization algorithm, we have a robust control over its efficiency because it is applied
to the finite dimensional problem U(A∆) instead of the infinite optimization problem
associated with U(A) (thanks to the reduction theorems obtained in Section 3).

For #supp(µi) ≤ 2, i = 1, 2, 3 (where #supp(µi) is the number of points forming the
support of µi), Figure 5.1 shows that numerical simulations collapse to two-point support.
Indeed, even when a wider search is performed (i.e., over measures µ ∈ ⊗3

i=1 ∆k(Xi)
for k > 1), it is observed that the calculated maximizers for these problems maintain
two-point support: the velocity and obliquity marginals each collapse to a single Dirac
mass, and the plate thickness marginal collapses to have support on the two extremes of
its range. As expected, optimization over a larger search space is more computationally
intensive and takes longer to perform. This observation suggests that the extreme points
of the reduced OUQ problems are, in some sense, attractors — this point will be revisited
in the next subsection.

We also refer to figures 5.4, 5.5 and 5.6 for plots of the locations and weights of the
Dirac masses forming each marginal µi as functions of the number of iterations. Note
that the lines for thickness and thickness weight are of the same color if they correspond
to the same support point for the measure. In particular, Figure 5.6 shows that at
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Admissible scenarios, A U(A) Method

AMcD: independence, oscillation and mean ≤ 66.4% McDiarmid’s inequality
constraints as given by (5.5) = 43.7% Theorem 4.4

A as given by (5.4)
num
= 37.9% mystic, H known

A ∩
{

(H,µ)

∣

∣

∣

∣

µ-median velocity

= 2.45 km · s−1

}

num
= 30.0% mystic, H known

A ∩
{

(H,µ)
∣

∣µ-median obliquity = π
12

} num
= 36.5% mystic, H known

A ∩
{

(H,µ)
∣

∣ obliquity = π
6 µ-a.s.

} num
= 28.0% mystic, H known

Table 5.1: Summary of the upper bounds on the probability of non-perforation for
Example 5.1 as obtained by various methods. Note that OUQ calculations using mystic
involve evaluations of the function H, whereas McDiarmid’s inequality and the optimal
bound given the assumptions of McDiarmid’s inequality use only the mean of H and its
McDiarmid subdiameters, not H itself. Note also that the incorporation of additional
information (assumptions), e.g. on impact obliquity, always reduces the OUQ upper
bound on the probability of failure, since this corresponds to a restriction to a subset of
the original feasible set A for the optimization problem.

iteration number 3500 the thickness support point at 62.5mils (shown in Figure 5.3) has
zero weight.

The inclusion of additional information further reduces the upper bound (the addition
of assumptions lead to a smaller admissible set A 7→ A′ ⊂ A, therefore U decreases and
L increases). For example, if the median of the third input parameter (velocity) is known
to lie at the midpoint of its range, and this information is used to provide an additional
constraint, then the least upper bound on the probability of non-perforation drops to
30.0%.

See Table 5.1 for a summary of the bounds presented in this example, and for further
examples of the effect of additional information/constraints.

On the selectiveness of the information set A. Observe that, except for the
bound obtained from McDiarmid’s inequality, the bounds obtained in Table 5.1 are
the best possible given the information contained in A. If the unknown distribution P

is completely specified, say by restricting to the feasible set Aunif for which the only
admissible measure is the uniform probability measure on the cube X (in which case the
mean perforation area is E[H] = 6.58mm2), then the probability of non-perforation is
U(Aunif) = L(Aunif)

num
= 3.8%. One may argue that there is a large gap between the fifth

(28%) row of Table 5.1 and 3.8% but observe that 3.8% relies on the exact knowledge of
G (called H here) and P whereas 28% relies on the limited knowledge contained in A∩
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{

(H,µ)
∣

∣ obliquity = π
6 µ-a.s.

}

with respect to which 28% is optimal. In particular, the
gap between those two values is not caused by a lack of tightness of the method, but by a
lack of selectiveness of the information contained in A∩

{

(H,µ)
∣

∣ obliquity = π
6 µ-a.s.

}

.
The (mis)use of the terms “tight” and “sharp” without reference to available information
(and in presence of asymmetric information) can be the source of much confusion. Given
prior knowledge of G and P, it would be an easy task to construct a set AP,G containing
(G,P) and such that U(AP,G) ≈ 4%, but doing so would be delaying a honest discussion
on one of the issues at the core of UQ: How to construct A without prior knowledge of
G and P? In other words, how to improve the “selectiveness” or A or how to design
experiments leading to “narrow” As? We have shown in Section 2 that this question
is well-posed within the OUQ framework and has an optimal solution. The following
example shows that the notion of “best” experiment depends on the admissible safety
threshold ǫ for P[G ≥ a].

Example 5.2 (Computational solution of the experimental selection problem). Now
consider the problem of experimental selection as discussed in Section 2, and consider
again the admissible set A as given by (5.4):

A :=







(H,µ)

∣

∣

∣

∣

∣

∣

H given by (5.1),
µ = µ1 ⊗ µ2 ⊗ µ3 ∈ M(X ),

m1 ≤ Eµ[H] ≤ m2







.

Suppose that an experiment E is proposed that will determine the probability mass of
the upper half of the velocity range, [2.45, 2.8] km · s−1; the corresponding functional Φ
of study is

Φ(µ) := µ[v ≥ 2.45 km · s−1],

and the proposed experiment E will determine Φ(P) (approximate determinations includ-
ing measurement and sampling errors can also be handled, but the exact determination
is done here for simplicity). The corresponding intervals Jsafe,ǫ(Φ) and Junsafe,ǫ(Φ) as
defined by (2.6) and (2.3) are reported in Table 5.2 for various acceptable probabilities
of failure ǫ. Note that, for larger values of ǫ, E is a “better” experiment in the sense that
it can distinguish safe scenarios from unsafe ones (see also Figure 2.2); for smaller values
of ǫ, E is a poor experiment. In any case, since the intersection Jsafe,ǫ(Φ) ∩ Junsafe,ǫ(Φ)
is not empty, E is not an ideal experiment.

It is important to note that the optimization calculations necessary to compute the
intervals Jsafe,ǫ(Φ) and Junsafe,ǫ(Φ) are simplified by the application of Theorem 3.1: in
this case, the objective function is µ[v ≥ 2.45] instead of µ[H = 0], but the constraints
are once again linear inequalities on generalized moments of the optimization variable
µ.

On the number of total evaluations on H. Recall that, for simplicity, we have
assumed the response function G to be known and given by H. A large number of
evaluations of H has been used in Table 5.2 to ensure convergence towards the global
optimum. It is important to observe that those evaluations of H are not (actual, costly)
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(a) support points at iteration 0 (b) support points at iteration 150

(c) support points at iteration 200 (d) support points at iteration 1000

Figure 5.1: For #supp(µi) ≤ 2, i = 1, 2, 3, the maximizers of Example 5.1 collapse
to two-point support. Velocity and obliquity marginals each collapse to a single Dirac
mass, while the plate thickness marginal collapses to have support on the extremes of
its range. Note the perhaps surprising result that the probability of non-perforation is
maximized by a distribution supported on the minimal, not maximal, impact obliquity.
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(a) support points at iteration 0 (b) support points at iteration 500

(c) support points at iteration 1000 (d) support points at iteration 2155

Figure 5.2: For #supp(µi) ≤ 3, i = 1, 2, 3, the maximizers of Example 5.1 collapse to
two-point support. Velocity, obliquity and plate thickness marginals collapse as in Figure
5.1.
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(a) support points at iteration 0 (b) support points at iteration 1000

(c) support points at iteration 3000 (d) support points at iteration 7100

Figure 5.3: For #supp(µi) ≤ 5, i = 1, 2, 3, the maximizers of Example 5.1 collapse to
two-point support. Velocity, obliquity and plate thickness marginals collapse as in Figure
5.1. At iteration 7100, the thickness support point at 62.5mils has zero weight, as can
be seen in Figure 5.6.
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(a) convergence for thickness (b) convergence for thickness weight

(c) convergence for obliquity (d) convergence for obliquity weight

(e) convergence for velocity (f) convergence for velocity weight

Figure 5.4: Time evolution of the maximizers for Example 5.1 for #supp(µi) ≤ 2 for
i = 1, 2, 3, as optimized by mystic. Thickness quickly converges to the extremes of
its range, with a weight of 0.621 at 60mils and a weight of 0.379 at 105mils. The
degeneracy in obliquity at 0 causes the fluctuations seen in the convergence of obliquity
weight. Similarly, velocity converges to a single support point at 2.289 km · s−1, the
ballistic limit velocity for thickness 105mils and obliquity 0 (see (5.2)).
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(a) convergence for thickness (b) convergence for thickness weight

(c) convergence for obliquity (d) convergence for obliquity weight

(e) convergence for velocity (f) convergence for velocity weight

Figure 5.5: Time evolution of the maximizers for Example 5.1 for #supp(µi) ≤ 3 for
i = 1, 2, 3, as optimized by mystic. Thickness quickly converges to the extremes of its
range, with a weight of 0.621 at 60mils and a weight of 0.379 at 105mils. The degeneracy
in thickness at 60mils causes the fluctuations seen in the convergence of thickness weight.
Obliquity and velocity each converge to a single support point, while the convergence of
obliquity weight also demonstrates small fluctuations due to degeneracy.
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(a) convergence for thickness (b) convergence for thickness weight

(c) convergence for obliquity (d) convergence for obliquity weight

(e) convergence for velocity (f) convergence for velocity weight

Figure 5.6: Time evolution of the maximizers for Example 5.1 for #supp(µi) ≤ 5 for
i = 1, 2, 3, as optimized by mystic. Four of the five thickness support points quickly
converge to the extremes of its range, with weights 0.024, 0.058, and 0.539 at 60mils
and weight 0.379 at 105mils. The thickness support point that does not converge to an
extremum has zero weight. Obliquity and velocity each collapse to a single support point,
again with the corresponding weights demonstrating fluctuations due to degeneracies.
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Jsafe,ǫ(Φ) Junsafe,ǫ(Φ)
inf sup inf sup

ǫ = 0.100 0.000 1.000 0.000 0.900
iterations until numerical convergence 40 40 40 300

total evaluations of H 1, 000 1, 000 1, 000 8, 000

ǫ = 0.200 0.000 1.000 0.000 0.800
iterations until numerical convergence 40 40 40 400

total evaluations of H 1, 000 1, 000 1, 000 12, 000

ǫ = 0.300 0.000 1.000 0.000 0.599
iterations until numerical convergence 40 40 40 1000

total evaluations of H 1, 000 1, 000 1, 000 33, 000

Table 5.2: The results of the calculation of the intervals Jsafe,ǫ(Φ) and Junsafe,ǫ(Φ) for
the functional Φ(µ) := µ[v ≥ 2.45 km · s−1]. Note that, as the acceptable probability of
system failure, ǫ, increases, the two intervals overlap less, so experimental determination
of Φ(P) would be more likely to yield a decisive conservative certification of the system as
safe or unsafe; the computational cost of this increased decisiveness is a greater number
of function evaluations in the optimization calculations. All computational cost figures
are approximate.

experiments but (cheap) numerical evaluations of equation (5.1). More precisely, the
method for selecting new best experiments does not require new experiments; i.e., it
relies entirely on the information set A (which contains the information gathered from
previous experiments). Hence those evaluations should not be viewed as “information
gained from Monte Carlo samples” but as “pure CPU processing time”. In situations
where the numerical evaluation of H is expensive, one can introduce its cost in the
optimization loop. An investigation of the best algorithm to perform the numerical
optimization with the least number of function evaluations is a worthwhile subject but is
beyond the scope of the present paper. Observe also that the method proposed in Section
2 does not rely on the exact knowledge of the response function G. More precisely, in
situations where the response function is unknown, the selection of next best experiments
is still entirely computational, and based upon previous data/information gathered on G
enforced as constraints in a numerical optimization algorithm. More precisely, in those
situations, the optimization algorithm may require the numerical evaluation of a large
number of admissible functions f (compatible with the prior information available on
G) but it does not require any new evaluation of G.

5.2 Coagulation–Fragmentation Algorithm for OUQ

The results of Sections 3 and 4 give explicit a priori bounds on the number of Dirac
masses sufficient to find the lower and upper bounds L(A) and U(A) when the admissible
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set A is given by independence and linear inequality constraints. However, it is possible
that reduction properties are present for more general admissible sets A. Can such
“hidden” reduction properties be detected by computational means, even in the absence
of theorems that prove their existence?

Consider again the results of the previous subsection. Theorem 3.1 provides an a
priori guarantee that, to find U(A), it is sufficient to search the reduced feasible set A∆,
which consists of those µ ∈ A whose marginal distributions each have support on at most
two points. However, Figures 5.2 and 5.3 provide numerical evidence that something
much stronger is true: even if we search among measures µ ∈ ⊗3

i=1 ∆k(Xi) for k ≥ 1,
the measures collapse to an optimizer

µ∗ ∈ ∆1(X1) ⊗ ∆0(X2) ⊗ ∆0(X3)

(that is, two-point support on the thickness axis, and one-point support on the obliquity
and velocity axes). In some sense, the (small support) optimizers are attractors for
the optimization process even when the optimization routine is allowed to search over
measures with larger support than that asserted by Theorem 3.1.

Therefore, we propose the following general algorithm for the detection of hidden
reduction properties. Let an admissible set A be given; for k ∈ N, let

Ak := {(f, µ) ∈ A | µ ∈ ∆k(X )}

be the collection of admissible scenarios such that µ has support on at most k+1 points
of X .

1. Fix any initial value of k ∈ N.
2. Numerically calculate U(Ak) and obtain an approximate optimizer µ∗ ∈ Ak.
3. Calculate # supp(µ∗) and proceed as follows:

• If # supp(µ∗) < k + 1, then the measure has coagulated to have less-than-
maximally-sized support and we terminate the algorithm.

• If # supp(µ∗) = k + 1, then no coagulation/reduction has yet been observed.
We enter a fragmentation phase: replace k by any k′ > k and return to step
2.

Remark 5.1. It would be more accurate to say that the above algorithm is a sketch of an
algorithm, and that its details should be adjusted to fit the circumstances of application.
For example, if the admissible set A includes an independence constraint, then it would
be appropriate to base decisions upon the cardinality of the support of the marginal
distributions of µ∗, not on the cardinality of the support of µ∗ itself. The termination of
the algorithm if # supp(µ∗) < k+1 is motivated by supposition that a hidden reduction
property has been found and that U(A) has an (approximate) optimizer in Ak.

Remark 5.2. We reiterate the point made in Remark 3.3 that these methods apply
to more general situations than finite convex combinations of Dirac measures; Dirac
measures are simply a well-known class of geometrically extreme probability measures,
and can be replaced by the extremal points of any class of probability measures as
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required by the situation of study. For example, if the OUQ problem of interest involved
the invariant measures for some transformation T : X → X , then each occurence of
∆k(X ) above would be replaced by

ET
k (X ) :=







k
∑

j=0

αjµj

∣

∣

∣

∣

∣

∣

for each j = 0, . . . , k, αj ≥ 0,
µj ∈ M(X ) is ergodic with respect to T ,

and
∑k

j=0 αj = 1







.

5.3 The OUQ Algorithm in the mystic Framework

As posed above, OUQ at the high-level is a global optimization of a cost function that
satisfies a set of constraints. This optimization is performed in mystic using the differ-
ential evolution algorithm of Price & Storn [42, 50], with constraints satisfied through a
modified Lagrange multiplier method [34].

The mystic optimization framework [33] provides a collection of optimization al-
gorithms and tools that lowers the barrier to solving complex optimization problems.
Specifically, mystic provides flexibility in specifying the optimization algorithm, con-
straints, and termination conditions. For example, mystic classifies constraints as either
“bounds constraints” (linear inequality constraints that involve precisely one input vari-
able) or “non-bounds constraints” (constraints between two or more parameters), where
either class of constraint modifies the cost function accordingly in attempt to maximize
algorithm accuracy and efficiency. Every mystic optimizer provides the ability to apply
bounds constraints generically and directly to the cost function, so that the difference in
the speed of bounds-constrained optimization and unconstrained optimization is mini-
mized. Mystic also enables the user to impose an arbitrary parameter constraint function
on the input of the cost function, allowing non-bounds constraints to be generically ap-
plied in any optimization problem.

The mystic framework was extended for the OUQ algorithm. A modified Lagrange
multiplier method was added to mystic, where an internal optimization is used to satisfy
the constraints at each iteration over the cost function [34]. Since evaluation of the cost
function is commonly the most expensive part of the optimization, our implementation
of OUQ in mystic attempts to minimize the number of cost function evaluations required
to find an acceptable solution. By satisfying the constraints within some tolerance at
each iteration, our OUQ algorithm will (likely) numerically converge much more quickly
than if we were to apply constraints by invalidating generated results (i.e. filtering) at
each iteration. In this way, we can use mystic to efficiently solve for rare events, because
the set of input variables produced by the optimizer at each iteration will also be an
admissible point in problem space — this feature is critical in solving OUQ problems,
as tens of thousands of function evaluations may be required to produce a solution. We
refer to [34] for a detailed description of the implementation of the OUQ algorithm in
the mystic framework.

Measures as data objects. Theorem 3.1 states that a solution to an OUQ problem,
with linear constraints on marginal distributions, can be expressed in terms of products
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of convex linear combinations of Dirac masses. In our OUQ algorithm, the optimizer’s
parameter generator produces new parameters each iteration, and hence produces new
product measures to be evaluated within the cost function. For instance, the response
function H, as defined by H(h, θ, v) in (5.1), requires a product measure of dimension
n = 3 for support. In Example 5.1, the mean perforation area is limited to [m1,m2] =
[5.5, 7.5]mm2, the parameters h, θ, v are bounded by the range provided by (5.3a), and
products of convex combinations of Dirac masses are used as the basis for support. The
corresponding OUQ code parameterizes the Dirac masses by their weights and positions.

More generally, it is worth noting that our computational implementation of OUQ
is expressed in terms of methods that act on a hierarchy of parameterized measure
data objects. Information is thus passed between the different elements of the OUQ
algorithm code as a list of parameters (as required by the optimizer) or as a parameterized
measure object. Mystic includes methods to automate the conversion of measure objects
to parameter lists and vice versa, hence the bulk of the OUQ algorithm code (i.e. an
optimization on a product measure) is independent of the selection of basis of the product
measure itself. In particular, since the measure data objects can be decoupled from the
rest of the algorithm, the product measure representation can be chosen to best provide
support for the model, whether it be a convex combination of Dirac masses as required by
Example 5.1, or measures composed of another basis such as Gaussians. More precisely,
this framework can naturally be extended to Gaussians merely by adding covariance
matrices as data object variables and by estimating integral moments equations (with a
Monte Carlo method for instance).

6 Proofs

6.1 Proofs of Section 3

Proof of Theorem 3.1. For µ =
⊗m

i=1 µi ∈ MG, consider the optimization problem

maximize: E(µ′
1
,µ2,...,µm)[r],

subject to: µ′1 ∈ M(X1),

G(µ′1, µ2, . . . , µm) ≤ 0.

By Fubini’s Theorem,

E(µ′
1
,µ2,...,µm)[r] = Eµ′

1

[

E(µ2,...,µm)[r]
]

,

where E(µ2,...,µm)[r] is a Borel-measurable function on X1 and, for j = 1, . . . , n, it holds
that

E(µ′
1
,µ2,...,µm)[g

′
j ] = Eµ′

1

[

E(µ2,...,µm)[g
′
j ]
]

where E(µ2,...,µm)g
′
j is a Borel-measurable function on X1. In the same way, we see that

E(µ′
1
,µ2,...,µm)[g

1
j ] = Eµ′

1
[g1

j ],
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and, for k = 2, . . . ,m and j = 1, . . . , nk, it holds that

E(µ′
1
,µ2,...,µm)[g

k
j ] = Eµk

[gk
j ],

which are constant in µ′1.
Since each Xi is Suslin, it follows that all the measures in M(Xi) are regular. Con-

sequently, by [51, Theorem 11.1], the extreme set of M(Xi) is the set of Dirac masses.
For fixed (µ2, . . . , µm), let G1 ⊆ M(X1) denote those measures that satisfy the con-
straints G(µ′1, µ2, . . . , µm) ≤ 0. Consequently, since for k = 2, . . . ,m and j = 1, . . . , nk,
E(µ′

1
,µ2,...,µm)[g

k
j ] is constant in µ′1, it follows from [54, Theorem 2.1] that the extreme

set ex(G1) ⊆ M(X1) of the constraint set consists only of elements of ∆n1+n′(X1). In
addition, von Weizsäcker and Winkler [53, Corollary 3] show that a Choquet theorem
holds: let µ′ satisfy the constraints. Then

µ′(B) =

∫

ex(G1)
ν(B) dp(ν)

for all Borel sets B ⊆ X1, where p is a probability measure on the extreme set ex(G1).
According to Winkler, an extended-real-valued function K on G1 is called measure

affine if it satisfies the barycentric formula

K(µ′) =

∫

ex(G1)
K(ν) dp(ν).

When K is measure affine, [54, Theorem 3.2] asserts that

sup
µ′∈G1

K(µ′) = sup
ν∈ex(G1)

K(ν),

and so we conclude that

sup
µ′∈G1

K(µ′) = sup
ν∈ex(G1)

K(ν) ≤ sup
ν∈∆n1+n′ (X1)∩G1

K(ν).

However, since
sup

ν∈∆n1+n′ (X1)∩G1

K(ν) ≤ sup
ν∈G1

K(ν),

it follows that
sup

µ′∈G1

K(µ′) = sup
ν∈∆n1+n′(X1)∩G1

K(ν).

To apply this result, observe that [54, proposition 3.1] asserts that the evaluation
function

µ′1 7→ Eµ′
1

[

E(µ2,...,µm)[r]
]

is measure affine. Therefore,

sup
µ′

1∈M(X1)
G(µ′

1
,µ2,...,µm)≤0

Eµ′
1
,µ2,...,µm)[r] = sup

µ′
1∈∆n1+n′ (Xi)

G(µ′
1,µ2,...,µm)≤0

E(µ′
1
,µ2,...,µm)[r]. (6.1)
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Now let ε > 0 and let µ∗1 ∈ ∆n1+n′(X1) be ε-suboptimal for the right-hand side of (6.1):
that is, G(µ∗1, µ2, . . . , µm) ≤ 0, and

E(µ∗
1
,µ2,...,µm)[r] ≥ sup

µ′
1
∈∆n1+n′ (Xi)

G(µ′
1
,µ2,...,µm)≤0

E(µ′
1
,µ2,...,µm)[r] − ε.

Hence, by (6.1),

E(µ∗
1
,µ2,...,µm)[r] ≥ sup

µ′
1
∈M(X1)

G(µ′
1
,µ2,...,µm)≤0

E(µ′
1
,µ2,...,µm)[r] − ε ≥ E(µ1,µ2,...,µm)[r] − ε.

Consequently, the first component of µ by can be replaced some element of ∆n1+n′(X1) to
produce a feasible point µ′ ∈ MG without decreasing E[r] by more than ε. By repeating
this argument, it follows that for every point µ ∈ MG there exists a µ′ ∈ M∆ such that

Eµ′ [r] ≥ Eµ[r] −mε.

Since ε was arbitrary the result follows.

Proof of Corollary 3.4. Simply use the identity

U(A) = sup
(f,µ)∈A

Eµ[rf ] = sup
f∈G

sup
µ∈Mm(X )
G(f,µ)≤0

Eµ[rf ]

and then apply Theorem 3.1 to the inner supremum.

Proof of Theorem 3.6. Corollary 3.4 implies that U(A) = U(A∆) where,

A∆ :=

{

(f, µ) ∈ G ×
m
⊗

i=1

∆n(Xi)

∣

∣

∣

∣

∣

Eµ[gi ◦ f ] ≤ 0 for all j = 1, . . . , n

}

.

For each i = 1, . . . ,m, the indexing of the Dirac masses pushes forward the measure µi

with weights αi
k, k = 0, . . . , n to a measure αi on N with weights αi

k, k = 0, . . . , n. Let
α :=

⊗m
i=1 α

i denote the corresponding product measure on D = Nm. That is, we have
a map

A :

m
⊗

i=1

∆n(Xi) → Mm(D)

and the product map

F × A : G ×
m
⊗

i=1

∆n(Xi) → FD ×Mm(D).

Since for any function g : R → R, we have F(g ◦ f, µ) = g ◦F(f, µ), it follows that for
any (f, µ) ∈ F ×⊗m

i=1 ∆n(Xi) that

Eµ[g ◦ f ] = Eαµ [F(g ◦ f, µ)] = Eαµ [g ◦ F(f, µ)] .
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Consequently, with the function RD : FD ×Mm(D) → R defined by

RD(h, α) := Eα[r ◦ h],

and for each j = 1, . . . , n, the functions GD
j : FD ×Mm(D) → R defined by

GN
j (h, α) := Eα[gi ◦ h],

we have that, for all (f, µ) ∈ F ×⊗m
i=1 ∆n(Xi),

R(f, µ) = RD(F(f, µ), αµ), (6.2)

and, for all j = 1, . . . , n and all (f, µ) ∈ FD ×⊗m
i=1 ∆n(Xi),

Gj(f, µ) = GD
j (F(f, µ), αµ), (6.3)

where αµ := A(µ).
That is,

R = RD ◦ (F × A) ,

Gj = GD
j ◦ (F × A) for each j = 1, . . . , n.

Consequently, any (f, µ) ∈ A∆ is mapped by F × A to a point in F × Mn(D) that
preserves the criterion value and the constraint, and by the assumption must lie in
GD ×Mn(D). This establishes U(A∆) ≤ U(AD).

To obtain equality, consider (h, α) ∈ AD. By assumption, there exists an (f, µ) ∈
G×⊗m

i=1 ∆n(Xi) such that F(f, µ) = h. If we adjust the weights on µ so that A(µ) = α,
we still maintain F(f, µ) = h. By (6.2) and (6.3), this point has the same criterion value
and satisfies the integral constraints of A∆. The proof is finished.

Proof of Proposition 3.7. Let I := 1[a,∞) be the indicator function and consider rf :=
I ◦ f so that µ[f ≥ a] = Eµ[I ◦ f ]. Since I ◦ f is integrable for all µ ∈ Mm(X ) and we
have one constraint Eµ[f ] ≤ 0, the result follows from Theorem 3.6, provided that we
have

F

(

G ×
m
⊗

i=1

∆1(Xi)

)

= GD.

To establish this, consider f ∈ G and observe that for all µ ∈⊗m
i=1 ∆1(Xi) it holds that

F(f, µ) ∈ GD. Therefore, we conclude that F (G ×⊗m
i=1 ∆1(Xi)) ⊆ GD. On the other

hand, for any h ∈ GD, we can choose a measurable product partition of X dividing each Xi

into 2 cells. We pull back the function h to a function f ∈ F that has the correct constant
values in the partition cells, and place the Dirac masses into the correct cells. Set the
weights to any nonzero values. It is easy to see that f ∈ G. Moreover, we have a measure
µ which satisfies F(f, µ) = h. Therefore, we conclude that F (G ×⊗m

i=1 ∆1(Xi)) ⊇ GD.
This completes the proof.
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Proof of Theorem 3.8. First, observe that GD is a sub-lattice of FD in the usual lattice
structure on functions. That is, if h1, h2 ∈ GD, then it follows that both min(h1, h2) ∈ GD

and max(h1, h2) ∈ GD. Therefore, for any admissible (h, α) ∈ AD, it follows that
clipping h at a to min(h, a) produces an admissible (min(h, a), α) and does not change
the criterion value α[h ≥ a]. Consequently, we can reduce to functions with maximum
value a. Moreover, since each function hs is in the sub-lattice GD, it follows that hC ∈
GD, C ∈ C. For C ∈ C, define the sub-lattice

CD := {h ∈ FD | {s | h(s) = a} = C}}

of functions with value a precisely on the set C. Now, consider a function h ∈ GD

such that h ≤ a and let C be the set where h = a. It follows that hC ≤ h, hC ∈ GD,
and hC ∈ CD. Since hC ≤ h implies that Eα[hC ] ≤ Eα[h] for all α, it follows that
replacing (h, α) by (hC , α) keeps it admissible, and α[hC ≥ a] = α[h ≥ a]. The proof is
finished.

6.2 Proofs of Section 4

The proofs given in this subsection are direct applications of Theorem 3.8. In partic-
ular, they are based on an analytical calculation of (3.13). Because Proposition 4.6 is
fundamental to all the other results of the section, its proof will be given first.

Proof of Proposition 4.6. When non-ambiguous, we will use the notation E[hC0 ] for
Eα[hC0 ] and P[hC0 ≥ a] for α[hC0 ≥ a]. First, observe that, if

∑m
j=1Dj ≤ a, then

min(hC0) ≥ 0, and the constraint E[hC0 ] ≤ 0 imply P[hC0 = 0] = 1. This proves the first
equation of (4.9). Now, assume a <

∑m
j=1Dj and observe that

hC0(s) = a−
m
∑

j=1

(1 − sj)Dj .

It follows that

Eα[hC0 ] = a−
m
∑

j=1

(1 − αj)Dj . (6.4)

If Dm = 0, then the optimum is achieved on boundary of [0, 1]m (i.e. by taking αm = 1
since C0 = {(1, . . . , 1)} and since hC0 does not depend on sm) and the optimization
reduces to an (m − 1)-dimensional problem. For that reason, we will assume in all of
the proofs of the results given in this section that all the Dis are strictly positive. The
statements of those results remain valid even if one or more of the Dis are equal to zero.

The condition Dm > 0 implies that min(D1, . . . ,Dm) > 0 and that

α[hC0 ≥ a] =

m
∏

j=1

αj. (6.5)
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If the optimum in α is achieved in the interior of the hypercube [0, 1]m, then at that
optimum the gradients of (6.4) and (6.5) are collinear. Hence, in that case, there exists
λ ∈ R such that for all i ∈ {1, . . . ,m},

∏m
j=1 αj

αi
= λDi. (6.6)

Since α[hC0 ≥ a] is increasing in each αj , the optimum is achieved at Eα[hC0 ] = 0.
Substitution of (6.6) into the equation Eα[hC0 ] = 0 yields that

λ =
m
∏m

j=1 αj
∑m

j=1Dj − a

and, hence,

αi =

∑m
j=1Dj − a

mDi
. (6.7)

For all i ∈ {1, . . . ,m}, the condition 0 < αi < 1 is equivalent to a <
∑m

j=1Dj and

m
∑

j=1

Dj < a+mDi. (6.8)

It follows that for
∑m

j=1Dj −mDm < a <
∑m

j=1Dj, the α defined by (6.7) lies in the
interior of [0, 1]m and satisfies

α[hC0 ≥ a] =

(

∑m
j=1Dj − a

)m

mm
∏m

j=1Dj
.

If a ≤ ∑m
j=1Dj −mDm, then the optimum is achieved on boundary of [0, 1]m (i.e. by

taking αm = 1, since C0 = {(1, . . . , 1)}), and the optimization reduces to an (m − 1)-
dimensional problem.

To complete the proof, we use an induction. Observe in particular that, for k ≤ m−1,

(
∑k

j=1Dj − a)k

kk
∏k

j=1Dj

=
(
∑k+1

j=1 Dj − a)k+1

(k + 1)k+1
∏k+1

j=1 Dj

for a =
∑k+1

j=1 Dj − (k + 1)Dk+1, and that

(
∑k

j=1Dj − a)k

kk
∏k

j=1Dj

≤
(
∑k+1

j=1 Dj − a)k+1

(k + 1)k+1
∏k+1

j=1 Dj

(6.9)

is equivalent to a ≥ ∑k+1
j=1 Dj − (k + 1)Dk+1. Indeed, writing a =

∑k+1
j=1 Dj − (k +

1)Dk+1 + b, equation (6.9) is equivalent to

(

1 − b

kDk+1

)k

≤
(

1 − b

(k + 1)Dk+1

)k+1

.
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The function f given by f(x) :=
(

1 − y
x

)x
is increasing in x (for 0 < y < x): simply

examine the derivative of log f , and use the elementary inequality

log(1 − z) +
z

1 − z
≥ 0 for 0 < z < 1.

We will now give the outline of the induction. It is trivial to obtain that equation
(4.9) is true for m = 1. Assume that it is true for m = q−1 and consider the case m = q.
Equation (6.7) isolates the only potential optimizer αq, which is not on the boundary of
[0, 1]q (not (q − 1)-dimensional).

One obtains that equation (4.9) holds form = q by comparing the value of α[hC0 ≥ a]
at locations α isolated by equations (6.7) and (6.8) with those isolated at step q − 1.
This comparison is performed via equation (6.9).

More precisely, if αq (the candidate for the optimizer in α isolated by the previous
paragraph) is not an optimum, then the optimum must lie in the boundary of [0, 1]q .
Hence, the optimum must be achieved by taking αi = 1 for some i ∈ {1, . . . , q}. Observ-
ing that U(AC0

) is increasing in each Di, and since Dq = mini∈{1,...,q}Di, that optimum
can be achieved by taking i = q, which leads to computing U(AC0

) with (D1, . . . ,Dq−1),
where we can use the (q−1)-step of the induction. Using equation (6.9) for k = q−1, we
obtain that αq is an optimum for a ≥∑q

j=1Dj − qDq, and that, for a ≤∑q
j=1Dj − qDq,

the optimum is achieved by calculating U(AC0
) with q− 1 variables and (D1, . . . ,Dq−1).

This finishes the proof by using the induction assumption (see formula (4.9)).

The following two lemmas illustrate simplifications that can be made using the sym-
metries of the hypercube:

Lemma 6.1. Let C0 ∈ C. If C0 is symmetric with respect to the hyperplane containing
the center of the hypercube and normal to the direction i, then the optimum of (4.8) can
be achieved by taking αi = 1.

Proof. The proof follows by observing that if C0 is symmetric with respect to the hyper-
plane containing the center of the hypercube and normal to the direction i, then hC0(s)
does not depend on the variable si.

The following lemma is trivial:

Lemma 6.2. Let (α,C) be an optimizer of (3.13). Then, the images of (α,C) by
reflections with respect to hyperplanes containing the center of the hypercube and normal
to its faces are also optimizers of (3.13).

The proofs of the remaining theorems now follow in the order that the results were
stated in the main part of the paper.

Proof of Theorem 4.1. The calculation of U(AC) for m = 1 is trivial and also follows
from Proposition 4.6.
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Figure 6.1: For m = 2, the optimum associated with U(AC) can be achieved with C =
{(1, 1)}. For that specific value of C, the linearity of hC(s) = a−D1(1−s1)−D2(1−s2)
implies U(AHfd) = U(AMcD).

Proof of Theorem 4.2. Write C1 = {(1, 1)} (see Figure 6.1). Theorem 4.2 is a conse-
quence of the following inequality:

max
C0∈C

U(AC0
) ≤ U(AC1

) (6.10)

Assuming equation (6.10) to be true, equation (4.3) is obtained by calculating U(AC1
)

from Proposition 4.6 with m = 2. Let us now prove equation (6.10). Let C0 ∈ C; we
need to prove that

U(AC0
) ≤ U(AC1

). (6.11)

By symmetry (using Lemma 6.2), it is no loss of generality to assume that (1, 1) ∈ C0. By
Lemma 6.1 the optima for C0 = {(1, 1), (1, 0)} and C0 = {(1, 1), (0, 1)} can be achieved
with C1 by taking α1 = 1 or α2 = 1.

The case C0 = {(1, 1); (1, 0); (0, 1); (0, 0)} is infeasible.
For C0 = {(1, 1), (1, 0), (0, 1)}, we have P[hC0 = a] = β and E[hC0 ] = a − (1 −

β)min(D1,D2) with β = 1 − (1 − α1)(1 − α2) (recall that hC0 is defined by equation
(3.12)). Hence, at the optimum (in α),

P[hC0 = a] =

{

1 − a/min(D1,D2), if a < min(D1,D2),

0, if a ≥ min(D1,D2).
(6.12)

Equation (6.11) then holds by observing that one always has both

1 − a

min(D1,D2)
≤ 1 − a

max(D1,D2)

and

1 − a

min(D1,D2)
≤ (D1 +D2 − a)2

4D1D2
.

The last inequality is equivalent to (D1 − D2 + a)2 ≥ 0, which is always true. The
case C0 = {(1, 1), (0, 0)} is bounded by the previous one since P[hC0 = a] = β and
E[hC0 ] = aβ − (1 − β)min(D1,D2) with β = α1α2 + (1 − α1)(1 − α2). This finishes the
proof.
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(a) C1 (b) C2

Figure 6.2: For m = 3, the optimum associated with U(AC) can be achieved with
C1 = {(1, 1, 1)} (leading to F1) or C2 = {(1, 1, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)} (leading
to F2). The linearity of hC1(s) = a − D1(1 − s1) − D2(1 − s2) − D3(1 − s3) implies
that U(AHfd) = U(AMcD) when F1 ≥ F2. Similarly, the nonlinearity of hC2 leads to
U(AHfd) < U(AMcD) when F1 < F2.

Proof of Theorem 4.4. Recall that

U(AMcD) = max
C0∈C

U(AC0
).

It follows from Proposition 4.6 that F1 corresponds to U(AC1
) with C1 = {(1, 1, 1)}.

Write C2 = {(1, 1, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)} (see Figure 6.2). Let us now calculate
U(AC2

) (F2 corresponds to U(AC2
), which is the optimum, and it is achieved in the

interior of [0, 1]3). We have P[hC2 = a] = α2α3 + α1α3 + α1α2 − 2α1α2α3, and

E[hC2 ] = a−D2(1 − α1)(1 − α2) −D3 ((1 − α2)(1 − α3) + (1 − α1)α2(1 − α3)) .

An internal optimal point α must satisfy, for some λ ∈ R,

α2 + α3 − 2α2α3 = λ (D2(1 − α2) +D3α2(1 − α3)) , (6.13a)

α1 + α3 − 2α1α3 = λ (D2(1 − α1) +D3α1(1 − α3)) , (6.13b)

α1 + α2 − 2α1α2 = λ (D3(1 − α1α2)) . (6.13c)

If we multiply the first equation by α1 and subtract the second equation multiplied by
α2, the we obtain that

(α1 − α2)α3 = λD2(α1 − α2),

which implies that either α1 = α2 or α3 = λD2.
Suppose that α1 6= α2, so that α3 = λD2. Subtraction of the second equation in

(6.13) from the first yields

(α2 − α1)(1 − 2α3) = λ (−D2(α2 − α1) +D3(α2 − α1)(1 − α3)) ,
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which implies that either α1 = α2 or

1 − 2α3 = λ (−D2 +D3(1 − α3)) .

Since α3 = λD2, this becomes

1 − α3 =
α3D3

D2
(1 − α3),

which implies, since α3 6= 1, that α3 = D2

D3
. Therefore, λ = 1

D3
. Therefore, the third

equation in (6.13) becomes

α1 + α2 − 2α1α2 = λ (D3(1 − α1α2)) = 1 − α1α2,

which amounts to
α1 + α2 − α1α2 = 1,

which in turn amounts to α1(1 − α2) = 1 − α2. Since α2 6= 1, we conclude that α1 = 1,
contradicting the supposition that α is an interior point. Therefore, α1 = α2 and
equations (6.13), with α := α1 = α2, become

α+ α3 − 2αα3 =λ (D2(1 − α) +D3α(1 − α3)) (6.14a)

2α− 2α2 = λ
(

D3(1 − α2)
)

. (6.14b)

Hence,
P[hC2 = a] = 2αα3 + α2 − 2α2α3 (6.15)

and
E[hC2 ] = a−D2(1 − α)2 −D3

(

(1 − α2)(1 − α3)
)

.

The hypothesis that the optimum is not achieved on the boundary requires that

D3, 0 < α < 1,D2 +D3 > a and E[hC2 ] = 0.

The condition E[hC2 ] = 0 is required because equation (6.15) is strictly increasing along
the direction α = α3.

Suppose that those conditions are satisfied. The condition E[hC2 ] = 0 implies that

1 − α3 =
a

D3(1 − α2)
− D2(1 − α)

D3(1 + α)
,

which in turns implies that

α3 = 1 − a

D3(1 − α2)
+
D2(1 − α)

D3(1 + α)
. (6.16)

Substitution of (6.16) into (6.15) yields that P[hC2 = a] = Ψ(α), with

Ψ(α) = α2 + 2(α − α2)

(

1 − a

D3

1

(1 − α2)
+
D2

D3

1 − α

1 + α

)

.

51



Hence,

Ψ(α) = 2α− α2 − 2
a

D3

α

1 + α
+ 2

D2

D3
α

(1 − α)2

1 + α
.

Ψ(α) can be simplified using polynomial division. In particular, using

α
(1 − α)2

1 + α
= (1 − α)2 − (1 − α)2

1 + α
,

α
(1 − α)2

1 + α
= α2 + 1 − 2α− (1 + α) + 4 − 4

1 + α
,

where the last step is obtained from

(1 − α)2 = (α+ 1 − 2)2 = (α+ 1)2 − 4(1 + α) + 4,

we obtain that

Ψ(α) = 2α− α2 − 2
a

D3

α

1 + α
+ 2

D2

D3

(

4 + α2 − 3α− 4

1 + α

)

.

Therefore,

Ψ(α) = α2

(

2
D2

D3
− 1

)

− 2a

D3

α

1 + α
+ 2α

(

1 − 3
D2

D3

)

+ 8
D2

D3

α

1 + α

and

Ψ(α) = α2

(

2
D2

D3
− 1

)

− 2α

(

3
D2

D3
− 1

)

+
α

1 + α

(

8
D2

D3
− 2

a

D3

)

. (6.17)

Equation (6.17) implies that

D3Ψ
′(α) = 2α(2D2 −D3) + 2(D3 − 3D2) −

1

(1 + α)2
(2a− 8D2).

The equation Ψ′(α) = 0 is equivalent to equation (4.6). An interior optimum requires
the existence of an α ∈ (0, 1) such that Ψ′(α) = 0 and α3 ∈ (0, 1), which leads to the
definition of F2. This establishes the theorem for the F2 case.

Next, using symmetries of the hypercube and through direct computation (as in the
m = 2 case), we obtain that

C0 6= C2 =⇒ U(AC0
) ≤ U(AC1

). (6.18)

For the sake of concision, we will give the detailed proof of (6.18) only for

C3 = {(1, 1, 1), (0, 1, 1), (1, 0, 1)}.

This proof will give an illustration of generic reduction properties used in other cases. To
address all the symmetric transformations of C3, we will give the proof without assuming
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that D1,D2 and D3 are ordered. Let us now consider the C3 scenario. If the optimum in
α is achieved on the boundary of [0, 1]3, then equation (6.10) implies U(AC3

) ≤ U(AC1
).

Let us assume that the optimum is not achieved on the boundary of [0, 1]3. Observe
that

hC3(s1, s2, 0) = hC3(s1, s2, 1) −D3. (6.19)

Combining (6.19) with

E[hC3 ] = α3E[hC3(s1, s2, 1)] + (1 − α3)E[hC3(s1, s2, 0)]

implies that
E[hC3 ] = E[hC3(s1, s2, 1)] − (1 − α3)D3.

Furthermore,
P[hC3 = a] = α3P[hC3(s1, s2, 1) = a]. (6.20)

Maximizing (6.20) with respect to α3 under the constraint E[hC3 ] ≤ 0 leads to E[hC3 ] = 0
(because P[hC3 = a] and E[hC3 ] are linear in α3) and

α3 = 1 − E[hC3(s1, s2, 1)]

D3
. (6.21)

Observe that the condition α3 < 1 requires E[hC3(s1, s2, 1)] > 0. If E[hC3(s1, s2, 1)] ≤ 0
then α3 = 1, and the optimum is achieved on the boundary of [0, 1]3.

The maximization of P[hC3(s1, s2, 1) = a] under the constraint E[hC3(s1, s2, 1)] ≤ E
(where E is a slack optimization variable) leads to (using the m = 2 result)

P[hC3(s1, s2, 1) = a] = 1 − (a− E)

min(D1,D2)

if a − E ≤ min(D1,D2), and P[hC3(s1, s2, 1) = a] = 0 otherwise. It follows from (6.21)
and (6.20) that if the optimum is achieved at an interior point, then the optimal value
of P[hC3 = a] is achieved by taking the maximum of

P[hC3 = a] =

(

1 − E

D3

)(

1 − a− E

min(D1,D2)

)

with respect to E with the constraints 0 ≤ E ≤ D3 and a − min(D1,D2) ≤ E. If the
optimum is not achieved on the boundary of [0, 1]3 then one must have

E =
D3 + min(D1,D2) − a

2
,

which leads to

P[hC3 = a] =

(

D3 + min(D1,D2) − a
)2

4D3 min(D1,D2)
. (6.22)

Comparison of (6.22) and (4.3) implies that U(AC3
) ≤ U(AC1

), by Proposition 4.6.
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Proof of Proposition 4.8. The idea of the proof is to show that hC can be chosen so that
C contains only one vertex of the hypercube, in which case we have the explicit formula
obtained in Proposition 4.6.

First, observe that if a >
∑m−1

j=1 Dj , then it is not possible to satisfy the constraint

Eα[hC ] ≤ 0 whenever C contains two or more vertices of the hypercube. Next, if C
contains two vertices s1, s2 of the hypercube, and the Hamming distance between those
points is 1, then C is symmetric with respect to a hyperplane containing the center of the
hypercube and normal to one of its faces, and the problem reduces to dimension m−1. It
follows from Lemma 6.1 that the optimum of (4.8) can be achieved by a C that has only
one element. If C contains two vertices of the hypercube, and the Hamming distance
between those points is greater than or equal to 2, then the constraint Eα[hC ] ≤ 0 is
infeasible if a >

∑m−2
j=1 Dj +Dm (because hC > 0 in that case). Therefore, we conclude

using Proposition 4.6.

Proof of Theorem 4.9. First, we observe that we always have

U(AHfd) ≤ U(AMcD). (6.23)

We observe from equation (6.10) that the maximizer (hC) of U(AMcD) is linear (see
Figure 6.1), and hence is also an admissible function under U(AHfd). This finishes the
proof.

Proof of Theorem 4.11. Just as for m = 2, equation (6.23) is always satisfied. Next,
observing that F1, in Theorem 4.4, is associated with a linear maximizer hC (see Figure
6.2), we deduce that

F1 ≤ U(AHfd) ≤ max(F1,F2).

This finishes the proof for equation (4.12). Let us now prove equation (4.13). Assuming
that U(AHfd) = U(AMcD), it follows that U(AMcD) can be achieved by a linear function
h0. Since at the optimum we must have E[h0] = 0, and since min(h0, a) is also a
maximizer of U(AMcD), it follows that min(h0, a) = h0. Using the linearity of h0, and
the lattice structure of the set of functions in U(AMcD), we deduce that h0 = hC , where
C contains only one vertex of the cube. It follows that F1 ≥ F2. This finishes the
proof.

7 Optimal Uncertainty Quantification with Sample Data

For the sake of clarity, we have started the description of OUQ with deterministic in-
formation and assumptions (when A is a deterministic set of functions and measures of
probability). In this section, we will see that the addition of sample data to the avail-
able information and assumptions leads to non-trivial theoretical questions. As will be
shown below, these questions are of practical importance beyond their fundamental con-
nections with information theory and nonparametric statistics. In particular, we will see
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that while the notion of an optimal bound (2.4) is transparent and unambiguous, the no-
tion of an optimal bound on P[G(X) ≥ a] in presence of sample data is not immediately
obvious and should be treated with care.

By sample data we mean observations of a related random vector D; for instance,
samples of (X,G(X)) or (X1,X4, G(X)), or a subset of the entries of X and G(X), or
(possibly non-injective) functions of X and G(X). The measurement of these samples
may also be corrupted with noise, in which case the information set A must be modified
to incorporate the information (or lack of information) on measurement noise.

Estimators. Let D be the sample data space and let D denote a random variable with
values in D. Consider the set of functions Ψ : D → [0, 1], and fix δ > 0. Let Cδ denote
the set of such functions Ψ such that for all (f, µ) ∈ A, with probability at least 1 − δ
on the sample data, we have µ[f ≥ a] ≤ Ψ(D). That is,

Cδ :=

{

Ψ

∣

∣

∣

∣

inf
(f,µ)∈A

µD
[

µ[f(X) ≥ a] ≤ Ψ(D)
]

≥ 1 − δ

}

. (7.1)

For simplicity, we start our description where the law of the random vector D is deter-
mined by the measure P. Thus, in this case, we write µD for the law of the random
vector D under the admissible scenario that P = µ. The discussion at the end of the
experimental selection paragraph shows that the knowledge of P may not determine the
law of the random vector D, but only a set of possible values for that law. Indeed, D
may contain sample data of random variables that are not functions of X, but only cor-
related with X. For those situations, our description can be generalized by, for instance,
taking infima and suprema with respect to set of laws of the random vector D under the
admissible scenario that P = µ. For conciseness, we will not develop this generalization
in this paper. Consequently, by applying any Ψ ∈ Cδ to the sample data D one obtains,
with probability at least 1 − δ, an upper bound on the probability of failure P[G ≥ a].
We call the elements of Cδ δ-feasible estimators (or simply estimators). The collection
Cδ is always non-empty, since the constant estimator Ψ ≡ 1 lies in Cδ. Since the constant
estimator Ψ ≡ 1 is useless for practical decision-making purposes, we seek a “least”
element of Cδ. However, the notion of optimality in the presence of sample data is not a
straightforward question, nor is it a philosophical irrelevance, but it is a subtle issue of
great practical importance.

Supplier/client certification conflicts. Consider a situation with conflicting esti-
mators, i.e. a supplier is using a function Ψ1 ∈ Cδ to certify the safety of a design while
the client is using another function Ψ2 ∈ Cδ. Suppose that they both apply their esti-
mators Ψ1,Ψ2 — each of which the user believes to be “optimal” in some sense — to
the same sample data D, and it transpires that

Ψ1(D) < ǫ < Ψ2(D).

Hence, the supplier states that the design is safe while the client states that it is not!
How can this conflict be resolved? This is only a relatively tame example: what if the
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certification process is delegated to 10 independent firms, 6 of which say that the system
is safe while 4 decide that the system is unsafe? Which, if any, of those conclusions
can be trusted? One may trust all 10 certification “processes” but not all 10 “conclu-
sions”/“outcomes” if they are in conflict. The conflict cannot be resolved simply by
taking the minimum value between Ψ1(D),Ψ2(D), since it is not necessarily true that
min(Ψ1,Ψ2) ∈ Cδ. Should one try to construct a shared notion of optimality that “re-
spects” the preferences (notions of optimality) of each of the suppliers and clients? In
voting theory, it is well known that such shared notions of optimality are, in general, im-
possible to construct: Arrow’s Theorem, [3] the Gibbard–Satterthwaite Theorem [14, 46],
and the Duggan–Schwartz Theorem [11, 12] are all manifestations of this phenomenon.
One of the standard ways to avoid these paradoxes of voting theory is to allow for a
“dictator,” i.e. a single preference that overrides all others. These paradoxes can also
be avoided using type I and type II errors as defined in hypothesis testing; see the dis-
cussion below equation (7.5). We now present an criterion function that can be used to
formulate the OUQ with sample data problem.

An agreed-upon risk function. One possible solution to the problems outlined
above is for the client and suppliers to agree upon δ > 0, and on a single scalar-valued
risk function E to be used to quantify the optimality of estimators Ψ. For example, take

E(Ψ) := sup
(f,µ)∈A

EµD
[Ψ(D)]. (7.2)

There is admittedly, no objective reason why this “supL1 norm” should be preferred to,
say, any other “supLp norm.” However, the agreement upon a risk function turns the
OUQ-with-sample-data problem into a well-posed constrained optimization problem. In
this case, we obtain the minimax problem

minimize: E(Ψ) := sup
(f,µ)∈A

EµD
[Ψ(D)],

subject to: inf
(f,µ)∈A

µD
[

µ[f(X) ≥ a] ≤ Ψ(D)
]

≥ 1 − δ.

Clearly, this minimax problem, consisting of an averaging with respect to the law of
the sample data, has an additional layer of complexity compared to the OUQ problem
without sample data (2.4). As before, approximate optimizers always exist, and will
in general be both necessary and sufficient for real applications, so we do not have to
concern ourselves with the existence of true optimizers.

Connection with information theory Let D̂ be the empirical distribution associ-
ated with the sample data D. If the samples are i.i.d, then, due to the law of large
numbers, D̂ converges almost surely towards µ as n, the number of samples, gets large.
Let H(ν|µ) be the relative entropy (Kullback–Leibler divergence) between two measures
ν and µ. For each probability measure µ, define τµ as the smallest τ ≥ 0 such that

µD

[

H(D̂|µ) ≥ τµ

]

≤ δ.
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Write Aδ as the subset of couples (f, µ) ∈ A such that f(Xi) = G(Xi) for each observa-
tion Xi of the system, and H(D̂, µ) ≤ τµ. Define

Ψ(D) := max
(f,µ)∈Aδ

µ[f(X) ≥ a]. (7.3)

Observe that Ψ is an element of Cδ and that the estimation of Ψ(D) involves the same
optimization as the one employed by OUQ in the absence of sample data (2.4). Here,
the information contained in D is used to shrink the admissible set A via the relative
entropy. Moreover, by [10], D̂ satisfies a large deviation property with rate function
given by the relative entropy distance H(·|µ). That is, for large n, we obtain that the

probability that D̂ is close to µ is of the order of e−nH(D̂|µ). Hence, for large n, the set
Aδ can be obtained by taking the intersection of A with the set of measures µ such that

H(D̂|µ) ≤ 1

n
log

1

δ
. (7.4)

Hence, equation (7.4) establishes a natural connection between OUQ and Information
Theory. Moreover, using the lower bound of the large deviation property, it is possible
to show that (7.3) is asymptotically optimal in the limit of large sample size.

Connection with hypothesis testing In equation (7.2), the notion of optimality
has been defined by using EµD

[Ψ(D)]; one could also have used the median or other
quantile of µ. Why should we choose one definition of optimality and not another?
This definition involves, a priori, a subjective choice and, as shown in the supplier-client
conflict example, it is important to eliminate subjective steps in the certification process.
Is it possible to relate the notion of optimality in OUQ to that of a framework that is
already universally accepted and used? In this paragraph, we will show that it is possible
to connect the notion of optimality in OUQ-based-certification (in presence of sampled
data) to the notion of optimal tests in hypothesis testing.

Recall that in statistical hypothesis testing [27], there are two types of incorrect
conclusions. A type I error (α) occurs when the hypothesis is inappropriately rejected
and a type II error (β) occurs when we inappropriately fail to reject the hypothesis.
A uniformly most powerful test (UMP test) is a hypothesis test which has the greatest
power 1 − β among all possible tests of a given size α. For example, according to the
Neyman–Pearson Lemma, the likelihood-ratio test is UMP for testing simple (point)
hypotheses.

Define Asafe,ǫ and Aunsafe,ǫ as in (2.3). In this certification context, the (null) hypoth-
esis can be defined as “the system is unsafe, i.e. P[G ≥ a] > ǫ”. Obtaining a uniformly
most powerful test is equivalent to finding a test of significance level α (the probability
of declaring an unsafe system safe is at most α), and minimizing β (the probability of
declaring a safe system unsafe). Note that tests are necessarily functions of A and D,
and can be defined as: “reject if Ψ(D) > ǫ” and “accept if Ψ(D) ≤ ǫ”.

The notion of optimality in OUQ with sample data can then be formulated by the
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following optimization problem for Ψ:

minimize with respect to Ψ: sup
(f,µ)∈Asafe,ǫ

µD [Ψ(D) > ǫ] , (7.5)

subject to: sup
(f,µ)∈Aunsafe,ǫ

µD [Ψ(D) ≤ ǫ] ≤ α.

Observe that if Ψ belongs to Cα, as defined by (7.1), then it is admissible for the op-
timization problem (7.5) (but the converse is not necessarily true). Observe also that
the paradoxes emerging from the supplier/client conflict can be avoided by letting the
client choose α (the bound on the probability that an unsafe system is declared safe) and
letting the supplier solve (7.5). Indeed, those paradoxes result from a conflict of interest:
it is in the interest of the client to purchase a safe system, and it is in the interest of the
supplier to minimize cost and not declare a safe system unsafe. Hence, once a minimum
level of safety α has been agreed upon, it is in the interest of the supplier to provide
the sharpest estimator under the constraint imposed by α. This is why the optimization
problem (7.5) provides a natural solution to that conflict.

Observe that OUQ “always” has approximate optima for every degree of “approxi-
mate,” whereas it is known that this is not true for the UMP test [27]. One interpretation
of this difference is that the UMP test requires superiority over all other tests for every
element in the alternative hypothesis set, whereas OUQ is a minimax criterion. In the
statistical literature, tests related to the OUQ formulation are described as minimax
tests for composite hypothesis testing, and are generally used to produce robust tests.
This difference represents one of the fundamental contributions of the OUQ viewpoint:
namely, instead of doing theoretical analysis to describe the optimal test, the OUQ
approach provides an optimization problem which must be solved — with the help of
optimization theory, computer science, and applied mathematics — to determine the
test.

8 Conclusions

The UQ Problem — A Problem with UQ? The 2003 Columbia space shuttle ac-
cident and the 2010 Icelandic volcanic ash cloud crisis have demonstrated two sides of the
same problem: discarding information may lead to disaster, whereas over-conservative
safety certification may result in unnecessary economic loss and supplier-client conflict.
Furthermore, while everyone agrees that UQ is a fundamental component of objective
science (because, for instance, objective assertions of the validity of a model or the certi-
fication of a physical system require UQ), it appears that not only is there no universally
accepted notion of the objectives of UQ, there is also no universally accepted framework
for the communication of UQ results. At present, the “UQ problem” appears to have
all the symptoms of an ill-posed problem; at the very least, it lacks a coherent general
presentation, much like the state of probability theory before its rigorous formulation by
Kolmogorov in the 1930s.
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• At present, UQ is an umbrella term that encompasses a large spectrum of meth-
ods: Bayesian methods, Latin hypercube sampling, polynomial chaos expansions,
stochastic finite-element methods, Monte Carlo, etc. Most (if not all) of these
methods are characterized by a list of assumptions required for their application
or efficiency. For example, Monte Carlo methods require a large number of sam-
ples to estimate rare events; stochastic finite-element methods require the precise
knowledge of probability density functions and some regularity (in terms of decays
in spectrum) for their efficiency; and concentration-of-measure inequalities require
uncorrelated (or weakly correlated) random variables.

• There is a disconnect between theoretical UQ methods and complex systems of
importance requiring UQ in the sense that the assumptions of the methods do not
match the assumption/information set of the application. This disconnect means
that often a specific method adds inappropriate implicit or explicit assumptions
(for instance, when the knowledge of probability density functions is required for
polynomial chaos expansions, but is unavailable) and/or the repudiation of rele-
vant information (for instance, the monotonicity of a response function in a given
variable) that the method is not designed to incorporate.

OUQ as an opening gambit. OUQ is not the definitive answer to the UQ prob-
lem, but we hope that it will help to stimulate a discussion on the development of a
rigorous and well-posed UQ framework analogous to that surrounding the development
of probability theory. The reduction theorems of Section 3, the Optimal Concentration
Inequalities and non-propagation of input uncertainties of Section 4, the possibility of
the selection of optimal experiments described at the end of Section 2, and the numerical
evidence of Section 5 that (singular, i.e. low dimensional) optimizers are also attractors,
suggest that such a discussion may lead to non-trivial and worthwhile questions and
results at the interface of optimization theory, probability theory, computer science and
statistics.

In particular, many questions raised by the OUQ formulation remain to be investi-
gated. A few of those questions are as follows:

• Any (possibly numerical) method that finds admissible states (f, µ) ∈ A leads to
rigorous lower bounds on U(A). It is known that duality techniques lead to upper
bounds on (f, µ) ∈ A provided that the associated Lagrangians can be computed.
Are there interesting classes of problems for which those Lagrangians can rigorously
be estimated or bounded from above?

• The reduction theorems of Section 3 are limited to linear constraints on probability
distribution marginals and the introduction of sample data may lead to other
situations of interest (for instance, relative-entropy type constraints).

• Although general in its range of application, the algorithmic framework introduced
in Section 5 is still lacking general convergence theorems.

• The introduction of sample data appears to render the OUQ optimization problem
even more complex. Can this optimization problem be made equivalent to applying
the deterministic setting to an information set A randomized by the sample data?
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• In the presence of sample data, instead of doing theoretical analysis to describe
the optimal statistical test, one formulation of the OUQ approach provides an op-
timization problem that must be solved to determine the test. Is this optimization
problem reducible?
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