GRB 980329: Determining Density Without a Redshift

S. A. Yost
Caltech 220-47, Pasadena, CA 91125

Abstract. We fit models to the late-time broadband dataset of gamma-ray burst (GRB) 980329. Despite being limited by sparse early optical data and no redshift measurement, we determine some parameters of the afterglow and its host robustly. The fireball expanded into a relatively dense medium with \(n \sim 200 \text{ cm}^{-3} \). The host is far bluer than the afterglow, and is not compatible with high \(z \sim 5 \).

INTRODUCTION

GRB 980329 was one of the earliest and brightest bursts detected by the BeppoSAX satellite. After fruitless optical searches, its afterglow was initially identified in the radio [1], which then led to the discovery of its faint R-band and relatively bright near-IR afterglow [2, 3, 4]. With evidence of a high column density \(nH \) in the X-ray [5], the very red nature of this burst’s afterglow and the “dropout” of the R band flux has been postulated to be due to intrinsic host absorption by both Taylor[1] and Palazzi[2]. However, there is no direct redshift determination for this burst, despite observational efforts; Fruchter[6] proposed that the “dropout” could be due to absorption by the intergalactic medium’s Lyman-alpha (Ly\(\alpha \)) forest if the burst is at a redshift \(z \geq 5 \).

THE GRB REDSHIFT

The R band “dropout” and R-I=2 OT colour could be due to extinction in the host, or to Ly\(\alpha \) flux suppression at \(z \sim 5 \). The latter would extinct the host flux similarly.

A good host spectrum was taken, but no lines were detected, leaving the redshift undetermined. However, the host is well detected at both R and I, (see Fig. 1) with a much bluer colour than the OT, rejecting Ly\(\alpha \) as a significant effect on the R band and thus restricting \(z \leq 4 \).

AFTERGLOW MODELLING

We fit late-time optical and radio points along with the early, published data to a broadband model of the afterglow emission (explained in some detail in Harrison [7]) and host galaxy. We assume several different fixed redshifts (\(z=1, 2, 3 \)) in the modelling and find some robust physical parameters of the afterglow and its host. Results are presented in Table 1.

CIRCUMBURST MEDIUM

The broadband model fits to a relatively high density, \(n \gtrsim 200 \text{ cm}^{-3} \) (typical of a diffuse cloud), independent of the redshift assumed. The uncertainty in \(n \) by changing \(z \) is comparable to the modelling accuracy.

The density is chiefly determined by the high self-absorption frequency \(\nu_a \), below which the spectrum \(\propto \nu^2 \). As can be seen in Figure 2 and 3, \(\nu_a \) is certainly above 8.5 GHz at early times and comes out in the model near 100 GHz.

FIGURE 1. The host is well detected, indicated by the box in this HST longpass filter exposure. It is also well detected in late Keck exposures and has a colour \((R-I)_{host} = 0.2 \pm 0.3 \ll (R-I)_{OT} \sim 2 \). Image courtesy of Joshua Bloom, Caltech.
The model fit for $z=2$ with all the data used scaled to the common time of day 3. The model fit includes the model uncertainty introduced by interstellar scintillation, shown in pale grey. The host is included in the model in the radio and submm, but the optical data have the host component removed for clarity. The optical data are dereddened for Galactic effects and the model includes extinction in the host frame.

TABLE 1. Best-fit parameters from the modelling of GRB 980329

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$z=1$</th>
<th>$z=2$</th>
<th>$z=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{iso,\nu,1052\text{ erg}}$</td>
<td>1.5</td>
<td>1.1</td>
<td>3.0</td>
</tr>
<tr>
<td>$n(cm^{-3})$</td>
<td>370</td>
<td>250</td>
<td>230</td>
</tr>
<tr>
<td>p</td>
<td>2.04</td>
<td>2.11</td>
<td>2.07</td>
</tr>
<tr>
<td>e_e (fraction of E)</td>
<td>1.2</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>e_B (fraction of E)</td>
<td>0.003</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>θ_{jet} (rad)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>host A(V)</td>
<td>1.1</td>
<td>1.1</td>
<td>0.71</td>
</tr>
<tr>
<td>host I (μJy)</td>
<td>0.858</td>
<td>0.866</td>
<td>0.866</td>
</tr>
<tr>
<td>host H (μJy)</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>host K (μJy)</td>
<td>0.61</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>host 1.4 GHz (μJy)</td>
<td>19.9</td>
<td>16.4</td>
<td>15.9</td>
</tr>
<tr>
<td>host 350 GHz (μJy)</td>
<td>1190</td>
<td>1160</td>
<td>1210</td>
</tr>
<tr>
<td>T_{eff} (K)</td>
<td>4.7</td>
<td>4.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

The isotropic-equivalent energy in the fireball at the time fast cooling ends

Due to model uncertainties, jet angles ≥ 1 rad are treated as isotropic

Dust temperature T of the host, corrected for redshift:

$T_{eff} = T/(1+z)$

Time at which the cooling break becomes larger than the spectral break due to the peak in the input electron distribution and fast cooling ends

The probability of the fit’s host 350-to-1.4 GHz spectral index at the assumed redshift, based upon the models of Carilli and Yun[8]

From the equation for ν_a in Granot [9], we get for n in cm^{-3}:

$$ n \approx 500(e_e / 10^{52}\text{ erg})^{1/3} (E / 10^{52}\text{ erg})^{1/3} (\epsilon_B / 0.01)^{-1/3} K(p) / K(2.2) $$

$$ K(p) = (3p + 2)(p - 1)^{-8/3}(p - 2)^{5/3}/(p + 2). $$

A relatively high density is compatible with the high host extinction seen in the GRB afterglow.

HOST EXTINCTION

Figure 4 shows a close-up of the optical spectrum at day 3, dereddened for the effects of the Galaxy, with the late time host flux removed. The I to K spectral slope is approximately -1.6, and the R "dropout" can be seen. The synchrotron spectral slope is at its steepest ν^{-p}; as a value of $p > 3$ isn’t compatible with the broadband evolution, the extra steepening is modelled as extinction.

The I to K spectrum calls for a steep extinction law $A(\lambda)$, much like the SMC. We use the extinction curve parameterization of Reichart[10], with no 2175 bump or far-UV upturn, but a steep linear slope (c2) of $E(\lambda - V)/E(B - V)$ with frequency in μm^{-1} of 3. We find the host contributes a significant extinction $A(V) = 1$.

We cannot explain the extra R dropout of ~ 2 mag below the extinction curve with a standard extinction law. This presumed nonstandard extinction is beyond the scope of this effort.
FIGURE 4. Earliest optical and near-IR data scaled by the z=2 fit model to day 3, and host-subtracted. The fit model with its steep extinction curve (see text) is overplotted (solid line). A powerlaw fit from I to K is shown with a dashed line, and the R band drop below both spectral curves is evident.

CONCLUSIONS

We fit models to the late-time broadband dataset of gamma-ray burst (GRB) 980329 for various assumed redshifts. The host is far bluer than the afterglow, and is not compatible with high $z \sim 5$. We determined that the fireball expanded into a relatively dense medium with $n \sim 200 \, cm^{-3}$ independent of the redshift.

REFERENCES