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1 Introduction 

The problem of dynamic state feedback linearization h r  nonlinear continu- 
ous control systems arose in the late 1980s when it was realized that only 
few system are exact, or static, feedback linearizable. Although partial results 
towards a solution of the problem of dynamically feedback linearizing a non- 
linear control system have been obtained, see e.g. [4,12], the complete problem 
is still unresolved. A parti~ula~rly troubling issue is the question of whether an 
upper bound exists on the order of the compensator that dynamically feedback 
linearizes a given system. 

A particular class of compensators, which we will call dynamic extensions, is 
given by adding chains of integrators to the input channels; there has been 
an interest in finding conditions for linearization under this restricted class of 
compensators, see e.g. [5]. In this article, we prove that if a control system 
is lineariza,ble by such a dynamic extension, then it is also linearizable by 
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a (possibly different) dynamic extension whose order is bounded by 272 - 2. 
Moreover, we provide an example which shows that this bound cannot be 
improved. 

2 Preliminaries 

We start this section with a short review of various constructions and fix 
the not ation. Brunovsky showed, in [2], that any controllable linear system 
2 = Ax + B u  with x E tn, u E RP can be converted, via a linear state 
transformation and a linear feedback, to a canonical form given by p chains 
of integrators: 

with n = kl  $ - .  . $ k,. For nonlinear systems, Rrockett, [I], was one of the 
first people to work on the problem of exact linearization. Jacubczyli and 
Respondek, [ll], and Hunt, Su and Meyer [9] gave necessary and sufficient 
conditions for a control affine system, 

to be feedback linearizable. System (2) is called feedback linerizable if there 
exist a feedback u = a (x )  + p(x)v, v E RP and a state transformation that 
transforms the system into a controllable linear system, or for that sake, into 
a system in Brunovsky normal form (I). The solution was consecutively gen- 
eralized to the case of fully nonlinear systems 

by van der Schaft, [20], and rewritten in the language of differential forms by 
Gardner and Shadwick, [8]. 

More generally, one can consider a feedback with internal dynamics of the 
form 

Z = F(x ,z ,v ) ,  z E KT, v E RP, 

U = a (x ,  Z ,  v), 
(4) 



also called a compensator of order r ,  where r is the number of states that are 
added to the system. The control system (3) is called dynamic feedback lin- 
earizable, if there exists a compensator (4) and a state transformation (in the 
(x, z)-coordinates) that transforms (3), (4) into a controllable linear system. 

In this article, we will consider only the restricted class of compensators called 
dynamic extensions. In a dynamic extension, the only added states are deriva- 
tives of the original inputs (see also [5,17]), 

ti; = u;, Ti; = u;, . . . , Ti;L-, = u;l 

G P -  P . P -  P * - ul, u1 - u2, .  . . , ziFp-, = u; 

for certain integers rl 3 0, .  . . , r ,  >_ 0. This is sometimes thought of as adding 
a certain number of integrators to each input channel; in this case, we have 
added r; derivatives to  the ith input channel. For convenience of notation we 
have set ub = ui. In our notation, u c s  the kth derivative of the ith input. 

We will call a nonlinear control system (3) linearizable by dynamic extension 
if (3) together with the dynamic extension (5) is feedback linearizable. For 
this restricted class of compensators, we can establish an upper bound on the 
number of integrators that need to be considered for a 2-input control system. 
Our main tool is that of a derived system of a Pfaffian system (a module 
of smooth differential 1-forms over the smooth functions), see [3,8] for more 
discussion of Pfafian systems, exterior derivatives, and derived systems. 

If I is Pfaffian system, then the derived systems of I are defined inductively 
by I(*) = I ,  

I("') = span{w E I(" : ddw G 0 mod I(")).  

Derived systems of a PfafFian system are easily calculated in practice; an ex- 
ample of such a calculation is shown later in example 6. The derived systems 
form a chain of Pfaffian systems called the derived ,flag: 

If there is an integer k such that I ( ~ )  = I("'), then I( ')  = I("), for all 1 2 k, and 
we say that the derived flag stabilizes with I("). A nonlinear control system is 
strongly accessible if and only if I(" = {O) for some integer I ,  see also [IS]. 

Consider a control system C described by (3). Associate with C the Pfaffian 



system given by 

where Oi = dzi - f ;(z, u) dt .  Conditions for linearizing the system using state 
feedback are easily formulated, we refer to [8,16] for a demonstratiort of the 
following result. 

Theorem 1 A control system I is feedback linearizable if and only if 

(i) ~ ( ~ - 1 )  = {O}, 
(iij each derived systenz I ( ~ ) ,  k 2 0 has constant dimension; and, for all w 6 

~ ( k )  

dw r 0 mod I("), dt. (6) 

Note that the points at wliich the dimension of a Pfafian system is locally 
constant always forms an open dense set. Therefore, if a given system does 
not have the same dimension at all points, we restrict to an open set of points 
where the dimension is constant. 

After applying a dynamic extension of the form (5) to a nonlinear control 
systern (3), we obtain the Pfaffian system corresponding to the combined 
system given by the sum of the two Pfaffian systems: 

where IIj = d t ~ j - ~  - uj dt are the one-forms that are added in the dynamic 
extension. The following result signifies that if all inputs are differentiated at; 
least once in a dynamic extension, the order of the extension can be immedi- 
ately reduced. 

Proposition 2 If the system 2 = f ( x ,  u) is linearizable by dynamic extension 
( 5 )  with all indices r; >_ 1, then the system is also linearizable via a dynamic 
extension of type (5) with indices r; - 1, i = 1 , .  . . ,p.  

PROOF. Assume that (3) is linearizable via a compensator of type (5) with 
all indices r; > 1, and denote its Pfaffian system by J. Let J be the Pfaffian 
systern corresponding to the system obtained from (3) by adjoining the com- 
pensator with indices ri - 1. Then for each integer k > 0, I(" = JJ(""). It 
follows from theorem 1 that J is also linearizable. 17 

A repeated application of this proposition will show that if (3) is linearizable 
via a dynamic extension (5), then one may assume that at least one of the 
indices r; = 0. 



The main result of this paper relies on making a judicious choice for a gen- 
erating set of 1-forms for the derived systems of J .  In an effort to keep 
expressions compact, we introduce the following convenient notatioi~ rela- 
tive to  the dynamic extension ( 5 ) :  by u k  we denote the sequence of the 
k-th derivative of all inputs whose kth derivative is defined by ( 5 ) ,  that is 
UI, := {u; : i = 1,. . . , p  and k < r ; ) .  For example, uo = ui, . . . , u: is just the 
sequence of all the original inputs. 

Proposition 3 Let J  be the Pfafian system ( 7 )  associated with the control 
system (3) to which a dynamic extension with indices r; has been applied. 
The k- th derived system of J has a set of generators given by the 1-forms 
II;, j 5 r; - k and a collection of 1-forms w h h i c h  are in  the span of the 
original 1-forms flj  and whose coeficients are smooth functions of at most 
k - 1 derivatives of the inputs: 

Moreover, if the sysiem (3) is control aygine then we may choose 

PROOF. We first prove the statement for the general control system (3), 
using induction on the order k of the derived systems. For Ic = 0 the statement 
is true, since the original basis suffices and thus w k a n  be chosen to be equal 
to  R ~ ;  no input derivatives appear. 

Assume that the statement is true for k 2 0, i.e. 

J(" = span{wl,. . . , w"", II: : i = 1,. . . , n,  1 5 j 5 ri - k), ('0) 

where each w 5 s  of the form (8). We calculate J (~+ ' ) .  Let $, . . . , qn-"" be 
a selection of 1-forms from the set {O1,. . . , Rn)  that form a complement to 
{wl,. . . , w"") in the original Pfaffian system I; any 1-form in I can uniquely 
be decomposed in terms of the coframe w" ,la. By definition, J("') consists of 
those one-forms in J ( ~ )  whose exterior derivative is equal to zero modulo ~('1. 
Any one-form in J(" is a linear combination of the generators of J(" as given 
in (10). Thus, the one-forms ill ~(" '1 are defined by functions A,, A: such that 

d ( g  Aiwi + A~TI:) = 0 mod J(". 
i=l I <i<p 

l<j<rz-I, 



The exterior derivative can be distributed inside the sums, giving: 

m x( d~~ A w" +Xi dw" + x ( dX! A IIj + X i  dIIi) = 0 mod Jtk). 
i= 1 l < i < p  

l<'<r;-k 

Because the w' and II; are in ~ ( ' 1 ,  they can be assimilated into J(') on the 
right-hand side. Thus, the equation will be satisfied if and only if 

x Xi dw" + A! dll; E 0 mod ~ ( 4 ) .  
i=l l < i < p  

l< j< r ; -k  

Since dII$ = -n$+, A dt, the terms dII: for j < r; - k can also be assimilated 
into $4 on the right-hand side. The equation will be satisfied if and only if 
A:"-" = 0, i = 1,. . . ,r) ,  and 

5 Xi dw' t J(". 
i=l 

(11) 

Now, using the expression (8) for wi, and setting = dt, qn-m+j = d u j > I  ' = 

for certain smooth functions #;k. By stacking these individual equations, we 
obtain the composite: 

dwl 
v0 A 'I1 

= @(x,  U , .  . . , u ~ ) ~  
q0 A v2 

mod J ( ~ )  

dwm 
'I 

n-mi-p-l A ?n-m+p 
7 

where @(x, u, . . . , uk) is a matrix of smooth functions. It follows that xi X;wi E 
J('+ '1 if and only if ( X I , .  . . , x ~ ) ~  E ker O. Since @ only depends on the state 



and the first k derivatives of the input, that is, x, u, . . . , uk, there is a basis, 
say A', . . .As for ker <l> that only depends on the variables x, u, . . . , uk. This 
implies that the 1-forms xi Afwi, t% = 1 , .  . . , s are forms in J("') that are of 
the required form (8). Together with the forms IIi, j 5 ri - (k + 1) i = 1, . . . , p 
they generate J (k+1). 

Now assume that the system is control affine, as in (2), and furthermore that 
0 = rl = - 3 .  = r ,  < r,+l < . .  < r,. Clearly the statement is still true for 
k = 0. We check that the expressions (9) hold for k = 1, and then the general 
statement follows as before by induction. For I; = 1, we get, modulo J, 

Hence we can 
T 

(A!, - .  . ,A;) 
A; = A;(,). It 

choose generators for J(') to be C; Afwi, k = 1,. . . , s ,  where 

E ker ( g ~  . . . g,) and hence may be taken as fundions of x only; 
is clear that in this case the appearance of the input derivatives 

in the derived flag is delayed by one level. 

3 Two Input Systems 

We will now use the previous results to determine an upper bound for the 
number of integrators needed to linearize a two-input control system. We note 
that any (control-affine) system with two inputs and three states (or in general, 
m inputs and m + 1 states), is always dynamically feedback linearizable [4]. 

Theorem 4 Let C denote a control system with n > 4 states and 2 inputs. If 
C is linearizable via digereniiution of the inputs, then Z: is linearizable with a 
single chain of integrators of length at mosi 

(i) 2n - 2 ,  for a general nonlinear control system (5), 
(ii) 2n - 3, for u control af ine system ( 2 ) .  

PROOF. Call the two inputs of C respectively u and v. According to proposi- 
tion 2 we may assume that the dynamic extension only differentiates one of the 
two inputs. Assume that r 2 2n - 2 and denote by C, the control system that 
is obtained from C by differentiating the input v precisely r times. We show 
that if C, is feedback linearizable, then CZnw2 is also feedback linearizable. 



where I = span{R1,. . . , Rn), f l i  = dzi - f i ( x ,  el) dt and IIk = - vk dt. 
It is imn~ediate that E,-k E J(", but ll,.-k. 6 J('+l). 

Since C, is linearizable, its derived flag has the same structure as the derived 
flag of a 2 input system in Brunovsky normal form. Therefore the derived 
systems of J inay be described as follows, for sorne basis wl,.  . . , wn for I .  

and Y'fAfl is trivial. It is convenient to arrange the generators in towers as 
follows. One obtains generators for J(" by excluding the forms from the top 
k rows in both towers. 

The worst case scenario is when A = 1, so we will consider th.at case. The 
cases when A > 1 are treated similarly. 

Accordin.g to proposition 3, the generator wnWk E J ( ~ )  ( k  = 0 ,1 , .  . . , n - 1) 
may be chosen to be of the form 



Since C, is linearizable each derived system of J satisfies dJ(" = 0 mod 
J(",  dt. Thus the following congruences hold, with 11; = dvi-1 - v; dt, 

dwl E 0 mod wl, HI, .  . . , II,-,+I, dt - 0 mod wl, duo,. . . , dv,-,, dt 

iFrom ( 1 2 )  it follows that w1 E Jn-l depends on at most the first n - 2  
derivatives of v ,  and thus cannot depend on the variables v,-1, . . . , v,-, and 
therefore the congruences ( 3 )  may be relaxed to (note that r - n > n - 2  by 
assumptioiz), 

Now consider Cznm2, and denote by J the corresponding Pfaffian system. Its 
derived systems are easily calculated using the derived systems of J: 

and J ( ~ ~ - ~ )  = (0). It follows from congruence (13) that all of the derived 
systems J(') satisfy the conditions of theorem 4. Hence C is linearizable by 
differentiating the input v at  most 2 n  - 2 times. 

Finally, if the control system is control afine, the bound 2n - 3 follows in the 
same manner as above, but now using (9) instead of (8) 

Remark 5 Any linearizable control systein is necessarily diflerentially f lat 
(see [6,7] for a discussion of flatness). Our result implies that if a two-input 
system is linearizable by dynamic extension, then there exists a set of flat 
outputs for the system which are functions of the stale and at most n - 2  
derivatives of the input. Since the flat outputs can be taken as the ends of 
the Brunovsky chains, in the worst case, they will be v and h ,  where dh E 
(J("-'), dt}. From the proof, h is a function of z, u and at most the first n - 2  
derivatives of v . 

The following example will show that the bound of 2 n  - 3 can not be improved 
for control affine systems. 



Example 6 Let C be the control system described by 

A dynamic extension that differentiates vo precisely 2n - 3 times linearizes 
(14), but differentiating less than 2n - 3 does not suffice. Differentiation of 
uo will never linearize (14). We check these statements here for the situation 
n = 4, the general case is similar. 

Define R1 = dxl - x2(1 + vo) dt, R2 = dx2 - (x3 + xlvo) dt, R3 = dd:c3 - 
uo dt,  R4 = dx4 - x3v0 dt. TO calculate the first derived system of I = {R1, R2, 
R3, R4), we compute the exterior derivatives of the one-forms fli: 

dR1 = -x2 duo A dt mod I 
dR2 - -xl duo A di mod I ,  
dR3 = - duo A dt, 
dR4 E -x3 duo A dt rnod I. 

Thus it follows that the first derived system is given by I(l) = span{wl := 

R2 - $R1,u2 := R4 - $0'). Note that since the original system is input- 
affine, a coefficients of the Q1 in a basis for are functions only of the state 
x. Take {R1, R3) to be forms complementary to I('). We now check the exact 
linearization conditions (6) for I('). 

1 (x1)2 + (x2)2 - x1x3 
dw = R1 A dt - Q3 A dt mod w1 

(x2>2 

The appearance of the R1 A R3 term in the second congruence shows that 
dt) is not integrable and thus I is not exactly linearizable. 

Consider now a dynamic extension of order 5 on vo. The augmented Pfafian 
system is J = {Q1,. . . , R" II,.,. . . , 115) where IIj = - v j  dt. It may 
be verified by direct computation of the exterior derivatives that the derived 



systerns take the following form: 

2 1 4  J ( ~ )  = {W := 0 - -0 - 
V l  

'Uo vo(l + vo) 
Q1, TI,., n2) 

and that ( ~ ( ' 1 ,  dt) is integrable for i = 1, . . . ,4. Ilowever, taking the exterior 
derivative of w defined as one of the generators for ~ ( ~ 1 ,  yields the congruence 

for some nonzero functions f ;  (the form of which is not important here). From 
this expression, it is evident that dw 0 mod w, I11,T-12, dt but dw ijk 0 

mod w, I l l ,  dt. If only 3 or 4 derivatives are added to the input channel v ,  
the derived flag has the same general form (with one or two fewer II's ajt each 
level) but from the congruences it can be seen that the system will not be 
feedback linearizable. It can also be checked that no number of derivatives on 
the other input channel u will linearize the system. 

It is easy to  modify the above example to a fully nonlinear system for which 
the bound 2n - 3 is sharp: simply strip of%' an integrator in the first input 
channel, which yields k1 = x2(1 + vo), k 2 - - x3 + 51V0, i k  = xk+l, k. = 
3 , .  . . , n - 2, kn-I = u0, kn = UOVO. 

4 Discussion 

The results from the previous section enable us to attack the problem of 
linearization via dynamic extension algorithmically: consider all possible com- 
pensators (5) with order not exceeding 2n - 3 and in each case check for 
feedback linearization. It is sometimes possible, a priori, to rule out dynamic 
extensions that differentiate a certain input, by using the necessary condition 
derived in [17]. 

The authors suspect that the method described here to obtain an upper bound 
for 2 input systems can be generalized to systems with p 2 2 inputs. 

As said before, the problem of dynamic feedback linearization with general 
codpensators is still unresolved, and the method used in this paper does not 
readily generalize to this situation. It should be borne in mind that the general 



case allows for various interesting examples, such as the systems discussed in 

~ 7 1  

This system is not linearizable via dynamic extension. But if an initial. feedback 
is applied: u1 = v1 cos v2, u2 = v1 sin v2 then the resulting system turns out t o  
be linearizable by extending the  input v2 twice (1j2 = v;, i~; = v:). 

An interesting case is exhibited by a planar model for the ducted fan, see also 
[13,14] given by 

J: = V,, y =  V y ,  0 = vg; 
1 2 m6, = u cos0 - u sin0, 
1 2 mit, = u s i n d + u  cos0 - mg, 

JO = ru l ,  

where m, J ,  r are constants. It turns out that  (4) is lineariza,ble via a compen- 
sator given by ti2 = ,u: + 2v0u1, ti: = u:, but not by a dynamic extension. 
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