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Abstract 

This paper shows that X z  (LQG) performance specifications can be combined with struc- 

tured uncertainty in the system, yielding robustness analysis conditions of the same nature and 

computational complexity as the corresponding conditions for 3-1, performance. These condi- 

tions are convex feasibility tests in terms of Linear Matrix Inequalities, and can be proven to 

be necessary and sufficient under the same conditions as in the 3-1, case. 

With these results, the tools of robust control can be viewed as coming full circle to  treat 

the problem where it all began: guaranteeing margins for LQG regulators. 

1 Introduction 

The advent of modern control in the 60s brought a substantial transformation in control theory, 

with state-space tools and optimal control offering the promise of tractable, systematic methods for 

multivariable control design. This era was epitomized by the solution of the LQG control problem 

(see, for example, [I]) , which provides an elegant, easily computable method for a well-motivated 

multivariable control design problem: optimizing the rejection of white noise disturbances for a 

closed loop system. It became increasingly clear in the late 70s that modern control unfortunately 

provided limited tools to further treat model uncertainty, a fundamental requirement for a practical 



feedback theory and an issue which was often better addressed by the otherwise more primitive 

frequency domain techniques of classical control [20]. 

While LQ state feedback was shown to provide stability margin guarantees [37], further research 

led to  a counterexample showing that full LQG controllers had none [lo]. This motivated efforts 

to  reconcile LQG with classical methods [ll], with some initial success in providing a robust LQG- 

based methodology [9]. The most popular development was LQGJLTR [12, 2, 401, a. multivariable 

version of classical loopshaping using LQG machinery. The problem of adding plant uncertainty 

directly to  LQG remained unsolved, however, and ultimately these efforts pointed in other directions 

[12], particularly toward (structured) singular values and related methods [14, 411. 

At about the same time as the critique of LQG robustness was becoming widely accepted, the 

new performance paradigm of 3-1, was being put forth [44]. It had close ties to the frequency 

domain and allowed singular value robustness conditions to  be treated directly. More importantly, 

it allowed for the first time a very natural and relatively transparent analysis of robust performance 

[13,26]. While 3-1, soon replaced LQG (now referred to as 'Ha)  as the centerpiece of modern control, 

and research on X, flourished in the 1980s, several developments helped bring 3-12 back into the 

picture. 

The main weakness of 3-1, is that modeling signals as weighted norm balls ignores important 

structure, typically expressed in terms of spectral or correlation properties, which are often features 

of more realistic models of physical disturbances. Ignoring this structure makes a worst-case mea- 

sure like 3-1, substantially conservative, in much the same way as what happens when uncertainty 

structure is ignored in singular value robustness conditions; the recognition of these limitations led 

to  a resurgence of interest in 3-1a as a performance measure. The desirable design specification, 

from both the performance and uncertainty points of view, appears to  be in most cases Robust 'Hz 

performance: rejection of white signals in the worst-case over a set of plants. (The C1 theory [7] is 

another attractive alternative to  3-1, but still suffers from a pessimistic signal description). 

Renewed interest in X 2  performance was also stimulated by the striking fact that the most 

powerful computational solutions for the 3-1, control problem [18, 151 relied on the same state-space 



tools as LQG. This led to  a new research direction in mixed 'H2/'H, control (see e.g. [5, 22, 45, 

16, 34]), and to  various upper bounds for the 'Hz cost over a set of plants (e.g., [42, 33, 45, 19, 171). 

In spite of these developments, the robust 'Hz problem lagged substantially behind 'H, (or 

L1), where a sophisticated set of tools is available for the analysis of robust performance under 

structured uncertainty (see e.g. [26, 43, 4, 7]), including several results that exactly analyze robust 

performance with structured uncertainty in terms of coinputationally attractive convex conditions 

([21, 38, 25, 351). No such results have previously been available for robust 7 i 2  performance. 

This paper provides the final step in the return of the 'H2 performance paradigm, casting it 

on an equal footing with 'H,. We present a convex condition for robust 'H2 performance analysis 

under structured uncertainty, of a very similar nature to  the the corresponding condition for robust 

'H, performance, and with analogous properties. Computationally, it reduces to a Linear Matrix 

Inequality (LMI, see [6]) over frequency which can be handled with analogous tools as in the 

'H, case. From a theoretical point of view, the condition is shown to be necessary and sufficient 

under the same assumptions for the uncertainty as in the corresponding 7-t, conditions. The tools 

involved in proving the necessity results build on recent work in the Integral Quadratic Constraint 

(IQC) formulation which has been mainly applied to  describe uncertainty [25], but can also be used 

[24, 271 for signal characterization. In this paper we extend these methods to  set characterizations 

of white signals based on statistical tests on the cumulative spectrum [28], and rely on infinite 

dimensional convex analysis methods to derive the necessary conditions. 

The paper is organized as follows. In Section 2 some material on standard robust control with 

'H, performance measure is reviewed. Section 3 discusses 3-12 norms and set characterizations of 

white noise signals. In Section 4, the condition for robust 'H2 performance is presented and proven 

to be necessary and sufficient under various uncertainty assumptions. In Section 5 we remark on 

the computational properties of this test. Section 6 compares these results to  the previous work in 

the mixed 'H2/'H, literature. Some remarks on robust 3-12 synthesis are given in Section 7, and the 

conclusions are presented in Section 8. Some proofs are covered in the Appendix. A partial version 

of these results was presented in [31]. 



2 Background and Notation 

The results in this paper will be presented for discrete time systems. Analogous conditions hold 

for the continuous time case, the details of which will be reported elsewhere. 

2.1 Uncertain Systerns in LIFT Form 

A standard setup for robustness analysis is depicted in Figure 1, consisting of a nominal map M 

and a perturbation A which enters the system in feedback fashion; the overall uncertain system 

will be denoted by ( M ,  A). 

Figure 1: Uncertain system 

M will be assumed to  be a finite dimensional, linear time invariant (LTI), stable system. Its 

transfer function is denoted by M(ejw). The uncertainty A is assumed to have spatial structure of 

block diagonal form 

A = diag [SIIT, . ., SLIT,, AL+I, . . AL+F] (1) 

The blocks in A can in general represent real parameters or dynamic perturbations; in each case, 

there is a restricted class A of allowed perturbations, which are usually assumed normalized to  the 

ball of uncertainty BA = {A E A : llAll 5 1) in some operator norm. 

We will consider l2 signal norms: 1; denotes the space of square-summable, Cn-valued sequences 

over the integers (or positive integers). These are identified via the Fourier transform with square 

integrable functions on the unit circle T, with respect to  the normalized Lebesgue measure &. The 

vector dimension will be omitted when clear from context. 



,Cc(12) denotes the set of causal, linear, bounded operators in la. The largest class of uncertainty 

considered here is the set of structured linear time-varying (LTV) perturbations 

The uncertainty can also be restricted to  be linear time-invariant, which means it commutes with 

the unit delay operator A. This gives the structured set ALT1 = {A E ALTV : XA = AX). 

Some recent work [35] has shown it is useful to introduce the mildly larger class of slowly varying 

operators, by defining for v > 0 the class 

of operators with "variation slower than v". For v = 0 we recover ALT1, but some of the necessary 

conditions will be proven for an arbitrarily small v > 0. The unit balls of uncertainty for each class 

are denoted, correspondingly, B A ~ ~ v ,  BAL.TI, and Bay. 

The system of Figure 1 is said to be robustly stable if M is stable, and if I - AMll  has an 

inverse in G,(lz) for every A E BA. When this holds, the closed loop map from u to  y is well 

defined for all A E B A  and given by the Linear Fractional Transformation (LFT) 

A performance specification can then be imposed on the map A * M .  In our case of 22 signal 

norms, the standard choice is the la-induced norm (which we call the 1-I, norm, although this is 

an abuse of notation for non-LTI systems). The system is said to have robust X, performance if 

i t  is robustly stable, and 



2.2 Robust 'Ft, Performance Tests 

The main method for obtaining tractable robust X, performance tests is to  add scalings to  a small 

gain condition. For this purpose we introduce scaling matrices of the form 

which commute with the elements in A. We will denote by X the set of positive definite, contin- 

uous scaling functions X(w) with the structure (6). The tests for robust X, performance can be 

summarized as follows: 

Condition 1 There exists a function X ( w )  E X such that for all w  E [O, 271.1, 

Since M is finite dimensional, ~ ( e j ~ )  is continuous and the continuity assumption of X(w) 

entails no loss of generality. For this case of frequency dependent scales, we can state the following: 

Proposition 1 If Condition 1 holds for a function X(w) E X, then the system ( M ,  A)  has robust 

X, performance for A E B*LTI. 

The previous result follows by showing that this condition provides a bound for the structured 

singular value p [14, 261, which is the exact robustness test for LTI uncertainty. Although Con- 

dition 1 is in general conservative for this case, it remains as an attractive condition since exact 

computation of p is not tractable. Also, computational experience with bounds such as those used 

in [4] shows evidence that the two tests are not far apart, at least for full block structures. 

Another argument to  support the claim that Condition 1 has small conservatism is given by 

the following result from Poolla and Tikku [35]: 



Proposition 2 There exists v > 0 such that the system (M, A) has robust 3-1, performance for 

A E BAv if and only if there exists a function X(w) E X satisfying Condition 1. 

Consequently, if one is willing to  include an arbitrarily small amount of time variation, in the 

sense of (3), in the uncertainty, Condition 1 characterizes exactly the robust performance problem. 

Finally, if we allow an unrestricted time variation, robustness analysis is obtained from Condi- 

tion 1 by imposing X(w) to  be a constant function. The following result was shown independently 

by Sharnma [38] and Megretski [25]: 

Proposition 3 The system (M, A) has robust 3-1, performance with A E BALTV if and only if 

there exists a constant matrix X(w) = X E X satisfying Condition 1. 

The tests provided by Condition 1 amount to an infinite dimensional convex feasibility problem, 

in terms of a parametrized (by frequency) family of Linear Matrix Inequalities (LMIs). Conditions 

of this type allow for tractable computation, as will be discussed in Section 5. 

2.3 Mat hemat ical Preliminaries 

The following mathematical facts are collected here for ease of reference (see, e.g., [23] and [39]). 

First, we introduce the space BV[a, b] of real-valued functions of bounded variation in the 

interval [a, b] c R. A function @(t) is of bounded variation if 

where the supremum is taken over partitions of [a, b]. TV(@)  is called the total variation of Q. 

We will also use the space CR[a, b] of continuous, real-valued functions on [a, b], with the norm 

Given Q E BV[a, b] and g E CR[a, b], we introduce the Stieltjes integral (see [39]) 



the map I',g : CR[a, b ] i W  given by I'q(g) = fbg(t)d8(t)  defines a bounded linear functional on 

CR[a, b]. In fact, the Riesz representation theorem states that every functional in the dual space 

CR[a, b]* is of this form. 

We will also use the formula of integration by parts for the Stieltjes integral, 

which holds, for example, for E BV[a, b], g E CR[a, b]. Furthermore, if g has an integrable 

derivative gl(t), the integral on the right can be written as J~~ Q(t)gl(t)dt. 

Finally, a key element in the proofs of this paper is the following geometric version of the 

Hahn-Banach theorem, taken from [23]: 

Theorem 4 Let IC1, K2 be convex sets in a real nornzed space V, such that IC2 has non-empty 

interior, and IC1 contains no interior points ofIC2. Then there exists a bounded functional r E V*, 

I? + 0, and a real number a! such that 

I'(k1) < a! 5 I'(k2), for all LI E IC1, k2 E IC2 (12) 

3 White Signals and 'Flz Norms 

As argued in the introduction, 'FI, performance takes a conservative view of disturbances; in 

many situations a more useful performance measure is given by the K2 norm of a system, which 

characterizes the response to white signals. For an LTI system H(ejw), this norm is defined by 



White signals typically arise in two situations. One is as chaotic, high dimensional fluctuations 

known as white noise, which are usually modeled as a stationary, uncorrelated random process of 

unit covariance matrix; if such a signal is input to an LTI system, the variance of the output is 

given by IIHIIz. Another source of white signals are impulsive disturbances, or impulsive signals 

used t o  test the response of a system to fixed reference signals; the output energy for an irripulsive 

(scalar, or vector-valued with random direction) input is 11 H 11;. For more motivation see [46]. 

The objective of this paper is to  analyze the effect of white signals, in the worst-case for the 

uncertain system given in Figure 1. For the case of LTI uncertainty, the closed loop A * M is LTI 

and we will simply analyze for the worst-case 7-tz norm as defined in (13). 

We will also want to consider, however, the classes ALTV and A" involving time-varying uncer- 

tainty, which come in naturally to characterize the necessity of the robust performance conditions, 

as was shown in Section 2 for the 'F1, case. For this purpose, it will be convenient to  describe white 

signals in terms of a set, rather than a random process, which will allow the natural formulation of 

worst-case analysis problems over the uncertainty and over this set. 

A non-stochastic treatment of 'Ma-performance was in fact given in Zhou et al. [45], where the 

classes of bounded power and bounded spectrum signals are employed to motivate both the ?tz and 

the X, norms. This formulation is conceptually appealing, but poses a number of mathematical 

difficulties. First of all, as noted in [45], the formalization of such classes would require limiting 

arguments which raise a number of technical issues. More importantly, these classes do not have a 

rich mathematical structure, which greatly restricts the applicability of functional analytic tools. 

As a counterpart, the class of bounded energy (la) signals offers the rich mathematical structure 

of a Hilbert space. This structure plays a key role in the most powerful results on control with 

an H ,  performance measure, and is equally satisfactory from a conceptual point of view, since 

bounded power and bounded energy signals differ only in their asymptotic behavior. For this 

reason our treatment of white signals sets will be based on la-space; this paper will consider the 

discrete time version, which is more straightforward. The same methodology can be applied to 



the continuous time case, as will be reported elsewhere, and could also be used to  provide a more 

complete foundation to  the material in [45]. 

We begin with the case of scalar signals in l z .  Ideally, a white signal has a flat spectrum, i.e. 

lies in the set 

Wo = { f E l2 : 1 f (w)j2 = 1 1  f I]:, w a.e. in [ O , ~ T ] )  (14) 

A key technical requirement for the results of this paper is t o  introduce a set of signals which are 

approximately (up to  a small accuracy) white. For this purpose, we take the standpoint (developed 

extensively in [28]) that such a notion should be based on standard statistical tests for stochastic 

white noise. 

More specifically, if one is given a time series fo,  . . . , f j ~ - ~ ,  deciding whether it is a sample of 

white noise is usually done based on the values of a chosen statistic; one such choice is the sample 

autocorrelation, and leads to  a definition for white noise sets which was exploited in [28, 291 for 

robust X 2  analysis. This paper is based on a frequency domain definition for white noise, which 

corresponds to  the so-called Bartlett cumulative periodogram test for time series. This test consists 

of accumulating the periodogram (squared magnitude of the Discrete Fourier Transform of the series 

fo, . . . , f j ~ - ~ ) ,  and comparing the result uniformly with a linear function. For more details see [28]. 

Inspired by this, we consider here the difference 

between the cumulative spectrum and a linear function, and bound it in a uniform sense. Define 

the set of "white up to  accuracy 7" signals 

W, := {f E 12: sup IFf(s)I < q}  
s€[O,2.ir] 

(16) 

The gain of an LTI single input system ~ ( e j " ' )  under signals in Wo is easily seen to be IJHl(z. 

We now consider the worst-case gain under signals in W,, 

IIHllwq := ~ u P { I I H ~  112 : f E W,, llf 112 I 1) (17) 



Lemma 5 Let Y(w) E BV[O, 2n]. If f E WW,, then 

Proof: Defining Ff(s)  as in (15) (Ff(0) = Ff(2n) = 0), an integration by parts yields 

2?r i2= ~ ( w ) ( l f  (&)I2 - llf I I S ) ~  = - / Fr(w)dY(w) 
0 

Since f E W7), then 1 1  Ff(w)llm = supw I Ff(w)I < 7, so (10) implies tha,t the right hand side of (19) 

can be bounded by 7 TV(Y). 

A consequence of this Lemma (picking Y(w) = I ~ ( e j ~ ) ( ~ )  is that for an LTI system H ,  

IIHII; 5 ll~llb~ 5 l l ~ l l ;  + v T J ~ ( I H I ~ )  (20) 

which implies that under the mild assumption that (H (ejw)12 E BV[O, 2 ~ 1 ,  

We now analyze the multivariable case; vector-valued white noise is characterized by having a 

matrix spectrum equal to a constant times the identity matrix across frequency. In the l2  setting, 

ideally white signals do not appear since the spectrum f ( w )  f (w)* is always a rank one matrix, but 

for q > 0 we can define the set of approximately white signals in IT 

where the infinity norm of a continuous matrix function is taken to  be the maximum across the 

coordinates of the supremum norm. It is easy to show that for every 7 > 0, WT is non-trivial. 

With this definition, an extension of Lemma 5 can be written, which leads for LTI systems to  



The normalization by a factor 1 in the input norm is done for convenience, since if f (w) f (w)* fi 
approximates the ideal unit white spectrum I,, 1 1  f 112 is approximately 6. 

If one is interested in analyzing white noise rejection for systems which are not LTI, the 3 - 1 ~  

norm (13) is no longer meaningful, but it is natural give a definition based on llHllwy as in (23): 

This system measure (a seminorm) captures the response to signals of flat spectrum, the interesting 

object from the point of view of applications, and extends the LTI definition. 

4 Main Results 

In this section we provide conditions for Robust 'Id2 performance for the uncertain system of Figure 

1, which are analogous to those presented in Section 2.2 for Robust 7-1, performance. We now 

state an analysis test, which is a convex feasibility condition on the unknowns X ,  Y 

Condition 2 There exists X ( w )  E X, and a matrix function Y ( w )  = Y * ( w )  E CmX", such 

that 

holds for all w E [O, 2 ~ 1 ,  and 

This condition is in fact very similar to Condition 1 for Robust 7-1, performance. The only 

addition is the incorporation of the function Y(w), which can be assumed continuous. Heuristically, 

for m = 1, Y(w) allows for the gain to  be larger than 1 at some frequencies, provided that it is 

compensated at other frequencies by keeping the total effect J Y(w)dw less than 1; this imposes an 

"average over frequency" performance which corresponds to the ?i2 norm. 



The main result of this paper is that this test answers the robust 'Hz performance problem. 

As in the case of Condition 1, different results can be stated in accordance with the nature of the 

perturbations in A, which exactly parallel Propositions 1, 2 and 3. 

For the first one involving LTI perturbations, the LFT A*M is an LTI system so the result can 

be stated using the standard definition (13) of the 'H2 norm, and proved with elementary frequency 

domain tools. 

Theorem 6 Suppose Condition 2 holds for matrix functions X(w),Y(w). If A E BALTI, then the 

system is robustly stable and 

Proof: The first block of the inequality (25) gives ~ ( w ) f  Mll(ejw)x(w)-f 11, < 1, which implies 

(see [26]) robust stability of the system under LTI perturbations. Furthermore, defining 

we conclude that for some E > 0, and all w, 

Fix A E BA,  LTI. For any fixed frequency, since A(ejw), ~ i ( w )  commute, we can replace M by 

&l in Figure 1, giving A(ejw ) * M(ejw ) = A(ejw ) * lk(ejw). Using (29), we have 

where we use the signal denominations of Figure 1. 

Since A is LTI, contractive we have lp(w)12 5 lq(w)I2, which leads to  



Since this holds for any u(w),  we have 

(A * M)(w)*(A * M)(w) < Y(w) - €1 

across frequency. Computing the trace and integrating gives, using (26)) 

We have obtained a convex sufficient condition for Robust I f 2  performance under LTI uncer- 

tainty; we now show that it has the same necessity properties as Condition 1 for the I f ,  case. To 

state the following results for which include non-LTI systems, we adopt the approach of (24) and 

give the following definition: 

Definition 1 The uncertain system (M, A) with input u E IT has robust 'Flz performance i f  it is 

robustly stable, and there exists > 0 such that 

The first result concerns the case of frequency-dependent X-scales. For brevity the proof is not 

included here, although we will later remark on the modifications to  the proof of Theorem 8 needed 

to  obtain it. A full account is given in [32]. 

Theorem 7 There exists v > 0 such that the system (M, A) has robust I f 2  performance for A E 

BAv i f  and only i f  there exist bounded variation functions X(w) E X ,  Y ( w )  satisfying Condition 

2. 

Theorem 7 gives indication that there is mild conservatism involved in using Condition 2 for 

LTI uncertainty, in a totally analogous way to Proposition 2 for I f ,  performance. 



In the 3-1, case there was also supporting empirical evidence with computation of lower bounds 

for the LTI case based on p [26], which is not available for 3-12. In fact, the restriction on causality of 

the LTI perturbations will provide an additional gap for Ea performance. To see this, consider the 

case of unstructured uncertainty, where the 3-1, conditions are known to be exact [26]. In the 3-12 

case, with scalar inputs, it is easy to  show that Condition 2 is exact for non-causal LTI perturbations, 

by simply choosing A(eJw) to produce the worst gain at every frequency; this interpolation is in 

general only possible with non-causal A. The gap due to causality has not been quantified in 

general, but the results of [45] (see Section 6) suggest that it is not significant. 

In any case, the only necessary conditions available for the 3-1, and the 3-12 frequency dependent 

scales tests are Proposition 2 and Theorem 7, both indicating that these gaps are a modest price 

to  pay for a convex characterization. 

We now turn to  the constant X-scales condition: 

Theorem 8 The system ( M ,  A) has robust 3-12 performance for A E B*LTV, if and only i f  there 

exists a constant matrix X E X ,  and a bounded variation function Y(w), satisfying Condition 2. 

Proof: For simplicity, the proof will be described in detail for the case of scalar inputs u E I : ,  

and for uncertainty A = diag[Al,. . . , A,] consisting only of full blocks. For the general case see 

the remarks at the end of the section. 

[Sufficiency]: The first block of ( 2 5 )  gives l ~ ~ i h f ~ ~ ( e j ~ ) ~ - f  11, < 1, which implies (26, 381 robust 

stability of the system under LTV perturbations. Also, and A commute, so define $1 as in 

(28), which verifies (29), and leads to (30), which can be integrated across frequency to give 

Since 1 1  All 2 1, then llpll 5 IIqII, leading (for scalar u) to 



Fix 7 > 0; for u E Wq, we invoke Lemma 5 to bound 

Substituting (37) into (36) and using (26) leads for llull I 1, to 

By choosing small enough 7,  this implies 

[Necessity]: The converse implication is based on an extended "S-procedure losslessness" theorem 

on quadratic functions on 1 2 .  This type of result was first obtained by Megretski and Treil in [25] 

for a finite number of scalar quadratic forms. The nature of the constraints defining the white noise 

sets W, requires the extension of this procedure to quadratic functions on l2  which take values on 

the function space CRIO, 2 ~ 1 .  

Let z = col(zl,. . . , x,+l) be the vector of all inputs to the M system, where zl . . .z, partition 

p in correspondence with the blocks Al ,  . . . , A,, and z,+l = u. Analogously (Mx);, i = 1 . . . n $1 

denotes the partition of the output of M. 

Now define the following scalar valued quadratic functions of z E 12, 

Roughly, the motivation behind these functions is the following: if the a; are all non-negative 

at a certain z f 0, then M expands this signal in all the channels, and therefore a contractive, 

structured LTV operator A can be constructed where the 'Ft, performance is violated. Now for 

this signal z to  violate 'H2 performance, the u portion must be white (belong to  W, as defined 

in Section 3); this requirement is imposed by an additional quadratic constraint. Consider the 

function p : 12 ++ CRIO, 2 ~ 1 ,  

= Fzn+l(s) (40) 



where FZn+, is defined as in (15). With this definition, zn+l E W, if and only if p(z) E B(0, q), the 

ball of radius q in CR[O, 2n]. 

By considering the real Banach space V = IRnfl $ CRIO, 2n], we can collect all these functions 

together in a quadratic map A : l2 t+ V, given by 

Define a set in V, 

V = {A(z) : z E 12, llzll = 1) (42) 

The previous discussion suggests that robust 3-12 performance will be violated if for all 7 > 0, 

V intersects the set K  := {( r l , .  . . ,r,+l,g) : r; 2 0, Ilg(s)lloo < 7) .  For technical reasons, we 

introduce instead the set 

We formalize these ideas in the following Proposition, which reduces robust performance to 

geometric separation condition in the space V. 

Proposition 9 Suppose (M, A) has robust 3-12 performance for h E B a ~ ~ v .  Define V as in (421, 

K ,  as in (43) (for q given in Definition 1). Then there exists e > 0 such that V n K ,  = 0. 

To bring in the Hahn-Banach Theorem, we note that K ,  is open and convex in V, and that 

Proposition 10 The closure Q of V is convex in V 

Propositions 9 and 10 are proved in the Appendix. By choosing K1 = V ,  K z  = K,, we are in a 

position to  apply Theorem 4, and obtain the corresponding r E V*, r # 0, a E R. The structure 

of V and the Riesz representation theorem imply that r can be represented by (x l , .  . .,$,+I, 9), 

where x; E R, !I! E BV[O, 2n]. Then (12) yields 



Concentrating on (45), we conclude that x; 2 0, i = 1. .  .n + 1; also, since K ,  contains a ball of 

0, and I' + 0, then a < 0. Now turning to (44), it is possible to perturb x; to  make them strictly 

positive, and since a;(z) are bounded functions, (44) will still hold for a new value a < 0. Similarly, 

x,+1 can be normalized to  1. 

It only remains to  rewrite (44) using the definitions of a;, p. In the first place, simple manipu- 

where X = diag[xlI,. . . , x,I] > 0 is a scaling which commutes with A. Secondly, an integration 

by parts (note FZntl (0) = FZntl (2n) = 0) gives 

Defining Y(s) = 1 + i ( s )  - S:" P ( s ) g ,  the right hand side of (47) is equal to 

2 ds 
- l Z T ( y ( S )  - l ) ~ ~ n + l ( s ) l  g = ([i I>]  ~ 7 2 )  

Combining everything into (44)) we obtain 

( ( M *  [t :] M -  [f ; ] ) z , z )  < a < o ,  v z ~ 1 2 ,  lIz11=1 

This implies (25) holds. Finally, from the definition of Y(s), we know that J:" Y(s)& = 1, and a 

small perturbation in Y will preserve (25) and yield 

which is (26) for this scalar case. 



We now comment briefly on the various extensions to the above proof; these are developed in 

detail in [32]. 

Multivariable noise. 

If u E l?, then from (23) the performance quadratic constraint is changed to  

and (22) indicates the natural definition for p(z) = F,,+, (s), given by 

Fzn+, (s) now takes values in the space of continuous, hermitian matrix-valued functions; the dual 

of this space can be identified with the space of hermitian, bounded variation matrix functions \Ir 

on [O,2n] (up to  a constant matrix), with the convention 

The proof then follows in a similar way, giving Y(s) = B(s) + (1 - fi" t race@(s)e)  $ which 

satisfies (25) and is perturbed to  satisfy (26). 

SI perturbations in A. 

If the i-th block of A is 6 1 T z ,  then the scalar quadratic function ai must be replaced (see [32]) 

by a matrix-valued function 

which takes values in the space of hermitian r; x r; matrices. The functionals in this space are of 

the form r x , ( A )  = trace(XiA), where X; is a full, hermitian matrix. The argument then proceeds 

in a similar fashion, Xi becoming a sub-block of the scaling matrix X. 



Slowly varying perturbations 

To modify this proof to  obtain Theorem 7, we need a quadratic constraint for slowly varying 

perturbations. It can be shown (see [35, 30, 321) that given p, q 6 12, if 

for every interval of length h, then there exists a contractive operator A, with 1 1  AA - AAll 5 u = 

2 sin(q), such that Aq = p. Hence it is natural to  replace the scalar ai with a quadratic function 

The corresponding functional will be a bounded variation function x;(s), which will give the fre- 

quency varying portion of the X scale. In this way one can also handle a combination of slowly 

varying and LTV perturbations for robust X 2  performance, as was done in [30] for 3-1, performance. 

5 Computational Issues 

A test has been developed in Section 4 which characterizes robust X 2  performance analysis of an 

uncertain system. This test is an infinite dimensional convex feasibility condition on the unknowns 

X and Y, specified as a Linear Matrix Inequality (LMI) across the frequency axis, of a similar 

complexity as Condition 1 for robust X ,  performance. 

There are two standard approaches for handling the infinite dimensionality of these conditions, 

and turn them into finite dimensional LMIs, for which efficient algorithms are available [6]: one 

used in [4] is to  grid the frequency axis, the other is to select a finite set of basis functions and 

search for a scaling in the span of these functions, which reduces to  a single LMI via a state-space 

approach (see, e.g., [3]). 

Both approaches can indeed be applied to  Condition 2, and involve minor modifications to their 

counterparts for Condition 1. We demonstrate this by commenting on the gridding approach for 

this problem: Condition 2 is approximated by considering frequency points 0 = wo . . . w~ = 2n. 



Although this approximation offers no hard guarantees, since it is based on the frequency domain it 

allows for engineering judgement t o  be used in choosing the number and location of the grid-points. 

The finite dimensional approximation to Condition 2 is the LMI problem 

where the unknowns Y,  are hermitian matrices and the Xi structured matrices. For the LTV test, 

Xi = X is constant across the w;, which makes conditions (52-54) intrinsically coupled across 

frequency. For the LTI/slowly varying test, we use different variables Xi, i = 1 . . . N. Although 

(54) still involves all frequency points, the following strategy can be used to  decouple the problem 

across frequency: 

For each fixed frequency point w;, pose the problem: 

Minimize trace(x) , subject to 

The problem of minimizing a linear function of the unknowns, subject to  an LMI constraint, 

falls in the class of eigenvalue problems (EVPs) considered in [6], and can be computed 

efficiently. 

Given all the solutions Yl . . . YN, compute zzI trace(Y,)(wi - wi-1)) and compare the answer 

to  1. More directly, this sum will provide an approximation to the square of the worst-case 

X 2  norm of the system; this follows from the fact that to test if the worst-case 'Ha norm is 

less than y, i t  suffices to  change 1 for y2 in (26) or (54). 



6 Connections to Mixed 7-i2/7-l, Performance 

In this section we relate these results to earlier work in the so-called mixed X2/'Ft, problem. There 

are many versions of this problem in the literature (a  few are [5, 22,45, 34]), all of which attempt to 

get a handle on robust Z2 performance by studying first the situation where there is no uncertainty, 

but the performance specification is a combination of the 3-12 and 3-1, norms. 

A mixed 7-12/'FI, performance problem can in fact be cast naturally in our setting, and leads 

to  an analysis test which looks exactly like Condition 2, except that the scaling matrix X(w) does 

not appear and is fixed to  be the identity. 

Proposition 11 Consider a system M = [MI M2] where the input z is partitioned in the vectors 

zl, 22 E em. The following are equivalent: 

1 
(i) : 37 > o : sup { l l ~ z l 1 2  : 11z11/2 + - - - 1 1 ~ ~ 1 1 ~  5 1, 22 t I P ~  (57) 

(ii) : There exists Y (w) = Y(w)* : 

This result is proved along the same lines as Theorem 8, only that since there is no uncertainty, 

one only considers the whiteness constraint p(z )  = F,, , and the performance quadratic constraint 

(~(2) = I ( M z ( ~ ~  - 1 1 ~ ~ 1 1 ~  - $11z21(2, with )1z2112 weighted by for the reasons explained in Section 3. 

Conditions (58) and (59) are therefore interpreted as a mixed performance problem where a 

portion of the input signal is constrained to  be white. Various problems like this were considered 

in [45] for continuous time, with different assumptions on the relationship between zl and 22. It 

is shown in [45] that the performance costs are not substantially different for these alternatives, 

and subsequently the attention is concentrated on the case where zl is restricted to  be causally 

dependent on z2. State-space methods for both analysis and synthesis for this alternative are given 

in [45] and the sequel paper [16] (a stochastic version appears in 1341). 



Our condition, in contrast, corresponds to  the case where there is no such causality restriction, 

which is only treated summarily in [45]. While at the level of the mixed performance problem it is 

not obvious which alternative t o  prefer, the version considered here has advantages from the point 

of the robust 7't2 problem, since it is allows for the inclusion of X scales in a convex condition with 

the strong interpretation given in Theorems 7 and 8. 

Remarks: 

a These causality issues are strongly connected to the remarks of Section 4 regarding the causal- 

ity of LTI perturbations. A possible conclusion from the results in [45] is that gaps due to  

this are not very significant, although this issue warrants further investigation. 

a Analogously to the case treated in detail in [45], the mixed conditions (58-59) reduce to a 

finite dimensional test if ~ ( e j ~ )  is rational. In fact, a Schur complement operation and some 

algebra shows that (58) is equivalent to 

This implies that (58-59) can be tested by first checking (60), and then imposing that 

I(N-1M21(2 < 1, where N is the inversely stable spectral factor (see, e.g., [46]) satisfying 

I - MIM,* = N N * .  Both these operations can be computed efficiently by the same state- 

space techniques used in the mixed X2/IFt, literature. 

7 Robust R2 Synthesis 

Having obtained conditions for robust 'Hz performance analysis under structured uncertainty, it is 

natural to  consider the problem of controller synthesis. If the nominal system M is obtained as 

the closed loop in a feedback configuration, the problem is to design the controller such that M 

satisfies the robust Ha performance conditions. 



It is unlikely that a tractable global solution will appear for this problem, since none is known 

for the case of X, performance. Except for very special configurations, the only general method 

for robust 7-1, synthesis is the so-called "D-K" iteration, where an an analysis step (Condition 1) 

is alternated with 3-1, synthesis. 

Such iteration schemes can easily be extended to  robust IFtz synthesis, as is now described. 

Assume that the functions X(o )  and Y(w) are rational and satisfy Condition 2 (they could be 

obtained by fitting frequency points, or with basis functions). They are both positive definite 

across frequency, so by a spectral factorization (see [46]) they can be expressed as 

where D, E are rational, stable, stably invertible transfer functions, and D has the structure of X .  

Using these factorizations, it follows that (25) can be rewritten as 

which leads t o  the following iteration procedure: 

For fixed D ,  E, reduce the norm in (63) by RFI, synthesis. 

For a fixed controller, solve the analysis problem for D ,  E. 

As for the standard D-K iteration, each step in this "(D,E)-K" iteration can be shown to  improve 

the robust performance cost, but there is no reason to  expect convergence to  the global optimum. 

The previous iteration was based in 3-1, synthesis. An alternative is suggested by the discussion 

in Section 6, where at the synthesis step one only includes the D scales with the plant, and employs 

the design schemes for the mixed IFI2/3-Ioo problem. As remarked before, the techniques in [16] 

correspond to  a slightly different mixed problem, and it is not clear whether they extend to  the 

situation of Proposition 11. The approximate method presented in [8] could also be used. 

Therefore a number of issues remain open for future research, regarding this second iteration 

and the comparison between the two alternatives for practical problems. 



8 Conclusion 

The results in this paper restore the 'Ha performance paradigm to the level of mainstream robust 

control: there is no longer a significant advantage from the point of view of robustness analysis 

in the consideration of 'Ft, norms, since it is essentially no harder to  test for the corresponding 

'Hz-performance problem. 

Condition 2 appears in fact as a summary of tractable exact conditions for robustness anal- 

ysis. Setting the blocks in X to be either constant or frequency-varying selects between LTV 

or LTI (slowly-varying) uncertainty, or a combination thereof. Selecting either a constant or fre- 

quency varying Y chooses between maximum over frequency or average over frequency performance 

(roughly, 'Ft, or X a  performance; in rigor, for 3-1, the trace must be removed from (26)). Also, 

combinations of 'Hz and 'Ft, performance can be studied in the style of Section 6, by including Y 

terms only for the signals which are assumed white. For all these choices, we have an exact char- 

acterization of the robust performance problem for which Condition 2 is necessary and sufficient. 

A number of research questions are raised by these results. One of these is the issue of com- 

putation of Condition 2; we demonstrated its tractability in Section 5, but further research and 

practical experience with algorithms are in order. Another important question which we will in- 

vestigate in future papers is the applicability of state-space methods for this problem, which would 

reduce Condition 2 to  a finite dimensional LMI in the case of constant scales. Finally, the problem 

of controller synthesis for robust 'Ft2 performance is now reduced to  the complexity level of robust 

'Ft, synthesis; further investigation is required, in particular on the different iteration schemes 

which where proposed in Section 7. 

To some extent, this paper closes a cycle of research which originated in the 70s. The methods 

developed during this period have reached the maturity to  address one the main problems which 

motivated the appearance of robust control theory. The impact of this theory goes, however, far 

beyond the robustness of LQG regulators, constituting a fundamental addition to  the understanding 

of models, uncertainty, and feedback control. 



Appendix 

We will give proofs of Propositions 9 and 10. 

Lemma 12 Let A : 12+V be defined as in  (41). If z, f E 12,  and X is the delay operator, then 

112 + Akf fJ kF Ilzl12 + I l f  l 2  (64) 

A(z t X'f) k= A(z) + A(f)  (65) 

where (65) means convergence in the topology of V = EXn+' $ CR[O, 2 ~ 1 .  

Proof: The main observation (which is easily seen by looking at the shift operator in the time 
k i o o  

domain) is that (z, Xk f )  - 0 for any functions z, f E 12. From this it follows that 

where in (67) we use M X ~  = XkM from the time invariance of M .  This implies (64), and also 

We now show that 

P(" + Akf) k= ~ ( 2 )  + P(f 

with convergence in the sense of CRIO, 2n]. Starting from (40) and (15), some algebra gives 

It therefore suffices to  show that the sequence of functions 



converges uniformly to  0 as k i m .  Pointwise convergence follows from y k ( s )  = (llo,,lz,+l, X k f n + l  ) . 
If convergence were not uniform, we could find E > 0, a subsequence C j  and points sr,, with 

j-00 
l yk j (skJ) l  2 E.  By compactness, taking a partial subsequence we can assume skj -+ SO.  Now 

The right hand side of (73) converges to  0 from the pointwise convergence of ykJ,  and the fact that 

Izn+lll fn+1l E L1[0,2n]. This is a contradiction, so we have shown (69),  which together with (68) 
k--*0O 

implies that A(z + X k  f )  - A(z )  + A( f )  in the topology of V. 

Remark: The previous Lemma can easily be extended to the sum of shifted versions of N signals 

. . . , z(N-l) E 1 2 ,  giving 

N-1 N-1 

Proof of Proposition 10 

Let co('C7) denote the convex hull of V; an element A. E co(V) is a convex combination of the form 

Define f k  = xZi1 & A ~ ' Z ( ~ ) .  From (75) and the quadratic nature of A, it follows that 



f k  k-+w 
From (74) ,  we find 1 1  f k 1 / 2  *'YY x:i1 aT = 1. Therefore A(T) - Ao, so A. E Ilf II 

We have shown c o ( V )  c V .  This implies that c o ( q )  c c o ( V )  c 7, so q is convex. 

For the next Lemma we consider the configuration of Figure 2, where a disturbance signal d is 

injected at the output of A. 

Figure 2: Uncertain system with injected d 

Lemma 13 Given E > 0,  suppose V n K ,  # 0. Then there exists an operator A E B*LTV, and 12 

signals z = col(p, u ) ,  M x  = col(q, y) ,  d, satisfying the equations of Figure 2, with u E W,, llzll = 1, 

lldll = O ( 4 ,  and l l ~ l l  2 llull - O ( 4 .  

Proof: By hypothesis, we can find z = col(v, u ) ,  llzll = 1, such that A ( x )  E K,. This means 

that p(z )  E B(0, q ) ,  so u E W,, and 

From (78)  we can find a contractive operator A; : 12--+12, and a disturbance d;, JJdilJ = O ( E ) ,  such 

that 

z; = A ; ( M z ) ;  + d; i = 1 . .  . n (79)  

Also, 1 1  yll 2 llull - t follows from the constraint on a,+l. This would complete the proof, except 

that the given operator A = diag[Al,. . .,A,] need not be causal. For (79)  to  hold with causal A; 



would require (see [36]) the stronger condition 

(without loss of generality, assume a supported in Z+) where pT denotes the truncation operator: 

z(t) for t < T 
(PTz)(t) = { 0 for t >_ T 

In fact, (80) can indeed be satisfied by means of a construction due to Shamma [38], where a is 

replaced by a signal i obtained from repetition of shiftfed versions of z. Consider the signal 

Choosing & = O(t), and sufficiently large b, it can be shown that this signal satisfies (80) as 

required. The details of this argiilnelzt are quite involved and adre omitted (refer to [32] for a complete 
k-tcx, k i o o  

treatment of causal ~erturbatjons).  Note also that p ( ik)  -7 p(a) from (75):  and Ilikl( -+ 1 from 

(74), so ik will satisfy all the required conditions for large k .  

Proof of Proposition 9 

From robust stability, (I - AMl1)-' exjsts for each A € BALTV. We will use the uniform bound 

sup \\(I - n_bfll)-lI1 = p < oo 
L ~ E B ~ L T V  

(83) 

which appears to  be slightly stronger but can be s11011rn (see [32]) to  be equivalent to robust stability. 

We also know by hypothesis that 

sup ~ ~ A * ~ 1 4 ~ ~ ~ q  = y < 1. 
A E B A ~ ~ v  

Given E > 0, suppose KEnV # 0. We apply Lemma 13 and construct the corresponding A E BALTV, 

z - col(p, u), and d. We now state the following bounds: 



The lower bound is a direct consequence of Lemma 13. The upper bound is obtained by writing 

y as the superposition of the contributions of the inputs d^ and u E W~ in Figure 2, and using the 

bounds (83) and (84). 

k k  If K ,  n V # 0 holds for every 6 ,  we can choose sequences A', zk = col(p , u ), llzkll = 1,  
k+w dk corresponding to  ~k --+ 0. From the bounds (85) and y < 1 it follows that we must have 

k+w IIu"I '= 0; also, Ildk/l = O(ck)  - 0. NOW from (83) the gain from (d, u) to  z can be uniformly 
k k+w 

bounded across A, which implies that llz 1 1  - 0 ,  which is a contradiction. Therefore there must 

exist E > 0 such that IC,  n V = 0. 
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