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Abstract

This paper is concerned with the formulation of a variationalr-adaption method for finite-deformation
elastostatic problems. The distinguishing characteristic of the method is that the variational principle
simultaneously supplies the solution, the optimal mesh and, in problems of shape optimization, the equi-
librium shapes of the system. This is accomplished by minimizing the energy functional with respect
to the nodal field values as well as with respect to the triangulation of the domain of analysis. Energy
minimization with respect to the referential nodal positions has the effect of equilibrating the energetic
or configurational forcesacting on the nodes. We derive general expressions for the configuration forces
for isoparametric elements and nonlinear, possibly anisotropic, materials under general loading. We il-
lustrate the versatility and convergence characteristics of the method by way of selected numerical tests
and applications, including the problem of a semi-infinite crack in linear and nonlinear elastic bodies;
and the optimization of the shape of elastic inclusions.

1 Introduction

For static problems, the displacement, conforming, finite-element method is a particular case of the Rayleigh-
Ritz method, or method of constrained minimization, consisting of the minimization of a suitable energy
functional over a finite-dimensional spaceXh of finite-element interpolants. For elastic bodies, the ap-
propriate energy functional to minimize is the potential energy of the body, whereas for inelastic bodies
and dynamical systems appropriate energy functionals follow by recourse to time-discretization,Ortiz and
Stainier[1999]; Radovitzky and Ortiz[1999].

Within this variational context, the question of mesh adaption and optimization may be understood as
the determination of thebest interpolation spaceXh of a certain dimension. For linear problems, such as
linear elasticity, the space of solutions has a well-defined normed-space structure, typically in the form of
a Sobolev space, the solution exists and is unique under well-understood technical conditions, and standard
error estimates provide bounds for the energy-norm error|uh − u|E , e. g.,Strang and Fix[1973], provided
that the solutionu has sufficient regularity. A natural adaption strategy is then to optimize the mesh so that
the error bound is minimized.

This approach may formally be extended to finite deformations by recourse to linearization,Radovitzky
and Ortiz[1999], but in this case the coercivity of the linearized energy norm and the regularity of the
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solution can no longer be guaranteed in general. Worse still, for fully nonlinear problems, including finite
kinematics, the solution may not be unique due to geometrical instabilities such as buckling, or solutions may
not exist outright due to material instabilities and the attendant lack of lower semi-continuity of the energy
functional,Evans[1998]. Furthermore, for nonlinear problems, no natural norm may generally be defined
measuring the distance between exact and approximate solutions, and the entire conceptual framework of
energy-norm errorsanderror boundssimply collapses.

An alternative approach which applies naturally to nonlinear variational problems and generalizes the
conventional energy-norm error framework for linear problems is torely on the variational principle to
supply both the solution and the optimal mesh. Thus, suppose for definiteness that we seek the stable
equilibrium configurations of a nonlinear elastic material and that, consequently, the operative principle is
the principle of minimum potential energy. Within this framework, the sole figure of merit which determines
the quality of a deformation mappingϕ is its potential energyI[ϕ]. In particular, given two deformation
mappingsϕ′ and ϕ′′ with I(ϕ′) < I(ϕ′′), thenϕ′ is to be regarded as abetter deformation mapping
thanϕ′′. Since finite-element solutionsϕh are constrained minimizers, one hasE = I(ϕh) − Imin ≥ 0,
whereImin is the infimum ofI[ϕ], andE may be regarded as the natural measure of the ‘badness’, or
‘error’, of ϕh. We note that, since the energy of the system is always well-defined, this notion of optimality
applies equally well to linear and nonlinear problems. Of course, in linear problems orthogonality gives
E = |uh|2E − |u|2E = |uh − u|2E , andE reduces to the conventional energy-norm error.

Clearly, the energy, and hence the quality, of the finite-element solution depends on the choice of mesh.
Thus, in keeping with the principle of minimum potential energy, theoptimal mesh is that for which the
least minimum energy is achieved. This criterion suggests minimizing the energy with respect to both the
nodal displacements as well as the triangulation. For instance, one may seek the Delaunay triangulation of
a fixed number of nodes which minimizes the energy. A strategy for finding this optimal Delaunay mesh
is to minimize the energy with respect to both the spatial and referential nodal positions, while simulta-
neously performing mesh operations, such as edge-face or octahedral swapping,Joe[1989, 1995]; Freitag
and Ollivier-Gooch[1996], aimed at maintaining the Delaunay character of the mesh. Energy minimization
with respect to the spatial nodal positions has the effect of equilibrating the body, whereas minimization
with respect to the referential nodal positions has the effect of equilibrating theconfigurational forcesacting
on the nodes. Since the nodes are no longer attached to fixed material particles, the resulting finite-element
method may be regarded as anr-adaption method.

This paper is concerned with the formulation of the method for static problems in nonlinear elasticity. In
particular, we derive general expressions for the configuration forces for isoparametric elements under gen-
eral loading. We illustrate the versatility and convergence characteristics of the method by way of selected
numerical tests and applications, including the problem of a semi-infinite crack linear and nonlinear elastic
bodies; and the optimization of the shape of elastic inclusions.

2 Formulation of the static problem

We consider a solid occupying a regionB ∈ R3 in its reference undeformed configuration. The solid subse-
quently deforms under the action of externally applied forces and prescribed displacements. The deforma-
tion mappingϕ : B → R3 maps material pointsX in the reference configuration into their corresponding
positionsx in the deformed configurationϕ(B). The deformation gradient field follows as

FiJ =
∂ϕi

∂XJ
, in B (2.1)

Here and subsequently, we use upper (respectively, lower) case indices to denote components of vector
fields defined over the undeformed (respectively, deformed) configuration. The deformation mapping is
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contrained to take a prescribed valueϕ̄ over the displacement part∂B1 of the undeformed boundary. This
furnishes the boundary condition:

ϕi = ϕ̄i, on∂B1 (2.2)

Additionally, the solid is in equilibrium, which requires:

PiJ,J + RBi = 0, in B (2.3)

and
PiJNJ = T̄i, on∂B2 (2.4)

HereP denotes the first Piola-Kirchhoff stress tensor,R is the mass density per unit undeformed volume,
B is the body force density per unit mass,N is the unit normal to the undeformed boundary, andT̄ is the
applied traction over the traction boundary∂B2 = ∂B − ∂B1. For simplicity, we shall assume that the
material is elastic, with strain-energy densityW (F ). Under these assumptions, the constitutive relations
take the form:

PiJ =
∂W

∂FiJ
(F ) ≡ PiJ(F ), in B (2.5)

With a view to formulating finite-element approximations, we begin by re-stating the preceding equations
in variational form. To this end, we consider the potential energy functional

I[ϕ] =
∫

B
W (Gradϕ)dV −

∫

B
RB ·ϕdV −

∫

∂B2

T̄ ·ϕdS (2.6)

This functional may be discretized by the introduction of a triangulationTh of B and the corresponding
finite-element interpolation:

ϕh(X) =
N∑

a=1

xaNa(X) =
E∑

e=1

n∑

a=1

xe
aN

e
a(X) (2.7)

whereE is the number of elements,N is the number of nodes,N e
a are the element shape functions,Na

are the nodal shape functions, andxa are the nodal coordinates in the deformed configuration. The discrete
potential energy function is

Ih(xh) =
∫

B
W (Gradϕh)dV −

∫

B
RB ·ϕhdV −

∫

∂B2

T̄ ·ϕhdS (2.8)

wherexh ≡ {xa, a = 1, . . . , N} is the array of nodal coordinates in the deformed configuration. For fixed
Th, the finite-element solutions follow from the minimum problem

inf
xh

Ih(xh) (2.9)

Thus, the overriding objective of the calculations is to minimize the potential energy of the body. In particu-
lar, given two approximate solutionsx′h andx′′h with Ih(x′′h) < Ih(x′h), thenx′′h is to be regarded as abetter
solution thanx′h. This provides a clear and unambiguous criterion for comparing approximate solutions.

3 Static variational r-adaption method

Evidently, the energy minima attainable through the minimization process (2.9) depend on the choice of
mesh. In keeping with the principle of minimum energy, theoptimal mesh is that for which the least
minimum energy is achieved. This suggests minimizing the energy with respect to both the spatial and

3



P. Thoutireddy and M. Ortiz A Variationalr-Adaption Method

referential nodal coordinates. The former minimization has the effect of equilibrating the body, whereas the
latter minimization has the effect of optimizing the nodal positions of the triangulation. Thus, we regard the
energyIh as a function of{xh,Xh}, whereXh ≡ {Xa, a = 1, . . . , N} is the array of referential nodal
coordinates, and formulate the extended minimum problem

inf
xh,Xh

Ih(xh, Xh) (3.1)

Since the nodes are no longer attached to fixed material particles, the resulting finite-element method may
be regarded as anr-adaption method.

The stationarity of the energy now demands

〈DIh, δxh〉 · δxh + 〈DIh, δXh〉 · δXh = 0 (3.2)

where〈DIh, δxh〉 · δxh and〈DIh, δXh〉 · δXh denote the first of variations ofIh with respect toxh and
Xh, respectively. Away from the displacement boundary, the variationsδxh andδXh are independent and
we obtain the Euler-Lagrange equations

rh =
∂Ih

∂xh
= 0 (3.3a)

Rh =
∂Ih

∂Xh
= 0 (3.3b)

whererh are the out-of-balance mechanical forces at the nodes, andRh are the corresponding out-of-
balanceconfigurational forces, Gurtin[1995, 2000]. The system of equations (3.3a) enforces the mechanical
equilibrium of the body, whereas the system (3.3b) enforces theconfigurational equilibriumof the nodes.
Jointly, eqs. (3.3a) and (3.3b) supply an extended system of equations which may be solved for the unknowns
{xh,Xh}.

On the displacement boundary∂B1, the variationsδxh andδXh are related according to

δxia =
∂ϕ̄i

∂XI
δXIa (3.4)

whereϕ̄(X) is the prescribed deformation on∂B1. Under these conditions, the corresponding configura-
tional force equilibrium equation follows from (3.2) as

∂Ih

∂XKb
+

∂ϕ̄k

∂XK

∂Ih

∂xkb
= 0 (3.5)

which replaces (3.3b) on∂B1.
A straightforward calculation (cf AppendixA) gives the mechanical and configurational equilibrium

equations in the form

rkb =
E∑

e=1

{∫

Ωe

PkJNb,JdV −
∫

Ωe

RBkNbdV −
∫

∂Ωe∩∂B2

T̄kNbdS

}
= 0 (3.6a)

RKb =
E∑

e=1

∫

Ωe

{
MJK + [−P̄k,Lϕk,L − (RBk − P̄kL,L)ϕk]δJK + P̄iJFiK

}
Nb,JdV = 0 (3.6b)

where
MIJ = WδIJ − PkIFkJ (3.7)
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is Eshelby’s energy-momentum tensor, andP̄ is any stress field such that

P̄iJNJ = 0, on∂B1 (3.8a)

P̄iJNJ = T̄i, on∂B2 (3.8b)

In practice, the fieldP̄ need only be one element deep. For a stable homogeneous solid in mechanical
equilibrium, the configurational forces vanish identically, i. e.,

MJK,J = 0 (3.9)

However the introduction of a discretization breaks the translational symmetry of the body and, hence, the
configurational equilibrium equations (3.3b) are not trivially satisfied in general. Indeed, eq. (3.3b) may be
regarded as an additional system of equations enabling the determination of the optimal nodal coordinates
Xh.

It bears emphasis that the present approach applies equally well to inelastic problems, provided that the
equations of evolution are discretized in time in a variational manner,Ortiz and Stainier[1999]. In this
case the functional to be minimized is incremental and depends on the initial conditions for each time step.
The computation of the configurational forces is then formally identical to the elastic case explicitly treated
here, with the energy-momentum tensor (3.7) expressed in terms of the effective incremental strain-energy
density,Ortiz and Stainier[1999].

In solving eq. (3.3b) the movement of nodes in the reference configuration must be constrained by
appropriate boundary conditions. This in turn requires an appropriate representation of the geometry and
topology boundary of the domain. To this end we regard the boundary of the domain as a two-dimensional
manifold without boundary comprising a number of connected components, orshells, Hoffmann[1989];
Mantyla[1988]; Requicha[1980]; Radovitzky and Ortiz[2000]. The shells may in turn be partitioned into
smoothfaces. The boundaries of the faces may represent salient geometric features of the shell such as
ridges or sharp edges. The trivial case of a smooth shell which consists of one single face is also possible.
One face may be shared by two shells, e. g., at a material boundary, in which case it appears in each shell
with opposite orientations. Each face may be regarded as a 2-manifold with boundary. The boundary of
a face is itself a 1-manifold without boundary. The connected components of the boundary of a face are
known asloops. The loops may in turn be partitioned intoedgesbounded by endvertices. The trivial case
of a smooth loop which consists of one single edge is also possible. As in the case of faces, an edge may be
shared by two loops, in which case it appears in each loop with opposite orientations.

In the present implementation of the variational adaption method, we enforce the following boundary
conditions:

1. Vertices are fixed points of the reference configuration.

2. Edge nodes are required to remain within their edges.

3. Face nodes are required to remain within their faces.

These boundary conditions are chosen so as to preserve the boundary representation of the solid. However,
it should be noted that these boundary conditions constrain the number of nodes within boundary faces and
edges to remain constant, which in turn limits the range of attainable meshes. A more general and flexible
approach would allow for nodes to move in and out of edges and faces, but these extensions will not be
pursued here.

So far, we have envisioned the minimization of the energy with respect to the nodal coordinates of a
fixedtriangulation. However, keeping the triangulation fixed introduces topological constraints which may
be too restrictive in general. A more flexible approach, which we adopt in calculations, consists of allowing
for variations in the triangulation as part of the mesh optimization process. This suggests the more general
problem:
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Problem: Find the triangulation, nodal coordinates and nodal displacements which mini-
mize the energy.

However, the exact optimization of the triangulation based on energy minimization constitutes a discrete
problem which entails great difficulty. As a compromise, we combine the equilibrium iterations with ad-
hoc ‘mesh-improvement’ operations such as edge-face or octahedral swapping,Joe[1989, 1995]; Freitag
and Ollivier-Gooch[1996]. While these operations do not necessarily lead to optimal meshes in the sense
of energy minimization, they enable the free migration of nodes without mesh entanglement, thus making
meshes attainable which otherwise could not be reached from the initial mesh.

4 Static examples

PSfrag replacements

K-field

traction-free
H

L

W

X1

X2

X3

Figure 4.1:Geometry of the mode-I fracture problem considered in the convergence study.

In this section we present test cases which illustrate the convergence characteristics of the method.
The particular configuration under consideration concerns a semi-infinite crack in an infinite elastic solid
subjected to mode I opening, Fig.4.1. This test is exacting in that it involves the strongest singularity
that can be sustained by a linear elastic solid. In addition, when applied to linear elastic solids the test
is particularly convenient due to the availability of an exact analytical solution, which in conjunction with
the normed-space structure of the space of solutions, namely the Sobolev space of functionsH1(Ω,Rn),
permits the computation of global error norms.

The calculations presented here employ a loop-in-loop Polak-Ribiere iterative solution procedure,Shewchuk
[1994]. This solution procedure consists of two nested iterative loops: an outer loop for the nodal coordi-
nates in the reference configuration, driven by (3.6b); and an inner loop for the nodal displacements, at fixed
nodal coordinates, driven by (3.6a). In this scheme, the nodal configurational forces are always computed
from equilibrated displacement fields. Failure to comply with this condition may result in inadmissible
mesh geometries, e. g., meshes including inverted elements. In addition to the double iteration for nodal
coordinates and displacements, mesh-improvement operations are periodically performed in order to avoid
mesh entanglement and allow for transitions in the mesh topology.

4.1 Two-dimensional linear elastic crack

Fig. 4.2 shows the mesh resulting from the application of the method to the two-dimensional plane-strain
problem. The computational domain consists of a rectangular region in the upper half plane, with traction-
free boundary conditions enforced on the crack flank, symmetry boundary conditions imposed on the crack
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(a) (b)

Figure 4.2:Two-dimensional analysis of a semi-infinite crack in a linear elastic solid subjected to mode I
loading. The computational mesh consists of 166 three-node elements. Evolution of mesh: a) Initial uniform
mesh; b) Optimal mesh focused at the crack tip.

‖ uh − u ‖0 |uh − u|E
without mesh adaption 0.8794 0.5172

with mesh adaption 1.1369 0.6662

Table 1: Two-dimensional analysis of a semi-infinite crack in a linear elastic solid subjected to mode-I
loading.

ligament, and the mode I displacement K-field prescribed on the remainder of the boundary. The crack tip
is regarded as a vertex in the boundary representation and, in consequence, it is held fixed in the reference
configuration during the relaxation of the mesh. The Poisson ratio of the solid isν = 0.3. The computational
mesh consists of three-node linear triangular elements.

Fig. 4.2a shows an initial mesh comprising166 elements and Fig.4.2b the final mesh after the appli-
cation of the method. As expected, energy minimization drivesboth mesh refinement near the crack tip
and unrefinement elsewhere. The combination of nodal relaxation and edge swapping results in arelaxed
Delaunay mesh, i. e., a mesh in which all nodes are in configurational equilibrium and all elements satisfy
the Delaunay circumcircle condition. It should also be carefully noted that edge-swapping results in a com-
plete reconstruction of the mesh connectivity, or topology. This reconstruction is critical in order to allow
the migration of nodes towards the crack tip without mesh entanglement. It also bears emphasis that the
mesh adaption shown in Fig.4.2b is accomplishedwithout resorting to error estimates or mesh adaption
indicators. Indeed, the entire solution follows directly from the variational principle.

Fig.4.3shows the dependence of the displacementL2 and energy-norm error of the variationally adapted
and uniform mesh solutions on the average mesh size, defined ash ∼

√
|Ω|/E, where|Ω| is the area of the

domain of analysis andE is the number of elements. The error norms are normalized by the corresponding
norm of the exact solution. In addition, the convergence rates deduced from these plots are collected in
Table1. The convergence rate is the logarithmic derivative of the errorvsmesh-size curve asymptotically as
h → 0. The computed convergence rates suggest that the variational adaption method speeds up the rate of
convergence, and substantially lowers the error, relative to the uniform-mesh solution.
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Figure 4.3:Two-dimensional analysis of a semi-infinite crack in a linear elastic solid subjected to mode I
loading, convergence plots: a)L2-norm of displacement error; b) Energy norm of displacement error.

‖ uh − u ‖0 |uh − u|E
without mesh adaption 0.8400 0.3993

with mesh adaption 0.8952 0.4181

Table 2: Three-dimensional analysis of a semi-infinite crack in a linear elastic solid subjected to mode I
loading, convergence rates.

4.2 Three-dimensional linear elastic crack

As a three-dimensional example of application of the method, the problem discussed in the preceding sec-
tion may also be solved on a plate of finite thickness by constraining the normal displacements on the faces
perpendicular to the crack front in order to enforce plain-strain conditions. All calculations presented here
employ four-node linear tetrahedral elements. The application of mesh-improvement operations in a man-
ner that preserves the integrity of the boundary representation is greatly compounded in three dimensions.
The construction of three-dimensionalcontrainedDelaunay triangulations which properly restrict to a pre-
scribed boundary is a difficult and largely open problem,Amenta and Bern[1999]; Radovitzky and Ortiz
[2000]; Sampl[2001]; Amenta et al.[2002]. In the problem under consideration, the main difficulty resides
in ensuring that the mesh operations preserve the geometry of the crack front. Here we sidestep these diffi-
culties by the simple device of scaling down the thickness of the plate prior to the application of the mesh
operations. The scaled thickness is chosen to be much smaller than the size of the smallest element in the
mesh. The plate is then restored to its actual thickness following the application of the mesh operations.

Fig. 4.4depicts the evolution of the mesh, Fig.4.5shows the computed convergence plots, and Table2
collects the computed convergence rates. As in the two-dimensional case, the initially uniform mesh is
refined near the tip and unrefined elsewhere. The computed convergence rates again suggest that the varia-
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(a) (b)

Figure 4.4:Three-dimensional analysis of a semi-infinite crack in a linear elastic solid subjected to mode I
loading. The computational mesh consists of 493 three-node elements. Evolution of mesh: a) Initial uniform
mesh; b) Optimal mesh focused at the crack tip.

tional adaption method speeds up the rate of convergence, and substantially lowers the error, relative to the
uniform-mesh solution.

4.3 Two-dimensional crack in a neo-Hookean solid

Next we demonstrate the applicability of the method to nonlinear problems by revisiting the problem pre-
sented in Section4.1 and considering a crack in a compressible neo-Hookean solid characterized by the
strain-energy density

W (F ) =
1
2
λ0 log2(J)− µ0 log(J) +

µ0

2
tr(F T F ) (4.1)

whereλ0 and µ0 are material constants andJ = det(F ) is the Jacobian of the deformation. For this
material, the first Piola-Kirchhoff stress follows as

P = λ0 log(J)F−T + µ0(F − F−T ) (4.2)

The material constants used in calculations areλ0 = 1.255× 108 andµ0 = 8.365× 107, corresponding to
an undeformed Young’s modulusE0 = 2.175× 108 and Poisson’s rationν0 = 0.3.

Fig. 4.6a shows an initial uniform mesh comprising 166 elements, and Fig.4.6b the final mesh after the
application of the variational adaption method. As before, energy minimization drives both mesh refinement
near the crack tip and coarsening elsewhere. As argued in the introduction, owing to the finite kinematics
involved in this problem, there is no natural norm that provides a measure of the numerical error, and conver-
gence should be understood directly in terms of the energy of the system. Fig.4.7shows the dependence of
the energy, computed with and without adaption, on the mesh size. As is evident from the figure, the energy
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Figure 4.5:Three-dimensional analysis of a semi-infinite crack in a linear elastic solid subjected to mode I
loading, convergence plots: a)L2-norm of displacement error; b) Energy norm of displacement error.

ostensibly converges as the mesh size decreases to zero. As expected, the energy obtained by relaxing the
mesh is smaller–and appears to approach the exact energy faster–than the energy of the uniform mesh.

In the above calculations optimal meshes have been obtained for a fixed number of nodes. Evidently, the
minimum energy attainable under such conditions is limited by the number of nodes, and further energy re-
duction requires the insertion of nodes into the mesh. Nodes could be inserted simply by a variety of means,
e. g., by placing new nodes at the barycenter of all or selected elements, followed by energy minimization
and mesh reconnection for the new nodal set. The opposite operation of reducing the number of nodes may
also be accomplished by a variety of means, e. g., by element collapseMolinari and Ortiz[2002]. However,
the optimal strategy for adding and removing nodes, and for allowing nodes to migrate in and out of the
boundary of the domain, is not clear at present and these extensions will not be pursued here.

4.4 Nodal energy-release rate

An added benefit of the variational adaption approach is that it supplies,as nodal values, the configurational
or energetic forces acting on boundaries and interfaces. In particular, it supplies the nodal values of the
energy-release rate on the nodes of a crack-front. Thus, since the crack-tip node is held fixed during the
relaxation of the mesh, the configurational force acting on it does not vanish at equilibrium. Indeed, this
unbalanced configurational force is the energetic force conjugate to the position of the crack, i. e., the rate
of release of elastic energy per unit crack advance, orenergy-release rate. The energy-release rate may be
computed or estimated by a number of other means, including compliance methods, e. g.,Kanninen and
Popelar[1985], and theJ-integral,Rice[1968]; Shih and Nakamura[1986]; Moran and Shih[1987].

In two dimensions, the energy-release rate is

Gh = −∂Ih

∂a
= −R (4.3)
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(a) (b)

Figure 4.6:Two-dimensional analysis of a semi-infinite crack in a neo-Hookean elastic solid subjected to
mode I loading. The computational mesh consists of 166 three-node elements. Evolution of mesh: a) Initial
uniform mesh; b) Optimal mesh focused at the crack tip.

wherea is the crack length andR follows by specializing (3.6b) to the crack-tip node and the crack-wise
coordinate direction. Fig.4.8 shows the dependence ofGh on the average mesh size as computed in the
two-dimensional linear-elastic crack problem, Section4.1. Also shown for comparison is the exact value of
the energy-release rate, e. g.,Rice[1968],

G =
1− ν2

E
K2 (4.4)

whereK is the mode-I stress intensity factor,ν is Poisson’s ratio andE is Young’s modulus. As is evident
from the figure, the numerical energy-release rate matches the exact value to within good accuracy even for
relatively coarse meshes.

The connection between crack-tip nodal configurational forces and energy-release rates was explicitly
recognized bySussman and Bathe[1985]. This connection is also implied in methods which compute the
energy-release rate by perturbing the position of the crack front,Parks[1974]. Methods which compute
the energy-release rate as a nodal configuration force necessarily result in expressions which are special
cases of eq. (3.6b). An expression consistent with eq. (3.6b) can also be recovered from the volume-integral
version of theJ-integral,Li et al. [1985]; Shih and Nakamura[1986]; Moran and Shih[1987], by choosing
the integration volume to coincide with the ring of elements incident on a crack-tip node and additionally
choosing the weight-function to coincide with the shape-function for that node. As noted earlier, the present
approach for the computation of configurational forces applies equally well to inelastic problems, provided
that the equations of evolution are discretized in time in a variational manner,Ortiz and Stainier[1999].

5 Application to shape optimization

In all the preceding calculations, the relaxation of the mesh has been subjected to constraints introduced in
order to preserve the geometry of the model. For instance, the nodes may be constrained to move within
boundaries and interfaces in the reference configuration, which has the effect of leaving the geometry of
those objects invariant. By simply removing these geometrical constraints, then the variational adaption
method may be used to computeequilibrium shapes, i. e., shapes of boundaries and interfaces which min-
imize the energy of the system. The salient attributes of the approach are: the finite-element mesh directly
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Figure 4.7:Two-dimensional analysis of a semi-infinite crack in a neo-Hookean elastic solid subjected to
mode I loading. Energyvsmesh size for uniform and relaxed meshes.

supplies the geometrical representation of the system; the equilibration of configurational forces optimizes
the mesh and the geometry of the system simultaneously; and the approach allows for arbitrary material
behavior, including anisotropy and nonlinearity.

By way of illustration we specifically consider the problem of determining the equilibrium shape of an
elastic inclusion, e. g., a second-phase particle or a precipitate, embedded in a likewise elastic matrix. Our
aim here is merely to illustrate how the variational adaption method can be applied to problems of shape
optimization. A comprehensive study of the mechanics of symmetry-breaking transitions or the behavior
of specific materials is beyond the scope of this work and may be found elsewhere (see, e. g.,Voorhees
[1985]; Voorhees et al.[1988]; Voorhees[1992]; Voorhees et al.[1992]; Jou et al.[1997]; Leo et al.[2000,
2001], and references therein). Alternative approaches to shape optimization may also be found elsewhere
(e. g.,Maute and Ramm[1995, 1997]; Bendsoe and Kikuchi[1988]; Leo et al.[1998]; Maute et al.[1999];
Schleupen et al.[2000]; Jog et al.[2000]; Hou et al.[2001]; Schwarz et al.[2001]).

A simple form of the energy of the inclusion/matrix system is

I =
∫

B
W (Gradϕ)dV +

∫

Γ
γdS +

α

2

(
V2 −

∫

B2

dV

)2

(5.1)

whereB2 is domain of the precipitate,B1 = B − B2 the domain of the matrix,Γ is the interface between
the precipitate and the matrix,γ is the interface energy density for interface,V2 volume of the precipitate,
andα a penalty parameter. For simplicity we take the interfacial energy to be isotropic. Upon discretization,
the energy function is

Ih =
∫

B
W (Gradϕh)dV +

∫

Γ
γdS +

α

2

(
V2 −

∫

B2

dV

)2

≡ Imat
h + I int

h + Ivol
h (5.2)

which, as before, is to be regarded as a function of the nodal coordinatesxh andXh in the deformed and
undeformed configurations, respectively. The equilibrium shape of the precipitate now follows by mini-
mization of Ih with respect to{xh,Xh}. The stationarity condition is again of the form (3.2), and the
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Figure 4.8:Mesh-size dependence of the energy-release rate for a mode-I linear-elastic crack computed as
a nodal configurational force. The exact value is also shown for comparison.

corresponding Euler-Lagrange equations of the form (3.3a) and (3.3b), but now the configurational forces
have additional structure arising from the interfacial energy,I int

h , and the volume constraint energy,Ivol
h .

Thus, we have
RbK = Rmat

bK + Rint
bK + Rvol

bK (5.3)

where each of the terms on the right hand side follows by differentiation of the corresponding energy term
with respect toXh. Evidently, Rmat

bK is a special case of (3.6b). The remaining terms are evaluated in
AppendixB.

By way of numerical example, we consider the case of an isolated linear elastic cylindrical inclusion co-
herently embedded in a likewise linear elastic matrix of infinite extent undergoing plane-strain deformation.
The problem of two phases of Young’s moduliEinc andEmat and a common Poisson’s ratio ofν, where in
addition the inclusion undergoes a dilatational misfit strain ofε∗ and the interface has surface energyγ, has
been studied analytically byJohnson and Cahn[1984]. The elastic strain energy scales with the inclusion
volume and favors an elliptic shape. By contrast, the surface energy scales with the interfacial area and
favors a circular shape. By virtue of this competition, the equilibrium shape of the inclusion depends on its
volume. Thus, for small inclusions, the surface to volume ratio is large and the inclusion shape is dominated
by the interfacial energy, resulting in ostensibly circular shapes. By contrast, for large inclusions the surface
to volume ratio is small and the inclusion shape is dominated by the strain energy, which results in elliptic
shapes. The transition from one regime to the other occurs at the critical radius,Johnson and Cahn[1984],

rc =
3(1 + δ − 2ν)2(1 + κδ)γ
4µincδ(1− δ)(1 + κ)ε∗2

(5.4)

whereκ = 3− 4ν, δ = µinc/µmat andµ is the shear modulus.

5.1 Isotropic inclusion and matrix

In calculations we takeEinc = 100 GPa,Emat = 150 GPa,ν = 1/3, ε∗ = 0.01, andγ = 50 mJ/m2. For
these values of the parameters the critical radius isrc = 35.62 nm. Owing to the two-fold symmetry of
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Figure 5.1:Initial inclusion shape and finite-element mesh adopted in the computation of the equilibrium
shapes of inclusions.

the system the computational domain may be reduced to one single quadrant. The initial mesh used in the
calculations is shown in Fig.5.1and consists of linear triangular elements.

The computed equilibrium shapes for inclusions of sizesr = 31.91 nm < rc, andr = 39.89 nm > rc,
are shown in Fig.5.2, which also displays the analytical equilibrium shapes for comparison,Johnson and
Cahn[1984]. As is evident from the figure, the computed equilibrium shapes are in close agreement with the
corresponding analytical solutions. In particular, the small inclusion adopts a spherical shape at equilibrium,
whereas the large inclusion adopts an elliptical shape, in keeping with the stability analysis ofJohnson and
Cahn[1984].

5.2 Cubic inclusion and matrix

Next we consider cubic phases of elastic moduliC11 = 200 GPa,C12 = 100 GPa, andC44 = 150
GPa, a misfit strainε∗ = 0.01 in the inclusion, a surface energyγ = 50 mJ/m2, and an inclusion size of
40nm. Fig.5.3 shows the computed equilibrium shape of the inclusion, which is closer to a square shape
than in the isotropic case. Although no analytical solution appears to be in existence for this problem, the
computed equilibrium shape is in close agreement with those computed by other methods byJog et al.
[2000], Thomson and Voorhees[1994], andSchmidt and Gross[1997].

6 Conclusions

We have developed a variationalr-adaption method for static problems. The distinguishing characteristic
of this method is that it relies on the variational principle to simultaneously supply the solution, the optimal
mesh and, in problems of shape optimization, the equilibrium shapes of the system. This is accomplished
by minimizing the energy functional with respect to the nodal field values as well as with respect to the
triangulation of the domain of analysis. Energy minimization with respect to the field variables has the
effect of equilibrating the body, whereas energy minimization with respect to the referential nodal positions
has the effect of equilibrating the energetic orconfigurational forcesacting on the nodes.
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(a) (b)

(c) (d)

Figure 5.2:Equilibrium shapes an isotropic inclusion/matrix system,Einc = 100 GPa,Emat = 150 GPa,
ν = 1/3, ε∗ = 0.01, γ = 50 mJ/m2, andrc = 35.62 nm. a) Initial shape of small (r = 31.91 nm < rc)
inclusion. b) Computed and analytical (red) equilibrium shape of small inclusion. c) Initial shape of large
(r = 39.89 nm> rc) inclusion. d) Computed and analytical (red) equilibrium shape of large inclusion.
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(a) (b)

Figure 5.3:Equilibrium shapes a cubic inclusion/matrix system,C11 = 200 GPa,C12 = 100 GPa, and
C44 = 150 GPa,ε∗ = 0.01, γ = 50 mJ/m2. a) Initial shape of a40 nm inclusion. b) Computed equilibrium
shape of the inclusion.

An appealing aspect of the variational adaption method is that mesh optimization, including both re-
finement and unrefinement, is achievedwithout resorting to error estimates or mesh adaption indicators.
Indeed, the entire solution, namely, the triangulation and the field variables, emanates directly from the
variational principle. This confers the variational adaption method great simplicity in comparison with tra-
ditional methods based on error estimation and minimization. Another limitation of traditional methods is
that they rely strongly on error bounds expressed in terms of norms. Such error bounds are known with any
degree of generality only for linear elliptic problems, and are difficult to implement in practice. More worri-
some is the reliance of traditional methods on a linear functional space structure. Whereas for linear elliptic
problems the energy supplies a natural norm and the space of solutions possesses a natural linear structure,
no such natural linear structure exists for generalnonlinearproblems, especially where finite kinematics is
concerned. By contrast,the energy of the system always makes mathematical and physical sense, regardless
of the linearity or nonlinearity of the problem.

It is also noteworthy that, by virtue of the application of mesh improvement operations, the mesh con-
nectivity, or topology, is reconstructed during the relaxation of the mesh. This flexibility is essential in
order for arbitrary variations in mesh density to be possible. For instance, in the semi-infinite crack example
treated in Section4, a dynamic reconstruction of the mesh connectivity enables the nodes to migrate towards
the crack tip unimpeded. The limitations of the present implementation are also evident in that example.
Thus, for instance, in order to maintain the integrity of the boundary representation of the computational
domain, the number of nodes on all edges and faces of the boundary is held fixed. These constraints limit
the evolution of the mesh, e. g., by limiting the extent of refinement or unrefinement near the boundary.
The lack of an optimal ratio of boundary to interior nodes may in turn result in elongated elements, such as
are evident in Fig.4.4, and generally detract from the quality of the mesh. A worthwhile extension of the
method would consist of allowing nodes to move in and out of boundary edges and faces in accordance with
the energetics of the system.
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A Configurational forces for isoparametric elements

In this appendix we derive explicit expressions for the nodal configurational forces for isoparametric ele-
ments. Begin by expressing the discrete energy in the form

Ih =
E∑

e=1

{∫

Ωe

W (Gradϕh)dV −
∫

Ωe

RB ·ϕhdV −
∫

∂Ωe∩∂B2

T̄ ·ϕhdS

}
≡ I

(1)
h − I

(2)
h − I

(3)
h (A.1)

whereE is the number of elements andΩe is the undeformed domain of elemente. Next we compute
the variations of each of the terms in Eq.A.1 with respect toXh, for the particular case of isoparametric
interpolation, i. e., for local shape functions of the form

N e
a = N̂a ◦ ηe−1 (A.2)

where

ηe(X̂) =
n∑

a=1

Xe
aN̂a(X̂) (A.3)

is the isoparametric mapping for elemente, defined over the standard domainΩ̂ of the element, andXe
a are

the nodal coordinates in the undeformed configuration of the element. Begin by writing

I
(1)
h =

E∑

e=1

∫

Ω̂
W

(
n∑

a=1

xiaN̂a,A
∂X̂A

∂XJ

)
det(∇̂ηe)dΩ̂ (A.4)

Taking variations with respect toδXh gives:

δI
(1)
h =

E∑

e=1

∫

Ω̂

{
−PiJ

[
n∑

a=1

xiaN̂a,A
∂X̂A

∂XK

(
n∑

b=1

δXe
bKN̂b,B

)
∂X̂B

∂XJ

]

+W

(
n∑

b=1

δXe
bKN̂b,B

)
∂X̂B

∂XK

}
det(∇̂ηe)dΩ̂

(A.5)

or

δI
(1)
h =

E∑

e=1

∫

Ωe

MJK

(
n∑

b=1

δXe
bKNb,J

)
dV (A.6)

where
MJK = WδJK − FiKPiJ (A.7)

is Eshelby’s energy-momentum tensor,Eshelby[1975]. In addition we have

I
(2)
h =

E∑

e=1

∫

Ω̂
RBi

(
n∑

a=1

xiaN̂a

)
det(∇̂ηe)dΩ̂ (A.8)
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Taking variations we obtain

δI
(2)
h =

E∑

e=1

∫

Ω̂
RBi

(
n∑

a=1

xiaN̂a

)(
n∑

b=1

δXe
bKN̂b,B

)
∂X̂B

∂XK
det(∇̂ηe)dΩ̂ (A.9)

or

δI
(2)
h =

E∑

e=1

∫

Ω̂
RBiϕi

(
n∑

b=1

δXe
bKNb,K

)
dV (A.10)

Finally we turn to the traction term. To this end, letP̄ be any tensor-valued function such thatP̄iJNJ = T̄i

on∂B2 andP̄iJNJ = 0 on∂B1. In practice, the function̄P need only be one element deep. Then we have

I
(3)
h =

∫

∂B
P̄iJNJϕidS =

∫

B
(P̄iJϕi),J dV =

∫

B
(P̄iJϕi,J + P̄iJ,Jϕ)dV (A.11)

Each of the two term in the last expression can now be given a treatment identical to the termsI
(1)
h andI

(2)
h

discussed earlier. Collecting all terms we obtain

δIh =
E∑

e=1

∫

Ωe

{
[W − P̄k,Lϕk,L − (RBk − P̄kL,L)ϕk]δJK − (PiJ − P̄iJ)FiK

}
(

n∑

b=1

δXe
bKNb,J

)
dV

(A.12)
Collecting terms, the nodal configurational force follows as

RKb =
∂Ih

∂XKb
=

E∑

e=1

∫

Ωe

{
MKJ + [−P̄k,Lϕk,L − (RBk − P̄kL,L)ϕk]δJK + P̄iJFiK

}
Nb,JdV (A.13)

B Configurational forces for interface optimization

In optimizing the shape of elastic inclusions the energy needs to be augmented by the addition of interfa-
cial and volume constraint terms. For simplicity, we consider the case of constant and isotropic surface
energy, and finite elements whose restrictions to the interfaces to be optimized define a collection of surface
isoparametric elements{Γe, e = 1, . . . , S}. Thus, for every elemente, the isoparametric mapping

X = ηe(X̂1, X̂2) (B.1)

maps the standard domain̂Γ into the actual domainΓe of the element inR3. Here(X̂1, X̂2) are parametric
coordinates defined on̂Γ. Under these assumptions, the interfacial energy takes the form

I int
h =

S∑

e=1

∫

Γ̂
γ |ηe

,1 × ηe
,2| dΓ̂ (B.2)

Taking variations we obtain

δI int
h =

S∑

e=1

∫

Γ̂
γ

(ηe
,1 × ηe

,2)I

|ηe
,1 × ηe

,2|
εIKM

(
n∑

b=1

[
(ηe

,2)M N̂b,1 − (ηe
,1)M N̂b,2

]
δXe

bK

)
dΓ̂ (B.3)

whence it follows that

Rint
bK =

S∑

e=1

∫

Γ̂
γ

(ηe
,1 × ηe

,2)I

|ηe
,1 × ηe

,2|
εIKM

[
(ηe

,2)M N̂b,1 − (ηe
,1)M N̂b,2

]
dΓ̂ (B.4)
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Likewise, taking variations of the volume constraint we obtain

δIvol
h = −α

(
V2 −

∫

B2

dV

) E2∑

e=1

∫

Ωe

(
n∑

b=1

δXe
bKN e

b,K

)
dV (B.5)

whereE2 is the number of elements inB2. From this identity we obtain

Rvol
bK = −α

(
V2 −

∫

B2

dV

) E2∑

e=1

∫

Ωe

N e
b,K dV (B.6)
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