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Abstract

This paper describes an application of a second generation imple-
mentation of the Sepia architecture (Sepia-2) to interactive volu-
metric visualization of large rectilinear scalar fields. By employing
pipelined associative blending operators in a sort-last configuration
a demonstration system with 8 rendering computers sustains 24 to
28 frames per second while interactively rendering large data vol-
umes (1024x256x256 voxels, and 512x512x512 voxels). We be-
lieve interactive performance at these frame rates and data sizes is
unprecedented. We also believe these results can be extended to
other types of structured and unstructured grids and a variety of GL
rendering techniques including surface rendering and shadow map-
ping. We show how to extend our single-stage crossbar demonstra-
tion system to multi-stage networks in order to support much larger
data sizes and higher image resolutions. This requires solving a
dynamic mapping problem for a class of blending operators that
includes Porter-Duff compositing operators.
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1 Introduction

In previous work [13, 14] a commodity-based architecture (Sepia)
was presented for constructing scalable display subsystems for dis-
tributed clusters. The architecture allows large numbers of comput-
ers to post images onto rectilinear tiles of a large display, and to
apply compositing, blending, and other per-pixel operators to those
images. This paper reports on the application of a second genera-
tion implementation (Sepia-2) of the architecture to the problem of

structured volume visualization using hardware acceleration. While
the small (8 rendering computers plus 1 display server) demonstra-
tion system sustains performance levels that are unprecedented, we
attach more significance to the fundamental principles the demon-
stration elucidates. By careful recourse to established architectural
and rendering theory we argue that the demonstration validates the
architecture at larger scales, for a broad range of problems, using a
variety of image generating devices.

In this paper we apply the Sepia architecture to the problem of
interactive rendering for scalable volumetric data. We use the Vol-
umePro 500 ray casting engine [20] and partition the volumetric
data into subvolumes that can be interactively rendered by this en-
gine. The images of these subvolumes are blended concurrently by
the Sepia architecture, prior to being warped for final display.

The next section briefly reviews the Sepia architecture in relation
to two similar projects called Lightning-2 and MetaBuffer [2, 27].
We identify two fundamental defects in these projects: they cannot
support blending, or any non-commutative image compositing op-
erators; and their costs scale explosively, making them impractical
in large configurations. The origin of these defects lies in their com-
mon use of a mesh topology which is statically ordered, and which
scales explosively in complexity as
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where

�
is the number

of inputs and
�

the number of outputs. The Sepia architecture is
both more efficient and more powerful because it uses a hierarchical
switched topology rather than a statically ordered mesh. This topol-
ogy is more efficient because it scales in complexity as
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,

and is more powerful because it supports non-commutative image
compositing operators including blending and Porter-Duff opera-
tors [5, 19, 21, 25]. We also identify two advantages of these other
projects: the use of efficient DVI image acquisition in Lightning-2;
and a useful class of viewport mapping operators defined for the
MetaBuffer. We explore the potential of both of these advantages
in the discussion section.

The rest of this paper is organized as follows. We first describe
the Sepia architecture in comparison to prior work. We introduce
the scientific problem addressed in this application, visualization of
teravoxel data sets collected from physical fluid mechanical exper-
iments and from simulations. We describe the hardware and appli-
cation software and firmware, including a derivation of firmware
blending arithmetic, and an analysis of system throughput and la-
tency. We conclude our demonstration by describing the data sets
used to produce the final images and the performance we observed
with those data sets. We then move to a discussion of scalability
in which we rely on architectural theory to argue that this demon-
stration system validates scalability in object space. We discuss
technical issues involved in scaling the current application in im-
age space and what this implies for image scaling in general. We
conclude with a general discussion.

2 Sepia architecture

The Sepia architecture is an FPGA and network-based subsystem
for interactive parallel visualization using remote displays and com-
modity graphics accelerators [13, 14]. The architecture allows gen-
eral “sort-last” style parallel programming [16] and supports other
programming models by providing concurrent high speed com-



positing of large numbers of image streams. The architecture is
physically implemented by PCI boards that perform image acquisi-
tion, compositing, and redisplay when connected to ports on a high
speed network. Figures 1 and 3 show the layout and manufactured
second generation prototype PCI board and the cluster used in this
demonstration.

The PCI board (Sepia-2) incorporates a VIA-based high speed
network interface (ServerNet-2) with attachments for high speed
digital image acquisition and display. In addition to the network
interface each board contains 3 Xilinx Field Programmable Gate
Array devices (FPGA-1, -2, and -3), RAM buffers, and digital ex-
pansion interfaces. Configurations at any scale require one board
for each graphics accelerator and one for each display device in
addition to network switching. The board acquires frame buffer
content from the graphics accelerator and merges it with pipelined
content arriving through the network. Each network path sustains a
180 MB/s image stream in operation out of a theoretical peak of 220
MB/s. This sustained traffic is equivalent to 80 frames per second
of 1024x768 RGB pixels, 48 fps of 1280x1024 RGB, or 32 fps of
1600x1200 RGB. Individual image streams may be tiled together
to make larger displays.

The network ASIC drives two network ports with a peak wire
speed of 1.25 gigabits per second in each direction on each port.
The ASIC sends the inbound data through a 66 MHz 64 bit PCI
interface to FPGA-3. In operation an image stream arrives through
the network multiplexed across the two ports and is sent to FPGA-3
where it is de-multiplexed and passed to FPGA-2 for processing.
In operation the board sustains 180 MB/s of inbound image traffic
with an equivalent amount of outbound traffic in the opposite di-
rection, for a sustained PCI throughput of 360 MB/s (inbound plus
outbound). The outbound image traffic carries the results of a com-
positing operation computed by FPGA-2. This traffic is multiplexed
by FPGA-3 for transmission by the ServerNet-2 ASIC.

The compositing operation in FPGA-2 combines pixels from the
inbound image stream with pixels from a local image source. At
small data rates the local image source can be obtained through the
host PCI interface controlled by FPGA-1. In our demonstration sys-
tem we have measured single read performance of 120 to 150 MB/s
from host memory through the host PCI, and write performance of
300 MB/s. For higher data rates the digital I/O expansion connec-
tors can support image streams of 500 MB/s in or out, equivalent to
over 90 frames per second of 1600x1200 RGB images.

The architecture supports efficient large scale per-pixel image
compositing with sub-microsecond switching to dynamically se-
quence compositing operations. Chains of compositing operators
are mapped through network switches onto logical pipelines that
correspond to individual tiles of large displays, with arbitrary many-
to-1 mappings between graphics accelerators and display tiles. The
use of FPGA technology allows firmware reprogrammable com-
positing operators that can accommodate various pixel formats and
application requirements. Our initial focus is to support standard
OpenGL depth and blending operators for traditional sort-last ren-
dering [7, 9, 13, 15, 16, 17, 18, 24, 28] and to implement operators
for photo-realistic shadow mapping [1, 8, 12]. A primary motiva-
tion for the architecture has been to visualize extremely large scale
problems in science and engineering [26].

2.1 Prior art

Sepia addresses the same problem as two similar recent projects,
Lightning-2 and the MetaBuffer design. In addition it builds on
a body of previous research and commercial efforts including the
PixelFlow (by Hewlett-Packard) and the Reality Monster (by SGI)
[2, 7, 13, 14, 15, 27].

Like Sepia, Lightning-2 is a hardware system that delivers pixel
data from graphics accelerators to remote tiled displays. The

Figure 1: Component layout of the manufactured Sepia-2 board
in figure 3. This PCI board contains three Xilinx XC4044XLA
and XC4085XLA FPGA devices running at 66 MHz, a 66 MHz
ServerNet-2 “Colorado-2” network interface ASIC, buffering, and
three expansion connectors.

Lightning-2 hardware is contained in a standalone chassis that con-
nects to computers and displays through DVI cables of approxi-
mately three meters in length. A chassis contains some number of
boards with each board supporting four inputs from graphics ac-
celerators and driving up to eight outputs to DVI display devices.
To support larger configurations the boards may be tiled together
into a rectangular mesh and connected with high-speed (unswitched
Myrinet) network links. Lightning-2 supports a flexible scheme
for mapping viewport pixels onto displays at the level of individ-
ual scanline fragments with support for optional per-pixel depth
compositing and chroma-keying. The flexibility of this mapping
scheme comes at the price of corrupting the source color buffer,
a fact that may pose a problem for some applications. For exam-
ple, it is impossible to distribute a full scanline from a viewport
to a set of disjoint tiles without losing some of the pixel content.
This makes it impossible to support the usage model illustrated in
figure 2. Lightning-2 has pioneered the use of DVI acquisition of
RGB content. DVI acquisition is necessary for meeting the latency,
throughput and performance requirements of a production quality
system.

The MetaBuffer design specifies a mesh-based topology with
DVI image acquisition similar to Lightning-2. In place of scanline
fragment mapping MetaBuffer describes a rich set of viewport map-
pings that include multi-resolution support, anti-aliasing, and trans-
lations in addition to optional per-pixel depth compositing. Some
of the architectural principles of the MetaBuffer design have been
demonstrated in an application to large scale iso-surface visualiza-
tion [29].

At large scales both Lightning-2 and MetaBuffer suffer from
mesh scaling. A mesh configuration with 1000 computers and 100
displays requires roughly 100 times as many components as a corre-
sponding Sepia configuration. In configurations where the number
of displays is proportional to the number of computers the mesh
complexity scales quadratically. In addition to being more scalable
the Sepia configuration is more versatile with support for blend-
ing as well as depth compositing, shadow mapping and potentially
other novel capabilities.

2.2 A dynamic mapping problem

The mapping problem is intrinsic to every distributed computa-
tion that involves scheduling interdependent operations on multi-
ple functional units. The general problem is formulated in terms of
graph embedding with a goal to embed an interdependency graph



into a fixed host graph that represents the functional units and their
connections. Specific examples include compiling arithmetic in-
struction sequences for shared memory multiprocessors, schedul-
ing concurrent processes for execution on a cluster, and scheduling
scientific calculations on a mesh-based systolic array architecture
[4, 10, 23].

In the architectural problem studied here the goal is to map im-
age sources to display tiles through an ordered sequence of image
compositing operations. In graph-theoretic terms the problem is
to embed any valid set of logical pipelines into a single fixed net-
work topology without exhausting the available network bandwidth
at any point along any path. This general problem is NP-complete,
an obstacle that may be overcome by judicious assumptions about
the host graph. If we want to solve this mapping problem dynami-
cally, potentially on every new frame, it will be necessary to make
assumptions that allow efficient polynomial time solution.

Call
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a set of images, each image an ��� tuple
of pixels
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of a specified sequence
of per-pixel imaging compositing operators

2 �
that have commuta-

tive, associative and/or distributive arithmetic properties.
These arithmetic properties determine constraints for routing

data among functional units, as follows. Associative operators may
be reparenthesized to express potential concurrency, for example
transforming
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Changing concurrency does not affect requirements for sequenc-
ing the operations and as a result these operators impose the most
severe scheduling constraints. Examples include the set of asso-
ciative blending operators which include Porter-Duff compositing
operators.

Commutative operators may be scheduled for execution in any
sequence and therefore impose easier routing requirements. Depth
compositing is an example of a commutative operation. These op-
erators are order-independent. Another class of operators are dis-
tributive operators. Supporting this class of operators requires a
broadcast capability.

The Sepia dynamic mapping problem is to embed a set of logical
pipelines of compositing operators into a physical network. Each
pipeline stage corresponds to a Sepia-2 board that implements a
compositing operator in firmware. Each stage must be joined to its
successor by a network path that guarantees adequate bandwidth
along every network link.

The small demonstration system connects the Sepia-2 boards us-
ing a full-duplex single stage crossbar. The necessary properties are
satisfied trivially in this crossbar which allows any pattern of dis-
joint pipelines to be embedded with no contention for bandwidth.
We provide a general large-scale solution in section 4.1.

3 TeraVoxel visualization

The TeraVoxel project1 couples fluid mechanical experiments with
computer simulations with a goal to visualize the resulting data.
Physical experiments are performed by observing physical fluid
quantities on a regular 2D grid of points within the flow. The data
set is extended into three dimensions by sampling repeatedly over
time. When the ultimate intended physical resolution of =!>@?�A

�
points is achieved with sampling at 1024 frames per second the
project will generate a teravoxel of data every 17 minutes. Our cur-
rent system visualizes one-eighth gigavoxel interactively and this
exceeds the requirements that the project has generated to date. Our
ultimate goal will be to visualize a full gigavoxel ( =!>@?�A

6
) volume.

We expect to achieve this using the same configuration simply by
incorporating newer and more powerful graphics accelerators.

1National Science Foundation grant EIA-0079871

In order to visualize this data we partition a large data set into
smaller subvolumes and visualize each subvolume concurrently.
This is followed by concurrently blending the subvolume images,
with the blended result delivered to a computer than supports a
graphical user interface. This is explained in detail in the rest of
this section.

3.1 Hardware configuration

We equipped a cluster of eight graphics workstations (Compaq
SP750 running Windows2000) with Sepia-2 boards and Volume-
Pro 500 ray casting accelerators [20]. The VolumePro is a black
box image generator that loads a data volume and produces a se-
ries of viewpoint-dependent images according to a pre-determined
hardware algorithm (object order “shear-warp” ray casting [11]). It
can support high quality programmable lighting effects and deliver
a continuous stream of images to host memory without interrupting
the rendering operation. This makes it convenient for image acqui-
sition into the Sepia-2 board through host memory and the host PCI
interface. The relatively small image size of 512x512 RGBA pixels
(1 MB per frame) keeps the resulting transfer latency tolerable. We
have observed that the card sustains 24.8 to 27.5 frames per second
operating in this mode with volumes of ?CBED
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voxels. We locate the

VolumePro and Sepia-2 boards in different peer PCI busses in order
to eliminate potential resource conflicts that might result from bus
sharing.

The Sepia-2 boards are connected symmetrically to a pair of
ServerNet-2 switches. A ninth workstation containing a Sepia-2
board is also connected to these switches. This ninth workstation
functions as a display for the eight node cluster. It contains a stan-
dard OpenGL accelerator in an AGP-4x interface. This display
workstation loads the blended images into texture memory on the
accelerator and then displays the texture on the surface of a poly-
gon. This is the standard method used to display images from the
VolumePro when it is used in a single workstation.

3.2 Application software

The application is a display process that communicates with a set
of rendering processes running on the cluster. The display process
supports a user interface and allows interactive viewpoint control
through mouse movements. It distributes viewpoint information to
the renderers over a shared Ethernet. The large data volume is bro-
ken into subvolumes with each subvolume assigned to a rendering
process. The renderers activate the VolumePro to generate images
into host memory, pad these images to a larger size, and then ac-
tivate the Sepia-2 blending pipeline. At every frame the pipeline
blending order is recomputed based on a continuously changing
viewpoint. The display process waits for the blended result and dis-
plays it on the screen. The stages of rendering, blending and display
are fully overlapped and as a result the interactive latency remains
between two and three frames. This is only about one frame more
than is incurred with the VolumePro in normal usage.

In the standard shear-warp algorithm base plane (BP) images are
generated in object order and then warped by a 2D linear transfor-
mation into the viewing plane [11]. The motivation for this ap-
proach is to preserve the efficiencies of object-order ray casting.
VolumePro generates a 512x512 pixel BP that contains within it
the viewpoint-dependent image of a ?CBED
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data volume. In con-

ventional usage this BP is loaded into the texture memory of an
OpenGL graphics accelerator. The texture is then applied to a dis-
torted polygon in order to correct the viewpoint-dependent error in
the BP image. The resulting viewpoint-corrected image is usually
displayed at a higher pixel resolution than the original BP.

In order to avoid artifacts that would result from repeated re-
sampling we apply blending to the raw BP image data before it is



texture mapped. Each rendering client generates a 512x512 pixel
BP image containing a subimage of the data volume. A client
copies this subimage into a larger 1024x1024 pixel “superimage
base plane” (SBP). It is these larger SBPs that are blended in real
time by the Sepia-2 hardware. The display process receives a
blended 1024x1024 pixel result that is ready to load into GL tex-
ture memory for the final warp and display. Parameters for this
warping are generated by the VolumePro with each image. These
parameters are passed to the display process by one of the render-
ing processes in the form of extra data in an unused part of the SBP
image.

3.2.1 Firmware arithmetic

The VolumePro generates pixels by applying compositing opera-
tions to a series of voxels along a line of sight. This is the operation
of ray casting. We encounter two arithmetic issues in paralleliz-
ing this operation. The first issue is arithmetic equivalence between
a single VolumePro computation and the combined result of a set
of (smaller) VolumePro computations. The second issue is opera-
tor associativity, without which concurrent evaluation is arithmeti-
cally undefined. These issues require that we define an associative
compositing operator that yields a concurrent result arithmetically
equivalent to the original serial result. This operator is not the same
as the VolumePro blending operator. In this section we define such
an operator and prove its correctness.

The ray casting computation blends the successive contributions
of an ordered set of voxels that intersect a line of sight. If

� ��� ��) 	
corresponds to a blending operator that combines a new voxel sam-
ple

)
with an accumulated result

�
then the total accumulated result���

of an ordered front to back ray casting computation is
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where
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are successive voxel samples and 0 represents the
contribution from a transparent voxel. The ray casting engine im-
plements the following front-to-back blending operator

�
for all

color channels
4

(where
(

is the opacity channel,
45 

the accumu-
lated color,

(��
the opacity of sample

)
, etc.)
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Parallelization breaks (1) into two or more concurrent subcomputa-
tions, for example
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The blending computation in the Sepia-2 firmware must compute
a function � such that � ����� � ��� 	 � ���

. Additional requirements
on � are that it is associative, so that the computation can be par-
allelized into � concurrent pieces

�.� � � � ���
, and that 0 is an identity

element for � corresponding to a transparent pixel. We take the
standard approach [3] of pre-multiplication by

(
and define a pre-

multiplier function 
 on pixels
)

(which have components
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and(��
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We can easily verify that the following � is associative with identity
element 0 (a transparent black voxel) and further that

� ��� �
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 � ) 	 	 . This � will be the compositing operator we implement
in firmware. Note that it is not the same as the VolumePro blending
operator (2).
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We can show that � ����� � ��� 	 gives the same arithmetic result as the
original ray casting computation

���
(1).
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Since � is associative, we can extend this result inductively to any
number of terms

��� � � � ���
. This concludes our proof that this � is

correct for blending together the result of any number of concurrent
subcomputations.

3.2.2 Throughput and latency analysis

We have a model for processing latencies from the initial stage of
image generation through blending and final display. This model
predicts an end-to-end latency of 102 milliseconds, or roughly two
and a half frame intervals at 25 frames per second. Of this figure 59
milliseconds are due to the normal VolumePro characteristics when
it operates in a single workstation.

The data flow can be modeled in four stages. In the first stage the
VolumePro generates a viewpoint dependent BP image and writes
it to host memory through PCI bus number 0. We have observed
that the time required for this operation, as measured by time spent
inside the VolumePro API, varies between 36 and 42 milliseconds,
for a sustainable image rate between 24 and 28 frames per second.
This first stage is overlapped with all the succeeding stages so that
image generation for frame / � = occurs concurrently with copying,
blending, and display of frame / .

In the second stage the rendering client software copies the
RGBA subimage of the ?CBED
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local data volume from the native BP

into a larger 1024x1024 pixel SBP. This stage consistently takes
under 5 milliseconds regardless of viewpoint.

In the third stage the Sepia-2 hardware and firmware read the
SBP from host memory through PCI bus number 1. This local SBP
is blended with network traffic containing the intermediate result
of blending SBPs from the other rendering clients. The ultimate
blended result is an SBP that is delivered into host memory of the
display node. The rate of blending is determined by the rate at
which the SBP can be read into the Sepia-2 card through the host
PCI interface. This is between 120 and 150 MB/s when the host
PCI is not otherwise contended. This is much less than the Sepia-2
network transport (ServerNet-2) which can sustain 180 MB/s. At
the slower rate of 120 MB/s this blending operation for a single
4 MB image will take 33.33 milliseconds, plus a sub-millisecond
synchronization barrier and time to drain the pipeline. Taking all
this into account the blending operation can be estimated at 34 mil-
liseconds after which time the blended SBP result is in RGB form
on the display node.

In the fourth stage the display process uploads the fully blended
SBP into OpenGL texture memory and waits at most one monitor



refresh interval for the image to appear. In a well tuned GL driver
this upload will occur at over 900 MB/s through an AGP-4x inter-
face. We have verified such an upload rate in our workstations. At
this rate the 1024x1024 RGB blended SBP texture uploads in un-
der 4 milliseconds. At 60 Hz a monitor refresh interval is under 17
milliseconds.

We can model the worst case of these accumulated latencies. The
original image generation takes no more than 42 milliseconds. In
normal operation in a single workstation the VolumePro accumu-
lates latency due to image generation and a single video refresh
interval, for an estimated worst-case total of 59 milliseconds. In
our demonstration system the subsequent stages of copying, blend-
ing, and texture upload take no more than 5, 34, and 4 millisec-
onds respectively. These figures total to a worst-case estimate of
102 milliseconds. Additional latencies of a few milliseconds may
potentially result from operating system scheduling artifacts. A va-
riety of factors may result in better latencies than these worst-case
estimates. Parallelization thus adds approximately one additional
frame of latency, which is roughly equal to the time required for
SBP blending. We expect similar latencies at larger scales.

3.3 Results

Figures 3 through 5 show our demonstration equipment and a se-
ries of images generated by that equipment. Images were generated
from computer models and simulations, with data sets of B =�?
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and

1024x256x256 voxels. All of the data sets were visualized interac-
tively at between 24 and 28 frames per second. We are unaware of
any other demonstrations that have achieved these frame rates on
data volumes of these sizes. The frame rates were determined by
the VolumePro rendering times, which varied with different view-
points. The Sepia-2 board was not the bottleneck in the computa-
tion and had considerable unused sustainable throughput. Detailed
runtime measurements confirmed the principal performance bottle-
necks for this application were the image generation process itself
and the data rate through the host PCI interface into the Sepia-2
board.

4 Scalability

We have presented a small scale demonstration and claim that it
validates a large scale result. In this section we show how to ex-
pand the hardware configuration from a single crossbar to arbitrar-
ily large configurations while preserving linear scaling in complex-
ity, and the latency and routability required for dynamic mapping.
We then discuss the problem of scaling the image size to higher
pixel resolutions.

4.1 Object space scaling

We have shown that a single-stage crossbar system satisfies require-
ments for latency, routability, and scaling. We argue by induction in
the size of this crossbar that the demonstration validates the Sepia
architecture at larger scales. Since physical crossbars have a scaling
limit we have to show that equivalent results can be obtained using
more elaborate multi-stage structures.

In this section we present a model for such structures based on
the symmetric Clos topology [5] and show that this model has the
scaling, latency and routability that we require. The model scales
in component complexity as

��� � �
	
, and in some cases has a

constant as small as
� � �7? 	��

�
with � the number of ports per switch.

The maximum length path in this model adds only a few stages of
latency more than a single crossbar. As a result a logical pipeline
with thousands of stages will accumulate only a few milliseconds
of network path latency.

4.1.1 Recursive Clos structures

The Clos model is one of the most widely studied network topolo-
gies [5]. We are interested in the specific case of two-layer sym-
metric Clos structures. These are constructed from two rows of
switches with � ports per switch. Each row has the same num-
ber of switches, and each switch dedicates half its ports to external
connections, and half to internal links shared with switches in the
opposite row. Any given switch shares the same number of internal
links with each switch in the opposite row.

For example, with � � =!D it is possible to build a two-layer
structure with 128 external ports and 64 internal links, populated by
two layers of 8 switches each. Each top (bottom) layer switch sup-
ports 8 external ports, and 8 internal ports that share links with the 8
switches in the bottom (top) layer. In general a two layer structure
will afford

� � ��� ? 	 external ports and will require � switches and� � ��� A 	 internal links. The two-layer structure scales linearly in link
and switch complexity with increasing numbers of external ports.

The Slepian-Duguid (SD) theorem [25] proves that the two layer
symmetric Clos structure provides full bisection-bandwidth be-
tween external ports in the top and bottom layers. In particular the
theorem guarantees that a set of deterministic routing tables exist
that can simultaneously route traffic among any set of pairings of
external ports, where each port in a pairing is taken from a different
layer (top or bottom) of the structure. The theorem also provides an
algorithm to construct these routing tables.

To obtain more than
� � ��� ? 	 external ports the construction may

be repeated recursively by replacing each individual crossbar with
a two layer structure. For example, the limit of a two layer structure
with � � =!D is 128 external ports, and with � ��� ? this limit is 512.
We can use this structure recursively to build a four layer structure
from

� � ��� ? 	 repeated two layer structures. A four layer structure
with � � =!D requires 2K (2,048) switches and provides 8K (8,192)
external ports. When � ��� ? these numbers are 16K (16,384) and
128K (131,072). Scaling is linear up to these maximum sizes.

The SD theorem applies to the four layer structure, and by induc-
tion in the number of recursion levels, to recursive structures built
in this way with eight, sixteen, and more layers. In principle when
the number of layers is taken into account the scaling is � � �
	 �
� � 	 .
In practice two or four layer structures should be large enough for
any currently realistic configuration, and so in practice the scaling
is linear.

4.1.2 Sepia pipeline mapping

We want to preserve the property that runtime mapping may be
accomplished by routing image streams through the network ac-
cording to network address. In the restrictive case of commutative
operators the Sepia mapping problem is trivial. Routing in this case
can be achieved using a simple serial chain of operators. An exam-
ple might be a flight simulator application that involves only surface
rendering and depth compositing. Such cases can be supported by
a simple daisy chain of

� � � � ��? 	 switches with
� � � ? 	 external

ports per switch.
In the case of general operators with non-commutative arithmetic

properties the Sepia mapping problem requires a more complex
topology. The SD theorem established that the two-layer symmet-
ric Clos topology supports arbitrary mappings between two equal-
sized sets of external ports. The theorem assumed half-duplex net-
work links. The Sepia mapping problem requires routing image
streams in a predetermined sequence among compositing operators
(Sepia-2 boards) attached to external full-duplex network ports.

We can transform the Sepia mapping problem into two instances
of the all-pairs assignment problem addressed by the SD theorem.
The full-duplex nature of the physical network permits us to treat
two such assignment problems simultaneously, one in each direc-
tion. Every path between stages in the mapping problem corre-



Figure 2: A viewport of 1600x1200 pixels intersecting 9 projectors
in a 4Kx3K pixel tiled display wall. Each projector has 1024x768
pixel resolution.

sponds to a special case of two pairings in the assignment problem.
These pairings have the form

� ��	��
	 4 	
where

�
and

4
are ex-

ternal ports in the bottom layer of the Clos topology, and
	

is an
external port in the top layer. Thus every pair of pipeline stages is
joined by a network path that travels from the bottom layer to the
top, and then back to the bottom layer.

This proves Sepia routability in the symmetric Clos model for
any number of levels of recursion and thus for any scale. The pre-
ceding discussion has already demonstrated linear scaling in com-
plexity and negligible increase in interactive latency. Taken to-
gether these conclude our argument that the demonstration at small
scales with a single crossbar validates the Sepia architecture at
larger scales.

We finally note that a simple optimization can reduce the switch
cost of a two-layer structure by 25%. Sepia-2 boards are only at-
tached to external ports on the bottom layer of a multi-layer struc-
ture. External ports on the top layer are unused and as a result
the number of top layer switches can be cut in half by eliminating
these unused ports. The corresponding changes to routing tables
are straightforward.

4.2 Image space scaling

The ultimate goal of the TeraVoxel project is to visualize =!>@?�A
6

voxels interactively. We expect to achieve this using eight nodes
due to the rapidly increasing performance levels of texture mapping
hardware in off-the-shelf OpenGL accelerators [9]. The Sepia-2
board blends a 1024x1024 SBP containing RGBA pixels at 24 to 28
frames per second with time to spare. This performance should be
enough for higher resolution images produced by OpenGL acceler-
ators. For example, 1600x1200 RGBA images could be blended at
24 frames per second, and 1280x1024 RGBA images at 36 fps. As
a result we believe that a single image stream is adequate for this
application and we don’t require scaling to multiple displays.

In general we expect image scaling to involve the situation il-
lustrated in figure 2 in which viewports are not constrained to co-
incide with tile boundaries. For example a 1600x1200 pixel view-
port driving a wall of 1024x768 resolution projectors may inter-
sect as many as 9 projectors. We have experimented with image
tiling and reassembly through firmware and believe the model in
figure 2 poses no substantial difficulties. The impact on our ar-
chitecture is a requirement for a new routability proof to account
for image sources contributing to more than one logical pipeline,
and a dynamic progress property for frame reassembly. The re-
sulting usage model is natural and may facilitate anti-aliasing and
multi-resolution mechanisms similar to those described for the
MetaBuffer.

5 General discussion

We expect forthcoming generations of OpenGL accelerators to pro-
vide the performance needed to render larger volumes on our 8
node cluster. The only practical way to incorporate such acceler-
ators is to acquire images efficiently through a DVI interface, as
the Lightning-2 project has explained. Unfortunately such acqui-
sition is not yet practical at workstation display rates. Immature
DVI transmitter and receiver components restrict sustainable data
rates to well below the DVI specified maximum of 1600x1200 pix-
els at 60 Hz using dual channels (six bytes per pixel, 660 MB/s
total). And driver software for graphics accelerators must be mod-
ified to allow double buffering, non-standard DVI transmitter con-
figuration, and other features. Obtaining the needed cooperation
from leading graphics accelerator manufacturers has up until now
been impossible. Despite this difficulty we believe the required fea-
tures will eventually be supported in mainstream accelerators and
we intend to continue to work on this problem.

Only double-buffered DVI acquisition strategies will suffice for
workstation display rates with non-RGB content. Any single
buffered strategy requires the graphics pipeline to stall until the
single buffered data has been acquired. If this data is acquired
through DVI the stall is for an entire DVI interval. In current com-
ponents this penalty ranges from 8.333 milliseconds per frame for
1280x1024 images at 120 Hz, to as long as 16.666 ms per frame at
1600x1200 resolution and 60 Hz.

This is roughly the same amount of idleness as incurred by pixel
readback strategies at 300 MB/s. We have verified such readback
rates in a mainstream accelerator (Matrox G400 under Linux). Be-
cause this idleness occurs on every frame the severity of the penalty
increases at higher frame rates. For example, acquiring 60 frames
per second at 1280x1024 pixel resolution with a 120 Hz refresh
would require idling the graphics pipeline at least 50% of the time.
The problem is more severe at higher resolutions which require
lower monitor refresh rates and therefore longer DVI intervals. For
example, acquiring 1600x1200 images at 60 Hz results in a 100%
idled pipeline with a single buffered strategy. Thus unless we can
obtain double buffering in graphics drivers, frame buffer acquisi-
tion through DVI at workstation display rates will be scarcely more
efficient than pixel readback.
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Figure 3: Left, photos of the Sepia-2 PCI board and TeraVoxel cluster. See figure 1 for a diagram of the PCI board. The cluster contains 8
Compaq SP750 workstations, 8 VolumePro cards, and 9 Sepia-2 cards (the 9th card is in a display server, not pictured). The dual ServerNet-2
twelve port switches are sitting on top of the monitor. Right, two instances of the Stanford Gryphon 3D model, 512x512x512 voxel resolution.

Figure 4: Four successive timesteps of the fluid density field during a developing Rayleigh-Taylor instability. Simulation data courtesy of
Andrew Cook, Lawrence Livermore National Laboratories [6], data volume 1024x256x256 voxels.

Figure 5: Left, three images of the visible human (male) from the National Library of Medicine [22] containing the upper 50% of the CT data.
Right, two images of a turbulence simulation courtesy of Ravi Samtaney, ASCI CSDRM. All of these data sets were 512x512x512 voxels.


