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It is generally assumed that nerve cells optimize their performance to
reflect the statistics of their input. Electronic circuit analogs of neurons
require similar methods of self-optimization for stable and autonomous
operation. We here describe and demonstrate a biologically plausible
adaptive algorithm that enables a neuron to adapt the current thresh-
old and the slope (or gain) of its current-frequency relationship to match
the mean (or dc offset) and variance (or dynamic range or contrast) of the
time-varying somatic input current. The adaptation algorithm estimates
the somatic current signal from the spike train by way of the intracel-
lular somatic calcium concentration, thereby continuously adjusting the
neurons’ firing dynamics. This principle is shown to work in an analog
VLSI-designed silicon neuron.

1 Introduction

In the developing as well as in the mature animal, neuronal firing proper-
ties (or neural code) reflect the statistical properties of presynaptic neurons
(Calvin, 1978; van Steveninck, Bialek, Potters, & Calson, 1994; Smirnakis,
Berry, Warland, Bialek, & Meister, 1997). For instance, it has been argued
that the most efficient representation of the input should use each firing
rate with equal probability (Laughlin, 1981) or that the entropy of the firing
rate should be maximized subject to some constraint, such as average firing
rate (Baddeley et al., 1997). Spiking neurons might exploit a coding that is
similar to that used in the class of one-bit analog-digital converters known
as oversampled Delta-Sigma modulators (Wong & Gray, 1990; Shin, Lee, &
Park, 1993). And these representations need to be invariant to environmen-
tal changes such as temperature, cell growth, channel turnover, and so on
that affect neuronal performance. This raises the question of how a neuron
maintains homeostasis in the face of a changing environment or a chang-
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ing input. An adaptive mechanism that continuously seeks some optimum
within an allowed class of possibilities would give a superior performance
compared to a neuron with a fixed input-output relationship (Widrow &
Stearns, 1985).

How can this goal be accomplished at the single-cell level? Many possibil-
ities come to mind. Experimental evidence from neocortical cells implicates
a change in the synaptic input that down- or upregulates their postsy-
naptic effect (Carandini & Ferster, 1997; Turrigiano, Leslie, Desai, Ruther-
ford, & Nelson, 1998); this effect may be mediated by metabotropic recep-
tors (Mclean & Palmer, 1996). However, other biophysical or biochemical
mechanisms are likely to be involved as well. Given the crucial role of free
intracellular calcium in controlling activation of potassium-dependent con-
ductances as well as a host of enzymes, Ca2+-binding proteins, and calcium-
sensitive genes, it is bound to be involved in maintaining homeostasis. Ab-
bott and his colleagues (Abbott & LeMasson, 1993; LeMasson, Marder, & Ab-
bott, 1993) were the first to propose a quantitative link between the mean in-
tracellular, somatic calcium concentration—serving as an indicator for mean
firing activity level—and the density of a calcium and a calcium-activated
potassium conductance to achieve a criterion mean firing rate for the cell.

Electronic counterparts of biological neurons—so-called silicon neurons
designed using integrated circuit technology (Mahowald & Douglas, 1991)—
have to deal with a related problem: a very large number of associated pa-
rameters that need to be set properly in order for the cell to function properly
(rate constants, peak conductances, and so on). And the performance of such
neurons needs to be stable in the face of fluctuations of bias voltages, oper-
ating temperature, and transistor mismatch. Finally, the sensitivity of these
neurons should also reflect changing input statistics. If we are ever going
to operate large networks of VLSI neurons, we need to incorporate adapta-
tion into the basic operation of each neuron (Douglas, Koch, Mahowald, &
Martin, 1999).

We here focus on the question of how the firing properties of a spiking
neuron depend on the magnitude range change of the time-varying somatic
current signals delivered by synaptic input or intracellular electrode to the
soma. We do so on the basis of adaptive coding theory (Jayant & Noll, 1984).
The input current causes action potentials to be triggered. Signal estimation
theory (Rieke, Warland, van Steveninck, & Bialek, 1996; Gabbiani & Koch,
1998) provides us with an estimation filter to infer the continuous input
current from these discrete events. The filter provides an optimal estimate
of the input in a least-square sense.

We argue that the intracellular free calcium concentration [Ca2+]i at the
cell body represents such an estimation filter. Each action potential leads
to an influx of calcium ions via high-threshold, voltage-dependent calcium
channels. A variety of processes such as pumping, diffusion, and buffering
cause [Ca2+]i to decay in time (Koch, 1998). We use [Ca2+]i to estimate the
average input current and its standard deviation. These estimates control
the amplitude of two conductances that affect the cell’s discharge curve,
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enabling the range of the input signal to be optimally matched to the input-
output function of the cell. Note that we are not arguing that the function
of the neuron is to reconstruct its input but that an estimate of the cell’s
input can be used to adapt the neuron to the time-varying statistics of the
somatic input current. This principle is implemented and shown to work in
a real-time silicon pyramidal neuron (Mahowald & Douglas, 1991).

2 Methods

We used our previously characterized silicon neurons (Mahowald & Dou-
glas, 1991; Douglas & Mahowald, 1995, 1998) in this study. These artificial
neurons emulate the electrophysiology of the somata of regular spiking
neocortical pyramidal cells. The version used in this study comprised a sin-
gle somatic compartment and a simple passive dendritic load. The somatic
compartment includes five voltage-dependent currents as well as a leak
current: the sodium spike current; the delayed rectifier potassium current; a
transient, inactivating potassium current (A current); a calcium-dependent
potassium current; a high-threshold calcium current; and the leakage cur-
rent.

These currents can be approximated by a Hodgkin-Huxley-like formal-
ism (Hodgkin & Huxley, 1952),

I(t) = g ·m(t,V)i · h(t,V)j · (V − E) , (2.1)

where g is the maximum conductance; m, the activation variable taken to
the ith power; h, the inactivation variable taken to the jth power; V, the
membrane potential; and E, the reversal potential of the current. The dy-
namics of each activation and inactivation particle is governed by the usual
first-order differential equation (see the appendix).

The circuits of the silicon neuron approximate the effect of these equa-
tions, using transconductance amplifiers to emulate the voltage-dependent
conductances, while follower integrators provide the necessary dynamics.
The details of the analog VLSI circuit implementation of the Hodgkin-
Huxley-like formalism are described elsewhere (Douglas & Mahowald,
1995, 1998).

The silicon neuron contains circuitry for simulating intracellular calcium
concentrations and the calcium-dependent potassium current (or afterhy-
perpolarization, AHP, current). The calcium concentration circuit emulates
the intracellular, free calcium concentration with the aid of a capacitance
in parallel with a resistance whose behaviors can be approximated using a
first-order differential equation that lumps buffering, pumping, and diffu-
sion of Ca2+ into a single decay term (Bower & Beeman, 1995),

τCa
d[Ca2+]i

dt
= −[Ca2+]i + κICa + CAREF, (2.2)

where τCa is the time constant of calcium decay, ICa is the action-potential-
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Figure 1: (A) The steady-state f–I curve and (B) mean intracellular calcium con-
centration versus input current curve of the silicon neuron for sustained current
injections. The mean calcium concentration reflects the sustained somatic cur-
rent level. Therefore, information about the mean somatic current signal can be
estimated by the mean calcium concentration.

evoked Ca2+ current via a high-threshold, voltage-activated calcium con-
ductance, κ is a constant that converts the incoming calcium current into
a concentration change, and CAREF is the resting calcium concentration.
This element is followed by a calcium-dependent but voltage-independent
activation variable m determining the activation of the calcium-dependent
potassium current.

Figures 1A and 1B plot the steady-state current-frequency relationship
as well as mean intracellular calcium concentration-current relation of our
silicon neuron in its standard settings. In this article, all figures were ob-
tained with the same parameter settings of the chip, except the discharge
curves II, III, II′, and III′ in Figure 7.
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The parameters that control the various currents are set as bias voltages
on pads of the silicon chip. The voltages are provided by multiple digital-
to-analog converters controlled by a digital computer. This machine also
monitors the membrane potential V and the low-pass filtered response of
the spike-evoked Ca2+ signal at the soma and—on the basis of the adaptive
neural coding procedure to be discussed below—sends back a bias voltage
to adjust various circuit elements of the silicon neuron.

3 Signal Reconstruction via Low-Pass Filtering

Bayly (1968) theoretically showed (using a model equivalent to the integrate-
and-fire neuron model) that continuous signal reconstruction (or decoding)
from spike trains can be accomplished by low-pass filtering. Shin, Lee, &
Park (1993) showed that better signal reconstruction (from a signal-to-noise
ratio and entropy point of view) can be acquired by the same low-pass filter-
ing (time constant: 5–20 msec) of spike trains from spiking neurons using
the spectral noise shaping pulse coding principle. These methods can be
implemented at either the single neuron level with the help of potassium
currents (Shin, 1994) or at the network level via recurrent/feedback inhi-
bition (Shin, 1996). It is expected that the nervous system takes advantage
of this fact at its decoding sites, the dendritic membrane and intracellular
calcium concentration. Indeed, the response of a synapse to an action poten-
tial usually shows the characteristics of a low-pass filter and is sometimes
approximated by the response of an RC filter (Johnston & Wu, 1995). More-
over, the low-pass filter characteristics of muscle in decoding efferent neural
spikes is well known (Fatt & Katz, 1951; Partridge, 1965).

Our adaptive neural coding procedure uses the low-pass filtered re-
sponse of the spike-evoked Ca2+ signal to monitor the time-varying somatic
current signal condition.

Figure 2 shows the dynamics of calcium buffering and extrusion fol-
lowing a single action potential, as emulated by the calcium concentration
circuit of the silicon neuron. If the single action potential is described by a
delta function, δ(t), then the impulse response of the calcium buffering and
extrusion circuit is approximated (for t > 0) as

h(t) = βe−t/τCa , (3.1)

where β is the maximum magnitude of the observed impulse response (see
Figure 2B) and τCa is the time constant of the calcium decay that can be elec-
tronically controlled. In other words, the calcium buffering and extrusion
function implements a low-pass filter with a frequency-dependent gain of

Gain = βτCa√
(2π f τCa)2 + 1

. (3.2)

The 3 dB cutoff frequency, that is, the frequency for which the gain is reduced
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Figure 2: Impulse response of the calcium buffering and decay function. (A) Sin-
gle action potential evoked by a brief current input. (B) The impulse response
of the intracellular calcium concentration following this spike (solid line). Ca2+

ions are assume to enter via high-threshold, voltage-dependent calcium chan-
nels. The dashed line corresponds to the impulse response h(t) = u(t)0.12e−t/τCa

with a calcium decay time constant τCa = 15 msec.

by a factor of 1/
√

2, is fc = 1/(2πτCa). We set τCa = 15 msec in the silicon
neuron, making the cutoff frequency about 11 Hz. Past this frequency, the
filter drops off approximately as 1/f .

Let

y(t) =
∑

i
δ(t− ti) (3.3)

be the train of spikes where the ti’s denote the occurrence times of spikes in
response to the stimulus, s(t) (here the somatic current). Given a spike train,
the original input signal can be reconstructed (or estimated) in a least-square
sense using a reconstruction filter K(t) that can be computed by well-known
techniques (Rieke et al., 1996; Gabbiani and Koch, 1998),

sr(t) =
∫

K(t− t
′
)y(t

′
)dt

′
. (3.4)
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Figure 3: Basic behavior of the silicon neuron. (A) A sinusoidal 5 Hz current
signal s(t) is injected into the somatic compartment, with mean of 2.0 nA and
a peak-to-peak magnitude of 0.3 nA. (B) The cell generates spikes in response
to this input. (C) The intracellular calcium concentration [Ca2+]i reflects the
dynamics of the input current. Indeed, this biophysical variable can be thought
of as an estimate sr(t) of the input if the input does not change too rapidly.

We here approximate this optimal reconstruction filter by the first-order
low-pass filter implemented by [Ca2+]i and equate K(t) with the impulse
response h(t) of equation 3.1 (see also Figure 2B).

Figure 3C shows how the low-pass filtering of spikes via intracellular
calcium accumulation in our silicon neuron reconstructs a 5 Hz sinusoidal
input signal. The spectrum of the associated calcium signal (see Figure 4A)
illustrates that this input signal can easily be identified.

From frequency spectra such as these, we compute the signal-to-noise
ratio (SNR) as the ratio of the magnitude of the signal peak, corresponding
to the input modulation frequency, to the background noise level around
this peak (Oppenheim & Schafer, 1975; Irons, 1986). This number, expressed
in decibels, is then

SNR = 20 log10 magnitude ratio = 10 log10 power ratio. (3.5)

In the case of Figure 4A, the SNR is 30 dB.
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Figure 4: (A) The frequency spectrum representation of [Ca2+]i following injec-
tion of a sinusoidal 5 Hz signal (see Figure 3). The signal can clearly be identified.
We can compute a signal-to-noise ratio (SNR) as the ratio of the peak response at
the input frequency (signal) to the background noise level around this peak. In
this case, SNR is about 30 dB. (B) Measured SNR when the frequency of the input
is swept between 1 and 100 Hz, while the amplitude of the signal is maintained.
The dashed line corresponds to the normalized gain characteristic associated
with the low-pass filter of equation 3.1 with τCa = 15 msec. The arrow points to
the corner frequency fc where the gain is reduced by 1/

√
2.

Figure 4B shows the dependence of the SNR on the frequency of the
sinusoidal current injected into the soma for frequencies between 1 and
100 Hz while maintaining the same magnitude of the sinusoidal somatic
current signal. For the region beyond the corner frequency of 11 Hz, the
SNR is inversely proportional to the frequency. Thus, the input signal can
be relatively faithfully reconstructed (provided the input signal is above the
current threshold necessary to evoke an action potential) for band-limited
somatic current signals up to 11 Hz. At higher frequencies, the reconstruc-
tion error—that is, the difference between the original signal s(t) and its
estimate sr(t)—becomes larger.
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As a result, we can use the low-pass filtered response of the spike-evoked
Ca2+ signal to monitor the time-varying somatic signal for our adaptation
process described next.

4 Adaptive Neural Coding

A common way to represent the input-output characteristic of the neural
spike encoding process is by its discharge, current frequency, or f–I curve
in response to somatic current steps. The dynamic range of the input can
then be defined as the firing frequency range 1f ( f1 ≤ f ≤ f2) over which
a change in the input leads to a proportional change in the neuron’s output
frequency.

Given the maximum input activation of any particular neuron, it should
possess a very large dynamic input range as well as high sensitivity to
small differences in input signal. However, these are to some extent mutu-
ally exclusive goals. Maximizing sensitivity implies maximizing the slope
of the f–I curve, while maximizing the dynamic range implies minimiz-
ing the slope. Figure 5A shows an f–I curve that defines a large input dy-
namic range. However, it has a low sensitivity to small-magnitude current
signals.

One way in which the input dynamic range can be maximized without
losing sensitivity is a steep f–I curve with a fairly narrow input dynamic
range whose operating point is shifted (see Figure 5B). This is accomplished
by tracking the input over time and shifting the operating range of the f–I
curve to match the level of the mean or d.c. component of the signal. If
the average input current is low, the neuron operates with f–I curve I (see
Figure 5B). For increasing mean input levels, the f–I curve shifts to II and III.
This scheme achieves a constant and high degree of sensitivity and a large
operating range at a price: it takes time to adapt the f–I curve to the mean
stimulus current.

But why not also adapt the slope of the f–I curve to the dynamic range of
the input signal? If the dynamic range of the input signal in time is high, the
slope should be shallow, maximizing the dynamic range of the f–I curve,
while an input signal with a small, dynamic range optimizes the SNR of the
output if the f–I curve becomes steeper (see Figure 5C). If both the mean
and the dynamic range of input signals change simultaneously, the f–I curve
needs to adapt its characteristic to match the change of the signal magnitude
range (see Figure 5D).

We foundthat changing the leak conductance, ḡleak, shifts the f–I curve
associated with our silicon neuron horizontally while maintaining its slope
(increasing ḡleak offsets the injected current, thereby increasing the current
threshold needed to fire). Contrariwise, the amplitude of the peak calcium-
dependent potassium conductance (ḡAHP) adjusts the slope of the f–I curve
while maintaining the same current threshold. Increasing ḡAHP increases the
amount of afterhyperpolarization, causing multiple spikes to be spaced out
further, but does not affect the initial threshold for spiking (Yamada, Koch,
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Figure 5: Relationship between the current-frequency (f–I) curve of an idealized
cell, its gain, and its dynamic input range. (A) An f–I curve that shows a large-
input dynamic range. This seems to be an ideal input dynamic range for the
neuron because it is large enough to handle large-input current dynamic range.
Unfortunately, to achieve this large dynamic range, sensitivity (or gain) must be
sacrificed since maximal sensitivity implies an arbitrarily steep f–I curve. Since
the total frequency range of any neuron is limited from below by zero and from
above by saturation, this limits the dynamic range. The obvious solution to this
dilemma can be solved by a steep f–I curve with a fairly narrow dynamic range
whose operating point can be shifted (B). For increasing mean input levels, the
f–I curve shifts to II and III. This scheme achieves high sensitivity and a large
operating range, but at a price: it takes time to adapt the f–I curve to the mean
stimulus current (C). However, if the dynamic range of the input signal in time
is high, the slope should be shallow, maximizing the dynamic range of the f–I
curve, while an input signal with a small dynamic range will optimize the SNR
of the output if the f–I curve becomes steeper (D). If both the mean and the
dynamic range of input signals change simultaneously, the f–I curve needs to
adapt its characteristic to match the change of the signal magnitude range.

& Adams, 1989). Changing both ḡleak and ḡAHP changes both the current
threshold and the gain of the f–I curve.

Our adaptive neural coding procedure is described by

τadapt
dḡleak

dt
= −ḡleak + K2θ (min(sr(t))− a)+ K1, (4.1)

and

τadapt
dḡAHP

dt
= −ḡAHP + K2θ

(
max(sr(t))− b

)+ K1. (4.2)
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Here a > CAREF, b > a, θ(·) is the Heaviside function, the min and
max are evaluated within a suitable time window, τadapt is the time constant
associated with adaptation, and K1 and K2 determine the lower (positive)
and upper range of the two dynamic variables, ḡleak and ḡAHP. In principle
τadapt,K1, and K2 can differ for the two conductances, yet we equate them
here for convenience.

As long as the initial values of ḡleak and ḡAHP are chosen such that they
satisfy K1 ≤ ḡleak ≤ K1 + K2 and K1 ≤ ḡAHP ≤ K1 + K2, these equations
restrict ḡleak and ḡAHP to lie between K1 and K1 + K2.

We approximate the minimum of the reconstructed signal by computing
the average calcium concentrationµminus its standard deviation σ , that is,

min(sr(t)) ≈ µ− σ, (4.3)

and the maximum of the reconstructed signal by the mean plus one standard
deviation,

max(sr(t)) ≈ µ+ σ. (4.4)

µ and σ are running estimates of the mean and the standard deviation with

µ = 1
T

∫ t

t−T
[Ca2+]i(t)dt, (4.5)

and

σ 2 = 1
T

∫ t

t−T

(
[Ca2+]i(t)− µ

)2
dt. (4.6)

Other ways of estimating the maximum and minimum of the estimated
signal, such as the peak-to-peak magnitude, the envelope of the signal, and
so on, are possible (see Liu, Golowasch, Marder, & Abbott, 1998).

The adaptation algorithm works as follows. If µ + σ is above (resp. be-
low) a high-calcium threshold, b, the total amount of calcium-dependent
potassium conductance—that is, the density of the underlying channels—
is increased (resp. decreased). Increasing this conductance affects the slope
of the cell’s discharge curve but not its intercept, thereby enlarging the in-
put dynamic range of the f–I curve. Conversely, if µ − σ is above (resp.
below) a low calcium threshold, a, the total amount of leak conductance
is increased (resp. decreased). Changing the leak conductance affects the
current threshold for spiking but not the slope of the f–I curve.

Varying both ḡleak and ḡAHP changes both current threshold and gain
of the f–I curve, resulting in adaptation to nonstationary arbitrary somatic
current signals.

As long as the f–I curve increases monotonically and the leak and calcium-
dependent potassium conductances are adjusted independently of each
other, this negative feedback, adaptive neural coding procedure always con-
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verges to an optimum. Within the range of ḡleak and ḡAHP values used, this
optimum is a global one (since the relationship between ḡleak and the inter-
cept of the f–I curve is a monotonic one, as is the relationship between ḡAHP
and the slope of the f–I curve).

Since we are primarily interested in adapting neurons to slow changes
in input and in ambient operating conditions, our adaptive neural coding
procedure can operate continuously while the neuron is transforming non-
stationary somatic current signals into spike trains in its normal mode and
does not require a separate, offline learning mode.

Note that our algorithm does not, in general, maximize the cell’s SNR.
Unless the metabolic cost of spiking is incorporated into such an optimiza-
tion scheme, it could lead to very high firing rates. Rather, our algorithm
enables the neuron’s spiking characteristics to match optimally—over a
long timescale—the mean and the variance of the input to the cell’s firing
characteristics.

5 Results

We applied this algorithm to our silicon neuron in its standard parame-
ter settings (see Figure 1). For any given input injected into the somatic
compartment, a digital computer senses [Ca2+]i—the estimate of the recon-
structed signal sr(t)—from the silicon neuron and numerically computes
µ and σ over a 1-second-long time period. The low-threshold a was set to
1.0 V and 1.3 V for the high-threshold b (see Figure 1B). The bias voltages
expressing ḡleak and ḡAHP were updated appropriately every 1 second by a
minimal amount of 1.2 mV (ḡleak and ḡAHP were controlled by bias voltages
ranging from 0 to 0.6 V with this resolution).

We used low-pass filtered random signals to test the adaptive neural cod-
ing principle. Figure 6A illustrates such a signal with a mean of 2 nA and
a standard deviation of 0.2 nA (generated by filtering white noise using a
second-order low-pass filter with a cutoff frequency of 8 Hz), Figure 6B the
associated spike train, and Figure 6C the reconstructed signal from spikes.
The mean of the reconstructed signal sr(t) was 1.15 V, with a standard de-
viation of 0.15 V.

For testing adaptation to the mean, we changed the mean current from
2 nA to 2.5 nA and 3.3 nA, maintaining the same standard deviation. The
resultant f–I curves after adaptation was complete are plotted in Figure 7A.
For these curves, ḡleak changed from a baseline value of 1.27 nS to 2.03 and
2.77 nS, respectively.

Adaptation took 12 seconds to effect the shift from curve I to II and
23 seconds to shift from curve I to III. Provided that the associated time
constants of adaptation are large enough to be able to sample a number of
interspike intervals, they can be set to different values (we here use 1 second).
For any fixed setting, adaptation takes longer if the shift in average input
current is larger.
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Figure 6: Response of the silicon neuron to a random input current—here a
second-order low-pass (cutoff frequency of 8 Hz) filtered random current signals
with 2.0 nA mean and 0.2 nA standard deviation. These are the types of signals
we used to evaluate our adaptive neural coding procedure. (B) The resultant
spike train and (C) somatic calcium concentration (with a mean of 1.15 V and a
standard deviation of 0.15 V).

In order to evaluate adaptation to the dynamic range of the input, we
increased the standard deviation of the random signals (while maintaining
the same mean current of 2 nA) from its base level of 0.2 nA by adjusting
both ḡleak and ḡAHP. In its baseline state (curve I in Figure 7B), ḡleak = 1.27 nS
and ḡAHP = 2.0 pS. Increasing the standard deviation of the random signal
to 0.25 nA (resp. 0.3 nA) causes a shift in ḡleak to 1.13 nS (resp. 0.97 nS) and
an increase in ḡAHP of 8.5 pS (resp. 18 pS) (corresponding to curves II

′
and

III
′
in Figure 7B, respectively).
What occurs when the somatic input signal is subthreshold, that is, too

weak to evoke a spike? This is the scenario treated in Figure 8. The intra-
cellular calcium concentration converges under this condition to the resting
calcium concentration, CAREF (see Figure 8A). Since the low calcium thresh-
old a is set to a value larger than CAREF, the second term in equation 4.1 is
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Figure 7: Adaptation of our silicon neuron in response to random signals of
the type illustrated in Figure 6 whose mean (A) or standard deviation (B) was
changed. The original f–I curve of the neuron using its standard settings is
labeled curve I in both panels. (A) The mean of the input (shown in Figure 6A)
was increased from 2.0 nA to 2.5 and 3.3 nA. Our algorithm adapts to these
increased levels of input current by changing the maximum leak conductance,
resulting in a shift in the steady-state discharge curve (from I to II and III in
12 respectively 23 seconds). This keeps the averaged firing rate constant. (B) In
a second experiment, the standard deviation of the input was changed from
0.2 nA to 0.25 and 0.3 nA, while its mean value was maintained at 2.0 nA. Our
algorithm responded to this increase by decreasing the gain of the steady-state
f–I curve (by increasing ḡAHP) while simultaneously shifting the intercept of
the f–I curve to lower values (by decreasing ḡleak). The system reached its new
equilibrium curve II′ after 29 seconds and curve III′ after 45 seconds.

zero and, since K1 < ḡleak, the right hand will be negative. In other words,
the membrane leak conductance decreases until the neuron starts to fire (see
Figures 8B, 8C, and 8D) or until it reaches a minimum at K1 (see Figure 8E).
The final firing rate following completion of adaptation (see Figure 8D) is



Adaptive Neural Coding 1907

Figure 8: Adaptation to a subthreshold input. Initially, the f–I curve of the neu-
ron was set to curve III in Figure 7A (ḡleak = 2.77 nS and ḡAHP = 2.0 pS), and
a random signal with mean of 3.3 nA and standard deviation of 0.2 nA was
injected. Each panel shows the random input signal (top), the membrance po-
tential (middle), and [Ca2+]i(t) (top). (A) At to the mean of the random signal was
reduced to a subthreshold value of 2 nA, causing [Ca2+]i to drop to CAREF. Our
adaptation algorithm leads to a slow reduction in ḡleak, following equation 4.1.
After 11 seconds (B), the neurons start spiking, firing vigorously after 20 sec-
onds (C). The firing dynamics of the cell has converged after about 60 seconds
to something close to curve I in Figure 7A (panel D). (E) The evolution of ḡleak
that causes the shift in the cell’s f–I curve. (F) Since K1 was set to the minimal
value of ḡAHP = 2.0 pS, no change in this conductance occurs (see equation 4.2).

controlled by numerous parameters such as the two calcium thresholds, a
and b, and so on.

Because we wanted to demonstrate that subthreshold adaptation can be
accomplished by shifting the f–I curve rather than by adjusting the slope of
the f–I curve, K1 was set to the value of ḡAHP, and no change in this variable
occurs (see Figure 8F).

In addition to the random current signal illustrated here, we also em-
ployed sinusoidal current signals with adjustable offsets to confirm that
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our algorithm adapts the firing behavior of our cell to match optimally the
first and second moment of the input current (not shown).

6 Discussion

In this study we investigate an efficient adaptive algorithm that could plau-
sibly be implemented at the single-cell level using the concentration of free
intracellular calcium. Specifically it adapts the firing behavior of a spiking
neuron to reflect optimally both the mean and the variance of the input
signal—current delivered to the cell body.

The basic assumption underlying our algorithm is that one can estimate
the input signal, the current s(t) at the soma delivered by an intracellu-
lar electrode or by synaptic input from the dendrites, from the resultant
spike train (provided that this current is above threshold). Signal estima-
tion theory provides us with the optimal (in the least square sense) filter
that allows us to reconstruct s(t) from the spike train (Rieke et al., 1996;
Gabbiani & Koch, 1998). We argue that the intracellular concentration of
free Ca2+ approximates such a low-pass reconstruction filter. Note that
we are not arguing that the function of the cell is explicitly to reconstruct
its time-varying somatic current signal but that [Ca2+]i at the cell body—
reflecting the time-varying somatic current signal—can be used to adapt the
cell.

In the presence of a high-threshold, voltage-dependent calcium conduc-
tance at the soma, each action potential causes an inrush of Ca2+ ions that
diffuse throughout the intracellular compartment, bind to various enzymes,
buffers, or intracellular organelles, or are pumped out again. As witnessed
by Figure 2B this can be reasonably well approximated in our silicon neuron
by an exponential decay process. As inspection of Figure 4B makes clear,
[Ca2+]i can be thought of as the reconstructed signal sr(t), provided that
the input s(t) does not change too rapidly and as long as s(t) is above the
threshold for action potential generation. This timescale is ideal to compen-
sate for relatively slow environmental changes, such as temperature, cell
growth, channel turnover, and so on, that affect neuronal performance. As
s(t) begins to change more rapidly, that is, contains significant energy above
the corner frequency of 11 Hz, the squared difference between the signal
and its reconstruction increases.

The algorithm uses the reconstructed signal in the guise of [Ca2+]i to
change the intercept and the slope of the cell’s discharge curve to provide
an optimal match between the input range of the signal and the firing char-
acteristic of the neuron. Specifically, we vary ḡleak to compensate for changes
in the mean input current and ḡAHP to compensate for changes in the stan-
dard deviation (or the contrast) of s(t). This method works very well for
our silicon neuron implemented in CMOS VLSI circuit technology (e.g., see
Figure 7). It even allows the cell to adapt to a subthreshold current input
(see Figure 8).
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To what extent real neurons vary the shape and slope of their f–I curve
in response to a change in their electrical makeup, stimulus ensemble, or
environment is only now beginning to receive attention from experimen-
talists. Studies investigating contrast adaptation and long-term changes
in response to a general increase or decrease in cortical excitability have
tended to emphasize the contribution of (pre)synaptic mechanisms (Mclean
& Palmer, 1996; Carandini & Ferster, 1997; Turrigiano et al., 1998). Although
it is known that retinal neurons can adapt to a change in the variance of
a visual signal (Smirnakis et al., 1997) the underlying cellular mechanism
remains unknown.

Ongoing experiments directly relevant to our proposed algorithm come
from the laboratory of Turrigiano (Desai, Nelson, & Turrigiano, 1998; Desai,
Rutherford, & Turrigiano, 1999). Blocking all spiking activity for two days
in cultured neocortical pyramidal cell leads to a reduction in the spiking
threshold, as well as a highly significant increase in the slope of the cell’s f-I
curve. This was—at least partially—caused by an increase in the fast sodium
current and a decrease in certain potassium currents. It would be exciting
if it could be shown that these changes in ionic currents optimize the cell’s
gain and dynamic range.

Our proposed adaptation mechanism will be inactivated by either block-
ing the high-threshold, voltage-dependent calcium current or by preventing
the cell from firing—for instance, by application of TTX.

Following the pioneering work of Abbott and LeMasson (1993) and
LeMasson et al. (1993), we link changes in the intracellular calcium con-
centration to the densities with which various ionic channels are expressed
across the somatic membrane. Such a pathway is likely to be exceedingly
complex and will involve calcium-sensitive genes critical for slow neuronal
adaptive responses (Koutalos & Yau, 1996; Ginty, 1997). Our algorithm as-
sumes that some combination of biophysical and biochemical mechanisms
exists that effectively estimates the minimal and maximal levels of [Ca2+]i—
or its mean and standard deviation in our approximation—within some time
window. How this could be implemented at the biophysical level remains
an open problem.

It is also unclear how the presence of a significant amount of low-thresh-
old, voltage-dependent calcium conductance at the soma and spike initia-
tion zone will affect the estimate of the input current. Such a conductance
will tend to confound the link between spiking activity and intracellular
calcium concentration since it can be active below threshold in the absence
of spiking.

The work described here also has implications for the design and fab-
rication of networks of electronic silicon neurons. As with their biological
counterparts, silicon neurons have a very large number of associated param-
eters that need to be set properly in order for the cell to function properly.
Furthermore, the performance of such neurons needs to be stable in the face
of fluctuations of bias voltages, operating temperature, transistor mismatch,
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and spatial parameter variations across the chip. Finally, the sensitivity of
these neurons should also reflect changing input statistics. We here show
how a continuously operating feedback circuit can keep the cell adjusted to
make maximal use of its limited bandwidth and sensitivity.

In the version of the adaptation algorithm reported here, computing the
mean and standard deviation of the calcium signal was carried out on an ex-
ternal computer. We are currently designing a single chip that would contain
the silicon neuron in addition to all circuitry necessary to perform the adap-
tation in situ on the basis of two different and complementary approaches.
One analog circuit uses switched-capacitor memory (Elias, Northmore, &
Westerman, 1997) and the other floating-gates learning synapses (Diorio,
Hasler, Minch, & Mead, 1996) as the critical components to control the time
constants of the adaptation process. This latter technology should enable us
to design high-density, robust, and adaptive electronic neurons.

Appendix

The model we emulated using the silicon neuron has five active ion currents
as well as a leak current that are engaged in the neural spike encoding
process at soma (Douglas & Mahowald, 1998). The membrane voltage V at
the soma is described by

Cm
dV
dt
+ INa + IKD + Ileak + IA + ICa + IAHP + IInject = 0, (A.1)

where INa represent the fast sodium current, IKD the delayed rectifier potas-
sium current, IA a transient, inactivating potassium current, IAHP a calcium-
dependent potassium current, ICa a high-threshold calcium current, Ileak the
leakage current, and IInject the current delivered to the cell body.

The leak current is given by Ileak = gleak(V−Eleak), where Eleak is the resting
potential.

The four voltage-dependent currents, INa, IKD, IA, and ICa, can be approx-
imated by a Hodgkin-Huxley-like formalism,

I(t) = g ·m(t,V)i · h(t,V)j · (V − E), (A.2)

where g is the maximum conductance; m, the activation variable taken to
the ith power; h, the inactivation variable taken to the jth power; and E, the
associated reversal potential of the current. The dynamics of each activation
and inactivation particle is governed by a first-order differential equation,

dm
dt
= m∞(V)−m

τm(V)
(A.3)

and

dh
dt
= h∞(V)− h

τh(V)
, (A.4)



Adaptive Neural Coding 1911

where m∞(V) and h∞(V) are the voltage-dependent activation curve and
inactivation curve, and τm and τh are the time constants of the activation
and the inactivation.

The afterhyperpolarization current, IAHP, is a potassium current that de-
pends on the intracellular calcium concentration [Ca2+]i,

IAHP(t) = mAHP([Ca2+]i) · ḡAHP · (V − EK), (A.5)

where EK is the potassium reversal potential and mAHP the voltage-inde-
pendent activation given by a sigmoidal function of the intracellular calcium
concentration [Ca2+]i,

mAHP = 1
1+ exp−([Ca2+]i − CAMT)/T

. (A.6)

Here CAMT is a constant determined by (a+b)/2 (a is a low calcium thresh-
old and b a high calcium threshold) and T is a parameter that determines
the slope of the sigmoid.

Finally, the dynamics of free, intracellular calcium is governed by a single
linear update expression,

τCa
d[Ca2+]i

dt
= −[Ca2+]i + κICa + CAREF, (A.7)

where τCa is a time constant of decay, ICa is the high-threshold calcium
current, κ is a constant that converts the incoming calcium current into a
concentration change, and CAREF is the resting calcium concentration.

All parameters of this hardware model are under electronic control.
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